WorldWideScience

Sample records for optical interferometric read-out

  1. Description of an Advantageous Optical Label-Free Biosensing Interferometric Read-Out Method to Measure Biological Species

    Directory of Open Access Journals (Sweden)

    Miguel Holgado

    2014-02-01

    Full Text Available In this article we report a new, simple, and reliable optical read-out detection method able to assess Rotavirus present in human sera as well as in the viral pollution sources. It is based on the interference of two interferometers used as biophotonic transducers. The method significantly improves the optical label-free biosensing response measuring both, the concentration of the AgR and its corresponding size. Two different immunoassays were carried out: Bovine Serum Albumin (BSA, and the recognition by its antibody (anti-BSA; and Rotavirus (AgR and the recognition by its antibody (anti-AgR. In the cases studied, and using as model interferometer a simple Fabry-Perot transducer, we demonstrate a biosensing enhancement of two orders of magnitude in the Limit of Detection (LoD. In fact, this read-out optical method may have significant implications to enhance other optical label-free photonic transducers reported in the scientific literature.

  2. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  3. Hodoscope read-out with space-time mapping through an optical pipeline

    International Nuclear Information System (INIS)

    Bamberger, A.; Boehler, E.; Kroeger, W.; Soeldner-Rembold, S.

    1993-09-01

    This note describes a new read-out scheme for fine grained hodoscopes with possible applications for a Small Angle Rear Tracking Detector (SRTD) or a pre-sampler in front of the ZEUS Uranium Calorimeter. Several hodoscope strips are read out by one phototube using optical fibres of different lengths. Optical delays of equal increments ensure a linear mapping of the space coordinate onto the time coordinate. A first prototype has been built and first test measurements are being presented. In addition, Monte Carlo simulations were performed to study the effects of showering electrons on the position resolution of the detector. The results of the test measurements, especially those related to the properties of the light guides, and the results of the simulation are of general importance for the SRTD design beyond the optical delay read-out scheme presented here. (orig.)

  4. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  5. Live event reconstruction in an optically read out GEM-based TPC

    Science.gov (United States)

    Brunbauer, F. M.; Galgóczi, G.; Gonzalez Diaz, D.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-04-01

    Combining strong signal amplification made possible by Gaseous Electron Multipliers (GEMs) with the high spatial resolution provided by optical readout, highly performing radiation detectors can be realized. An optically read out GEM-based Time Projection Chamber (TPC) is presented. The device permits 3D track reconstruction by combining the 2D projections obtained with a CCD camera with timing information from a photomultiplier tube. Owing to the intuitive 2D representation of the tracks in the images and to automated control, data acquisition and event reconstruction algorithms, the optically read out TPC permits live display of reconstructed tracks in three dimensions. An Ar/CF4 (80/20%) gas mixture was used to maximize scintillation yield in the visible wavelength region matching the quantum efficiency of the camera. The device is integrated in a UHV-grade vessel allowing for precise control of the gas composition and purity. Long term studies in sealed mode operation revealed a minor decrease in the scintillation light intensity.

  6. An Optical Fiber Read Out Method for a Reflective Microcantilever Biosensor

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2013-03-01

    Full Text Available An effective optical read out approach based on fiber reflective is presented to detect bends of a biomaterial microcantilever. The microcantilever was fabricated on single crystalline SOI wafer using a series of side definitions and backside wet/dry etchings. A Cr/Au layer with 30 nm Cr and 50 nm Au layer was deposited for the immobilized of bimolecular on the cantilever surface and for reflecting the light back into the fiber, the different light intensities means different bimolecular concentrations. The noncoherent light source is a super luminescent LED. Gradient index lens as a collimator and 50:50 optical coupler and signal modefiber was used to transmit light. Two PINFETs were used to convert the reflecting the light intensities and the light sources into electronic signals, two ADCs convert the signal into digital signals, a MPU was used to eliminate the fluctuation of the light source error. The method can has got high sensitivity is 6507.59 mV/um. Though the experiment, the cantilever biosensor can detect glucose, measurement results clearly demonstrate that the output voltage induced by the microcantilevers bending is proportional to the glucose concentrations and the sensitivity is up to 0.1V/mM, which is enough for glucose real-time trace detection.

  7. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * ( bio )sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  8. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * (bio)sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  9. Acoustical holographic recording with coherent optical read-out and image processing

    Science.gov (United States)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  10. Automated data reduction for optical interferometric data

    International Nuclear Information System (INIS)

    Boyd, R.D.; Miller, D.J.; Ghiglia, D.C.

    1983-01-01

    The potential for significant progress in understanding many transport processes exists through the use of a rapid and automated data reduction process of optical interferometric data. An example involving natural convection in a horizontal annulus is used to demonstrate that the accuracy possible in automated techniques is better than 99.0%

  11. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    National Research Council Canada - National Science Library

    Rentzepis, Peter M

    2005-01-01

    .... The optical, chemical and spectroscopic properties of this non-destructive write/read/erase computer memory material have been studied This organic storage system consists of two different molecular...

  12. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  13. A novel mechano-optical sensor based on read-out with a Si3N4 grated waveguide

    NARCIS (Netherlands)

    Pham Van So, P.V.S.; Dijkstra, Mindert; van Wolferen, Hendricus A.G.M.; Pollnau, Markus; Krijnen, Gijsbertus J.M.; Hoekstra, Hugo

    2011-01-01

    Microcantilever-based sensors can be used to detect molecular absorption of, for example, hydrogen gas, which causes changes in the surface stress, leading to deflection of the cantilever. Such a deflection can be determined by means of optical beam deflection, capacitance-, or piezo-resistance

  14. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  15. Imaging Stars by Performing Full-Stokes Optical Interferometric Polarimetry

    Directory of Open Access Journals (Sweden)

    Nicholas M. Elias II

    2012-03-01

    Full Text Available Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. We present: scientific justifications for “full-Stokes” optical interferometric polarimetry (OIP; updated instrument requirements; preliminary beam combiner designs; polarimeter design; end-to-end OIP data reduction; and realistic reimaged full-Stokes models of Be stars with a suitable number of telescopes plus noise sources. All of this work represents preliminary research to construct an OIP beam combiner.

  16. Recovering Signals from Optical Fiber Interferometric Sensors

    Science.gov (United States)

    1991-06-01

    electronic functions to be combined onto a single -integrated circuit on- a silicon (or other) substrate. These custom -designed circuits are known by...largely unknown to the ordinary :itizen and seldom mentioned in the- popular press. Yet optical fiber sensors have attracted considerable- interest...write the-power in output leg I by performing the same interchange on Equation (95). a3(L) 12 {2B 2B1 -cos(3KL)I + B3B;[5+4cos(3KL)] 2 18 - B2B ;e(4-"?1 +e

  17. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  18. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  19. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  20. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  1. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  2. Interferometric architectures based All-Optical logic design methods and their implementations

    Science.gov (United States)

    Singh, Karamdeep; Kaur, Gurmeet

    2015-06-01

    All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.

  3. Interferometric and optical tests of water window imaging x ray microscopes

    Science.gov (United States)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  4. The universal read-out controller for CBM at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Sebastian; Abel, Norbert; Gebelein, Jano [Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Collaboration: CBM-Collaboration

    2011-07-01

    Since 2007 we design and develop the firmware for the read-out controller (ROC) for data acquisition of the CBM detector at FAIR. While our first implementation solely focused on the nXYTER chip, today we are also designing and implementing readout logic for the GET4 chip which is supposed to be part of the time of flight (TOF) detector. Furthermore, we fully support both Ethernet and Optical transport as two transparent solutions. This addresses the different requirements of a laboratory setup and the final detector setup respectively. The usage of a strict modularization of the Read Out Controller firmware enables us to provide an Universal ROC where front-end specific logic and transport logic can be combined in a very flexible way. Fault tolerance techniques are only required for some of those modules and hence are only implemented there.

  5. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    Science.gov (United States)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  6. Interferometric interrogation concepts for integrated electro-optical sensor systems

    NARCIS (Netherlands)

    Ikkink, T.J.; Ikkink, Teunis Jan

    1998-01-01

    Integrated optical sensors have a high potential in the measurement of a large variety of measurands. Research on integrated optical sensors enjoys increasing interest. In order to reach accurate performance and to facilitate the use of integrated optical sensors, electronic functions for sensor

  7. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  8. The TOTEM T1 read out card motherboard

    OpenAIRE

    Minutoli, S; Lo Vetere, M; Robutti, E

    2010-01-01

    This article describes the Read Out Card (ROC) motherboard, which is the main component of the T1 forward telescope front-end electronic system. The ROC main objectives are to acquire tracking data and trigger information from the detector. It performs data conversion from electrical to optical format and transfers the data streams to the next level of the system and it implements Slow Control modules which are able to receive, decode and distribute the LHC machine low jitter clock and fast c...

  9. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  10. A Comparison of Acoustic Field Measurement by a Microphone and by an Optical Interferometric Probe

    Directory of Open Access Journals (Sweden)

    R. Bálek

    2002-01-01

    Full Text Available The objective of this work is to show that our optical method for measuring acoustic pressure is in some way superior to measurement using a microphone. Measurement of the integral acoustic pressure in the air by a laser interferometric probe is compared with measurement using a microphone. We determined the particular harmonic components in the acoustic field in the case of relatively high acoustic power in the ultrasonic frequency range.

  11. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  12. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  13. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  14. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  15. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  16. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    Science.gov (United States)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty morphing wing deflection.

  17. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  18. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Åkerstedt, Henrik; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  19. Distributed fiber optic interferometric geophone system based on draw tower gratings

    Science.gov (United States)

    Xu, Ruquan; Guo, Huiyong; Liang, Lei

    2017-09-01

    A distributed fiber optic interferometric geophone array based on draw tower grating (DTG) array is proposed. The DTG geophone array is made by the DTG array fabricated based on a near-contact exposure through a phase mask during the fiber drawing process. A distributed sensing system with 96 identical DTGs in an equal separation of 20 m and an unbalanced Michelson interferometer for vibration measurement has been experimentally validated compared with a moving-coil geophone. The experimental results indicate that the sensing system can linearly demodulate the phase shift. Compared with the moving coil geophone, the fiber optic sensing system based on DTG has higher signal-to-noise ratio at low frequency.

  20. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber.

    Science.gov (United States)

    Muri, Harald Ian; Bano, Andon; Hjelme, Dag Roar

    2018-01-11

    We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR) signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI), which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label-free biosensing. These

  1. LSPR and Interferometric Sensor Modalities Combined Using a Double-Clad Optical Fiber

    Directory of Open Access Journals (Sweden)

    Harald Ian Muri

    2018-01-01

    Full Text Available We report on characterization of an optical fiber-based multi-parameter sensor concept combining localized surface plasmon resonance (LSPR signal and interferometric sensing using a double-clad optical fiber. The sensor consists of a micro-Fabry-Perot in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanorods on the facet of a cleaved double-clad optical fiber. The swelling degree of the hydrogel is measured interferometrically using the single-mode inner core, while the LSPR signal is measured using the multi-mode inner cladding. The quality of the interferometric signal is comparable to previous work on hydrogel micro-Fabry-Perot sensors despite having gold nanorods immobilized in the hydrogel. We characterize the effect of hydrogel swelling and variation of bulk solution refractive index on the LSPR peak wavelength. The results show that pH-induced hydrogel swelling causes only weak redshifts of the longitudinal LSPR mode, while increased bulk refractive index using glycerol and sucrose causes large blueshifts. The redshifts are likely due to reduced plasmon coupling of the side-by-side configuration as the interparticle distance increases with increasing swelling. The blueshifts with increasing bulk refractive index are likely due to alteration of the surface electronic structure of the gold nanorods donated by the anionic polymer network and glycerol or sucrose solutions. The recombination of biotin-streptavidin on gold nanorods in hydrogel showed a 7.6 nm redshift of the longitudinal LSPR. The LSPR response of biotin-streptavidin recombination is due to the change in local refractive index (RI, which is possible to discriminate from the LSPR response due to changes in bulk RI. In spite of the large LSPR shifts due to bulk refractive index, we show, using biotin-functionalized gold nanorods binding to streptavidin, that LSPR signal from gold nanorods embedded in the anionic hydrogel can be used for label

  2. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  3. Simultaneous interferometric measurement of linear coefficient of thermal expansion and temperature-dependent refractive index coefficient of optical materials.

    Science.gov (United States)

    Corsetti, James A; Green, William E; Ellis, Jonathan D; Schmidt, Greg R; Moore, Duncan T

    2016-10-10

    Characterizing the thermal properties of optical materials is necessary for understanding how to design an optical system for changing environmental conditions. A method is presented for simultaneously measuring both the linear coefficient of thermal expansion and the temperature-dependent refractive index coefficient of a sample interferometrically in air. Both the design and fabrication of the interferometer is presented as well as a discussion of the results of measuring both a steel and a CaF2 sample.

  4. ALICE common read-out receiver card status and HLT implementation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Heiko; Kebschull, Udo [IRI, Goethe-Universitaet Frankfurt am Main (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The ALICE Common Read-Out Receiver Card (C-RORC) is an FPGA based PCIe read out board with optical interfaces primarily developed to replace the previous ALICE High-Level Trigger (HLT) and Data Acquisition (DAQ) Read-Out Receiver Cards from Run1 with a state of the art hardware platform to cope with the increased link rates and event data volume of Run2. The large scale production of the C-RORCs for Run2 has been completed in cooperation with ATLAS and the boards are installed in the productive clusters of ALICE HLT, ALICE DAQ and ATLAS TDAQ ROS. This contribution describes the hardware and firmware of the C-RORC in the ALICE HLT application and its online processing capabilities. Additionally, a high level dataflow description approach to implement hardware processing steps more efficiently is presented.

  5. Strip detectors read-out system user's guide

    International Nuclear Information System (INIS)

    Claus, G.; Dulinski, W.; Lounis, A.

    1996-01-01

    The Strip Detector Read-out System consists of two VME modules: SDR-Flash and SDR-seq completed by a fast logic SDR-Trig stand alone card. The system is a self-consistent, cost effective and easy use solution for the read-out of analog multiplexed signals coming from some of the front-end electronics chips (Viking/VA chips family, Premus 128 etc...) currently used together with solid (silicon) or gas microstrip detectors. (author)

  6. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  7. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    International Nuclear Information System (INIS)

    Unkuri, J; Rantanen, A; Manninen, J; Esala, V-P; Lassila, A

    2012-01-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm. (paper)

  8. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  9. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    Science.gov (United States)

    Bochner, Brett

    1998-12-01

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling

  10. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  11. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  12. Flexible geometry hodoscope using proportional chamber cathode read-out

    International Nuclear Information System (INIS)

    Aubret, C.; Bellefon, A. de; Benoit, P.; Brunet, J.M.; Tristram, G.

    1978-01-01

    The construction of a cathode read-out proportional chamber, used as a low mass hodoscope is described. Results on efficiency, time resolution and space resolution are shown. The associative logic, which permits the use of the chamber as a coplanarity chamber is briefly presented

  13. A time projection chamber with microstrip read-out

    International Nuclear Information System (INIS)

    Bootsma, T.M.V.; Van den Brink, A.; De Haas, A.P.; Kamermans, R.; Kuijer, P.G.; De Laat, C.T.A.M.; Van Nieuwenhuizen, G.J.; Ostendorf, R.; Snellings, R.J.M.; Twenhoefel, C.J.W.; Peghaire, A.

    1994-01-01

    The design and testing of a novel detector for heavy-ion physics in the intermediate-energy regime is described. This detector consists of a large drift chamber with microstrip read-out in combination with thick plastic scintillators. With this system particle identification and energy determination with high spatial resolution and multiple hit capacity is achieved. ((orig.))

  14. ATLAS TileCal Read Out Driver production

    International Nuclear Information System (INIS)

    Valero, A; Abdallah, J; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; Gonzalez, V; Higon, E; Poveda, J; Ruiz-MartInez, A; Saez, M A; Salvachua, B; SanchIs, E; Solans, C; Valls, J A

    2007-01-01

    The production tests of the 38 ATLAS TileCal Read Out Drivers (RODs) are presented in this paper. The hardware specifications and firmware functionality of the RODs modules, the test-bench and the test procedure to qualify the boards are described. Finally the performance results, the temperature studies and high rate tests are shown and discussed

  15. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  16. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    Science.gov (United States)

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  17. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  18. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes

    International Nuclear Information System (INIS)

    Yang, Yi; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2013-01-01

    A multidimensional signal processing method for a single interferometric fiber-optic gyroscope (IFOG) is proposed, to the best of our knowledge, for the first time. The proposed method, based on a novel IFOG structure with quadrature demodulation, combines a multidimensional gray model (GM) and a wavelet compression technique for noise suppression and sensitivity enhancement. In the IFOG, two series of measured rotation rates are obtained simultaneously: an in-phase component and a quadrature component. Together with the traditionally measured rate, the three measured rates are processed by the combined gray-wavelet method. Simulations show that the intensity noise and non-reciprocal phase fluctuations are effectively suppressed by this method. Experimental comparisons with a one-dimensional GM(1, 1) model show that the proposed three-dimensional method achieves much better denoising performance. This advantage is validated by the Allan variance analysis: in a low-SNR (signal-to-noise ratio) experiment, our method reduces the angle random walk (ARW) and the bias instability (BI) from 1 × 10 −2  deg h −1/2 and 3 × 10 −2  deg h −1 to 1 × 10 −3  deg h −1/2 and 3 × 10 −3  deg h −1 , respectively; in a high-SNR experiment, our method reduces the ARW and the BI from 9 × 10 −4  deg h −1/2 and 5 × 10 −3  deg h −1 to 4 × 10 −4  deg h −1/2 and 3 × 10 −3  deg h −1 , respectively. Further, our method increases the dimension of the state-of-the-art IFOG technique from one to three, thus obtaining higher IFOG sensitivity and stability by exploiting the increase in available information. (paper)

  19. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes

    Science.gov (United States)

    Yang, Yi; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2013-11-01

    A multidimensional signal processing method for a single interferometric fiber-optic gyroscope (IFOG) is proposed, to the best of our knowledge, for the first time. The proposed method, based on a novel IFOG structure with quadrature demodulation, combines a multidimensional gray model (GM) and a wavelet compression technique for noise suppression and sensitivity enhancement. In the IFOG, two series of measured rotation rates are obtained simultaneously: an in-phase component and a quadrature component. Together with the traditionally measured rate, the three measured rates are processed by the combined gray-wavelet method. Simulations show that the intensity noise and non-reciprocal phase fluctuations are effectively suppressed by this method. Experimental comparisons with a one-dimensional GM(1, 1) model show that the proposed three-dimensional method achieves much better denoising performance. This advantage is validated by the Allan variance analysis: in a low-SNR (signal-to-noise ratio) experiment, our method reduces the angle random walk (ARW) and the bias instability (BI) from 1 × 10-2 deg h-1/2 and 3 × 10-2 deg h-1 to 1 × 10-3 deg h-1/2 and 3 × 10-3 deg h-1, respectively; in a high-SNR experiment, our method reduces the ARW and the BI from 9 × 10-4 deg h-1/2 and 5 × 10-3 deg h-1 to 4 × 10-4 deg h-1/2 and 3 × 10-3 deg h-1, respectively. Further, our method increases the dimension of the state-of-the-art IFOG technique from one to three, thus obtaining higher IFOG sensitivity and stability by exploiting the increase in available information.

  20. Apparatus for sensing radiation and providing electrical read out

    International Nuclear Information System (INIS)

    Michon, G.J.; Burke, H.K.

    1975-01-01

    In an array of radiation sensing devices each including a pair of closely coupled conductor-insulator-semiconductor cells on a common substrate, each of the devices is addressed in sequence for read out. Read out of a device is accomplished by reducing the amplitudes of the voltages on the cells of the device in sequence to inject charge stored in the cells into the substrate and by sensing such injected charge. The device is reset for the next cycle of operation by reestablishing voltages in sequence on the cells. Means are provided in the bulk of the substrate to collect injected charge to avoid recollection by the cells of the device of such charge which has not had sufficient time to recombine or diffuse in the substrate away from the vicinity of the cells. (auth)

  1. Evaluation of an Integrated Read-Out Layer Prototype

    International Nuclear Information System (INIS)

    Abu-Ajamieh, Fayez

    2011-01-01

    This thesis presents evaluation results of an Integrated Read-out Layer (IRL), a proposed concept in scintillator-based calorimetry intended to meet the exceptional calorimetric requirements of the envisaged International Linear Collider (ILC). This study presents a full characterization of the prototype IRL, including exploration of relevant parameters, calibration performance, and the uniformity of response. The study represents proof of the IRL concept. Finally, proposed design enhancements are presented.

  2. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  3. The Read-Out Driver for the ATLAS MDT Muon Precision Chambers

    CERN Document Server

    Boterenbrood, H; Kieft, G; König, A; Vermeulen, J C; Wijnen, T A M; 14th IEEE - NPSS Real Time Conference 2005 Nuclear Plasma Sciences Society

    2006-01-01

    Some 200 MDT Read Out Drivers (MRODs) will be built to read out the 1200 MDT precision chambers of the muon spectrometer of the ATLAS experiment at the LHC. The MRODs receive event data via optical links (one per chamber, up to 8 per MROD), build event fragments at a maximum rate of 100 kHz, output these to the ATLAS data-acquisition system and take care of monitoring and error checking, handling and flagging. The design of the MROD-1 prototype (a 9U VME64 module in which this functionality is implemented using FPGAs and ADSP-21160 Digital Signal Processors programmed in C++) is described, followed by a presentation of results of performance measurements. Then the implications for the production version (called MROD-X) and the experience with pre-production modules of the MROD-X are discussed.

  4. Performance of multiclad scintillating and clear waveguide fibers read out with visible light photon counters

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, B. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Erdman, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Gaskell, D. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Lu, Q. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Marchant, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Ruchti, R. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Wayne, M. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Cooper, C. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Hinson, J. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Koltick, D.S. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United State

    1994-06-15

    Measurements have been made of the performance of scintillating fibers read out with visible light photon counters (VLPCs). The light yields of single-clad and multiclad scintillating fibers have been compared. The experiment consisted of 3 m long scintillating fibers of 830 [mu]m diameter optically coupled to 8 m long waveguide fibers of 965 [mu]m diameter read out with HISTE-IV VLPCs. For the case of multiclad scintillating fiber and waveguide, an average of 6.2 photoelectrons was detected from the far end of the scintillating fiber if the fiber end was unmirrored, and 10.2 photoelectrons if the fiber end was mirrored. With this substantial photoelectron yield, minimum-ionizing tracks can be easily detected in fiber arrays, and excellent performance characteristics are expected for the fiber trackers designed for the D0 experiment at the Fermilab Tevatron Collider and the SDC experiment at the SSC Laboratory. ((orig.))

  5. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  6. Reduction of interferometric crosstalk induced penalty using a saturated semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Poulsen, Henrik Nørskov

    2000-01-01

    We successfully demonstrated that a simple saturated SOA could be used to reduce the impact from the interferometric crosstalk at 2.5 and 10 Gb/s. It is shown that 4 dB more crosstalk power can be tolerated at 1 dB penalty by using the SOA. This will greatly reduce the crosstalk requirement...

  7. Theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric fiber optic sensors

    Science.gov (United States)

    Han, Ming

    In this dissertation, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either

  8. Design and Commissioning of the ATLAS Muon Spectrometer RPC Read Out Driver

    CERN Document Server

    Aloisio, A; Cevenini, F; Della Pietra; Della Volpe; Izzo, V

    2008-01-01

    The RPC subsystem of the ATLAS muon spectrometer provides the Level-1 trigger in the barrel and it is read out by a specific DAQ system. On-detector electronics pack the RPC data in frames, tagged with an event number assigned by the trigger logic, and transmit them to the counting room on optical fibre. Data from each sector are then routed together to a Read-Out Driver (ROD) board. This is a custom processor that parses the frames, checks their coherence and builds a data structure for all the RPCs of one of the 32 sectors of the spectrometer. Each ROD sends the event fragments to a Read-Out subsystem for further event building and analysis. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller. In this paper we describe the board architecture and the event binding algorithm. The boards have been installed in the ATLAS USA15 control room and have been successfully used in the ATLAS commissioning runs.

  9. A new electronic read-out for the YAPPET scanner

    International Nuclear Information System (INIS)

    Damiani, C.; Ramusino, A.C.A. Cotta; Malaguti, R.; Guerra, A. Del; Domenico, G. Di; Zavattini, G.

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper

  10. A new electronic read-out for the YAPPET scanner

    CERN Document Server

    Damiani, C; Malaguti, R; Guerra, A D; Domenico, G D; Zavattini, G

    2002-01-01

    A small animal PET-SPECT scanner (YAPPET) prototype was built at the Physics Department of the Ferrara University and is presently being used at the Nuclear Medicine Department for radiopharmaceutical studies on rats. The first YAPPET prototype shows very good performances, but needs some improvements before it can be fully used for intensive radiopharmaceutical research. The main problem of the actual prototype is its heavy electronics, based on NIM and CAMAC standard modules. For this reason a new, compact read-out electronics was developed and tested. The results of a first series of tests made on the first prototype will be presented in the paper.

  11. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  12. A continuous read-out TPC for the ALICE upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, C., E-mail: C.Lippmann@gsi.de

    2016-07-11

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb–Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  13. Linear read out electronics associated with MWPC cathode strips

    International Nuclear Information System (INIS)

    Hrisoho, A.; Truong, K.

    1979-10-01

    Low-cost linear chain for MWPC cathode strip charge read-out is described. Some simple relations for noise calculation of the preamplifier (which is a fast low-noise current amplifier) are given. Due to space restriction on the detector, hybrid technique for the preamplifier realization is adopted. The problem of transmission of linear signals (60 m) using twisted pairs, are discussed. 0.2% of cross-talk is achieved. Fast differential input line receiver with shortening filter is used in order to compensate the integration of the transmission line. The cross-talk and the noise pick-up are reduced by assuming a good symmetry and using charge sensing ADC for digitalization of the analog signal

  14. PADI ASIC for straw tube read-out

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Traeger, Michael; Fruehauf, Jochen; Schmidt, Christian [GSI, Darmstadt (Germany); Ciobanu, Mircea [ISS, Bucharest (Romania); Collaboration: CBM-Collaboration

    2016-07-01

    A prototype of the CBM MUCH straw tube detector consisting of six individual straws of 6mm inner diameter and 220 mm length filled with Ar/CO{sub 2} gas mixture has been tested at the COSY accelerator in Juelich. The straw tubes were connected to the FEET-PADI6-HDa PCB equipped with PADI-6 fast amplifier/discriminator ASIC. As a reference counter in this measurement the scCVD diamond detector has been used delivering excellent timing, time resolution below 100 ps (sigma), and very precise position information, below 50 μm. The demonstrated position resolution of about 160 μm of the straw tube read out with PADI-6 ASIC confirms the capability of the PADI chip and puts this development as a very attractive readout option for straw tubes and wire chambers.

  15. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  16. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits

    CERN Document Server

    Wu, Rong; Makinwa, Kofi A A

    2013-01-01

    This book presents innovative solutions in the design of precision instrumentation amplifier and read-out ICs, which can be used to boost millivolt-level signals transmitted by modern sensors, to levels compatible with the input ranges of typical Analog-to-Digital Converters (ADCs).  The discussion includes the theory, design and realization of interface electronics for bridge transducers and thermocouples. It describes the use of power efficient techniques to mitigate low frequency errors, resulting in interface electronics with high accuracy, low noise and low drift. Since this book is mainly about techniques for eliminating low frequency errors, it describes the nature of these errors and the associated dynamic offset cancellation techniques used to mitigate them.  Surveys comprehensively offset cancellation and accuracy improvement techniques applied in precision amplifier designs; Presents techniques in precision circuit design to mitigate low frequency errors in millivolt-level signals transmitted by ...

  17. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  18. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    Science.gov (United States)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  19. The selective read-out processor for the CMS electromagnetic calorimeter

    CERN Document Server

    Girão de Almeida, Nuño Miguel; Faure, Jean Louis; Gachelin, Olivier; Gras, Philippe; Mandjavidze, Irakli; Mur, Michel; Varela, João

    2005-01-01

    This paper describes the selective read-out processor (SRP) proposed for the electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at LHC (CERN). The aim is to reduce raw ECAL data to a level acceptable by the CMS data acquisition (DAQ) system. For each positive level 1 trigger, the SRP is guided by trigger primitive generation electronics to identify ECAL regions with energy deposition satisfying certain programmable criteria. It then directs the ECAL read-out electronics to apply predefined zero suppression levels to the crystal data, depending whether the crystals fall within these regions or not. The main challenges for the SRP are some 200 high speed (1.6 Gbit/s) I/O channels, asynchronous operation at up to 100 kHz level 1 trigger rate, a 5- mu s real-time latency requirement and a need to retain flexibility in choice of selection algorithms. The architecture adopted for the SRP is based on modern parallel optic pluggable modules and high density field programmable gate array ...

  20. Read-out concepts for FPGA-based sub-systems within the CBM detector

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Jan [Goethe-Universitaet Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Compressed Baryonic Matter experiment (CBM) to be built at FAIR consists of several individual sub-detectors. Some are based on custom ASICs as front-ends. Others employ FPGA based modules where extensive slow control features can be implemented to ease the recording of data and to allow for fast detection of any kind of error condition. Being designed as a free-running data acquisition, the demands also include a synchronized read-out, i.e. distribution of a common clock signal to all modules. To reduce the complexity of wiring, this is to be done sharing the same optical fibers as the data transport. During the past years, TrbNet has been designed and is used in various experiments, initially for the HADES experiment at FAIR. This protocol can now serve as a platform for the CBM read-out. In several steps, synchronous links with deterministic latency, as well as a free-streaming data transport can be included. At the same time, modifications to improve bandwidth and provide compatibility to the CERN GBTx links used for ASIC based sub-systems are to be developed. This contribution shows the planned steps as well as the current status of development.

  1. CENTRAL WAVELENGTH ADJUSTMENT OF LIGHT EMITTING SOURCE IN INTERFEROMETRIC SENSORS BASED ON FIBER-OPTIC BRAGG GRATINGS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2015-09-01

    Full Text Available The paper is focused on the investigation of fiber-optic interferometric sensor based on the array of fiber Bragg gratings. Reflection spectra displacement mechanism of the fiber Bragg gratings under the external temperature effects and the static pressure is described. The experiment has shown that reflection spectra displacement of Bragg gratings reduces the visibility of the interference pattern. A method of center wavelength adjustment is proposed for the optical radiation source in accord ance with the current Bragg gratings reflection spectra based on the impulse relative modulation of control signal for the Peltier element controller. The semiconductor vertical-cavity surface-emitting laser controlled by a pump driver is used as a light source. The method is implemented by the Peltier element controller regulating and stabilizing the light source temperature, and a programmable logic-integrated circuit monitoring the Peltier element controller. The experiment has proved that the proposed method rendered possible to regulate the light source temperature at a pitch of 0.05 K and adjust the optical radiation source center wavelength at a pitch of 0.05 nm. Experimental results have revealed that the central wavelength of the radiation adjustment at a pitch of 0.005 nm gives the possibility for the capacity of the array consisting of four opticalfiber sensors based on the fiber Bragg gratings. They are formed in one optical fiber under the Bragg grating temperature change from 0° C to 300° C and by the optical fiber mechanical stretching by the force up to 2 N.

  2. Design and laboratory validation of a structural element instrumented with multiplexed interferometric fiber optic sensors

    Science.gov (United States)

    Zonta, Daniele; Pozzi, Matteo; Wu, Huayong; Inaudi, Daniele

    2008-03-01

    This paper introduces a concept of smart structural elements for the real-time condition monitoring of bridges. These are prefabricated reinforced concrete elements embedding a permanent sensing system and capable of self-diagnosis when in operation. The real-time assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the method assigns a probability to each possible damage scenario, and estimates the statistical distribution of the damage parameters involved (such as location and extent). To verify the effectiveness of the technology, we produced and tested in the laboratory a reduced-scale smart beam prototype. The specimen is 3.8 m long and has cross-section 0.3 by 0.5m, and has been prestressed using a Dywidag bar, in such a way as to control the preload level. The sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a composite bar, along with a number of traditional metal-foil strain gauges. The method allowed clear recognition of increasing fault states, simulated on the beam by gradually reducing the prestress level.

  3. An automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope

    International Nuclear Information System (INIS)

    Lin, Chern-Sheng; Loh, Guo-Hao; Fu, Shu-Hsien; Chang, Hsun-Kai; Yang, Shih-Wei; Yeh, Mau-Shiun

    2010-01-01

    In this paper, an automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope is presented. For inspecting the microlens array, an XY-table is used to position it. With a He–Ne laser beam and optical fiber as a probing light, the measured image is sent to the computer to analyze the surface profile. By binary image slicing and area recognition, this study located the center of each ring and determined the substrate of the microlens array image through the background of the entire microlens array interference image. The maximum and minimum values of every segment brightness curve were determined corresponding to the change in the segment phase angle from 0° to 180°. According to the ratio of the actual ring area and the ideal ring area, the area ratio method was adopted to find the phase-angle variation of the interference ring. Based on the ratio of actual ring brightness and the ideal ring brightness, the brightness ratio method was used to determine the phase-angle variation of the interference ring fringe. The area ratio method and brightness ratio method are interchangeable in precisely determining the phase angles of the innermost and outermost rings of the interference fringe and obtaining different microlens surface altitudes of respective pixels in the segment, to greatly increase the microlens array surface profile inspection accuracy and quality

  4. Read-out and calibration of a tile calorimeter for ATLAS

    International Nuclear Information System (INIS)

    Tardell, S.

    1997-06-01

    The read-out and calibration of scintillating tiles hadronic calorimeter for ATLAS is discussed. Tests with prototypes of FERMI, a system of read-out electronics based on a dynamic range compressor reducing the dynamic range from 16 to 10 bits and a 40 MHz 10 bits sampling ADC, are presented. In comparison with a standard charge integrating read-out improvements in the resolution of 1% in the constant term are obtained

  5. Evaluation of Fermi read-out of the Atlas Tilecal prototype

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Alifanov, A.

    1998-01-01

    Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of FERMI data. The resulting energy resolution is better than the one obtained with the standard read-out. (orig.)

  6. Transmission enhancement by deployment of interferometric wavelength converters within all-optical cross connects

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Mikkelsen, Benny; Stubkjær, Kristian

    1997-01-01

    Wavelength-division multiplexing (WDM) networks are expected to utilize all-optical cross connects (OXCN) for signal routing. Because a signal path is likely to contain a number of OXCNs, their cascadability is essential. Furthermore, because wavelength converters in the OXCNs improve traffic...

  7. Interferometric crosstalk reduction by phase scrambling

    NARCIS (Netherlands)

    Tafur Monroy, I.; Tangdiongga, E.; Jonker, R.J.W.; Waardt, de H.

    2000-01-01

    Interferometric crosstalk, arising from the detection of undesired signals at the same nominal wavelength, may introduce large power penalties and bit-error rate (BER) floor significantly restricting the scalability of optical networks. In this paper, interferometric crosstalk reduction in optical

  8. Evaluation of silicon micro strip detectors with large read-out pitch

    International Nuclear Information System (INIS)

    Senyo, K.; Yamamura, K.; Tsuboyama, T.; Avrillon, S.; Asano, Y.; Bozek, A.; Natkaniec, Z.; Palka, H.; Rozanska, M.; Rybicki, K.

    1996-01-01

    For the development of the silicon micro-strip detector with the pitch of the readout strips as large as 250 μm on the ohmic side, we made samples with different structures. Charge collection was evaluated to optimize the width of implant strips, aluminum read-out strips, and/or the read-out scheme among strips. (orig.)

  9. 3 ns single-shot read-out in a quantum dot-based memory structure

    International Nuclear Information System (INIS)

    Nowozin, T.; Bimberg, D.; Beckel, A.; Lorke, A.; Geller, M.

    2014-01-01

    Fast read-out of two to six charges per dot from the ground and first excited state in a quantum dot (QD)-based memory is demonstrated using a two-dimensional electron gas. Single-shot measurements on modulation-doped field-effect transistor structures with embedded InAs/GaAs QDs show read-out times as short as 3 ns. At low temperature (T = 4.2 K) this read-out time is still limited by the parasitics of the setup and the device structure. Faster read-out times and a larger read-out signal are expected for an improved setup and device structure

  10. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  11. Assessment of magneto-optic Faraday effect-based drift on interferometric single-mode fiber optic gyroscope (IFOG) as a function of variable degree of polarization (DOP)

    International Nuclear Information System (INIS)

    Çelikel, Oğuz; Sametoğlu, Ferhat

    2012-01-01

    In this study, a novel interferometric fiber optic gyroscope (IFOG), which has a different depolarizer structure, is designed in TUBITAK UME (National Metrology Institute of Turkey) to experimentally and relatively evaluate the effect of the degree of polarization on the Faraday effect-based drift of the light waves injected into both arms of a Sagnac interferometer. In order to observe whether or not any change occurs in the Faraday-based drift, depending on the variations in degree of polarization (DOP), a triple structure-depolarizer IFOG possessing adjustable DOP is firstly designed and prototyped. The minimum DOP achieved with triple structure-depolarizers is typically 0.15% for both clockwise (CW) and counterclockwise (CCW) light waves at both arms of the Sagnac interferometer. The experimental evaluations about the drift are given for DOP changes extending from 78.00% to 0.15% together with two main and different theoretical approaches in the literature. According to the experimental evaluations given herein, it is experimentally proved that the Faraday-based drift does not change depending on DOP values of both CW and CCW light waves injected into the single-mode (SM) sensing coil and it is impossible to state a concept of a depolarized IFOG by considering the polarization state at the entrance arms of the SM sensing coil. (paper)

  12. PCI Based Read-out Receiver Card in the ALICE DAQ System

    CERN Document Server

    Carena, W; Dénes, E; Divià, R; Schossmaier, K; Soós, C; Sulyán, J; Vascotto, Alessandro; Van de Vyvre, P

    2001-01-01

    The Detector Data Link (DDL) is the high-speed optical link for the ALICE experiment. This link shall transfer the data coming from the detectors at 100 MB/s rate. The main components of the link have been developed: the destination Interface Unit (DIU), the Source Interface Unit (SIU) and the Read-out Receiver Card (RORC). The first RORC version is based on the VME bus. The performance tests show that the maximum VME bandwidth could be reached. Meanwhile the PCI bus became very popular and is used in many platforms. The development of a PCI-based version has been started. The document describes the prototype version in three sections. An overview explains the main purpose of the card: to provide an interface between the DDL and the PCI bus. Acting as a 32bit/33MHz PCI master the card is able to write or read directly to or from the system memory from or to the DDL, respectively. Beside these functions the card can also be used as an autonomous data generator. The card has been designed to be well adapted to ...

  13. The ALICE silicon pixel detector front-end and read-out electronics

    CERN Document Server

    Kluge, A

    2006-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost barrel layers of the ALICE inner tracker system. The SPD includes 120 half staves each of which consists of a linear array of 10 ALICE pixel chips bump bonded to two silicon sensors. Each pixel chip contains 8192 active cells, so the total number of pixel cells in the SPD is ≈107. The tight material budget and the limitation in physical dimensions required by the detector design introduce new challenges for the integration of the on-detector electronics. An essential part of the half stave is a low-mass multi-layer flex that carries power, ground, and signals to the pixel chips. Each half stave is read out using a multi-chip module (MCM). The MCM contains three radiation hard ASICs and an 800 Mbit/s custom developed optical link for the data transfer between the detector and the control room. The detector components are less than 3 mm thick. The production of the half-staves and MCMs is currently under way. Test results as well as on overvie...

  14. Evolution of the ReadOut System of the ATLAS experiment

    CERN Document Server

    Borga, A; The ATLAS collaboration; Joos, M; Schumacher, J; Tremblet, L; Vandelli, W; Vermeulen, J; Werner, P; Wickens, F

    2014-01-01

    The ReadOut System (ROS) is a central and essential part of the ATLAS data-acquisition system. It receives and buffers event data accepted from all sub-detectors and first-level trigger subsystems. Event data are subsequently forwarded to the High-Level Trigger system and Event Builder via a GbE-based network. The ATLAS ROS will be completely renewed in view of the demanding conditions expected during LHC Run 2 and Run 3. The new ROS will consist of roughly 100 Linux-based 2U-high rack-mounted server PCs, each equipped with 2 PCIe I/O cards and four 10GbE interfaces. The FPGA-based PCIe I/O cards, developed by the ALICE collaboration, will be configured with ATLAS-specific firmware, called RobinNP. They will provide connectivity to about 2000 point-to-point optical links conveying the ATLAS event data. This dense configuration provides an excellent test bench for studying I/O efficiency and challenges in current COTS PC architectures with non-uniform memory and I/O access paths. In this paper the requirements...

  15. Evolution of the ReadOut System of the ATLAS experiment

    CERN Document Server

    Borga, A; The ATLAS collaboration; Green, B; Kugel, A; Joos, M; Panduro Vazquez, W; Schumacher, J; Teixeira-Dias, P; Tremblet, L; Vandelli, W; Vermeulen, J; Werner, P; Wickens, F

    2014-01-01

    The ReadOut System (ROS) is a central and essential part of the ATLAS DAQ system. It receives and buffers data of events accepted by the first-level trigger from all subdetectors and first-level trigger subsystems. Event data are subsequently forwarded to the High-Level Trigger system and Event Builder via a 1 GbE-based network. The ATLAS ROS is completely renewed in view of the demanding conditions expected during LHC Run 2 and Run 3, to replace obsolete technologies and space constraints require it to be compact. The new ROS will consist of roughly 100 Linux-based 2U high rack mounted server PCs, each equipped with 2 PCIe I/O cards and two four 10 GbE interfaces. The FPGA-based PCIe I/O cards, developed by the ALICE collaboration, will be configured with ATLAS-specific firmware, the so-called RobinNP firmware. They will provide the connectivity to about 2000 optical point-to-point links conveying the ATLAS event data. This dense configuration provides an excellent test bench for studying I/O efficiency and ...

  16. The monitoring system of the ATLAS muon spectrometer read out driver

    CERN Document Server

    Capasso, Luciano

    My PhD work focuses upon the Read Out Driver (ROD) of the ATLAS Muon Spectrometer. The ROD is a VME64x board, designed around two Xilinx Virtex-II FPGAs and an ARM7 microcontroller and it is located off-detector, in a counting room of the ATLAS cavern at the CERN. The readout data of the ATLAS’ RPC Muon spectrometer are collected by the front-end electronics and transferred via optical fibres to the ROD boards in the counting room. The ROD arranges all the data fragments of a sector of the spectrometer in a unique event. This is made by the Event Builder Logic, a cluster of Finite State Machines that parses the fragments, checks their syntax and builds an event containing all the sector data. In the presentation I will describe the Builder Monitor, developed by me in order to analyze the Event Builder timing performance. It is designed around a 32-bit soft-core microprocessor, embedded in the same FPGA hosting the Builder logic. This approach makes it possible to track the algorithm execution in the field. ...

  17. Self Calibrating Interferometric Sensor

    DEFF Research Database (Denmark)

    Sørensen, Henrik Schiøtt

    mask. The fabricated micro structures have been electroplated for later injection molding, showing the potential of the MIBD sensor to be mass produced with high reproducibility and sensitivity. In part three MIBD experiments on vital biological systems are described. Label–free binding studies of bio......This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals...

  18. Fusion of Multi-Temporal Interferometric Coherence and Optical Image Data for the 2016 Kumamoto Earthquake Damage Assessment

    Directory of Open Access Journals (Sweden)

    Nopphawan Tamkuan

    2017-06-01

    Full Text Available Earthquakes are one of the most devastating types of natural disasters, and happen with little to no warning. This study combined Landsat-8 and interferometric ALOS-2 coherence data without training area techniques by classifying the remote sensing ratios of specific features for damage assessment. Waterbodies and highly vegetated areas were extracted by the modified normalized difference water index (MNDWI and normalized difference vegetation index (NDVI, respectively, from after-earthquake images in order to improve the accuracy of damage maps. Urban areas were classified from pre-event interferometric coherence data. The affected areas from the earthquake were detected with the normalized difference (ND between the pre- and co-event interferometric coherence. The results presented three damage types; namely, damage to buildings caused by ground motion, liquefaction, and landslides. The overall accuracy (94% of the confusion matrix was excellent. Results for urban areas were divided into three damage levels (e.g., none–slight, slight–heavy, heavy–destructive at a high (90% overall accuracy level. Moreover, data on buildings damaged by liquefaction and landslides were in good agreement with field survey information. Overall, this study illustrates an effective damage assessment mapping approach that can support post-earthquake management activities for future events, especially in areas where geographical data are sparse.

  19. A read-out buffer prototype for ATLAS high level triggers

    CERN Document Server

    Calvet, D; Huet, M; Le Dû, P; Mandjavidze, I D; Mur, M

    2000-01-01

    Read-Out Buffers are critical components in the dataflow chain of the ATLAS Trigger/DAQ system. At up to 75 kHz, after each Level-1 trigger accept signal, these devices receive and store digitized data from groups of front-end electronic channels. Several Read-Out Buffers are grouped to form a Read-Out Buffer Complex that acts as a data server for the High Level Triggers selection algorithms and for the final data collection system. This paper describes a functional prototype of a Read-Out Buffer based on a custom made PCI mezzanine card that is designed to accept input data at up to 160 MB/s, to store up to 8 MB of data and to distribute data chunks at the desired request rate. We describe the hardware of the card that is based on an Intel I960 processor and CPLDs. We present the integration of several of these cards in a Read-Out Buffer Complex. We measure various performance figures and we discuss to which extent these can fulfill ATLAS needs. 5 Refs.

  20. Optimizing read-out of the NECTAr front-end electronics

    Science.gov (United States)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-12-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  1. Optimizing read-out of the NECTAr front-end electronics

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.fr [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Falvard, A. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Ribo, M.; Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France)

    2012-12-11

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  2. Optimizing read-out of the NECTAr front-end electronics

    International Nuclear Information System (INIS)

    Vorobiov, S.; Feinstein, F.; Bolmont, J.; Corona, P.; Delagnes, E.; Falvard, A.; Gascón, D.; Glicenstein, J.-F.; Naumann, C.L.; Nayman, P.; Ribo, M.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.

    2012-01-01

    We describe the optimization of the read-out specifications of the NECTAr front-end electronics for the Cherenkov Telescope Array (CTA). The NECTAr project aims at building and testing a demonstrator module of a new front-end electronics design, which takes an advantage of the know-how acquired while building the cameras of the CAT, H.E.S.S.-I and H.E.S.S.-II experiments. The goal of the optimization work is to define the specifications of the digitizing electronics of a CTA camera, in particular integration time window, sampling rate, analog bandwidth using physics simulations. We employed for this work real photomultiplier pulses, sampled at 100 ps with a 600 MHz bandwidth oscilloscope. The individual pulses are drawn randomly at the times at which the photo-electrons, originating from atmospheric showers, arrive at the focal planes of imaging atmospheric Cherenkov telescopes. The timing information is extracted from the existing CTA simulations on the GRID and organized in a local database, together with all the relevant physical parameters (energy, primary particle type, zenith angle, distance from the shower axis, pixel offset from the optical axis, night-sky background level, etc.), and detector configurations (telescope types, camera/mirror configurations, etc.). While investigating the parameter space, an optimal pixel charge integration time window, which minimizes relative error in the measured charge, has been determined. This will allow to gain in sensitivity and to lower the energy threshold of CTA telescopes. We present results of our optimizations and first measurements obtained using the NECTAr demonstrator module.

  3. The 160 TES bolometer read-out using FDM for SAFARI

    Science.gov (United States)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  4. Flexible high-speed FASTBUS master for data read-out and preprocessing

    International Nuclear Information System (INIS)

    Wurz, A.; Manner, R.

    1990-01-01

    This paper describes a single slot FASTBUS master module. It can be used for read-out and preprocessing of data that are read out from FASTBUS modules, e.g., and ADC system. The module consists of a 25 MHz, 32-bit processor MC 68030 with cache memory and memory management, a floating point coprocessor MC68882, 4 MBytes of main memory, and FASTBUS master and slave interfaces. In addition, a DMA controller for read-out of FASTBUS data is provided. The processor allows I/O via serial ports, a 16-bit parallel port, and a transputer link. Additional interfaces are planned. The main memory is multi-ported and can be accessed directly by the CPU, the FASTBUS, and external masters via the high-speed local bus that is accessible by way of a connector. The FASTBUS interface supports most of the standard operations in master and slave mode

  5. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel

  6. A 40 GByte/s read-out system for GEM

    International Nuclear Information System (INIS)

    Bowden, M.; Carrel, J.; Dorenbosch, J.; Kapoor, V.

    1994-04-01

    The preliminary design of the read-out system for the GEM (Gammas, Electrons, Muons) detector at the Superconducting Super Collider is presented. The system reads all digitized data from the detector data sources at a Level 1 trigger rate of up to 100 kHz. A total read-out bandwidth of 40 GBytes/s is available. Data are stored in buffers that are accessible for further event filtering by an on-line, processor farm. Data are transported to the farm only as they are needed by the higher-level trigger algorithms, leading to a reduced bandwidth requirement in the Data Acquisition System

  7. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita; Shinsho, Kiyomitsu; Wakabayashi, Genichiro; Koba, Yusuke; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Ohga, Saiji

    2016-01-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  8. An application of CCD read-out technique to neutron distribution measurement using the self-activation method with a CsI scintillator plate

    Energy Technology Data Exchange (ETDEWEB)

    Nohtomi, Akihiro, E-mail: nohtomi@hs.med.kyushu-u.ac.jp [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kurihara, Ryosuke; Kinoshita, Hiroyuki; Honda, Soichiro; Tokunaga, Masaaki; Uno, Heita [Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shinsho, Kiyomitsu [Graduate School of Human Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, Arakawa-ku, Tokyo 116-8551 (Japan); Wakabayashi, Genichiro [Atomic Energy Research Institute, Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8502 (Japan); Koba, Yusuke [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko [Department of Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ohga, Saiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2016-10-01

    In our previous paper, the self-activation of an NaI scintillator had been successfully utilized for detecting photo-neutrons around a high-energy X-ray radiotherapy machine; individual optical pulses from the self-activated scintillator are read-out by photo sensors such as a photomultiplier tube (PMT). In the present work, preliminary observations have been performed in order to apply a direct CCD read-out technique to the self-activation method with a CsI scintillator plate using a Pu-Be source and a 10-MV linac. In conclusion, it has been revealed that the CCD read-out technique is applicable to neutron measurement around a high-energy X-ray radiotherapy machine with the self-activation of a CsI plate. Such application may provide a possibility of novel method for simple neutron dose-distribution measurement. - Highlights: • Preliminary observations have been performed by a CCD for the CsI self-activation method. • It has been revealed that the CCD read-out technique is applicable to neutron measurement. • Such application may provide a novel method for simple neutron distribution measurement.

  9. A new read-out architecture for the ATLAS Tile Calorimeter Phase-II Upgrade

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration

    2015-01-01

    TileCal is the Tile hadronic calorimeter of the ATLAS experiment at the LHC. The LHC has planned a series of upgrades culminating in the High Luminosity LHC (HL-LHC) which will increase of order five times the LHC nominal instantaneous luminosity. TileCal will undergo an upgrade to accommodate to the HL-LHC parameters. The TileCal read-out electronics will be redesigned introducing a new read-out strategy. The data generated in the detector will be transferred to the new Read-Out Drivers (sRODs) located in off-detector for every bunch crossing before any event selection is applied. Furthermore, the sROD will be responsible of providing preprocessed trigger information to the ATLAS first level of trigger. It will implement pipeline memories to cope with the latencies and rates specified in the new trigger schema and in overall it will represent the interface between the data acquisition, trigger and control systems and the on-detector electronics. The new TileCal read-out architecture will be presented includi...

  10. A simple and accurate method for bidimensional position read-out of parallel plate avalanche counters

    International Nuclear Information System (INIS)

    Breskin, A.; Zwang, N.

    1977-01-01

    A simple method for bidimensional position read-out of Parallel Plate Avalanche counters (PPAC) has been developed, using the induced charge technique. An accuracy better than 0.5 mm (FWHM) has been achieved for both coordinates with 5.5. MeV α-particles at gas pressures of 10-40 torr. (author)

  11. A self-adjusting delay circuit for pixel read-out chips

    International Nuclear Information System (INIS)

    Raith, B.

    1997-01-01

    A simple concept for automatic adjustment of important VLSI-circuit properties was proposed in (Fischer and Joens, Nucl. Instr. and. Meth.). As an application, a self-adjusting monoflop is reviewed, and detailed measurements are discussed regarding a possible implementation in the LHC 1 read-out chip for the ATLAS experiment (ATLAS Internal Note, 1995). (orig.)

  12. Controlling and monitoring the data flow of the LHCb read-out and DAQ network

    International Nuclear Information System (INIS)

    Schwemmer, R.; Gaspar, C.; Neufeld, N.; Svantesson, D.

    2012-01-01

    The LHCb read-out uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain to count fragments, packets and their rates at different positions. To keep uniformity throughout the experiment, all control software was developed using the common SCADA software, PVSS, with the JCOP framework as base. The presentation will focus on the low level controls interface developed for the L1 boards and the networking probes, as well as the integration of the high level user interfaces into PVSS. (authors)

  13. Setup, tests and results for the ATLAS TileCal Read Out Driver production

    CERN Document Server

    Valero, Alberto; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; González, V; Higón, E; Munar, A; Poveda, J; Ruiz-Martínez, A; Salvachúa, B; Sanchís, E; Solans, C; Soret, J; Torres, J; Valls, J A

    2007-01-01

    In this paper we describe the performance and test results of the production of the 38 ATLAS TileCal Read Out Drivers (RODs). We first describe the basic hardware specifications and firmware functionality of the modules, the test-bench setup used for production and the test procedure to qualify the boards. We then finally show and discuss the performance results.

  14. Three-axial force sensor with capacitive read-out using a differential relaxation oscillator

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2013-01-01

    A silicon three-axis force sensor is designed and realized to be used for measurement of the interaction force between a human finger and the environment. To detect the force components, a capacitive read-out system using a novel relaxation oscillator has been developed with an output frequency

  15. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Document Server

    Schwemmer, Rainer; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb read-out uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment’s raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out cha...

  16. Characterization of the front-end EASIROC for read-out of SiPM in the ASTRI camera

    International Nuclear Information System (INIS)

    Impiombato, D.; Giarrusso, S.; Belluso, M.; Billotta, S.; Bonanno, G.; Catalano, O.; Grillo, A.; La Rosa, G.; Marano, D.; Mineo, T.; Russo, F.; Sottile, G.

    2013-01-01

    The design and realization of a prototype for the Small-Size class Telescopes of the Cherenkov Telescope Array is one of the cornerstones of the ASTRI project. The prototype will adopt a focal plane camera based on Silicon Photo-Multiplier sensors that coupled with a dual mirror optics configuration represents an innovative solution for the detection of Atmospheric Cherenkov light. These detectors can be read by the Extended Analogue Silicon Photo-Multiplier Integrated Read Out Chip (EASIROC) equipped with 32-channels. In this paper, we report some preliminary results on measurements aimed to evaluate EASIROC capability of autotriggering and measurements of the trigger time walk, jitter, DAC linearity and trigger efficiency vs the injected charge. Moreover, the dynamic range of the ASIC is also reported

  17. Accurate formulas for the penalty caused by interferometric crosstalk

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Liu, Fenghai; Jeppesen, Palle

    2000-01-01

    New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas.......New simple formulas for the penalty caused by interferometric crosstalk in PIN receiver systems and optically preamplified receiver systems are presented. They are more accurate than existing formulas....

  18. Review of results for the NA62 gigatracker read-out prototype

    Science.gov (United States)

    Martin, E.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Petagna, P.; Petrucci, F.; Perktold, L.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2012-03-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector developed for NA62, an experiment studying ultra-rare kaon decays at the CERN SPS. The main characteristics are a time-tagging resoluion of 150ps, with low material budget per station (0.5% X0) and a fluence comparable to the one expected for the inner trackers of LHC detectors in 10 years of operation. To compensate the time-walk, two read-out architectures have been designed and produced. The first architecture is based on a Constant Fraction Discriminator (CFD) followed by an on-pixel Time-to-Digital-Converter (TDC). The second architecture is based on a on-pixel group shared TDC. The GTK system developments are described: the integration steps (assembly and cooling) and the results obtained from the prototypes fabricated for the two read-out architectures.

  19. Radiation tolerance of oxygenated n-strip read-out detectors

    CERN Document Server

    Allport, P P; Greenall, A

    2003-01-01

    Following earlier work on 'oxygenated' detectors in terms of charge collection efficiencies after proton irradiation, full-size detectors for the LHC have been processed with n-side read-out on oxygen enhanced n-type silicon substrates. Two hundred-micron-thick detectors have been inhomogeneously irradiated up to doses of 7 multiplied by 10**1**4p/cm**2 using 24 GeV protons from the CERN PS. Results are presented on the charge collection efficiencies as a function of operating voltage for regions of the detectors irradiated to different doses, using LHC speed analogue read-out electronics. The measurements confirm the expectations which led to our original proposal of such detectors which are now being envisaged for the silicon-based detector systems at the LHC designed to withstand the greatest doses. The possibilities for survival at an upgraded luminosity LHC (Super-LHC) are also briefly discussed.

  20. Shashlyk EM calorimeter prototype read out by MAPD with superhigh pixel density for COMPASS II

    International Nuclear Information System (INIS)

    Anfimov, N.; Anosov, V.; Chirikov-Zorin, I.

    2012-01-01

    A new-generation high-granularity Shashlyk EM calorimeter read out by micropixel avalanche photodiodes (MAPD) with precision thermostabilization based on the Peltier element was designed, constructed and tested. MAPD-3N with a superhigh pixel density of 1.5·10 4 mm -2 and an area of 3x3 mm manufactured by the Zecotek Company were used in the photodetector unit

  1. The LST analog read-out system of the ZEUS muon detector

    International Nuclear Information System (INIS)

    De Giorgi, M.; Abbiendi, G.; Bertolin, A.; Borsato, E.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Pitacco, G.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.

    1996-01-01

    A muon position detector based on limited streamer tubes has been built for the ZEUS experiment at the HERA e-p collider at Desy. The tubes are arranged in chambers equipped with electronics circuitry providing an analog read-out of induced signals on strips set orthogonal to the tube wires. The electronic module for charge amplification and conversion will be described including some results obtained from the complete system. (orig.)

  2. Systematic shifts of evaluated charge centroid for the cathode read-out multiwire proportional chamber

    International Nuclear Information System (INIS)

    Endo, I.; Kawamoto, T.; Mizuno, Y.; Ohsugi, T.; Taniguchi, T.; Takeshita, T.

    1981-01-01

    We have investigated the systematic error associtated with the charge centroid evaluation for the cathode read-out multiwire proportional chamber. Correction curves for the systematic error according to six centroid finding algorithms have been obtained by using the charge distribution calculated in a simple electrostatic mode. They have been experimentally examined and proved to be essential for the accurate determination of the irradiated position. (orig.)

  3. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  4. Characterisation of the VMM3 Front-end read-out ASIC

    CERN Document Server

    Bartels, Lara Maria

    2018-01-01

    This research project was conducted in the RD51 collaboration at CERN, which is involved in the development of micropattern gaseous detector technologies and read-out systems. One example in the broad range of possible applications of such gaseous detectors is the NMX macromolecular diffractometer instrument planned for the European spallation source (ESS) which is currently under construction in Lund, Sweden. For the NMX instrument neutron detectors with high rate capabilities, high stability and excellent spatial resolution are required. A group working in the RD51 collaboration at CERN within the BrightnESS project aims to fulfil those requirements using gas electron multiplier (GEM) detectors with Gadolinium foils as neutron converters [PFE]. In order to match the high rate capability of the detectors, new front-end read-out systems need to be tested and implemented. This project aims to understand and test the capabilities of the VMM3 as the front-end read-out ASIC for GEM detectors.

  5. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Bohner, G.; Cornat, R.; Deschamps, O.; Lecoq, J.; Monteil, S.; Perret, P.

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two-radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch-crossing frequency. A special Read Out electronics including perfect 40 MHz integrators able to shape fluctuating photomultiplier pulses has been designed, and successfully realized. The temporal shape of photomultiplier pulse and the upstream Read Out system for preshower are described in this document

  6. Controlling and Monitoring the Data Flow of the LHCb Read-out and DAQ Network

    CERN Multimedia

    Schwemmer, R; Neufeld, N; Svantesson, D

    2011-01-01

    The LHCb readout uses a set of 320 FPGA based boards as interface between the on-detector hardware and the GBE DAQ network. The boards are the logical Level 1 (L1) read-out electronics and aggregate the experiment's raw data into event fragments that are sent to the DAQ network. To control the many parameters of the read-out boards, an embedded PC is included on each board, connecting to the boards ICs and FPGAs. The data from the L1 boards is sent through an aggregation network into the High Level Trigger farm. The farm comprises approximately 1500 PCs which at first assemble the fragments from the L1 boards and then do a partial reconstruction and selection of the events. In total there are approximately 3500 network connections. Data is pushed through the network and there is no mechanism for resending packets. Loss of data on a small scale is acceptable but care has to be taken to avoid data loss if possible. To monitor and debug losses, different probes are inserted throughout the entire read-out chain t...

  7. Towards new analog read-out electronics for the HADES drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Wiebusch, Michael [Goethe-Universitaet, Frankfurt (Germany); Collaboration: HADES-Collaboration

    2016-07-01

    Track reconstruction in HADES is realized with 24 planar, low-mass drift chambers (MDC). About 27000 drift cells provide precise spatial information of track hit points together with energy loss information, serving for particle ID. In order to handle high rates and track densities required at the future SIS100 accelerator at FAIR, an upgrade of the MDC system is necessary, i.e. by receiving additional redundant layers of drift cells in front of the magnet. This involves new front-end electronics, as the original analog read-out ASIC (ASD8) is no longer in stock and cannot be produced due to its legacy silicon process. Employing new FEE would allow to further increase the sensitivity, e.g. providing additional valuable information for the analysis. This contribution presents a market analysis of alternative state-of-the-art technologies for the analog read-out of drift chambers. Test procedures to evaluate the suitability for the HADES MDCs are discussed and preliminary results are shown. Emphasis is put on the benefits and possible implementations of using two separate analog channels for reading out a sense wire, i.e. a fast amplifier with a discriminator for recording the arrival time of the signal pulse and a slow integrating amplifier with a time-over-threshold discriminator to measure the total charge of the pulse.

  8. Interferometric detection of single gold nanoparticles calibrated against TEM size distributions

    DEFF Research Database (Denmark)

    Zhang, Lixue; Christensen, Sune; Bendix, Pól Martin

    2015-01-01

    Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate...

  9. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  10. Experimental studies on using silicon photodiode as read-out component of CsI(Tl) crystal

    International Nuclear Information System (INIS)

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Experimental studies on using silicon photodiode as the read-out component of CsI(Tl) crystal are reported. The read-out properties of two different types of silicon photodiode produced by Hamamatsu were measured, including relations between energy resolution and bias, shaping time, sensitive area of photodiode and the dimension of the crystal

  11. Optical Interferometric Observations of Theta1 Orionis C from NPOI and Implications for the System Orbit (Preprint)

    National Research Council Canada - National Science Library

    Patience, J; Zavala, R. T; Prato, L; Franz, O; Wasserman, L; Tycner, C; Hutter, D. J; Hummel, C. A

    2007-01-01

    With the Navy Prototype Optical Interferometer (NPOI), the binary system Theta 1 Orionis C, the most massive member of the Trapezium, was spatially resolved over a time period extending from February 2006 to March 2007...

  12. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  13. Development of a distributed read-out imaging TES X-ray microcalorimeter

    Science.gov (United States)

    Trowell, S.; Holland, A. D.; Fraser, G. W.; Goldie, D.; Gu, E.

    2002-02-01

    We report on the development of a linear absorber detector for one-dimensional imaging spectroscopy, read-out by two Transition Edge Sensors (TESs). The TESs, based on a single layer of iridium, demonstrate stable and controllable superconducting-to-normal transitions in the region of 130 mK. Results from Monte Carlo simulations are presented indicating that the device configuration is capable of detecting photon positions to better than 200 μm, thereby meeting the resolution specification for missions such as XEUS of ~250 μm. .

  14. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  15. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    -out facilitates measurements in liquid. The probe has been successfully implemented in gaseous as well as in liquid experiments. For example, the probe has been used as an accurate and minute thermal sensor and as a humidity sensor. In liquid, the probe has been used to detect the presence of alcohol in water. (C......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  16. Development of a distributed read-out imaging TES X-ray microcalorimeter

    International Nuclear Information System (INIS)

    Trowell, S.; Holland, A.D.; Fraser, G.W.; Goldie, D.; Gu, E.

    2002-01-01

    We report on the development of a linear absorber detector for one-dimensional imaging spectroscopy, read-out by two Transition Edge Sensors (TESs). The TESs, based on a single layer of iridium, demonstrate stable and controllable superconducting-to-normal transitions in the region of 130 mK. Results from Monte Carlo simulations are presented indicating that the device configuration is capable of detecting photon positions to better than 200 μm, thereby meeting the resolution specification for missions such as XEUS of ∼250 μm

  17. Medipix3 array high performance read-out board for synchrotron research

    International Nuclear Information System (INIS)

    Tartoni, N.; Horswell, I. C.; Marchal, J.; Gimenez, E. N.; Fearn, R. D.; Silfhout, R. G. van

    2010-01-01

    The Medipix3 ASIC is one of the most advanced chip that is presently available to build photon counting area detectors. The capabilities of the chip include adjacent pixels charge summing circuitry to sort out the distortion due to charge sharing, simultaneous counting and read-out that enables frames to be acquired without dead time, the colour mode of operation that enables up to eight energy bands to be acquired. In order to fully exploit the capabilities of the Medipix3 chip in synchrotron research, a high performance electronic board capable of driving large arrays of chips is necessary. We propose a parallel read-out board of Medipix3 chip arrays with a scalable architecture that allows driving the Medipix3 chip in all of its modes of operation. The board functions include the control of the chip arrays, data formatting and data compression, the management of the communications with the data storage devices, and operation in various trigger modes. In addition to this the board will have some 'intelligence' embedded. This will add some very important features to the final detector such as pattern recognition, capability of variable frame duration as a function of the photon flux, feedback to other equipment and real time calculations of data relevant to experiments such as the autocorrelation function.

  18. Electronics for the CMS muon drift tube chambers the read-out minicrate

    CERN Document Server

    Fernandez Bedoya, Cristina; Oller, Juan Carlos; Willmott, Carlos

    2005-01-01

    On the Compact Muon Solenoid (CMS) experimentat the Large Hadron Collider (LHC) at the CERN laboratory, the drift tube chambers are responsible for muon detection and precise momentum measurement. In this paper the first level of the read out electronics for these drift tube chambers is described. These drift tube chambers will be located inside the muon barrel detector in the so-called minicrates (MCs), attached to the chambers. The read out boards (ROBs) are the main component of this first level data acquisition system, and they are responsible for the time digitalization related to Level 1 Accept (L1A) trigger of the incoming signals from the front-end electronics, followed by a consequent data merging to the next stages of the data acquisition system. ROBs' architecture and functionality have been exhaustively tested, as well as their capability of operation beyond the expected environmental conditions inside the CMS detector. Due to the satisfactory results obtained, final production of ROBs and their a...

  19. The NA62 Gigatracker: Detector properties and pixel read-out architectures

    International Nuclear Information System (INIS)

    Fiorini, M.; Carassiti, V.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Mazza, G.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-01-01

    The beam spectrometer of the NA62 experiment, named Gigatracker, has to perform single track reconstruction with unprecedented time resolution (150 ps rms) in a harsh radiation environment. To meet these requirements, and in order to reduce material budget to a minimum, three hybrid silicon pixel detector stations will be installed in vacuum. An adequate strategy to compensate for the discriminator time-walk must be implemented and R and D investigating two different options is ongoing. Two read-out chip prototypes have been designed in order to compare their performance: one approach is based on the use of a constant-fraction discriminator followed by an on-pixel TDC, while the other one is based on the use of a time-over-threshold circuit followed by a TDC shared by a group of pixels. This paper describes the Gigatracker system, presents the global architectures of both read-out ASICs and reviews the current status of the R and D project.

  20. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    Science.gov (United States)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Design, construction and setting of a parallel plate avalanche detector with coordinate read-out

    International Nuclear Information System (INIS)

    Guillermet, C.

    1980-01-01

    This detector planned for heavy ion experiments has the following dimensions: 150x210 mm 2 . Each coordinate of the trajectory is obtained from a plane of read-out wires located half-way between the two electrodes of each gap. Position read-out is made by the delay line method. Interpolating properties cancel out the effects of quantization due to the wires. Two gaps sharing a common electrode, with their wire-planes at 90 0 , furnish the two coordinates. The common electrode (Anode) delivers a fast signal on each ion crossing. Formation of signals on the anode with their distortion by the associated circuit was calculated. Formation of signals on the wires and their distortion into the delay lines was also determined. This allowed to evaluate the influence of the various parameters leading to an optimum time and space resolution. With 252 Cf fission products, 500 ps and 0.6 mm were so obtained. Differential linearity is better than 75 μm. Pulse height analysis of the anode signals makes discrimination between lightly and heavily ionizing ions possible [fr

  2. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  3. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process.

    Science.gov (United States)

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Du, Yang; Gerald, Rex E; Tang, Yan; Huang, Jie

    2017-11-22

    This paper presents an extrinsic Fabry-Perot interferometer-based optical fiber sensor (EFPI) for measuring three-dimensional (3D) displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate) during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  4. An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-11-01

    Full Text Available This paper presents an extrinsic Fabry–Perot interferometer-based optical fiber sensor (EFPI for measuring three-dimensional (3D displacements, including interfacial sliding and debonding during delamination. The idea employs three spatially arranged EFPIs as the sensing elements. In our sensor, the three EFPIs are formed by three endfaces of three optical fibers and their corresponding inclined mirrors. Two coincident roof-like metallic structures are used to support the three fibers and the three mirrors, respectively. Our sensor was calibrated and then used to monitor interfacial sliding and debonding between a long square brick of mortar and its support structure (i.e., a steel base plate during the drying/curing process. This robust and easy-to-manufacture triaxial EFPI-based 3D displacement sensor has great potential in structural health monitoring, the construction industry, oil well monitoring, and geotechnology.

  5. Non-interferometric determination of optical anisotropy in highly-oriented fibres using transport intensity equation technique

    Science.gov (United States)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.

    2018-03-01

    The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.

  6. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers

    International Nuclear Information System (INIS)

    Yun-Jiang, Rao; Bing, Xu; Zeng-Ling, Ran; Yuan, Gong

    2010-01-01

    Micro extrinsic Fabry–Perot interferometers (MEFPIs), with cavity lengths of up to ∼ 9 μm and maximum fringe contrast of ∼ 19 dB, are fabricated by chemically etching Er- and B-doped optical fibers and then splicing the etched fiber to a single-mode fiber, for the first time to the best of our knowledge. The strain and temperature responses of the MEFPI sensors are investigated experimentally. Good linearity and high sensitivity are achieved. Such a type of MEFPI sensor is cost-effective and suitable for mass production, indicating its great potential for a wide range of applications. (fundamental areas of phenomenology(including applications))

  7. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  8. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  9. Photomultiplier pulse Read Out system for the preshower detector of the LHCb experiment

    CERN Document Server

    Ajaltouni, Ziad J; Cornat, R; Deschamps, O; Lecoq, J; Monteil, S; Perret, P

    2003-01-01

    The second generation experiment for CP violation studies in B decays, LHCb, is a 20-m-long single-arm spectrometer to be installed on the future Large Hadron Collider at CERN. For its precision measurement purpose, it combines precise vertex location and particle identification, in addition to a performance trigger system able to cope with high flux. The first level of trigger is mainly based on the fast response of the calorimetric subsystem. Of major importance is the 6000 channels preshower detector that aims to validate the electromagnetic nature of calorimetric showers. It consists of two- radiation-length lead sheet in front of a scintillator plane. Scintillator signals are extracted from plastic cells using wavelength-shifting fibres coupled to multi-anode photomultiplier tubes. The preshower Read Out system has to cope with fluctuating photomultiplier pulses caused by small amounts of photoelectrons, in addition to strong constraints imposed by the 40 MHz LHC bunch- crossing frequency. A special Read...

  10. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.

    Science.gov (United States)

    Liu, Hong; Crooks, Richard M

    2012-03-06

    We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.

  11. A circuit design for front-end read-out electronics of beam homogeneity measurement

    International Nuclear Information System (INIS)

    She Qianshun; Su Hong; Xu Zhiguo; Ma Xiaoli; Hu Zhengguo; Mao Ruishi; Xu Hushan

    2011-01-01

    It introduces a circuit design of beam homogeneity measurement for heavy ion beam in the monitoring needs, which convert multichannel weak current from 10 pA to 100 nA of the output of parallel plate avalanche counter (PPAC) for large area with sensitive two-dimensional position to voltage signal from -2 V to -20 mV by current-voltage-converter (IVC) circuit which composed of T-feedback resistor networks, combined with data acquisition and processing system realized the beam homogeneity measurement in heavy ion tumor therapy of the Institute of Modern Physics. Experiments have shown that the circuit with speed and high precision. This circuit can be used for read-out of the beam for the Multiwire Proportional Chamber, Faraday Cup and other weak current sources. (authors)

  12. PDC: A wire chamber cathode read-out on 6-bit fast ADC

    Energy Technology Data Exchange (ETDEWEB)

    De Giorgi, M; Gasparini, F; Meneguzzo, A T; Pitacco, G [Istituto Nazionale di Fisica Nucleare, Padua (Italy); Padua Univ. (Italy). Ist. di Fisica)

    1984-06-01

    A read-out for MWPC and drift chamber is presented in which the coordinate along the sense wires is obtained by measuring the centre of gravity (CoG) of the charge induced on cathode strips or pads. The peak value of the signals coming from subsets of 8-pad cathodes are recorded by a parallel sample and hold, strobed by their own OR, and then serially digitized by one 6-bit fast ADC (FADC). The basic module of the system is a peak detector and converter (PDC) built in CAMAC cards, which could be an interesting approach to the analog signal acquisition of large particle detectors. The system has been designed to equip the central detector in an experiment at the CERN LEAR facility. A prototype of a card will be described and the results of some tests will be presented.

  13. The read-out electronics of the AMS prototype RICH detector

    International Nuclear Information System (INIS)

    Gallin-Martel, L.; Eraud, L.; Pouxe, J.; Aguayo de Hoyos, P.; Marin Munoz, J.; Martinez Botella, G.

    2003-01-01

    A Ring Imaging Cherenkov (RICH) counter dedicated to the AMS experiment is under development. An integrated circuit has been designed with the Austriamicrosystems 0.6 πm CMOS technology to process the signals of the 16 anode PMTs used in the photon detection. To improve the detector compactness, the read out electronics is placed very close to the PMTs. This lead to the design of a detection cell that comprises: a light guide, a PMT, a high voltage divider, an analog front end chip and an analog to digital converter. The analog front-end chips were extensively and successfully tested in a laboratory environment, 96 of them are now mounted on the RICH prototype. Tests with cosmic rays have started. Ion beam tests are planed in a near future. (authors)

  14. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    Energy Technology Data Exchange (ETDEWEB)

    Giachero, A; Gotti, C; Maino, M; Pessina, G, E-mail: claudio.gotti@mib.infn.it [INFN - Sezione di Milano-Bicocca, I-20126, Milano (Italy)

    2011-05-01

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  15. A silicon pixel detector with routing for external VLSI read-out

    International Nuclear Information System (INIS)

    Thomas, S.L.; Seller, P.

    1988-07-01

    A silicon pixel detector with an array of 32 by 16 hexagonal pixels has been designed and is being built on high resistivity silicon. The detector elements are reverse biased diodes consisting of p-implants in an n-type substrate and are fully depleted from the front to the back of the wafer. They are intended to measure high energy ionising particles traversing the detector. The detailed design of the pixels, their layout and method of read-out are discussed. A number of test structures have been incorporated onto the wafer to enable measurements to be made on individual pixels together with a variety of active devices. The results will give a better understanding of the operation of the pixel array, and will allow testing of computer simulations of more elaborate structures for the future. (author)

  16. MCP detector read out with a bare quad Timepix at kilohertz frame rates

    International Nuclear Information System (INIS)

    Vallerga, J; Tremsin, A; McPhate, J; Siegmund, O; Raffanti, R

    2011-01-01

    The existing Berkeley neutron sensitive MCP/Timepix hybrid detector has been very successful at demonstrating energy resolved spatial imaging with a single Timepix ASIC read out at a ∼ 30 Hz frame rate where each neutron's position and time (energy) is determined (X,Y,E). By increasing the detector format using a quad arrangement of Timepix readouts and increasing the frame rate to 1 kHz, we can increase our total event throughput by a factor of 120, thereby taking full advantage of the high fluxes of modern pulsed neutron sources (10 6 n cm -2 s -1 ). The key to this conversion is a new design for the ASIC readout, called the Berkeley Quad Timepix detector, consisting of 3 major subsystems. The first is a quad (2 x 2) bare Timepix ASIC board mounted directly behind the neutron sensitive MCPs in a hermetic vacuum enclosure with a sapphire window. The data from the Timepix ASICs flow to the second subsystem called the Interface board whose field programmable gate array (FPGA) rearranges and converts the digital bit stream to LVDS logic levels before sending downstream to the third subsystem, the Roach board. The Roach board is also FPGA based, and takes the data from all the ASICs and analyses the frames to extract information on the input events to pass on to the host PC. This paper describes in detail the hardware and firmware designs to accomplish this task.

  17. Firmware development and testing of the ATLAS IBL Read-Out Driver card

    CERN Document Server

    Chen, S-P; The ATLAS collaboration; Falchieri, D; Gabrielli, A; Hauck, S; Hsu, S-C; Kretz, M; Kugel, A; Travaglini, R; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shutdown. In particular, the Pixel detector is inserting an additional inner layer called Insertable B-Layer (IBL). The Read-Out Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development focused on migrating and tailoring HDL code blocks from Pixel ROD to ensure modular compatibility in future ROD upgrades, in which a unified code version will interface with IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using a realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, tested in testbench and on ROD prototypes, will be ...

  18. Studies of Read-Out Electronics and Trigger for Muon Drift Tube Detectors at High Luminosities

    CERN Document Server

    Nowak, Sebastian

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. For precise measurements of the properties of the Higgs-Boson and searches for new phenomena beyond the Standard Model, the LHC luminosity of $L=10^{34}cm^{-2}s^{-1}$ is planned to be increased by a factor of ten leading to the High Luminosity LHC (HL-LHC). In order to cope with the higher background and data rates, the LHC experiments need to be upgraded. In this thesis, studies for the upgrade of the ATLAS Muon Spectrometer are presented with respect to the read-out electronics of the Monitored Drift Tube (MDT) and the small-diameter Muon Drift Tube (sMDT) chambers and the Level-1 muon trigger. Due to the reduced tube diameter of sMDT chambers, background occupancy and space charge effects are suppressed by an order of magnitude compar...

  19. Systematic study of new types of Hamamatsu MPPCs read out with the NINO ASIC

    CERN Document Server

    Doroud, K; Williams, M C S; Yamamoto, K; Zichichi, A; Zuyeuski, R

    2014-01-01

    Over the last decade there have been commercial TOF-PET scanners constructed using Photo-Multiplier Tubes (PMT) that have achieved View the MathML source~500ps FWHM Coincidence Time Resolution (CTR). A new device known as the Silicon PhotoMultiplier (SiPM) has the potential to overcome some of the limitations of the PMT. Therefore implementing a SiPM based TOF-PET scanner is of high interest. Recently Philips has introduced a TOF-PET scanner that uses digital Silicon PhotoMultipliers (d-SiPMs) which has a CTR of 350 ps. Here we will report on the timing performance of two Hamamatsu 3×3 mm2 analogue-SiPMs read out with the NINO ASIC: this is an ultra-fast amplifier/discriminator with a differential architecture. The differential architecture is very important since the single-ended readout uses the ground as the signal return; as the ground is also the reference level for the discriminators, the result is high crosstalk and degraded time resolution. However differential readout allows the scaling up from a si...

  20. Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2009-01-01

    Glycine spectrophotometric read-out systems have a useful dose range of 15-4000 Gy. An attempt was made to sensitize it using sorbitol as a sensitizer. Optimum compositions of aqueous acidic solutions of ferrous ammonium sulphate-xylenol orange (XO), i.e. FX and sorbitol-ferrous ammonium sulphate-xylenol orange, i.e. SFX, for 400 mg of glycine, which gives maximum dosimetric response for any given dose, were established. Molar absorption coefficient values of ferric-XO-glycine complex, i.e. ε-values, were determined for glycine system in FX and SFX. These values were found to be 8410 and 15,000 m 2 mol -1 respectively, indicating that an enhancement or sensitivity factor of about 1.78 can be achieved by sorbitol for glycine in SFX. This factor was further confirmed by measuring the gamma dose response of glycine in FX and in SFX for four different doses, viz. 37.8, 75.5, 151 and 302 Gy. It was observed that dose response of glycine in SFX is about 77% more than that of glycine in FX. The maximum variation observed in response of glycine in FX or SFX was found to be within ±1.5%.

  1. State of the art in thermoluminescent dosimetry using dosemeters with automated read-out

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1979-01-01

    In the beginning, the results obtained with automated read-out TLD have been quite disappointing, both for manufacturers and users. In response to this, industry then seeked advice and assistance from those experienced in the practical use of dosemeters, and the development of the second generation of automated TLD has been a common task of manufacturers and purchosers. As a preliminary achievement of development work along this line, a dosemeter has been presented by a Japanese manufacturer, meeting the requirements in quite a satisfactory way. The device is characterized by a frequency of disturbance of -5 , a microprocessor for controlling the measuring and control functions, possibility of active input of device parameters and boundary conditions, extensive self-control of operating functions, complete data protection, and thin-film detector technique. Pursuing this line of development, and taking into account future recommentations, automated thermoluminescent dosimetry does seem to be a promising alternative to current measuring techniques in personnel monitoring. (orig./RW) [de

  2. Prototyping the read-out chain of the CBM Microvertex Detector

    International Nuclear Information System (INIS)

    Klaus, P.; Wiebusch, M.; Amar-Youcef, S.; Deveaux, M.; Koziel, M.; Michel, J.; Milanovic, B.; Müntz, C.; Tischler, T.; Stroth, J.

    2016-01-01

    The Compressed Baryonic Matter (CBM) Experiment at the future FAIR (Darmstadt/Germany) will study the phase diagram of hadronic matter in the regime of highest net-baryon densities. The fixed target experiment will explore the nuclear fireballs created in violent heavy ion reactions with a rich number of probes. To reconstruct the decay topologies of open-charm particles as well as to track low-momentum particles, an ultra-light and precise Microvertex Detector (MVD) is required. The necessary performance in terms of spatial resolution, material budget and rate capability will be reached by equipping the MVD with highly granular, radiation-hard CMOS Monolithic Active Pixel Sensors (CPS) developped at IPHC Strasbourg, which are operated in the target vacuum of the experiment. This contribution introduces the concept of the MVD and puts a focus on the latest results obtained from the R and D of the electronics and read-out chain of the device. Moreover, we briefly introduce the PRESTO project, which realises a prototype of a full size quadrant of an MVD detector station

  3. A COME and KISS QDC read-out scheme for the HADES Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Adrian [Technische Universitaet Darmstadt, Darmstadt (Germany); Collaboration: HADES-Collaboration

    2014-07-01

    At the future FAIR Facility in Darmstadt the High Acceptance Di-Electron Spectrometer will continue its physics program. For beam energies between 2 and 40 GeV/u the database for pion and eta production is not complete. Therefore, interpretation of future di-electron data would have to depend on interpolations or on theoretical models. The addition of an electromagnetic calorimeter to HADES would allow such measurements and would additionally improve the electron-to-pion separation at large momentum p>0.4 GeV/c. Furthermore, photon measurement would be of a large interest for the HADES strangeness program. An 8 channel QDC Front-End-Electronics (FEE) was developed for the signals of photomultipliers (PMTs) from lead-glass calorimeter modules. The measurement principle is to convert the charge of the PMT signals into a pulse, where the charge is encoded in the width of the pulse. The width of the pulses is afterwards measured by the already well-established TRBv3 platform. For that simple electronics, hiding complex operations inside a commercial FPGA is used. In this contribution the current status and future perspectives of this read-out concept are shown.

  4. Read-out of emotional information from iconic memory: the longevity of threatening stimuli.

    Science.gov (United States)

    Kuhbandner, Christof; Spitzer, Bernhard; Pekrun, Reinhard

    2011-05-01

    Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.

  5. Photodiode read-out of the ALICE photon spectrometer $PbWO_{4}$ crystals

    CERN Document Server

    Man'ko, V I; Sibiryak, Yu; Volkov, M; Klovning, A; Maeland, O A; Odland, O H; Rongved, R; Skaali, B

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999The PHOton Spectrometer of the ALICE experiment is an electromagnetic calorimeter of high granularity consisting of 17280 lead-tungstate (PWO) crystals of dimensions 22x22x180 mm3, read out by large-area PIN-diodes with very low-noise front-end electronics. The crystal assembly is operated at -25C to increase the PWO light yield. A 16.1x17.1 mm2 photodiode, optimized for the PWO emissio spectrum at 400-500 nm, has been developed. The 20x20 mm2 preamplifier PCB is attached to the back side of the diode ceramic frame. The charge sensitive preamplifier is built in discrete logic with two input JFETs for optimum matching with the ~150pF PIN-diode. A prototype shaper has been designed and built in discrete logic. For a detector matrix of 64 units the measured ENCs are between 450-550e at -25C. Beam tests demonstrate that the required energy resolution is reached.Summary:The PHOton Spectrometer of the ALICE experiment is an electromagnetic calo...

  6. An interferometric study of the post-AGB binary 89 Herculis. I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    Science.gov (United States)

    Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.

    2013-11-01

    Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the

  7. Investigation of a Huffman-based compression algorithm for the ALICE TPC read-out in LHC Run 3

    Energy Technology Data Exchange (ETDEWEB)

    Klewin, Sebastian [Physikalisches Institut, University of Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    Within the scope of the ALICE upgrade towards the Run 3 of the Large Hadron Collider at CERN, starting in 2020, the ALICE Time Projection Chamber (TPC) will be reworked in order to allow for a continuous read-out. This rework includes not only a replacement of the current read-out chambers with Gas Electron Multiplier (GEM) technology, but also new front-end electronics. To be able to read out the whole data stream without loosing information, in particular without zero-suppression, a lossless compression algorithm, the Huffman encoding, was investigated and adapted to the needs of the TPC. In this talk, an algorithm, adapted for an FPGA implementation, is presented. We show its capability to reduce the data volume to less than 40% of its original size.

  8. A Read-out and Data Acquisition System for the Outputs of Multi-channel Spectroscopy Amplifiers

    International Nuclear Information System (INIS)

    Kong Jie; Qian Yi; Su Hong; Dong Chengfu

    2009-01-01

    A read-out and data acquisition system for the outputs of multi-channel spectroscopy amplifiers is introduced briefly in this paper. The 16-channel gating integrator/multiplexer developed by us and PXI-DAQ card are used to construct this system. A virtual instrument system for displaying, indicating,measuring and recording of output waveform is accomplished by integrating the PC, hardware, software together flexibly based on the Lab Windows/CVI platform in our read-out and data acquisition system. In this system, an ADC can face the 16 outputs of 16-channel spectroscopy amplifiers, which can improve the system integration and reduce the cost of data acquisition system. The design provided a new way for building the read-out and data acquisition system using the normal modules and spectroscopy amplifiers. This system has been tested and demonstrated that it is intelligent, reliable, real-time and low cost. (authors)

  9. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  10. Systematic study of new types of Hamamatsu MPPCs read out with the NINO ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); Rodriguez, A. [CERN, Geneva (Switzerland); ICSC World Laboratory, Geneva (Switzerland); Williams, M.C.S., E-mail: crispin.williams@cern.ch [CERN, Geneva (Switzerland); INFN and Dipartimento di Fisica e Astronomia, Università di Bologna (Italy); Yamamoto, K. [Solid State Division, Hamamatsu Photonics K.K., Hamamatsu (Japan); Zichichi, A. [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma (Italy); CERN, Geneva (Switzerland); INFN and Dipartimento di Fisica e Astronomia, Università di Bologna (Italy); Zuyeuski, R. [CERN, Geneva (Switzerland); ICSC World Laboratory, Geneva (Switzerland)

    2014-07-01

    Over the last decade there have been commercial TOF-PET scanners constructed using Photo-Multiplier Tubes (PMT) that have achieved ∼500ps FWHM Coincidence Time Resolution (CTR). A new device known as the Silicon PhotoMultiplier (SiPM) has the potential to overcome some of the limitations of the PMT. Therefore implementing a SiPM based TOF-PET scanner is of high interest. Recently Philips has introduced a TOF-PET scanner that uses digital Silicon PhotoMultipliers (d-SiPMs) which has a CTR of 350 ps. Here we will report on the timing performance of two Hamamatsu 3×3 mm{sup 2} analogue-SiPMs read out with the NINO ASIC: this is an ultra-fast amplifier/discriminator with a differential architecture. The differential architecture is very important since the single-ended readout uses the ground as the signal return; as the ground is also the reference level for the discriminators, the result is high crosstalk and degraded time resolution. However differential readout allows the scaling up from a single cell to a multi-cell device with no loss of time resolution; this becomes increasingly important for the highly segmented detectors that are being built today, both for particle and for medical instrumentation. We obtained excellent results for both the Single Photon Time Resolution (SPTR) and for the CTR using a LYSO crystal of 15 mm length. Such a crystal length has sufficient detection efficiency for 511 keV gammas to make an excellent PET device. The results presented here are proof that a TOF-PET detector with a CTR of 175 ps is indeed possible. This is the first step that defines the starting point of our SuperNINO project.

  11. Systematic study of new types of Hamamatsu MPPCs read out with the NINO ASIC

    International Nuclear Information System (INIS)

    Doroud, K.; Rodriguez, A.; Williams, M.C.S.; Yamamoto, K.; Zichichi, A.; Zuyeuski, R.

    2014-01-01

    Over the last decade there have been commercial TOF-PET scanners constructed using Photo-Multiplier Tubes (PMT) that have achieved ∼500ps FWHM Coincidence Time Resolution (CTR). A new device known as the Silicon PhotoMultiplier (SiPM) has the potential to overcome some of the limitations of the PMT. Therefore implementing a SiPM based TOF-PET scanner is of high interest. Recently Philips has introduced a TOF-PET scanner that uses digital Silicon PhotoMultipliers (d-SiPMs) which has a CTR of 350 ps. Here we will report on the timing performance of two Hamamatsu 3×3 mm 2 analogue-SiPMs read out with the NINO ASIC: this is an ultra-fast amplifier/discriminator with a differential architecture. The differential architecture is very important since the single-ended readout uses the ground as the signal return; as the ground is also the reference level for the discriminators, the result is high crosstalk and degraded time resolution. However differential readout allows the scaling up from a single cell to a multi-cell device with no loss of time resolution; this becomes increasingly important for the highly segmented detectors that are being built today, both for particle and for medical instrumentation. We obtained excellent results for both the Single Photon Time Resolution (SPTR) and for the CTR using a LYSO crystal of 15 mm length. Such a crystal length has sufficient detection efficiency for 511 keV gammas to make an excellent PET device. The results presented here are proof that a TOF-PET detector with a CTR of 175 ps is indeed possible. This is the first step that defines the starting point of our SuperNINO project

  12. Added value of IP-10 as a read-out of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Jenum, Synne; Dhanasekaran, Sivmakumaran; Ritz, Christian

    2016-01-01

    We have explored the added value of IFNγ-inducible protein 10 as a read-out of Mycobacterium tuberculosis specific immunity in young Indian children where the sensitivity of the IGRA for tuberculosis (TB) is poor. Reduced frequency of indeterminate results and an increased sensitivity for TB, sug...

  13. Neutron spectroscopy by means of artificial diamond detectors using a remote read out scheme

    International Nuclear Information System (INIS)

    Angelone, M.; Lattanzi, D.; Pillon, M.; Almaviva, S.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona Rinati, G.; Aielli, G.; Sintonico, R.; Cardarelli, R.

    2009-01-01

    Artificial crystal diamond neutron detectors have been tested since 2003 and they have demonstrated to be reliable and stable as well as to withstand the harsh working condition available in a large tokamak. Up to now they were used to measure the total and time dependent neutron emission while neutron spectroscopy was never attempted. On the other hand neutron spectrometry con yields important information on the burning plasma and it is requested for future experiments that will use DT plasmas so producing 14 MeV neutrons. Neutron spectrometry can only be attempted by using single crystal diamond (SCD) which, as it has been demonstrated, can show an energy resolution (FWHM) as low as 0.5%. However, in ITER, the huge neutron and gamma fluxes as well as the high temperature will not allow the electronics to be located close to the detector measuring point and near the plasma. For this reason it is necessary to develop a new approach in which new detectors able to withstand harsh environments and the electronics are far apart. This is a very challenging task if it is devoted to perform signal Pulse Height Analyses (PHS) with high energy resolution. To exploit this concept a SCD detector covered with a thin layer of 6 LiF was installed at JET during the 2008 experimental campaigns and equipped with a remote read-out scheme located about 100 m away from the detector. The detector's signal was transported up to a conceptually new fast charge amplifier (FCA) developed to fulfill the task by means of a high frequency, single, low attenuation, super-screened cable. This FCA is able to read, stretch (up to 100 ns) and amplify the small (some μV) and ultra fast (< 100 ps wide) signal produced by the radiation in the diamond detector. The signal amplified by the FCA was then processed through a commercial fast digitizer (NI-5114) 250 Ms/sec, 200 MHz equipped with 64 MB ram memory. Both signal amplitude and area can be used to get a PHS spectrum demonstrating the unique

  14. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  15. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    Science.gov (United States)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  16. Test beam results using scintillating fibers read out by a multianode phototube and visible light photon counters

    International Nuclear Information System (INIS)

    Abbott, B.; Davies, R.; Koltick, D.; McIlwain, R.; Schmitz, C.J.; Shibata, E.I.; Atac, M.; Baumbaugh, B.; Jaques, J.; Kehoe, R.; Marchant, J.; Ruchti, R.; Warchol, J.; Wayne, M.; Binkley, M.; Elias, J.; Goldberg, H.; Margulies, S.; Solomon, J.; Armstrong, T.; Lewis, R.; Smith, G.

    1993-01-01

    The results from a test beam experiment at Fermilab using 830 μm scintillating fibers, a version of a solid state photomultiplier, the VLPC, and a 256 channel multianode phototube are reported. Muon tracks were observed in a combined tracking system read out by VLPCs and the multianode phototube. A tracking algorithm was developed to unfold the complex cross talk pattern observed in the multianode phototube. A spatial resolution of ∝130 μm was obtained. (orig.)

  17. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    CERN Document Server

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  18. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    NARCIS (Netherlands)

    Hijmering, R.A.

    2009-01-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the

  19. Design, construction, quality checks and test results of first resistive-Micromegas read-out boards for the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00215943; The ATLAS collaboration; Kuger, Fabian

    2015-01-01

    The development work carried out at CERN to push the Micromegas technology to a new frontier is now coming to an end. The construction of the first read-out boards for the upgrade of the ATLAS muon system will demonstrate in full-scale the feasibility of this ambitious project. The read-out boards, representing the heart of the detector, are manufactured in industries, making the Micromegas for ATLAS the first MPGD for a large experiment with a relevant part industrially produced. The boards are 50 cm wide and up to 220 cm long, carrying copper strips 315 μm wide with 415 μm pitch. Interconnected resistive strips, having the same pattern as the copper strips, provide spark protection. The boards are completed by the creation of cylindrical pillars 128 μm high, 280 μm in diameter and arranged in a triangular array 7 mm aside. The total number of boards to be produced for ATLAS is 2048 of 32 different types. We will review the main design parameters of the read-out boards for the ATLAS Micromegas, following...

  20. Resolution and Efficiency of Monitored Drift-Tube Chambers with Final Read-out Electronics at High Background Rates

    CERN Document Server

    Dubbert, J; Kortner, O; Kroha, H; Manz, A; Mohrdieck-Möck, S; Rauscher, F; Richter, R; Staude, A; Stiller, W

    2003-01-01

    The performance of a monitored drift-tube chamber for ATLAS with the final read-out electronics was tested at the Gamma Irradiation facility at CERN under varyin photon irradiation rates of up to 990~Hz\\,cm$^{-2}$ which corresponds to 10 times the highest background rate expected in ATLAS. The signal pulse-height measurement of the final read-out electronics was used to perform time-slewing corrections. The corrections improve the average single-tube resolution from 106~$\\mu$m to 89~$\\mu$m at the nominal discriminator threshold of 44~mV without irradiation, and from 114~$\\mu$m to 89~$\\mu$m at the maximum nominal irradiation rate in ATLAS of 100~Hz\\,cm$^{-2}$. The reduction of the threshold from 44~mV to 34~mV and the time-slewing corrections lead to an average single-tube resolution of 82~$\\mu$m without photon background and of 89~$\\mu$m at 100~Hz\\,cm$^{-2}$. The measured muon detection efficiency agrees with the expectation for the final read-out electronics.

  1. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  2. Automated read-out of thermoluminescence dosemeters in a centralized individual monitoring service

    International Nuclear Information System (INIS)

    Toivonen, M.

    The organizational problems in maintaining centralized individual monitoring service with erasable and re-usable dosemeters are evaluated. Design criteria for an automated thermoluminescence reader are laid down. It is characteristic for the planning of the monitoring system that the issuing of dosemeters can be arranged without having two dosemeters for each worker. A home made reader designed to fullfil these criteria is presented. The use of a standard barcode and a standard optical barcode reader in identification of dosemeters is described. A method of using a minicomputer in preparing the self-fastening identification labels, in printing mailing lists and in printing results is described

  3. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    OpenAIRE

    Anja Boisen; Mogens Havsteen-Jakobsen; Gabriela Blagoi; Daniel Haefliger; Søren Dohn; Alicia Johansson; Michael Lillemose; Stephan Keller; Maria Nordström

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the bu...

  4. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  5. Scintillation light read-out by thin photodiodes in silicon wells

    CERN Document Server

    Allier, C P; Sarro, P M; Eijk, C W E

    2000-01-01

    Several applications of X-ray and gamma ray imaging detectors, e.g. in medical diagnostics, require millimeter or sub-millimeter spatial resolution and good energy resolution. In order to achieve such features we have proposed a new type of camera, which takes advantage of micromachining technology. It consists of an array of scintillator crystals encapsulated in silicon wells with photodiodes at the bottom. Several parameters of the photodiode need to be optimised: uniformity and efficiency of the light detection, gain, electronic noise and breakdown voltage. In order to evaluate these parameters we have processed 3x3 arrays of 1.8 mm sup 2 , approx 10 mu m thick photodiodes using (1 0 0) wafers etched in a KOH solution. Their optical response at 675 nm wavelength is comparable to that of a 500 mu m thick silicon PIN diode. Their low light detection efficiency is compensated by internal amplification. Several scintillator materials have been positioned in the wells on top of the thin photodiodes, i.e. a 200 ...

  6. A PowerPC-based control system for the Read-Out-Driver module of the ATLAS IBL

    International Nuclear Information System (INIS)

    Balbi, G; Bruni, G; Bruschi, M; D'Antone, I; Polini, A; Rizzi, M; Travaglini, R; Dopke, J; Falchieri, D; Gabrielli, A; Zannoli, S; Flick, T; Heim, T; Neumann, M; Grosse-Knetter, J; Krieger, N; Joseph, J; Kugel, A; Schroer, N; Morettini, P

    2012-01-01

    The ATLAS experiment at LHC planned to upgrade the existing Pixel Detector with the insertion of an innermost silicon layer, called Insertable B-layer (IBL). A new front-end ASIC has been foreseen (named FE-I4) and it will be read out with improved off-detector electronics. In particular, the new Read-Out Driver card (ROD) is a VME-based board designed to process a four-fold data throughput. Moreover, the ROD hosts the electronics devoted to control operations whose main tasks are providing setup busses to access configuration registers on several FPGAs, receiving configuration data from external PCs, managing triggers and running calibration procedures. In parallel with a backward-compatible solution with a Digital Signal Processor (DSP), a new ROD control circuitry with a PowerPC embedded into an FPGA has been implemented. In this paper the status of the PowerPC-based control system will be outlined with major focus on firmware and software development strategies.

  7. LHCb-VELO module production with n-side read-out on n- and p-type silicon substrates

    International Nuclear Information System (INIS)

    Affolder, A.; Bowcock, T.J.V.; Carrol, J.L.; Casse, G.; Huse, T.; Patel, G.D.; Rinnert, K.; Smith, N.A.; Turner, P.R.

    2007-01-01

    The modules for the Vertex Locator detector of the LHCb experiment represent a technical challenge for their complexity. The design of the sensors uses a complex double metal routing of the connection to the read-out strips and a high density of metal lines has to be accommodated in the module. The detectors are n-side read-out to be able to survive the highest radiation damage of any micro-strip sensor used in LHC experiments. The present choice is n-strips on n-type substrates (n-in-n geometry). Double-sided lithography is required, which impact on the cost of the devices and on the module construction. Moreover, the compact size of the hybrid imposes sophisticated technical solutions for cooling the electronics and the detector. The module construction and the possible benefits offered by the choice of p-type substrate detectors compared to the present n-in-n devices are here discussed in details

  8. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braga, D. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Coleman-Smith, P. J. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Davinson, T. [Dept. of Physics and Astronomy, Univ. of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lazarus, I. H. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Page, R. D. [Dept. of Physics, Univ. of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Thomas, S. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  9. Skiroc A Front-end Chip to Read Out the Imaging Silicon-Tungsten Calorimeter for ILC

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard,Gisèle; Raux, Ludovic; Wicek, Francois; Bohner, Gérard; Gay, Pascal; Lecoq, Jacques; Manen, Samuel; Royer, Laurent

    2007-01-01

    Integration and low-power consumption of the read-out ASIC for the International Linear Collider (ILC) 82-millionchannel W-Si calorimeter must reach an unprecedented level as it will be embedded inside the detector. Uniformity and dynamic range performance has to reach the accuracy to achieve calorimetric measurement. A first step towards this goal has been a 10,000-channel physics prototype of 18*18 cm which is currently in test beam in CERN. A new version of a full integrated read out chip (SKIROC) has been designed to equip the technologic prototype to be built for 2009. Based on the running physics prototype ASIC (FLC_PHY3), it embeds most of the required features expected for the final detector. The dynamic range has been improved from 500 to 2000 MIP. An auto-trigger capability has been added allowing built-in zero suppress. The number of channel has been doubled reaching 36 to fit smaller silicon pads and the lownoise charge preamplifier now accepts both AC and DC coupled detectors. After an exhaustive...

  10. Requirements on read-out electronics for future keV-scale sterile neutrino search with KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Dolde, Kai [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-07-01

    Recent publications show the great potential of the KATRIN (KArlsruhe TRItium Neutrino) experiment in the search for sterile neutrinos in the mass range of a few keV down to active-to-sterile mixing angles at least one order of magnitude smaller than current laboratory limits of sin{sup 2}θ < 10{sup -3}. In order to be sensitive to the tiny kink-like signature of sterile neutrinos in tritium beta decay, KATRIN requires a novel sophisticated detector and read-out system. Several silicon prototype detectors are under construction at the moment to explore the most suitable detector design for this purpose. The selection of appropriate read-out electronics is strongly triggered by the requirements of allowing only very small systematic uncertainties due to ADC Non-Linearities to reach the expected sensitivity. This talk investigates the impact of ADC Non-Linearities on the tritium beta decay spectrum, depending on the digitization method of analogue signals of a multi-pixel silicon detector, peak sensing or waveform digitization. The simulations show a higher achievable sensitivity using waveform digitizers and moreover strongly favor additional variable post-acceleration of the electrons to smear out the periodic structure of the ADC Non-Linearities.

  11. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at the cooler synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2015-07-01

    The Cooler Synchrotron (COSY) is a storage ring used for experiments with polarized proton and deuteron beams. The low energy polarimeter is used to determine the vector and tensor polarization of the beam before injection at kinetic energies up to 45 MeV for protons and 75 MeV for deuterons. The polarimeter uses scintillators to measure the energy of both outgoing particles of a scattering reaction and the time between their detection. The present read-out electronics consists of analog NIM modules and is limited in terms of time resolution and the capability for online data analysis. The read-out electronics will be replaced with a a new system based on analog pulse sampling and an FPGA chip for logic operations. The new system will be able to measure the time at which particles arrive to a precision better than 50 ps, facilitating better background reduction using coincidence measurement. In addition to measuring the beam polarization, the system will be used to precisely determine the vector and tensor analyzing powers for deuteron scattering off carbon at a kinetic energy of 75 MeV.

  12. Interferometric redatuming by sparse inversion

    OpenAIRE

    Van der Neut, J.; Herrmann, F.J.

    2012-01-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional dec...

  13. Interferometric snapshot spectro-ellipsometry.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Choi, Inho; Chegal, Won; Kim, Daesuk

    2018-01-22

    We propose a snapshot spectroscopic ellipsometry and its applications for real-time thin-film thickness measurement. The proposed system employs an interferometric polarization-modulation module that can measure the spectroscopic ellipsometric phase for thin-film deposited on a substrate with a measurement speed of around 20 msec. It requires neither moving parts nor time dependent modulation devices. The accuracy of the proposed interferometric snapshot spectro-ellipsometer is analyzed through comparison with commercial equipment results.

  14. A MWPC with a cathode coupled delay line read-out as radioactivity detector for DNA repair studies

    International Nuclear Information System (INIS)

    Bellazzini, R.; Del Guerra, A.; Massai, M.M.; Ragadini, M.; Spandre, G.; Tonelli, G.

    1981-01-01

    A non selective method for the isolation of DNA repair-deficient mutants in mammalian cells is discussed. The method requires radioactive labelling of the short DNA sequences synthesized during repair of damaged regions. Mutants should be recognized by the absence of radioactive incorporation into their DNA. A multiwire proportional chamber (MWPC) is proposed as a suitable radioactivity detector. The performance of a MWPC prototype with a cathode coupled delay line read-out is described and is shown to be adequate for this application. The main advantages of a MWPC are reviewed with respect to other methods used for β - radioactivity counting of biological samples, such as liquid scintillators or autoradiography: the proposed detection method is non destructive for the cells, which are being kept alive for further biological studies, furthermore many cell clones can be screened within a reasonable time. (orig.)

  15. Laser Power Measurement Using Commercial MEMS Pressure Sensor along with PSoC Embedded Read-out

    Directory of Open Access Journals (Sweden)

    J. Jayapandian

    2011-06-01

    Full Text Available Solid-state, gas, semiconductor and other types of lasers are extensively employed in industry for producing laser beams used in such wide ranging fields as machining, medicine and communications. In such applications, it is necessary to be able to accurately measure the power of the laser beam that is emitted by the laser. This paper describes a novel design technique which uses the diaphragm of a commercial MEMS pressure sensor as a target surface on which laser beam impinge, transfer heat and causes change in piezo resistance. The measured change in resistance was proportional to the intensity of laser beam in the range of 0 to 300 mW. The ratio metric embedded read-out design using a single chip programmable system on chip (PSoC has been used to acquire the resistance.

  16. A pixel read-out architecture implementing a two-stage token ring, zero suppression and compression

    International Nuclear Information System (INIS)

    Heuvelmans, S; Boerrigter, M

    2011-01-01

    Increasing luminosity in high energy physics experiments leads to new challenges in the design of data acquisition systems for pixel detectors. With the upgrade of the LHCb experiment, the data processing will be changed; hit data from every collision will be transported off the pixel chip, without any trigger selection. A read-out architecture is proposed which is able to obtain low hit data loss on limited silicon area by using the logic beneath the pixels as a data buffer. Zero suppression and redundancy reduction ensure that the data rate off chip is minimized. A C++ model has been created for simulation of functionality and data loss, and for system development. A VHDL implementation has been derived from this model.

  17. A pixel read-out architecture implementing a two-stage token ring, zero suppression and compression

    Energy Technology Data Exchange (ETDEWEB)

    Heuvelmans, S; Boerrigter, M, E-mail: sander.heuvelmans@bruco.nl [Bruco integrated circuits BV, Oostermaat 2, 7623 CS (Netherlands)

    2011-01-15

    Increasing luminosity in high energy physics experiments leads to new challenges in the design of data acquisition systems for pixel detectors. With the upgrade of the LHCb experiment, the data processing will be changed; hit data from every collision will be transported off the pixel chip, without any trigger selection. A read-out architecture is proposed which is able to obtain low hit data loss on limited silicon area by using the logic beneath the pixels as a data buffer. Zero suppression and redundancy reduction ensure that the data rate off chip is minimized. A C++ model has been created for simulation of functionality and data loss, and for system development. A VHDL implementation has been derived from this model.

  18. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  19. Emulation and Calibration of the SALT Read-out Chip for the Upstream Tracker for Modernised LHCb Detector

    CERN Document Server

    Dendek, Adam

    2015-01-01

    The LHCb is one of the four major experiments currently operating at CERN. The main reason for constructing the LHCb forward spectrometer was a precise measurement of the CP violation in heavy quarks section as well as search for a New Physics. To obtain interesting results, the LHCb is mainly focused on study of B meson decays. Unfortunately, due to the present data acquisition architecture, the LHCb experiment is statistically limited for collecting such events. This fact led the LHCb Collaboration to decide to perform far-reaching upgrade. Key part of this upgrade will be replacement of the TT detector. To perform this action, it was requited to design new tracking detector with entirely new front-end electronics. This detector will be called the Upstream Tracker (UT) and the read-out chip — SALT. This note presents an overall discussion on SALT chip. In particular, the emulation process of the SALT data preformed via the software written by the author.

  20. Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips

    International Nuclear Information System (INIS)

    Linhart, V; Lacasta, C; Llosa, G; Stankova, V; Burdette, D; Chessi, E; Cochran, E; Honscheid, K; Kagan, H; Weilhammer, P; Cindro, V; Grosicar, B; Mikuz, M; Studen, A; Zontar, D; Clinthorne, N H

    2011-01-01

    Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.

  1. A superconducting quantum interference device based read-out of a subattonewton force sensor operating at millikelvin temperatures

    International Nuclear Information System (INIS)

    Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.

    2011-01-01

    We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).

  2. Refractive Index Compensation in Over-Determined Interferometric Systems

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2012-10-01

    Full Text Available We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  3. Evaluación del equipo de interferometría óptica de coherencia parcial Lenstar en la biometría ocular Evaluation of Lenstar partial coherente optical interferometry device in the ocular biometry

    Directory of Open Access Journals (Sweden)

    Iramis Miranda Hernández

    2010-01-01

    Full Text Available OBJETIVOS: Comparar y evaluar la biometría ocular con el nuevo equipo de interferometría óptica de coherencia parcial (Lenstar con el equipo de interferometría óptica de baja coherencia IOL Master y también con los sistemas topográficos Galilei y Pentacam. MÉTODOS: Se realizó un estudio descriptivo, transversal, en 120 ojos de 60 pacientes. Para el cálculo del lente intraocular se tomaron mediciones con un nuevo biómetro Lenstar LS 900 (Haag Streit AG y con el IOL Master V.5 (Carl Zeiss Meditec AG. Se compararon mediante el análisis de regresión lineal y correlación de Pearson. También se compararon las medidas con las obtenidas por los equipos topógrafos Galilei y Pentacam. RESULTADOS: Existe una alta correspondencia en los valores biómetricos de longitud axial, queratometría y profundidad de la cámara anterior entre los equipos Lenstar e IOL Master. También se encontró una buena correspondencia entre las medidas de profundidad de cámara posterior y queratometría entre Lenstar y los topógrafos Galilei y Pentacam. CONCLUSIONES: El nuevo biómetro Lenstar, provee resultados que se correlacionan muy bien con aquellos obtenidos con los equipos IOL Master, Pentacam y Galilei. El equipo Lenstar es un equipo preciso que brinda información adicional por lo que es útil en la cirugía de catarata y la cirugía refractiva.OBJECTIVES: To compare and to evaluate the ocular biometry taken by a new optical partial coherence interferometry device (Lenstar,the low coherence optical interferometry equipment (ILO Master and the topographic systems Pentacam y Galilei. METHODS: A descriptive cross-sectional study was conducted in 120 eyes from 60 patients. For the IOL calculation, the necessary measurements were taken with the new optical biometer Lenstar LS 900 (Haig Streit AG and with the IOL Master V5 (Carl Zeiss Meditec AG. The results were evaluated using the linear regression analysis and Pearson´s correlation. The measures were

  4. Petiroc and Citiroc: front-end ASICs for SiPM read-out and ToF applications

    International Nuclear Information System (INIS)

    Fleury, J; Ahmad, S; Callier, S; Taille, C de La; Seguin, N; Thienpont, D; Dulucq, F; Martin, G

    2014-01-01

    Petiroc and Citiroc are the two latest ASIC from Weeroc dedicated to SiPM read-out. Petiroc is a 16-channel front-end ASIC designed to readout silicon photomultipliers (SiPMs) for particle time-of-flight measurement applications. It combines a very fast and low-jitter trigger with an accurate charge measurement. Citiroc is a 32-channel front-end ASIC designed to readout silicon photo-multipliers (SiPM). It allows triggering down to 1/3 pe and provides the charge measurement with a good noise rejection. Moreover, Citiroc outputs the 32-channel triggers with a high accuracy (100 ps). Each channel of both ASICs combines a trigger path with an accurate charge measurement path. An adjustment of the SiPM high voltage is possible using a channel-by-channel input DAC. That allows a fine SiPM gain and dark noise adjustment at the system level to correct for the non-uniformity of SiPMs. Timing measurement down to 16 ps RMS jitter for Petiroc and 100 ps RMS for Citiroc is possible along with 1% linearity energy measurement up to 2500 pe. The power consumption is around 3.5 mW/channel for Petiroc and 3 mW/channel for Citiroc, excluding ASICs outing buffer

  5. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord.

    Directory of Open Access Journals (Sweden)

    Lavanya Katikala

    2013-10-01

    Full Text Available The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo.

  6. Evaluation of local radiation damage in silicon sensor via charge collection mapping with the Timepix read-out chip

    International Nuclear Information System (INIS)

    Platkevic, M; Jakubek, J; Jakubek, M; Pospisil, S; Zemlicka, J; Havranek, V; Semian, V

    2013-01-01

    Studies of radiation hardness of silicon sensors are standardly performed with single-pad detectors evaluating their global electrical properties. In this work we introduce a technique to visualize and determine the spatial distribution of radiation damage across the area of a semiconductor sensor. The sensor properties such as charge collection efficiency and charge diffusion were evaluated locally at many points of the sensor creating 2D maps. For this purpose we used a silicon sensor bump bonded to the pixelated Timepix read-out chip. This device, operated in Time-over-threshold (TOT) mode, allows for the direct energy measurement in each pixel. Selected regions of the sensor were intentionally damaged by defined doses (up to 10 12 particles/cm 2 ) of energetic protons (of 2.5 and 4 MeV). The extent of the damage was measured in terms of the detector response to the same ions. This procedure was performed either on-line during irradiation or off-line after it. The response of the detector to each single particle was analyzed determining the charge collection efficiency and lateral charge diffusion. We evaluated the changes of these parameters as a function of radiation dose. These features are related to the local properties such as the spatial homogeneity of the sensor. The effect of radiation damage was also independently investigated measuring local changes of signal response to γ, and X rays and alpha particles.

  7. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. The detector readout geometry will not be changed for the Phase II of the High Luminosity Large Hadron Collider (HL-LHC) operation. A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the HL-LHC program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done. The PMT response evoluti...

  8. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord.

    Science.gov (United States)

    Katikala, Lavanya; Aihara, Hitoshi; Passamaneck, Yale J; Gazdoiu, Stefan; José-Edwards, Diana S; Kugler, Jamie E; Oda-Ishii, Izumi; Imai, Janice H; Nibu, Yutaka; Di Gregorio, Anna

    2013-10-01

    The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo.

  9. FPGA-based upgrade of the read-out electronics for the low energy polarimeter at COSY/Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Hempelmann, Nils [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Collaboration: JEDI-Collaboration

    2016-07-01

    The Cooler Synchrotron (COSY) is a facility for cooled polarized beams at the Forschungszentrum in Juelich. The Low Energy Polarimeter (LEP) is the polarimeter in the injection beam line of COSY. The beam polarization is measured using scattering off carbon and polyethylene (CH2) targets. The outgoing particles are detected using twelve plastic scintillators installed in groups of three to the left, to the right, above, and below the beam. The LEP is the routine tool for beam set-up, but its performance was limited by the old read-out electronics consisting of analog NIM modules. A new system using analog pulse sampling and an FPGA chip for signal processing was installed and tested. The ejectile particles were identified by relative time of flight measurement using a signal from the RF amplifier of the cyclotron used for acceleration as a reference. The new system is able to measure the time at which a particle arrives to an accuracy in the order of 50 ps. The presentation includes a review of available systems and a report about measurements in May and December 2015.

  10. Studies on an automated gain stabilisation for the new APD read-out of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, Peter [HISKP Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    For the investigation of the nucleon spectrum it is not enough to measure only cross sections because of the large overlap of resonances. To disentangle these resonances, a partial wave analysis is needed. To find unambiguous solutions it is necessary to measure (double) polarisation observables. The CBELSA/TAPS experiment is an important tool to measure these observables in meson photoproduction off nucleons. To achieve a high efficiency in purely neutral reactions it is important to implement the main calorimeter into the first level trigger. To do so it is necessary to replace the current PIN photo diodes with new avalanche photo diodes (APDs). The new read-out is able to provide a timing signal that is fast enough to use it as a trigger while it does not impair the energy resolution of the calorimeter compared to the previous system. A drawback of APDs is their temperature dependency. To provide a stable gain throughout varying running conditions it is vital to monitor the temperature change and correct it if necessary. The poster shows an approach to ensure temperature stability where the temperature is monitored via a temperature sensitive NTC thermistor and the gain is adjusted via changes of the high voltage supply of the APDs. This method proved successful while it is easy to implement in all 1320 CsI(Tl) crystals of the calorimeter.

  11. MEMS Gyroscope with Interferometric Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a novel MEMS gyroscope that uses micro-interferometric detection to measure the motion of the proof mass. Using an interferometric...

  12. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  13. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  14. Interferometric reflection moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Combell, Olivier

    1995-06-01

    A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.

  15. Development of a test system for the analysis of the read-out electronic cabling for the CMS drift tube chambers

    International Nuclear Information System (INIS)

    Fernandez Bedoya, C.; Montero, M.; Willmott, C.

    2004-01-01

    A test system has been developed for the analysis of the read-out electronics cabling for the CMS drift tube chambers. The read-out electronics will be placed inside some aluminium boxes, so-called Minicrates, which are going to be produced soon at CIEMAT. Due to the difficulty of detecting and repairing errors in the cables once they have been installed and recalling also to the large number of Minicrates that are going to be produced, it was decided to design and develop a test system for testing the cabling before its installation. (Author)

  16. Interferometric redatuming by sparse inversion

    Science.gov (United States)

    van der Neut, Joost; Herrmann, Felix J.

    2013-02-01

    Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and artefacts due to incomplete acquisition require a different formulation. In this letter, we demonstrate the benefits of formulating the two steps that undergird interferometric redatuming in terms of a transform-domain sparsity-promoting program. By exploiting compressibility of seismic wavefields in the curvelet domain, the method not only becomes robust with respect to noise but we are also able to remove certain artefacts while preserving the frequency content. Although we observe improvements when we promote sparsity in the redatumed data space, we expect better results when interferometric redatuming would be combined or integrated with least-squares migration with sparsity promotion in the image space.

  17. Distortion compensation in interferometric testing of mirrors

    International Nuclear Information System (INIS)

    Robinson, Brian M.; Reardon, Patrick J.

    2009-01-01

    We present a method to compensate for the imaging distortion encountered in interferometric testing of mirrors, which is introduced by interferometer optics as well as from geometric projection errors. Our method involves placing a mask, imprinted with a regular square grid, over the mirror and finding a transformation that relates the grid coordinates to coordinates in the base plane of the parent surface. This method can be used on finished mirrors since no fiducials have to be applied to the surfaces. A critical step in the process requires that the grid coordinates be projected onto the mirror base plane before the regression is performed. We apply the method successfully during a center-of-curvature null test of an F/2 off-axis paraboloid

  18. The 2014 interferometric imaging beauty contest

    Science.gov (United States)

    Monnier, John D.; Berger, Jean-Philippe; Le Bouquin, Jean-Baptiste; Tuthill, Peter G.; Wittkowski, Markus; Grellmann, Rebekka; Müller, André; Renganswany, Sridhar; Hummel, Christian; Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd; Young, John; Buscher, David; Sanchez-Bermudez, Joel; Alberdi, Antxon; Schoedel, Rainer; Köhler, Rainer; Soulez, Ferréol; Thiébaut, Éric; Kluska, Jacques; Malbet, Fabien; Duvert, Gilles; Kraus, Stefan; Kloppenborg, Brian K.; Baron, Fabien; de Wit, Willem-Jan; Rivinius, Thomas; Merand, Antoine

    2014-07-01

    Here we present the results of the 6th biennial optical interferometry imaging beauty contest. Taking advantage of a unique opportunity, the red supergiant VY CMa and the Mira variable R Car were observed in the astronomical H-band with three 4-telescope configurations of the VLTI-AT array using the PIONIER instrument. The community was invited to participate in the subsequent image reconstruction and interpretation phases of the project. Ten groups submitted entries to the beauty contest, and we found reasonable consistency between images obtained from independent workers using quite different algorithms. We also found that significant differences existed between the submitted images, much greater than in past beauty contests that were all based on simulated data. A novel crowd-sourcing" method allowed consensus median images to be constructed, filtering likely artifacts and retaining real features." We definitively detect strong spots on the surfaces of both stars as well as distinct circumstellar shells of emission (likely water/CO) around R Car. In a close contest, Joel Sanchez (IAA-CSIC/Spain) was named the winner of the 2014 interferometric imaging beauty contest. This process has shown that new comers" can use publicly-available imaging software to interpret VLTI/PIONIER imaging data, as long as sufficient observations are taken to have complete uv coverage { a luxury that is often missing. We urge proposers to request adequate observing nights to collect sufficient data for imaging and for time allocation committees to recognise the importance of uv coverage for reliable interpretation of interferometric data. We believe that the result of the proposed broad international project will contribute to inspiring trust in the image reconstruction processes in optical interferometry.

  19. Interface for read-out of numerical information to a Shch6800K high-speed printer from an ''Elektronika D3-28'' computer

    International Nuclear Information System (INIS)

    Taluts, S.G.; IL'inykh, S.A.

    1984-01-01

    The authors describe an interface to connect a Shch6800K high-speed printer to and Elektronika D3-28 computer. A functional diagram and a line diagram give a detailed illustration of the system. Using series K155 microcircuits, the authors operated the system at a read-out speed of better than 25 16-character lines per second

  20. Pulseshape characteristics of a 300 $\\mu$m PR03 R-measuring VELO sensor read out with a Beetle1.3 chip

    CERN Document Server

    Palacios, A; Buytaert, J; Borel, J; Collins, P; Eckstein, D; Eklund, L; Ferro-Luzzi, M; Jans, E; Ketel, T; Petrie, D; Pivk, M; Tobin, M

    2005-01-01

    The signal-to-noise, overspill and undershoot characteristics of a VELO module equipped with Beetle1.3 read-out chips have been measured using 120 GeV pions from the SPS test beam facility at CERN. The module consists of a PR03 n-on-n 300 $\\mu$m R measuring prototype sensor and a fully populated K03 hybrid. Results are presented for a single Beetle1.3 chip with a variety of chip parameter settings controlling the pre-amplifier and shaper currents and feedback voltages, with the objective of establishing the performance of the module and understanding its dependence on the read-out chip settings.

  1. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    Energy Technology Data Exchange (ETDEWEB)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E. [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Electronique Physique; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N. [Paris-11 Univ., 91 - Orsay (France). Institut de Physique Nucleaire

    1999-07-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  2. A full-scale prototype for the tracking chambers of the ALICE muon spectrometer. Part II- Electronics. Preamplifier; Read-out prototype

    International Nuclear Information System (INIS)

    Courtat, P.; Charlet, D.; Lebon, S.; Martin, J.M.; Sellem, R.; Wanlin, E.; Douet, R.; Harroch, H.; Bimbot, L.; Jouan, D.; Kharmandarian, L.; Le Bornec, Y.; Mac Cormick, M.; Willis, N.

    1999-01-01

    A full scale prototype of one module of the first tracking station has already been constructed. It will be equipped with the new read-out electronics proposed for the final chambers. Before integration of the whole chain, tests have been carried out on the individual components in discrete circuit prototypes. The different parts of the chain are described, together with the tests performed. The final version with integrated circuits in then described. (author)

  3. Low-cost interferometric TDM technology for dynamic sensing applications

    Science.gov (United States)

    Bush, Jeff; Cekorich, Allen

    2004-12-01

    A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.

  4. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    Science.gov (United States)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  5. Interferometric capability for the Magellan Project

    Science.gov (United States)

    Carleton, Nathaniel P.; Traub, Wesley A.; Angel, J. Roger P.

    1998-07-01

    The Magellan Project is building two 6.5-m telescopes, 60 m apart, at the Las Campanas Observatory in Chile. There are on-going plans to combine the beams of the two main telescopes, and of smaller auxiliary telescopes, for interferometric measurements. In this paper we consider the array of auxiliary telescopes as a stand-alone instrument, recognizing that it will operate as such for some large fraction of the time. Our interest is sharpened by the availability of six 1.8-m optical systems, retired from the Smithsonian-Arizona Multiple-Mirror Telescope in preparation for the installation of a single-mirror 6.5-m system. We have completed a design for a 1.8-m telescope, in which the MMT components are supported on a proven tripod mount. The optics-support uses steel for stiffness, and low-thermal- expansion rods for passive stability. This array will be a powerful tool for the investigation of stellar limb darkening, surface features, and changes of diameter in pulsations, as well as dust disks, shells, and binary companions. The 1.8-m telescopes on good sites such as Magellan's should be able to operate at full aperture for interferometry at 2.2 micrometers . They should therefore be able to reach to magnitude K equals 10 or so, and thus to cover substantial samples of both main-sequence and pre-main- sequence stars, and of fully evolved stars as well.

  6. The 2016 interferometric imaging beauty contest

    Science.gov (United States)

    Sanchez-Bermudez, J.; Thiébaut, E.; Hofmann, K.-H.; Heininger, M.; Schertl, D.; Weigelt, G.; Millour, F.; Schutz, A.; Ferrari, A.; Vannier, M.; Mary, D.; Young, J.

    2016-08-01

    Image reconstruction in optical interferometry has gained considerable importance for astrophysical studies during the last decade. This has been mainly due to improvements in the imaging capabilities of existing interferometers and the expectation of new facilities in the coming years. However, despite the advances made so far, image synthesis in optical interferometry is still an open field of research. Since 2004, the community has organized a biennial contest to formally test the different methods and algorithms for image reconstruction. In 2016, we celebrated the 7th edition of the "Interferometric Imaging Beauty Contest". This initiative represented an open call to participate in the reconstruction of a selected set of simulated targets with a wavelength-dependent morphology as they could be observed by the 2nd generation of VLTI instruments. This contest represents a unique opportunity to benchmark, in a systematic way, the current advances and limitations in the field, as well as to discuss possible future approaches. In this contribution, we summarize: (a) the rules of the 2016 contest; (b) the different data sets used and the selection procedure; (c) the methods and results obtained by each one of the participants; and (d) the metric used to select the best reconstructed images. Finally, we named Karl-Heinz Hofmann and the group of the Max-Planck-Institut fur Radioastronomie as winners of this edition of the contest.

  7. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  8. A pixel unit-cell targeting 16ns resolution and radiation hardness in a column read-out particle vertex detector

    International Nuclear Information System (INIS)

    Wright, M.; Millaud, J.; Nygren, D.

    1993-01-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application. (orig.)

  9. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  10. A pixel unit-cell targeting 16 ns resolution and radiation hardness in a column read-out particle vertex detector

    International Nuclear Information System (INIS)

    Wright, M.; Millaud, J.; Nygren, D.

    1992-10-01

    A pixel unit cell (PUC) circuit architecture, optimized for a column read out architecture, is reported. Each PUC contains an integrator, active filter, comparator, and optional analog store. The time-over-threshold (TOT) discriminator allows an all-digital interface to the array periphery readout while passing an analog measure of collected charge. Use of (existing) radiation hard processes, to build a detector bump-bonded to a pixel readout array, is targeted. Here, emphasis is on a qualitative explanation of how the unique circuit implementation benefits operation for Super Collider (SSC) detector application

  11. The Read-Out Driver (ROD) card for the ATLAS experiment: commissioning for the IBL detector and upgrade studies for the Pixel Layers 1 and 2

    CERN Document Server

    Travaglini, R; The ATLAS collaboration; Bindi, M; Falchieri, D; Gabrielli, A; Lama, L; Chen, S P; Hsu, S C; Hauck, S; Kugel, A; Flick, T; Wensing, M

    2013-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called Insertable B-layer (IBL). IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered in order to perform tests with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this contribution both setups and results will be described, as well as preliminary studies on changes in order to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  12. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  13. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  14. A novel lightweight Fizeau infrared interferometric imaging system

    Science.gov (United States)

    Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert

    2016-05-01

    Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.

  15. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    Science.gov (United States)

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  16. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    International Nuclear Information System (INIS)

    Schneider, Florian R.; Mann, Alexander B.; Technische Univ. Muenchen, Klinikum rechts der Isar; Konorov, Igor; Paul, Stephan; Delso, Gaspar; Ziegler, Sibylle I.

    2012-01-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a 22 Na point source and reconstruct different source geometries filled with 18 F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  17. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Florian R.; Mann, Alexander B. [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik; Konorov, Igor; Paul, Stephan [Technische Univ. Muenchen, Garching (Germany). Physik-Department E18; Delso, Gaspar; Ziegler, Sibylle I. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Nuklearmedizinische Klinik und Poliklinik

    2012-07-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a {sup 22}Na point source and reconstruct different source geometries filled with {sup 18}F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80 MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. (orig.)

  18. Optimisation of the Read-out Electronics of Muon Drift-Tube Chambers for Very High Background Rates at HL-LHC and Future Colliders

    CERN Document Server

    Nowak, Sebastian; Gadow, Philipp; Ecker, Katharina; Fink, David; Fras, Markus; Kortner, Oliver; Kroha, Hubert; Müller, Felix; Richter, Robert; Schmid, Clemens; Schmidt-Sommerfeld, Korbinian; Zhao, Yazhou

    2016-01-01

    In the ATLAS Muon Spectrometer, Monitored Drift Tube (MDT) chambers and sMDT chambers with half of the tube diameter of the MDTs are used for precision muon track reconstruction. The sMDT chambers are designed for operation at high counting rates due to neutron and gamma background irradiation expected for the HL-LHC and future hadron colliders. The existing MDT read-out electronics uses bipolar signal shaping which causes an undershoot of opposite polarity and same charge after a signal pulse. At high counting rates and short electronics dead time used for the sMDTs, signal pulses pile up on the undershoot of preceding background pulses leading to a reduction of the signal amplitude and a jitter in the drift time measurement and, therefore, to a degradation of drift tube efficiency and spatial resolution. In order to further increase the rate capability of sMDT tubes, baseline restoration can be used in the read-out electronics to suppress the pile-up effects. A discrete bipolar shaping circuit with baseline...

  19. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, L., E-mail: l.gottardi@sron.nl [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Akamatsu, H.; Bruijn, M.P.; Hartog, R. den; Herder, J.-W. den; Jackson, B. [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Kiviranta, M. [VTT, Espoo (Finland); Kuur, J. van der; Weers, H. van [SRON Netherlands Institute for Space Research, Utrecht (Netherlands)

    2016-07-11

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3–12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  20. Interferometric study of the small magellanic cloud

    International Nuclear Information System (INIS)

    Torres, G.; Carranza, G.J.

    1986-01-01

    interferometric observations of the general radial velocity field in the small magellanic cloud are being carried out. We present preliminary results in reasonable agreement with H I measurements. (author)

  1. Efficiency studies for a tracking detector based on square 1.5 m long scintillating fibers read out by SiPM

    International Nuclear Information System (INIS)

    Sanchez Majos, S.; Achenbach, P.; Pochodzalla, J.

    2009-01-01

    A tracking detector based on 1.5 m long scintillating fibers is being developed for the electron arm of the KAOS spectrometer at the Mainz Microtron MAMI. Measurements on light attenuation, particle detection efficiencies and accidental coincidence rates with a prototype set-up using 2x2mm 2 fibers read out by silicon photomultipliers (SiPM) are presented. The highest efficiency at the lowest accidental coincidence rate was reached for high trigger thresholds at the largest SiPM bias voltages. The influence of signal attenuation and dispersion on detection efficiencies is discussed. The results are in good agreement with a Monte Carlo model that was used to predict detector characteristics for different fiber geometries.

  2. Pattern effects and noise accumulation in concatenated all-optical regenerators

    DEFF Research Database (Denmark)

    Lading, Brian; Mørk, Jesper; Bischoff, Svend

    2001-01-01

    In future high-speed networks, interferometric structures based on semiconductor optical amplifiers (SOAs) are strong candidates for wavelength conversion applications and signal regeneration. One of the latest reported interferometric devices is the semiconductor delayed-interference signal...

  3. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  4. AN IMPROVED INTERFEROMETRIC CALIBRATION METHOD BASED ON INDEPENDENT PARAMETER DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    J. Fan

    2018-04-01

    Full Text Available Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM. The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs. However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD. Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  5. An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition

    Science.gov (United States)

    Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.

    2018-04-01

    Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  6. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  7. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.

    Science.gov (United States)

    Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2011-02-09

    We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.

  8. A 20 mW, 4.8 Gbit/sec, SEU robust serializer in 65nm for read-out of data from LHC experiments

    International Nuclear Information System (INIS)

    Felici, D; Bonacini, S; Marchioro, A; Moreira, P; Bertazzoni, S; Ottavi, M

    2014-01-01

    The availability of a sub 1-W SerDes for future LHC read-out systems is of paramount importance for building new low-mass inner detectors for HL-LHC. This work reports on the design of two alternative architectures for the serializer block within a high speed transmitter with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Two alternative architectures are implemented using a commercial 65nm LP-CMOS technology. The architectures used are a ''simple TMR'' and a ''code-protected'' one, and are meant to investigate different strategies to handle SEUs. While using the same technology and flip-flops, the simple TMR architecture results in a consumption of 30 mW, the code-protected one of 19 mW, which are better than 1/4 of the power used in state-of-the-art rad-hard serializers. Early data on robustness to SEU effects are also presented

  9. The performance of SCT128A ASICs when reading out silicon sensors and a study of $B^{0}_{s}\\to D^{+-}_{s} \\pi^{-+}$ at LHCb

    CERN Document Server

    Charles, M J; Harnew, N

    2003-01-01

    LHCb is a future detector which will take data at the CERN Large Hadron Collider proton-proton collider. It is optimized for B physics and will make precision measurements of CP violation parameters and flavour mixing. Measurements of time-dependent asymmetries and decay rates require accurate reconstruction of the B meson production and decay vertices; this is achieved with a silicon microstrip VErtex LOcator (VELO). In this thesis, an overview of silicon strip detectors (SSDs) is given and the choice of sensor technology at LHCb justified. Data from beam tests in which prototype VELO SSDs were read out using SCT128A electronics are presented and analysed. The time response of the system is measured and the implications for LHC-speed readout are discussed. The effect of detector input capacitance is investigated. Measurements of the mass and width differences of the Bs mass eigenstates, Delta M_s and Delta Gamma_s, will be possible at LHCb. Recent theoretical predictions for these parameters are given and it...

  10. Test beam results of the first CMS double-sided strip module prototypes using the CBC2 read-out chip

    Energy Technology Data Exchange (ETDEWEB)

    Harb, Ali, E-mail: ali.harb@desy.de; Mussgiller, Andreas; Hauk, Johannes

    2017-02-11

    The CMS Binary Chip (CBC) is a prototype version of the front-end read-out ASIC to be used in the silicon strip modules of the CMS outer tracking detector during the high luminosity phase of the LHC. The CBC is produced in 130 nm CMOS technology and bump-bonded to the hybrid of a double layer silicon strip module, the so-called 2S-p{sub T} module. It has 254 input channels and is designed to provide on-board trigger information to the first level trigger system of CMS, with the capability of cluster-width discrimination and high-p{sub T} track identification. In November 2013 the first 2S-p{sub T} module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2 to 4 GeV. In this paper the test setup and the results are presented.

  11. Gossipo-3 A prototype of a Front-End Pixel Chip for Read-Out of Micro-Pattern Gas Detectors

    CERN Document Server

    Brezina, Christpoh; van der Graaf, Haryy; Gromov, Vladimir; Kluit, Ruud; Kruth, Andre; Zappon, Francesco

    2009-01-01

    In a joint effort of Nikhef (Amsterdam) and the University of Bonn, the Gossipo-3 integrated circuit (IC) has been developed. This circuit is a prototype of a chip dedicated for read-out of various types of position sensitive Micro-Pattern Gas detectors (MPGD). The Gossipo-3 is defined as a set of building blocks to be used in a future highly granulated (60 μm) chip. The pixel circuit can operate in two modes. In Time mode every readout pixel measures the hit arrival time and the charge deposit. For this purpose it has been equipped with a high resolution TDC (1.7 ns) covering dynamic range up to 102 μs. Charge collected by the pixel will be measured using Time-over- Threshold method in the range from 400 e- to 28000 e- with accuracy of 200 e- (standard deviation). In Counting mode every pixel operates as a 24-bit counter, counting the number of incoming hits. The circuit is also optimized to operate at low power consumption (100 mW/cm2) that is required to avoid the need for massive power transport and coo...

  12. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  13. Fiberless Optical Gyroscope, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a radical new approach for to the design and fabrication of a fiber-less Interferometric Optical Gyroscope (IOG) that enables the production of a...

  14. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  15. Valuation of a CD-96 reader dedicated to quick read-out and archivisation of foil dosemeter absorbance; Ocena czytnika CD-96 przeznaczonego do szybkiego mierzenia absorbancji tasmowych dozymetrow foliowych i archiwizowania wynikow pomiaru

    Energy Technology Data Exchange (ETDEWEB)

    Malicki, W.; Bryl-Sandelewska, T.; Stuglik, Z.

    1997-12-31

    A check of the useful parameters of CD-96 reader is presented. The reader was constructed in the Department of Radioisotope Instruments and Methods of the INCT and dedicated to quick read-out of the foil dosemeter absorbances and for their archivisation. (author). 9 refs, 9 figs.

  16. An Interferometric Study of the Post-AGB Binary 89 Herculis. 1: Spatially Resolving the Continuum Circumstellar Environment at Optical and Near-IR Wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    Science.gov (United States)

    2013-01-01

    Herculis I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA , PTI, and the CHARA...public release; distribution unlimited 13. SUPPLEMENTARY NOTES A&A 559, A111 (2013) 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...Array ( IOTA ) and the Center for High Angular Resolution Astronomy (CHARA) Array, covering 0.5 to 2.2 μm and with baselines from 15 to 278 m. Here we

  17. Phase 2 SBIR Final Report: An Ultra-Sensitive Optical Biosensor for Flood Safety

    National Research Council Canada - National Science Library

    2002-01-01

    The further development of a unique interferometric based optical biosensor platform for the rapid unlabelled detection and identification of foodborne pathogens was carried out under Phase II SBIR...

  18. Interferometric method to determine the Kerr constant of perspex and ZnSe

    CSIR Research Space (South Africa)

    Govender, P

    2010-09-01

    Full Text Available , (1999). [2] T. K. Ishii and A. Griffis, “Measurement of electro-optic effects in acrylic plastic”, Microwave and Optical Technology Letters, 4, 387-389(1991). [3] W. Kucharczyk, M. J. Gunning, R. E. Raab and C. Graham, “Interferometric investigation... to Determine the Kerr Constant of Perspex Patricia Govender1, 2, Dr. V.W. Couling1 1 UKZN Pietermaritzburg, King Edward Avenue, Scottsville, Pietermaritzburg 2 CSIR, DPSS, 3Meiring Naude Avenue Patricia Govender e-mail address: pgovender...

  19. Scintillating optical fibres and the detection of very short lived particles

    International Nuclear Information System (INIS)

    Fisher, C.M.

    1985-01-01

    The application of scintillating fiber optics to the problem of heavy flavour particle detection in both fixed target and collider experiments is reviewed. Brief specifications for both fibres and read-out systems are given. (orig.)

  20. Matterwave interferometric velocimetry of cold Rb atoms

    Science.gov (United States)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  1. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully...... automated calibration techniques are preferable, especially for operational mapping. The author presents one such technique, called cross-calibration. Though developed for single-pass interferometry, it may be applicable to multi-pass interferometry, too. Cross-calibration requires stability during mapping...... ground control point is often needed. The paper presents the principles and mathematics of the cross-calibration technique and illustrates its successful application to EMISAR data....

  2. Improving the performance of interferometric imaging through the use of disturbance feedforward.

    Science.gov (United States)

    Böhm, Michael; Glück, Martin; Keck, Alexander; Pott, Jörg-Uwe; Sawodny, Oliver

    2017-05-01

    In this paper, we present a disturbance compensation technique to improve the performance of interferometric imaging for extremely large ground-based telescopes, e.g., the Large Binocular Telescope (LBT), which serves as the application example in this contribution. The most significant disturbance sources at ground-based telescopes are wind-induced mechanical vibrations in the range of 8-60 Hz. Traditionally, their optical effect is eliminated by feedback systems, such as the adaptive optics control loop combined with a fringe tracking system within the interferometric instrument. In this paper, accelerometers are used to measure the vibrations. These measurements are used to estimate the motion of the mirrors, i.e., tip, tilt and piston, with a dynamic estimator. Additional delay compensation methods are presented to cancel sensor network delays and actuator input delays, improving the estimation result even more, particularly at higher frequencies. Because various instruments benefit from the implementation of telescope vibration mitigation, the estimator is implemented as a separate, independent software on the telescope, publishing the estimated values via multicast on the telescope's ethernet. Every client capable of using and correcting the estimated disturbances can subscribe and use these values in a feedforward for its compensation device, e.g., the deformable mirror, the piston mirror of LINC-NIRVANA, or the fast path length corrector of the Large Binocular Telescope Interferometer. This easy-to-use approach eventually leveraged the presented technology for interferometric use at the LBT and now significantly improves the sky coverage, performance, and operational robustness of interferometric imaging on a regular basis.

  3. Qualification method for a 1 MGy-tolerant front-end chip designed in 65 nm CMOS for the read-out of remotely operated sensors and actuators during maintenance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens, E-mail: jens.verbeeck@esat.kuleuven.be [KU Leuven (KUL), Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Cao, Ying [KU Leuven (KUL), Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Casellas, Laura Mont; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy (F4E), c/Josep, no. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. (OTL), 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Hamilton, David [ITER Organisation (IO), Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul les Durance Cedex (France); Steyaert, Michiel [KU Leuven, ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); KU Leuven, ESAT, Advanced Integrated Sensing Lab (AdvISe), Kleinhoefstraat 4, 2440 Geel (Belgium)

    2015-10-15

    This paper describes the radiation qualification procedure for a 1 MGy-tolerant Application Specific Integrated Circuit (ASIC) developed in 65 nm CMOS technology. The chip is intended for the read-out of electrical signals of sensors and actuators during maintenance in ITER. First the general working principle of the ASIC is shown. The developed IC allows to read-out, condition and digitize multiple low bandwidth (<10 kHz) sensors. In addition the IC is able to multiplex the digitized sensor signals. To comply with ITER-relevant constraints an adapted radiation qualification procedure has been proposed. The radiation-qualification procedure describes the test criteria and test conditions of the developed ASICs, which are also compared with COTS alternatives, to meet the stringent qualification procedures for electronics exposed to radiation in ITER.

  4. Interferometric interpolation of sparse marine data

    KAUST Repository

    Hanafy, Sherif M.

    2013-10-11

    We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

  5. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  6. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  7. Interferometric interrogation of π-phase shifted fiber Bragg grating sensors

    Science.gov (United States)

    Srivastava, Deepa; Tiwari, Umesh; Das, Bhargab

    2018-03-01

    Interferometric interrogation technique realized for conventional fiber Bragg grating (FBG) sensors is historically known to offer the highest sensitivity measurements, however, it has not been yet explored for π-phase-shifted FBG (πFBG) sensors. This, we believe, is due to the complex nature of the reflection/transmission spectrum of a πFBG, which cannot be directly used for interferometric interrogation purpose. Therefore, we propose here an innovative as well as simple concept towards this direction, wherein, the transmission spectrum of a πFBG sensor is optically filtered using a specially designed fiber grating. The resulting filtered spectrum retains the entire characteristics of a πFBG sensor and hence the filtered spectrum can be interrogated with interferometric principles. Furthermore, due to the extremely narrow transmission notch of a πFBG sensor, a fiber interferometer can be realized with significantly longer path difference. This leads to substantially enhanced detection limit as compared to sensors based on a regular FBG of similar length. Theoretical analysis demonstrates that high resolution weak dynamic strain measurement down to 4 pε /√{ Hz } is easily achievable. Preliminary experimental results are also presented as proof-of-concept of the proposed interrogation principle.

  8. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    Science.gov (United States)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  9. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  10. Pion interferometric tests of transport models

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Gyulassy, M.; Gavin, S. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-01-08

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.).

  11. Pion interferometric tests of transport models

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.; Gavin, S.

    1990-01-01

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.)

  12. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  13. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    Science.gov (United States)

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  14. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  15. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Sancho-Parramon, J. [Rudjer Boskovic Institute, Bijenicka c. 54, Zagreb 10002 (Croatia); Jover, E.; Bertran, E. [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain); Canillas, A., E-mail: acanillas@ub.ed [Universitat de Barcelona, IN2UB, Dep. Fisica Aplicada i Optica, c/Marti i Franques 1, 08028 (Spain)

    2011-02-28

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 {mu}m and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  16. Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry

    International Nuclear Information System (INIS)

    Barroso, F.; Bosch, S.; Tort, N.; Arteaga, O.; Sancho-Parramon, J.; Jover, E.; Bertran, E.; Canillas, A.

    2011-01-01

    We introduce a new measurement system called Nanopolar interferometer devoted to monitor and characterize single nanoparticles which is based on the interferometric phase modulated ellipsometry technique. The system collects the backscattered light by the particles in the solid angle subtended by a microscope objective and then analyses its frequency components. The results for the detection of 2 μm and 50 nm particles are explained in terms of a cross polarization effect of the polarization vectors when the beam converts from divergent to parallel in the microscope objective. This explanation is supported with the results of the optical modelling using the exact Mie theory for the light scattered by the particles.

  17. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen; Yu, Jianhua; Huang, Yunsong; Hanafy, Sherif M.; Schuster, Gerard T.

    2015-01-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  18. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-01-01

    surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI

  19. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  20. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  1. Interferometric crosstalk suppression using polarization multiplexing technique and an SOA

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA.......Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA....

  2. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    International Nuclear Information System (INIS)

    Shatskiy, A. A.; Kovalev, Yu. Yu.; Novikov, I. D.

    2015-01-01

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations

  4. Model predictions of the results of interferometric observations for stars under conditions of strong gravitational scattering by black holes and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D. [Russian Academy of Sciences, Astro Space Center, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.

  5. Experimental Verification of a New Model Describing the Influence of Incomplete Signal Extinction Ratio on the Sensitivity Degradation due to Multiple Interferometric Crosstalk

    DEFF Research Database (Denmark)

    Liu, Fenghai; Rasmussen, Christian Jørgen; Pedersen, Rune Johan Skullerud

    1999-01-01

    Larger optical penalties than predicted by a Gaussian crosstalk model are found both in our experiments and in the literature when investigating signals including multiple interferometric crosstalk contributions. We attribute this to an imperfect signal extinction ratio. In this letter, simple...... analytical relations for crosstalk induced power penalties are derived taking the signal extinction ratio into account and excellent agreement with 10-Gb/s experiments is obtained. Both theory and experiment show the importance of the signal extinction ratio in connection with interferometric crosstalk....

  6. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  7. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  8. Phase Referencing in Optical Interferometry

    OpenAIRE

    Filho, Mercedes E.; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie

    2008-01-01

    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  9. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  10. Lower frequency companions for the Advanced LIGO gravitational wave interferometric detectors: an observational opportunity?

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2004-01-01

    Recent x-ray and optical observations provide evidence for a population of intermediate mass black holes with masses of tens to thousands of solar masses. Dynamical braking in high stellar density regions may 'catalyze' the inspiral of heavy mass objects down to the million-year time scale. Black-hole binaries, with the masses implied by the observations, will plunge below 100 Hz. It may be technologically possible to build ground-based low frequency gravitational wave interferometric detectors optimized to detect these events and install them next to Advanced LIGO (AdL), within the existing LIGO facilities. This additional interferometer, operated coherently with AdL and Virgo, would greatly enhance the effectiveness of the existing interferometers by generating a wealth of triggers for potentially frequent but otherwise undetectable heavy mass inspirals. AdL would study, at higher frequency, the triggered, ultra-relativistic phases (merging and ringdown) of these inspirals. Comparisons are made between the expected detection performances of AdL in its proposed wide band tuning, as well as AdL in its best low frequency tuning, with a low frequency gravitational wave interferometric detector that is mechanically and optically optimized for operation at the lowest possible frequency. Finally, the synergies of tandem operation of AdL and the proposed low frequency interferometer have been considered

  11. Non-Interferometric Tomography of Phase Objects Using Spatial Light Modulators

    Directory of Open Access Journals (Sweden)

    Thanh Nguyen

    2016-10-01

    Full Text Available Quantitative 3D phase retrieval techniques are based on either interferometric techniques such as holography or noninterferometric intensity-based techniques such as the transport of intensity equation (TIE. Interferometric techniques are vibration-sensitive and often use a reference beam requiring complicated optical alignment. In this work we develop a simple, fast, and noninterferometric tomographic 3D phase retrieval technique based on the TIE which does not suffer from such drawbacks. The optical setup is a modified 4f TIE system which uses an SLM to replace the slow translation of the CCD required to record several diffraction patterns in a traditional TIE system. This novel TIE setup is suitable for dynamical events such as imaging biological processes. A rotating mechanical stage is constructed to obtain tomographic phase images of the object. The tomographic reconstruction algorithm is based on the Fourier slice theorem (backprojection algorithm which applies to objects with a small refractive index span. Simulation and experimental results are shown as part of this work. A graphical user interface is developed to perform the TIE tomographic reconstruction algorithm and to synchronize the captured intensities by the CCD, the phase patterns displayed on the SLM, and the Arduino controlled rotating stage assembly.

  12. Optical information storage

    International Nuclear Information System (INIS)

    Woike, T.

    1996-01-01

    In order to increase storage capacity and data transfer velocity by about three orders of magnitude compared to CD or magnetic disc it is necessary to work with optical techniques, especially with holography. About 100 TByte can be stored in a waver of an area of 50 cm 2 via holograms which corresponds to a density of 2.10 9 Byte/mm 2 . Every hologram contains data of 1 MByte, so that parallel-processing is possible for read-out. Using high-speed CCD-arrays a read-out velocity of 1 MByte/μsec can be reached. Further, holographic technics are very important in solid state physics. We will discuss the existence of a space charge field in Sr 1-x Ba x Nb 2 O 6 doped with cerium and the physical properties of metastable states, which are suited for information storage. (author) 19 figs., 9 refs

  13. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  14. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  15. Direct Interferometric Imaging with IOTA Interferometer: Morphology of the Water Shell around U Ori

    Science.gov (United States)

    Pluzhnik, Eugene; Ragland, S.; Le Coroller, H.; Cotton, W.; Danchi, W.; Traub, W.; Willson, L.

    2007-12-01

    Optical interferometric observations of Mira stars with adequate resolution using the 3-telescope Infrared Optical Telescope Array (IOTA) interferometer have shown detectable asymmetry in several Mira stars. Several mechanisms have been proposed to explain the observed asymmetry. In this paper, we present subsequent IOTA observations of a Mira star, namely, U Ori taken at 1.51, 1.64 and 1.78 μm in 2005. The reconstructed images based on a model independent algorithm are also presented. These images show asymmetric structures of the water shell that is similar to the structure of 22 GHz masers obtained by Vlemmings et al. in 2003. We explore the possibility of the detection of molecular shell rotation with a period of about 30 years by comparing our results with radio observations and discuss a possible geometric structure of the shell.

  16. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  17. Fiber-linked interferometric pressure sensor

    Science.gov (United States)

    Beheim, G.; Fritsch, K.; Poorman, R. N.

    1987-01-01

    A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.

  18. New read-out electronics for ICARUS-T600 liquid Argon TPC. Description, simulation and tests of the new front-end and ADC system arXiv

    CERN Document Server

    Bagby, L.; Bellini, V.; Bonesini, M.; Braggiotti, A.; Castellani, L.; Centro, S.; Cervi, T.; Cocco, A.G.; Fabris, F.; Falcone, A.; Farnese, C.; Fava, A.; Fichera, F.; Franciotti, D.; Galet, G.; Gibin, D.; Guglielmi, A.; Guida, R.; Ketchum, W.; Marchini, S.; Menegolli, A.; Meng, G.; Menon, G.; Montanari, C.; Nessi, M.; Nicoletto, M.; Pedrotta, R.; Picchi, P.; Pietropaolo, F.; Rampazzo, G.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Scaramelli, A.; Sergiampietri, F.; Spanu, M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Zani, A.; Zatti, P.G.

    The ICARUS T600, a liquid argon time projection chamber (LAr-TPC) detector mainly devoted to neutrino physics, underwent a major overhauling at CERN in 2016-2017, which included also a new design of the read-out electronics, in view of its operation in Fermilab on the Short Baseline Neutrino (SBN) beam from 2019. The new more compact electronics showed capability of handling more efficiently the signals also in the intermediate Induction 2 wire plane with a significant increase of signal to noise (S/N), allowing for charge measurement also in this view. The new front-end and the analog to digital conversion (ADC) system are presented together with the results of the tests on 50 liters liquid argon TPC performed at CERN with cosmic rays.

  19. Digital signal processing for a thermal neutron detector using ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-11

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC{sup 4} filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC{sup 4} filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach. - Highlights: • Application of digital signal processing for a SiPM-based ZnS:6LiF neutron detector. • Optimisation of detector performances with 3 different digital filters. • Comparison with detector performances with a full analog signal processing.

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  1. Modified interferometric imaging condition for reverse-time migration

    Science.gov (United States)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  2. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    Science.gov (United States)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  3. An airborne interferometric SAR system for high-performance 3D mapping

    Science.gov (United States)

    Lange, Martin; Gill, Paul

    2009-05-01

    With a vertical accuracy better than 1 m and collection rates up to 7000 km2/h, airborne interferometric synthetic aperture radars (InSAR) bridge the gap between space borne radar sensors and airborne optical LIDARs. This paper presents the latest generation of X-band InSAR sensors, developed by Intermap TechnologiesTM, which are operated on our four aircrafts. The sensors collect data for the NEXTMap(R) program - a digital elevation model (DEM) with 1 m vertical accuracy for the contiguous U.S., Hawaii, and most of Western Europe. For a successful operation, challenges like reduction of multipath reflections, very high interferometric phase stability, and a precise system calibration had to be mastered. Recent advances in sensor design, comprehensive system automation and diagnostics have increased the sensor reliability to a level where no radar operator is required onboard. Advanced flight planning significantly improved aircraft utilization and acquisition throughput, while reducing operational costs. Highly efficient data acquisition with straight flight lines up to 1200 km is daily routine meanwhile. The collected data pass though our automated processing cluster and finally are edited to our terrain model products. Extensive and rigorous quality control at every step of the workflow are key to maintain stable vertical accuracies of 1 m and horizontal accuracies of 2 m for our 3D maps. The combination of technical and operational advances presented in this paper enabled Intermap to survey two continents, producing 11 million km2 of uniform and accurate 3D terrain data.

  4. THE RRAT TRAP: INTERFEROMETRIC LOCALIZATION OF RADIO PULSES FROM J0628+0909

    International Nuclear Information System (INIS)

    Law, Casey J.; Bower, Geoffrey C.; Pokorny, Martin; Rupen, Michael P.; Sowinski, Ken

    2012-01-01

    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array to produce correlated data products (i.e., visibilities and images) on a timescale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.''6. With a priori knowledge of the RRAT location, a traditional beam-forming search of the same data found two lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L i ' 31 erg s –1 and disfavoring source models with luminous neutron stars.

  5. THE RRAT TRAP: INTERFEROMETRIC LOCALIZATION OF RADIO PULSES FROM J0628+0909

    Energy Technology Data Exchange (ETDEWEB)

    Law, Casey J.; Bower, Geoffrey C. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA (United States); Pokorny, Martin; Rupen, Michael P.; Sowinski, Ken [National Radio Astronomy Observatory, Socorro, NM (United States)

    2012-12-01

    We present the first blind interferometric detection and imaging of a millisecond radio transient with an observation of transient pulsar J0628+0909. We developed a special observing mode of the Karl G. Jansky Very Large Array to produce correlated data products (i.e., visibilities and images) on a timescale of 10 ms. Correlated data effectively produce thousands of beams on the sky that can localize sources anywhere over a wide field of view. We used this new observing mode to find and image pulses from the rotating radio transient (RRAT) J0628+0909, improving its localization by two orders of magnitude. Since the location of the RRAT was only approximately known when first observed, we searched for transients using a wide-field detection algorithm based on the bispectrum, an interferometric closure quantity. Over 16 minutes of observing, this algorithm detected one transient offset roughly 1' from its nominal location; this allowed us to image the RRAT to localize it with an accuracy of 1.''6. With a priori knowledge of the RRAT location, a traditional beam-forming search of the same data found two lower significance pulses. The refined RRAT position excludes all potential multiwavelength counterparts, limiting its optical luminosity to L{sub i{sup '}}<1.1 Multiplication-Sign 10{sup 31} erg s{sup -1} and disfavoring source models with luminous neutron stars.

  6. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA

    Science.gov (United States)

    Bolatto, Alberto D.; Wong, Tony; Utomo, Dyas; Blitz, Leo; Vogel, Stuart N.; Sánchez, Sebastián F.; Barrera-Ballesteros, Jorge; Cao, Yixian; Colombo, Dario; Dannerbauer, Helmut; García-Benito, Rubén; Herrera-Camus, Rodrigo; Husemann, Bernd; Kalinova, Veselina; Leroy, Adam K.; Leung, Gigi; Levy, Rebecca C.; Mast, Damián; Ostriker, Eve; Rosolowsky, Erik; Sandstrom, Karin M.; Teuben, Peter; van de Ven, Glenn; Walter, Fabian

    2017-09-01

    We present interferometric CO observations, made with the Combined Array for Millimeter-wave Astronomy (CARMA) interferometer, of galaxies from the Extragalactic Database for Galaxy Evolution survey (EDGE). These galaxies are selected from the Calar Alto Legacy Integral Field Area (CALIFA) sample, mapped with optical integral field spectroscopy. EDGE provides good-quality CO data (3σ sensitivity {{{Σ }}}{mol}˜ 11 {M}⊙ {{pc}}-2 before inclination correction, resolution ˜1.4 kpc) for 126 galaxies, constituting the largest interferometric CO survey of galaxies in the nearby universe. We describe the survey and data characteristics and products, then present initial science results. We find that the exponential scale lengths of the molecular, stellar, and star-forming disks are approximately equal, and galaxies that are more compact in molecular gas than in stars tend to show signs of interaction. We characterize the molecular-to-stellar ratio as a function of Hubble type and stellar mass and present preliminary results on the resolved relations between the molecular gas, stars, and star-formation rate. We then discuss the dependence of the resolved molecular depletion time on stellar surface density, nebular extinction, and gas metallicity. EDGE provides a key data set to address outstanding topics regarding gas and its role in star formation and galaxy evolution, which will be publicly available on completion of the quality assessment.

  7. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    Science.gov (United States)

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  8. Interferometric diameters of five evolved intermediate-mass planet-hosting stars measured with PAVO at the CHARA Array

    Science.gov (United States)

    White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.

    2018-04-01

    Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.

  9. Improved self-reliance shearing interferometric technique for collimation testing

    Science.gov (United States)

    Zhao, Mingshan; Li, Guohua; Wang, Zhaobing; Jing, Yaling; Li, Yi

    1995-06-01

    Self-reference single plate shearing interferometric technique used for collimation testing of light beams are briefly reviewed. Two improved configurations of this self-reference interferometry with an inclined screen and matched half-field interferograms are described in detail. Sensitivity of these configurations is analyzed and compared with that of the existing ones.

  10. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...

  11. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  12. Advanced Virgo: a second-generation interferometric gravitational wave detector

    NARCIS (Netherlands)

    Acernese, F.; Bulten, H.J.; Rabeling, D.S.; van den Brand, J.F.J.

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and

  13. High data rate atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  14. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    Science.gov (United States)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  15. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  16. (abstract) Studies of Interferometric Penetration into Vegetation Canopies using Multifrequency Interferometry Data at JPL

    Science.gov (United States)

    Hensley, Scott; Rodriguez, Ernesto; Truhafft, Bob; van Zyl, Jakob; Rosen, Paul; Werner, Charles; Madsen, Sren; Chapin, Elaine

    1997-01-01

    Radar interferometric observations both from spaceborne and airborne platforms have been used to generate accurate topographic maps, measure milimeter level displacements from earthquakes and volcanoes, and for making land cover classification and land cover change maps. Interferometric observations have two basic measurements, interferometric phase, which depends upon the path difference between the two antennas and the correlation. One of the key questions concerning interferometric observations of vegetated regions is where in the canopy does the interferometric phase measure the height. Results for two methods of extracting tree heights and other vegetation parameters based upon the amount of volumetric decorrelation will be presented.

  17. Precision interferometric measurement of right angles with the aid of an etalon

    International Nuclear Information System (INIS)

    Oreb, B.; Walsh, C.; Leistner, A.

    2000-01-01

    Full text: An interferometric set up has been developed to measure right angles between faces of components such as prisms or cubes, to sub arc second resolution. The component to be measured is placed inside an air spaced etalon and the right angle is measured by a Fizeau interferometer with respect to a transmission reference flat. The etalon consists of two precision glass flats which are aligned to be parallel by optically contacting these to a cylindrical Zerodur sleeve having flat and parallel ends. A circular cut out in the cylindrical sleeve is made to allow the test component and the light from the interferometer to enter the etalon. The phase difference in the two halves of the interferogram corresponding to the two sides of the test component is a measure of the angle deviation from 90 deg

  18. Change Detection by Interferometric Coherence in Nasca Lines, Peru (1997-2004)

    Science.gov (United States)

    Ruescas, Ana B.; Delgado, J. Manuel; Costantini, Fabiano; Sarti, Francesco

    2010-03-01

    Two interferometric pairs of Synthetic Aperture Radar (SAR) images are used to generate coherence images of the Nasca Lines Pampa area. The first coherence image is based on a pair of ERS-2 SAR data from 1997 and 1999; the second one is computed from two ENVISAT-ASAR (Advanced SAR) images from 2003 and 2004. The main objective is to study the changes in the coherence values in different parts of the area. Several different decorrelation factors contributing to a loss of coherency in a radar pair can be distinguished, and these include the temporal change in the ground properties and nature between the two satellite passes. In order to do this discrimination and interpretation, some ancillary data can be used, such as optical data from the Advanced Land Observing Satellite (ALOS), and meteorological data from the Global Precipitation Climatology Center (GPCC).

  19. Laser interferometric method for determining the carrier diffusion length in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Manukhov, V. V. [Saint Petersburg State University (Russian Federation); Fedortsov, A. B.; Ivanov, A. S., E-mail: ivaleks58@gmail.com [Saint Petersburg Mining University (Russian Federation)

    2015-09-15

    A new laser interferometric method for measuring the carrier diffusion length in semiconductors is proposed. The method is based on the interference–absorption interaction of two laser radiations in a semiconductor. Injected radiation generates additional carriers in a semiconductor, which causes a change in the material’s optical constants and modulation of the probing radiation passed through the sample. When changing the distance between carrier generation and probing points, a decrease in the carrier concentration, which depends on the diffusion length, is recorded. The diffusion length is determined by comparing the experimental and theoretical dependences of the probe signal on the divergence of the injector and probe beams. The method is successfully tested on semiconductor samples with different thicknesses and surface states and can be used in scientific research and the electronics industry.

  20. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  1. Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation

    International Nuclear Information System (INIS)

    Laude, Vincent

    2002-01-01

    The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the white-light source at the frequency considered and to the temporal acquisition window. Position noise, which arises from the finite accuracy of the measurement of the scanning mirror's position, can severely damage the estimation of the group delay. Such is shown to be the case for fast Fourier transform-based estimation algorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond accuracy is obtained without any postprocessing

  2. Evaluation of two thermal neutron detection units consisting of ZnS/{sup 6}LiF scintillating layers with embedded WLS fibers read out with a SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@a3.epfl.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Van Swygenhoven, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2014-11-11

    Two single channel detection units for thermal neutron detection are investigated in a neutron beam. They consist of two ZnS/{sup 6}LiF scintillating layers sandwiching an array of WLS fibers. The pattern of these units can be repeated laterally and vertically in order to build up a one-dimensional position sensitive multi-channel detector with the needed sensitive surface and with the required neutron absorption probability. The originality of this work arises from the fact that the WLS fibers are read out with SiPMs instead of the traditionally used PMTs or MaPMTs. The signal processing system is based on a photon counting approach. For SiPMs with a dark count rate as high as 0.7 MHz, a trigger efficiency of 80% is achieved together with a system background rate lower than 10{sup −3}Hz and a dead time of 30μs. No change of performance is observed for neutron count rates of up to 3.6 kHz.

  3. Interferometric windows characterization up to 450 K for shock wave experiments: Hugoniot curves and refractive index

    Directory of Open Access Journals (Sweden)

    Godefroit J.-L.

    2012-08-01

    Full Text Available Conventional shock wave experiments need interferometric windows in order to determine the equation of state of a large variety of metals. Lithium fluoride (LiF and sapphire are extensively used for that purpose because their optical transparencies enable the optical diagnostics at interfaces under a given range of shock pressure. In order to simulate and analyse the experiments it is necessary to gather a correct knowledge of the optical and mechanical properties of these windows. Therefore, our window supplies are systematically characterized and an experimental campaign under shock loading is conducted. Our preliminary work on LiF windows at 532 nm is in good agreement with literature data at room temperature and the new characterization at 450 K enables a better interpretation of our preheated target experiments. It confirms the predominant effect of density on optical properties under pressure and temperature. The present work demonstrates that the initial density determination is a key point and that the uncertainties need to be improved. For that purpose, complementary experiments are conducted on LiF windows with simplified target designs and enriched diagnostics, coupling VISAR (532 nm and PdV (1550 nm diagnostics. Furthermore, a similar campaign is conducted on sapphire windows with symmetric impact configuration.

  4. Description and repair procedure for optical digitizers PAC-4

    International Nuclear Information System (INIS)

    Hayat, M.K.; Ahmad, M.S.; Beg, M.M.

    1982-06-01

    The optical digitizer type PAC-4 is an optical analogue-to-digital converter with parallel read out. The optical digitizer is intended for digital measurements of angular rotation of its shaft. In this application the control shaft of the digitizer is coupled to a wheel, which moves on the carriage of the respective spectrometer axes, and indicates its angular position. For accurate determination of the selected neutron energies, it is important to measure the diffraction angles very accurately. (orig./A.B.)

  5. Interferometric modulation of quantum cascade interactions

    Science.gov (United States)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  6. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  7. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  8. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  9. Mid-Infrared Interferometric Monitoring of Evolved Stars: The Dust Shell Around the Mira Variable RR Aquilae at 13 Epochs

    Science.gov (United States)

    2011-01-01

    photometric and interferometric data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...λ = 2.2 μm, Δλ = 0.4 μm) angular size with the Infrared Optical Telescope Array ( IOTA ). The uniform disk diameter (UD) of θUD = 10.73 ± 0.66 mas at...with IOTA in the H-band, and classified RR Aql as a target with no detectable asymmetries. The IRAS flux at 12 μm is 332 Jy. The light curve in the V

  10. Optical Associative Memory Model With Threshold Modification Using Complementary Vector

    Science.gov (United States)

    Bian, Shaoping; Xu, Kebin; Hong, Jing

    1989-02-01

    A new criterion to evaluate the similarity between two vectors in associative memory is presented. According to it, an experimental research about optical associative memory model with threshold modification using complementary vector is carried out. This model is capable of eliminating the posibility to recall erroneously. Therefore the accuracy of reading out is improved.

  11. Optical, Nanomechanical and Electrochemical Sensing on a DVD Disc

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    platform in order to study and count larger objects such as cells. In this way it will be possible to analyze a given sample for several parameters simultaneously. Electrodes can also be integrated on the spinning platform [4] and hereby it is possible to perform electrochemical measurements at the same...... combined with sensitive and compact read-out possibilities from optical pick-up heads makes it possible to realize full sample pretreatment and read-out in a both fast and compact manner. References: 1. M. Madou et al., Lab on a CD, Annual Review of Biomedical Engineering, Vol. 8: 601-628, 2016 2. F...

  12. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    OpenAIRE

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power,...

  13. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope

    International Nuclear Information System (INIS)

    Bartko, H.; Goebel, F.; Mirzoyan, R.; Pimpl, W.; Teshima, M.

    2005-01-01

    Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses being very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast 'flash' analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17 m diameter MAGIC telescope camera

  14. Quantum walks based on an interferometric analogy

    International Nuclear Information System (INIS)

    Hillery, Mark; Bergou, Janos; Feldman, Edgar

    2003-01-01

    There are presently two models for quantum walks on graphs. The ''coined'' walk uses discrete-time steps, and contains, besides the particle making the walk, a second quantum system, the coin, that determines the direction in which the particle will move. The continuous walk operates with continuous time. Here a third model for quantum walks is proposed, which is based on an analogy to optical interferometers. It is a discrete-time model, and the unitary operator that advances the walk one step depends only on the local structure of the graph on which the walk is taking place. This type of walk also allows us to introduce elements, such as phase shifters, that have no counterpart in classical random walks. Several examples are discussed

  15. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  16. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Directory of Open Access Journals (Sweden)

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  17. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    Science.gov (United States)

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  18. Investigation of organic light emitting diodes for interferometric purposes

    Science.gov (United States)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  19. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  20. Spectral interferometric length measurement and tomography

    International Nuclear Information System (INIS)

    Pinkl, W.

    1998-01-01

    This work presents a new method for optical length measurement using the principles of spectral interferometry. Results of thickness measurements on glass plates, the human cornea in vivo and human finger and toe nails in vivo and in vitro are discussed. It could be demonstrated that the absorption coefficient of red and green ink can be measured depth sensitive. Another chapter describes a new technique to measure a thickness profile of a sample within the illuminating beam. It could be demonstrated that a thickness profile over a distance of a few millimeters can be measured with one single measurement. At the Institute of Medical Physics of the University of Vienna a method to measure intraocular distances by the means of interferometry has been developed during the last ten years. Basing on this method (dual beam interferometry) an optical in vivo tomography experiment could be established. A thickness map of the retina of a human eye in vivo can be easily measured. The dual beam technique uses a Michelson interferometer with a moving mirror to adjust the length of the interferometer arms. The mirror is moved by a stepper motor. This movement induces vibrations, misalignment and other disadvantages. So mechanically moved parts as reasons for possible errors should be eliminated. This work shows one possible solution - using the principle of spectral interferometry. A spectral interferometry experiment is a static experiment, no moving parts are used. A spectral interferometry experiment has been used to measure the thickness of glass plates and stacks of glass plates. Using two light sources of different wavelengths spectral absorption properties of a sample can be measured depth sensitive. This could be demonstrated with stacks of glass plates and the use of red and green ink between two plates. The obtained results are compared to the results of a computer simulation. To demonstrate the ability of spectral interferometry to measure the thickness of biologic

  1. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.

    Science.gov (United States)

    Xie, Xianming

    2016-08-22

    A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

  2. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.

  3. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  4. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  5. Interferometric Laser Scanner for Direction Determination

    Directory of Open Access Journals (Sweden)

    Gennady Kaloshin

    2016-01-01

    Full Text Available In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  6. Interferometric Laser Scanner for Direction Determination

    Science.gov (United States)

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  7. Remote access to an interferometric fringes stabilization active system via RENATA

    Science.gov (United States)

    Espitia-Gómez, Javier; Ángel-Toro, Luciano

    2013-11-01

    The Advanced Technology National Network (RENATA, for its acronym in Spanish) is a Colombian, collaborative work tool, linked to other networks worldwide, in which take participation researchers, teachers and students, by sharing laboratory resources located in different universities, institutes and research centers throughout the country. In the Universidad EAFIT (Medellín, Colombia) it has been designed an interferometric fringes stabilization active system, which can be accessed remotely via the RENATA network. A Mach-Zehnder interferometer was implemented, with independent piezoelectric actuators in each arm, with which the lengths of optical path of light that goes over in each of them can be modified. Using these actuators, one can simultaneously perturb the system and compensate the phase differences caused by that perturbation. This allows us to experiment with different disturbs, and analyze the system response to each one of them. This can be made from any location worldwide, and especially from those regions in which optical and optoelectronic components required for the implementation of the interferometer or for the stabilization system are not available. The device can also be used as a platform in order to conduct diverse experiments, involving optical and controlling aspects, constituting with this in a pedagogic tool. For the future, it can be predicted that remote access to available applications would be possible, as well as modifications of the implemented code in labVIEW™, so that researchers and teachers can adapt and improve their functionalities or develop new applications, based on the collaborative work.

  8. Interferometric Imaging and its Application to 4D Imaging

    KAUST Repository

    Sinha, Mrinal

    2018-03-01

    This thesis describes new interferometric imaging methods for migration and waveform inversion. The key idea is to use reflection events from a known reference reflector to ”naturally redatum” the receivers and sources to the reference reflector. Here, ”natural redatuming” is a data-driven process where the redatuming Green’s functions are obtained from the data. Interferometric imaging eliminates the statics associated with the noisy overburden above the reference reflector. To mitigate the defocussing caused by overburden errors I first propose the use of interferometric least-squares migration (ILSM) to estimate the migration image. Here, a known reflector is used as the reference interface for ILSM, and the data are naturally redatumed to this reference interface before imaging. Numerical results on synthetic and field data show that ILSM can significantly reduce the defocussing artifacts in the migration image. Next, I develop a waveform tomography approach for inverting the velocity model by mitigating the velocity errors in the overburden. Unresolved velocity errors in the overburden velocity model can cause conventional full-waveform inversion to get stuck in a local minimum. To resolve this problem, I present interferometric full-waveform inversion (IFWI), where conventional waveform tomography is reformulated so a velocity model is found that minimizes the objective function with an interferometric crosscorrelogram misfit. Numerical examples show that IFWI, compared to FWI, computes a significantly more accurate velocity model in the presence of a nearsurface with unknown velocity anomalies. I use IFWI and ILSM for 4D imaging where seismic data are recorded at different times over the same reservoir. To eliminate the time-varying effects of the near surface both data sets are virtually redatumed to a common reference interface before migration. This largely eliminates the overburden-induced statics errors in both data sets. Results with

  9. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    Science.gov (United States)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two

  10. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    Science.gov (United States)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  11. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  12. DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS

    International Nuclear Information System (INIS)

    Bhat, N. D. R.; Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S.; Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W.

    2013-01-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg 2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  13. Detection of Fast Transients with Radio Interferometric Arrays

    Science.gov (United States)

    Bhat, N. D. R.; Chengalur, J. N.; Cox, P. J.; Gupta, Y.; Prasad, J.; Roy, J.; Bailes, M.; Burke-Spolaor, S.; Kudale, S. S.; van Straten, W.

    2013-05-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  14. Multi-Wavelength Interferometric Observations of YSO Disks

    Science.gov (United States)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  15. Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry

    Science.gov (United States)

    Mahadeswaraswamy, Chetan

    First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2

  16. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  17. Interferometric full-waveform inversion of time-lapse data

    KAUST Repository

    Sinha, Mrinal

    2017-08-17

    One of the key challenges associated with time-lapse surveys is ensuring the repeatability between the baseline and monitor surveys. Non-repeatability between the surveys is caused by varying environmental conditions over the course of different surveys. To overcome this challenge, we propose the use of interferometric full waveform inversion (IFWI) for inverting the velocity model from data recorded by baseline and monitor surveys. A known reflector is used as the reference reflector for IFWI, and the data are naturally redatumed to this reference reflector using natural reflections as the redatuming operator. This natural redatuming mitigates the artifacts introduced by the repeatability errors that originate above the reference reflector.

  18. New orbital elements of 5 interferometric double stars

    Directory of Open Access Journals (Sweden)

    Olević D.

    1999-01-01

    Full Text Available In this paper, for the first time, are presented elliptical and Thiel- Innes orbitatal elements for the following interferometric pairs: WDS 00416+2438 = WRH, WDS 03271+1845 = CHARA 10, WDS 04044+2406 = McA 13 Aa, WDS 17095+4047 = McA 45 and WDS 23019+4219 = o And Aa. For the pairs WDS 03271+1845 = CHARA 10 andWDS 04044+2406 = McA 13 Aa are calculated total masses and dynamical parallaxes which are compared with corresponding Hipparcos parallaxes.

  19. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)

  20. Mission Analysis and Orbit Control of Interferometric Wheel Formation Flying

    Science.gov (United States)

    Fourcade, J.

    Flying satellite in formation requires maintaining the specific relative geometry of the spacecraft with high precision. This requirement raises new problem of orbit control. This paper presents the results of the mission analysis of a low Earth observation system, the interferometric wheel, patented by CNES. This wheel is made up of three receiving spacecraft, which follow an emitting Earth observation radar satellite. The first part of this paper presents trades off which were performed to choose orbital elements of the formation flying which fulfils all constraints. The second part presents orbit positioning strategies including reconfiguration of the wheel to change its size. The last part describes the station keeping of the formation. Two kinds of constraints are imposed by the interferometric system : a constraint on the distance between the wheel and the radar satellite, and constraints on the distance between the wheel satellites. The first constraint is fulfilled with a classical chemical station keeping strategy. The second one is fulfilled using pure passive actuators. Due to the high stability of the relative eccentricity of the formation, only the relative semi major axis had to be controlled. Differential drag due to differential attitude motion was used to control relative altitude. An autonomous orbit controller was developed and tested. The final accuracy is a relative station keeping better than few meters for a wheel size of one kilometer.

  1. Super-virtual interferometric diffractions as guide stars

    KAUST Repository

    Dai, Wei

    2011-01-01

    A significant problem in seismic imaging is seismically seeing below salt structures: large velocity contrasts and the irregular geometry of the salt-sediment interface strongly defocus both the downgoing and upgoing seismic wavefields. This can result in severely defocused migration images so as to seismically render some subsalt reserves invisible. The potential cure is a good estimate of the subsalt and salt velocity distributions, but that is also the problem: severe velocity contrasts prevent the appearance of coherent subsalt reflections in the surface records so that MVA or tomographic methods can become ineffective. We now present an interferometric method for extracting the diffraction signals that emanate from diffractors, also denoted as seismic guide stars. The signal-to-noise ratio of these interferometric diffractions is enhanced by N, where N is the number of source points coincident with the receiver points. Thus, diffractions from subsalt guide stars can then be rendered visible and so can be used for velocity analysis, migration, and focusing of subsalt reflections. Both synthetic and field data records are used to demonstrate the benefits and limitations of this method. © 2011 Society of Exploration Geophysicists.

  2. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  3. FIRST L-BAND INTERFEROMETRIC OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF MWC 419

    International Nuclear Information System (INIS)

    Ragland, S.; Armandroff, T.; Wizinowich, P. L.; Akeson, R. L.; Millan-Gabet, R.; Colavita, M. M.; Traub, W. A.; Vasisht, G.; Danchi, W. C.; Hillenbrand, L. A.; Ridgway, S. T.

    2009-01-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  4. First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Science.gov (United States)

    Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.

    2009-09-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  5. A method of noise reduction in heterodyne interferometric vibration metrology by combining auto-correlation analysis and spectral filtering

    Science.gov (United States)

    Hao, Hongliang; Xiao, Wen; Chen, Zonghui; Ma, Lan; Pan, Feng

    2018-01-01

    Heterodyne interferometric vibration metrology is a useful technique for dynamic displacement and velocity measurement as it can provide a synchronous full-field output signal. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. However, due to the coherent nature of the laser sources, the sequence of heterodyne interferogram are corrupted by a mixture of coherent speckle and incoherent additive noise, which can severely degrade the accuracy of the demodulated signal and the optical display. In this paper, a new heterodyne interferometric demodulation method by combining auto-correlation analysis and spectral filtering is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly more accurate in both the amplitude and frequency of the vibrating waveform. We present a mathematical model of the signals obtained from interferograms that contain both vibration information of the measured objects and the noise. A simulation of the signal demodulation process is presented and used to investigate the noise from the system and external factors. The experimental results show excellent agreement with measurements from a commercial Laser Doppler Velocimetry (LDV).

  6. Modulator noise suppression in the LISA time-delay interferometric combinations

    International Nuclear Information System (INIS)

    Tinto, Massimo; Armstrong, J W; Estabrook, Frank B

    2008-01-01

    Laser Interferometer Space Antenna (LISA) is a mission to detect and study low-frequency cosmic gravitational radiation through its influence on the phases of six modulated laser beams exchanged between three remote spacecraft. We previously showed how the measurements of some 18 time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passing gravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use the recently measured noise spectrum of an individual modulator (Klipstein et al 2006 Proc. 6th Int. LISA Symp. (Greenbelt, MA) (AIP Conf. Proc. vol 873) ed S M Merkowitz and J C Livas pp 19-23) to quantify the contribution of modulator noise to the first and second-generation time-delay interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than ∼682 MHz in the case of the unequal-arm Michelson TDI combination X 1 , ∼ 1.08 GHz for the Sagnac TDI combination α 1 , and ∼706 MHz for the symmetrical Sagnac TDI combination ζ 1 . These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem. The measurements in Klipstein et al were performed in a laboratory experiment for a range of modulation frequencies, but we emphasize that, for the reference oscillator noise calibration algorithm to work, the modulation frequencies must be equal to the

  7. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    International Nuclear Information System (INIS)

    Gan, Ma; Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp

    2006-01-01

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated

  8. Advancements in the Interferometric Measurements of Real Time Finishing Birefringent Filter's Crystal Plates

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Ma [State Optical Institute, Birzhevaya linia, 12 St. Petersburg (Russian Federation); Kushtal, Gi; Skomorovsky, Vi; Domyshev, Gn; Sadokhin, Vp [Institute of Solar-Terrestrial Physics Siberian Branch of Russian Academy of Sciences, 126 Lermontova Str., PO 4026, 664033, Irkutsk (Russian Federation)

    2006-10-15

    The finishing of birefringent plates consists of two processes: polishing and evaluation of a surface, which have been performed separately till now. The purpose of this work is achieving of high accuracy of the evaluation and machining of the plane-parallel plates from birefringent crystals, in particular of crystal plates of birefringent filters during their finishing. The developed process combines evaluation and polishing in an interactive way. We have found modes of treatment, shape of polisher, have designed interferometer, with a mirror arranged in polisher. Visual checking of optical thickness comparatively with reference plate was carried out using the interference fringes of equal birefringence, and checking of an optical wedge - by interference rings of an equal inclination. The automated processing of TV camera interference fringes was impossible, because of gaps of interference fringes on polishing cells above the mirror. Therefore a special software was developed for processing of a complex fringe pattern interferogram. Software FastInterf uses furrier analysis technique which allows to process an interferogram with multiply gaps. Interferograms are registered by a high resolution TV camera (1280 x1024). Automatic processing of a fringe interferogram using FastInterf software takes less then one second. The influence of gaps is excluded, and the flat field is taken into account. Software provides full 3D surface and wavefront maps. Aberration analysis of a wavefront gives information on thickness of a plate comparatively with a reference one, optical wedge of plate and azimuth of an inclination of wave front. Moreover, software provides a control of surface quality. The measuring device, features of the software are described and process of interferometric evaluation during polishing is illustrated.

  9. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF; Validacion en el Test Beam del CERN/GIF de la electronica de Lectura de las Camaras de Muones del Experimento CMS

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, C.; Fouz, M. c.; Marin, J.; Oller, J. C.; Willmott, C.; Amigo, L. J.

    2002-07-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  10. Optical information storage

    Energy Technology Data Exchange (ETDEWEB)

    Woike, T [Koeln Univ., Inst. fuer Kristallography, Koeln (Germany)

    1996-11-01

    In order to increase storage capacity and data transfer velocity by about three orders of magnitude compared to CD or magnetic disc it is necessary to work with optical techniques, especially with holography. About 100 TByte can be stored in a waver of an area of 50 cm{sup 2} via holograms which corresponds to a density of 2.10{sup 9} Byte/mm{sup 2}. Every hologram contains data of 1 MByte, so that parallel-processing is possible for read-out. Using high-speed CCD-arrays a read-out velocity of 1 MByte/{mu}sec can be reached. Further, holographic technics are very important in solid state physics. We will discuss the existence of a space charge field in Sr{sub 1-x}Ba{sub x}Nb{sub 2}O{sub 6} doped with cerium and the physical properties of metastable states, which are suited for information storage. (author) 19 figs., 9 refs.

  11. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  12. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  13. Interferometric data modelling: issues in realistic data generation

    International Nuclear Information System (INIS)

    Mukherjee, Soma

    2004-01-01

    This study describes algorithms developed for modelling interferometric noise in a realistic manner, i.e. incorporating non-stationarity that can be seen in the data from the present generation of interferometers. The noise model is based on individual component models (ICM) with the application of auto regressive moving average (ARMA) models. The data obtained from the model are vindicated by standard statistical tests, e.g. the KS test and Akaike minimum criterion. The results indicate a very good fit. The advantage of using ARMA for ICMs is that the model parameters can be controlled and hence injection and efficiency studies can be conducted in a more controlled environment. This realistic non-stationary noise generator is intended to be integrated within the data monitoring tool framework

  14. Interferometric system with tracking refractometry capability in the measuring axis

    International Nuclear Information System (INIS)

    Lazar, J; Holá, M; Číp, O; Hrabina, J; Oulehla, J

    2013-01-01

    We present a combined interferometric arrangement designed for measurement of one-axis displacement over a specified measuring range with mechanical referencing. This concept allows simultaneous measurement of the carriage position from both sides together with monitoring of the overall range. This can be used in configuration with in-line monitoring of the fluctuations of the refractive index-–tracking refractometry. Similarly, the wavelength of the laser source can be stabilized over the measuring range, effectively compensating for the refractive index changes. Otherwise, monitoring of length of the measuring range can give information about the thermal dilatation effects of frame of the whole measuring setup. This technique can find its way into high-precision positioning systems in nanometrology. (technical design note)

  15. Interferometric control of the photon-number distribution

    Directory of Open Access Journals (Sweden)

    H. Esat Kondakci

    2017-07-01

    Full Text Available We demonstrate deterministic control over the photon-number distribution by interfering two coherent beams within a disordered photonic lattice. By sweeping a relative phase between two equal-amplitude coherent fields with Poissonian statistics that excite adjacent sites in a lattice endowed with disorder-immune chiral symmetry, we measure an output photon-number distribution that changes periodically between super-thermal and sub-thermal photon statistics upon ensemble averaging. Thus, the photon-bunching level is controlled interferometrically at a fixed mean photon-number by gradually activating the excitation symmetry of the chiral-mode pairs with structured coherent illumination and without modifying the disorder level of the random system itself.

  16. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  17. Redundant interferometric calibration as a complex optimization problem

    Science.gov (United States)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  18. Low-redundancy linear arrays in mirrored interferometric aperture synthesis.

    Science.gov (United States)

    Zhu, Dong; Hu, Fei; Wu, Liang; Li, Jun; Lang, Liang

    2016-01-15

    Mirrored interferometric aperture synthesis (MIAS) is a novel interferometry that can improve spatial resolution compared with that of conventional IAS. In one-dimensional (1-D) MIAS, antenna array with low redundancy has the potential to achieve a high spatial resolution. This Letter presents a technique for the direct construction of low-redundancy linear arrays (LRLAs) in MIAS and derives two regular analytical patterns that can yield various LRLAs in short computation time. Moreover, for a better estimation of the observed scene, a bi-measurement method is proposed to handle the rank defect associated with the transmatrix of those LRLAs. The results of imaging simulation demonstrate the effectiveness of the proposed method.

  19. Multi-path interferometric Josephson directional amplifier for qubit readout

    Science.gov (United States)

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  20. Advanced Virgo: a second-generation interferometric gravitational wave detector

    International Nuclear Information System (INIS)

    Acernese, F; Barone, F; Agathos, M; Agatsuma, K; Bauer, Th S; Beker, M G; Aisa, D; Allemandou, N; Allocca, A; Amarni, J; Baronick, J-P; Barsuglia, M; Astone, P; Basti, F; Balestri, G; Ballardin, G; Bavigadda, V; Basti, A; Bejger, M; Belczynski, C

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network, alongside the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detection of gravitational waves and to opening a new window of observation on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction. (paper)

  1. Interferometric detectors of gravitational waves on Earth: the next generations

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G [INFN Firenze - Via G.Sansone 1, 50019 - Sesto F., Firenze (Italy)], E-mail: losurdo@fi.infn.it

    2008-05-15

    First generation long-baseline interferometric detectors of gravitational waves are now taking data. A first detection might be possible with these instruments, but more sensitive detectors will be needed to start the field of gravitational wave astronomy. Second generation interferometers will improve the sensitivity by a factor ten, allowing to explore a universe volume 1000 times larger. The technology is almost ready and the construction will start at the beginning of the next decade. The community of the physicists involved in the field has also started to make plans for third generation detectors, for which a long term technology development program will be required. The plans for the upgrades of the existing detectors and the scenario for the evolution of the field will be reviewed in this paper.

  2. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  3. Enhancing Raman signals with an interferometrically controlled AFM tip

    International Nuclear Information System (INIS)

    Oron-Carl, Matti; Krupke, Ralph

    2013-01-01

    We demonstrate the upgrade of a commercial confocal Raman microscope into a tip-enhanced Raman microscope/spectroscopy system (TERS) by integrating an interferometrically controlled atomic force microscope into the base of an existing upright microscope to provide near-field detection and thus signal enhancement. The feasibility of the system is demonstrated by measuring the Raman near-field enhancement on thin PEDOT:PSS films and on carbon nanotubes within a device geometry. An enhancement factor of 2–3 and of 5–6 is observed, respectively. Moreover, on a nanotube device we show local conductivity measurement and its correlation to Raman and topography recordings. Upgrading an existing upright confocal Raman microscope in the demonstrated way is significantly cheaper than purchasing a complete commercial TERS system. (paper)

  4. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  5. Comparison of filters for detecting gravitational wave bursts in interferometric detectors

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.; Pradier, Thierry

    2003-01-01

    Filters developed in order to detect short bursts of gravitational waves in interferometric detector outputs are compared according to three main points. Conventional receiver operating characteristics (ROC) are first built for all the considered filters and for three typical burst signals. Optimized ROC are shown for a simple pulse signal in order to estimate the best detection efficiency of the filters in the ideal case, while realistic ones obtained with filters working with several 'templates' show how detection efficiencies can be degraded in a practical implementation. Second, estimations of biases and statistical errors on the reconstruction of the time of arrival of pulse-like signals are then given for each filter. Such results are crucial for future coincidence studies between gravitational wave detectors but also with neutrino or optical detectors. As most of the filters require a pre-whitening of the detector noise, the sensitivity to a nonperfect noise whitening procedure is finally analyzed. For this purpose lines of various frequencies and amplitudes are added to a Gaussian white noise and the outputs of the filters are studied in order to monitor the excess of false alarms induced by the lines. The comparison of the performances of the different filters finally show that they are complementary rather than competitive

  6. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    Science.gov (United States)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  7. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  8. Simultaneous refractive index and thickness measurement with the transmission interferometric adsorption sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi; Voeroes, Janos [Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich (Switzerland); Balmer, Tobias E [Materials Research Center, ETH Zurich, 8093, Zurich (Switzerland); Heuberger, Manfred, E-mail: sannomiya@biomed.ee.ethz.c, E-mail: tobias.balmer@mat.ethz.c, E-mail: manfred.heuberger@empa.c, E-mail: janos.voros@biomed.ee.ethz.c [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093, Zurich (Switzerland)

    2010-10-13

    Refractive index and thickness of the adlayer are determined simultaneously using the transmission interferometric adsorption sensor (TInAS). Optical biosensors, where both refractive index and thickness of a homogeneous adlayer (thus the adsorbed mass) are determined simultaneously, so-called model-free biosensors, are important tools to investigate the adsorbed mass of biomolecules with unknown conformation. Our proposed calculation method enables model-free biosensing from a single spectrum acquired by a simple TInAS setup, namely using information of peak/dip positions as well as peak/dip intensities. The feasibility of this method was experimentally tested by adsorbing polyelectrolyte multilayer as well as biomolecules. To validate the new method also for the more intricate heterogeneous adlayer, the apparent refractive index and thickness were assessed theoretically by simulating a selection of different adsorbate configurations with the multiple multipole program (MMP). We found that a lateral inhomogeneity of the adsorbate (e.g. islands or adsorbed colloids) results in correct thickness and in reduced refractive index averaged in proportion to their density while vertically inhomogeneous density caused more complex responses. However, the apparent mass was always correct. Measurement errors can lead to significant errors in the apparent refractive index, particularly when the adlayer is very thin (<5 nm). This model-free TInAS technique would be useful not only for the measurement of adsorbed mass but also for the conformational analysis of the adsorbed molecules.

  9. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  10. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  11. Improving waveform inversion using modified interferometric imaging condition

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  12. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    Science.gov (United States)

    Nemati, Mahdieh; Santos, Abel

    2018-01-01

    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of

  13. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    Directory of Open Access Journals (Sweden)

    Mahdieh Nemati

    2018-02-01

    Full Text Available Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time. The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA, which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA-modified NAA (i.e., sensing element and quercetin (i.e., analyte. BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different

  14. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  15. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  16. Progress In Optical Memory Technology

    Science.gov (United States)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  17. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation

    Directory of Open Access Journals (Sweden)

    Liu Zhong-sheng

    2014-04-01

    Full Text Available The airborne interferometric SAR platform suffers from instability factors, such as air turbulence and mechanical vibrations during flight. Such factors cause the oscillation of the flexible baseline, which leads to significant degradation of the performance of the interferometric SAR system. This study is concerned with the baseline oscillation. First, the error of the slant range model under baseline oscillation conditions is formulated. Then, the SAR complex image signal and dual-channel correlation coefficient are modeled based on the first-order, second-order, and generic slant range error. Subsequently, the impact of the baseline oscillation on the imaging and interferometric performance of the SAR system is analyzed. Finally, simulations of the echo data are used to validate the theoretical analysis of the baseline oscillation in the airborne interferometric SAR.

  18. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  19. A Differential Polarized Light Interferometric System For Measuring Flatness Of Magnetic Disks

    Science.gov (United States)

    Jia, Wang; Da-Cheng, Li; Ye, Chen; Ling, Du; Mang, Cao

    1987-01-01

    A kind of differential polarizdd laser interferometric system for non-contact and dynamic measurement of the flatness characteristic of magnetic disks without the effect of the axial vibration is described in this papper.

  20. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Kim, J. E.; Lim, H.; Nam, J. W.

    2013-01-01

    plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200–650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104–106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340...

  1. Micro‑cantilevers for optical sensing of biogenic amines

    DEFF Research Database (Denmark)

    Wang, Ying; Bravo Costa, Carlos André; Sobolewska, Elżbieta Karolina

    2017-01-01

    molecules in the gas phase. Different functionalization conditions were investigated by immersing gold coated AFM cantilevers in cyclam solutions at different concentrations, for different functionalization times, and for different post-annealing treatments. The optimum morphology for high capture...... micro-cantilever based mass detection. We demonstrate that besides conventional AFM systems a MEMS cantilever in combination with an optical read out is a powerful analytic system which is highly attractive for widespread use in diagnostic applications, with optimized functionalization conditions...

  2. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  3. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    Science.gov (United States)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  4. New formulation for interferometric synthetic aperture radar for terrain mapping

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  5. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  6. Spectral and interferometric observation of four emission nebulas

    International Nuclear Information System (INIS)

    Lozinskaya, T.A.; Klement'eva, A.Yu.; Zhukov, G.V.; Shenavrin, V.I.

    1975-01-01

    Results of spectrophotometric and interferometric observations of four emission nebulae are presented; electron temperature Te and electron density Ne are estimated; mean beam velocities and parameters of the internal motion in the nebylae are determined. The following objects have been investigated: 1) a bright compact nebulae of unknown nature 2.5 in size which is identified with the non-thermal radiosource G6.4-0.5 in the region W28; 2) nebulae RCW171 5' in size which is identified with the radiosource G23.1+0.6; 3) the nebulae Simeiz 34/Sharpless 261/d 1950 =6sup(h)05sup(m), sigma 1950 =+15 deg 49'; its diameter is approximately 30 an extensive complex of bright emission fibres in the nebulae Swan, which are partially projected into a possible remainder of the outburst of a supernova W63; L 1950 =20sup(h)17sup(m); S 1950 =45 deg 30' its diameter is approximately 1 deg 5

  7. Interferometric imaging of the 2011-2013 Campi Flegrei unrest

    Science.gov (United States)

    De Siena, Luca; Nakahara, Hisashi; Zaccarelli, Lucia; Sammarco, Carmelo; La Rocca, Mario; Bianco, Francesca

    2017-04-01

    After its 1983-84 seismic and deformation crisis, seismologists have recorded very low and clustered seismicity at Campi Flegrei caldera (Italy). Hence, noise interferometry imaging has become the only option to image the present volcano logical state of the volcano. Three-component noise data recorded before, during, and after Campi Flegrei last deformation and geochemical unrest (2011-2013) have thus been processed with up-to-date interferometric imaging workflow based on MSNoise. Noise anisotropy, which strongly affects measurements throughout the caldera at all frequencies, has been accounted for by self-correlation measurements and smoothed by phase weighted stacking and phase-match filtering. The final group-velocity maps show strong low-velocity anomalies at the location of the last Campi Flegrei eruption (1538 A.D.). The main low-velocity anomalies contour Solfatara volcano and follow geomorphological cross-faulting. The comparison with geophysical imaging results obtained during the last seismic unrest at the caldera suggest strong changes in the physical properties of the volcano, particularly in the area of major hydrogeological hazard.

  8. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali

    2012-02-26

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green\\'s functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  9. The linearized inversion of the generalized interferometric multiple imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-06

    The generalized interferometric multiple imaging (GIMI) procedure can be used to image duplex waves and other higher order internal multiples. Imaging duplex waves could help illuminate subsurface zones that are not easily illuminated by primaries such as vertical and nearly vertical fault planes, and salt flanks. To image first-order internal multiple, the GIMI framework consists of three datuming steps, followed by applying the zero-lag cross-correlation imaging condition. However, the standard GIMI procedure yields migrated images that suffer from low spatial resolution, migration artifacts, and cross-talk noise. To alleviate these problems, we propose a least-squares GIMI framework in which we formulate the first two steps as a linearized inversion problem when imaging first-order internal multiples. Tests on synthetic datasets demonstrate the ability to localize subsurface scatterers in their true positions, and delineate a vertical fault plane using the proposed method. We, also, demonstrate the robustness of the proposed framework when imaging the scatterers or the vertical fault plane with erroneous migration velocities.

  10. Super-Virtual Refraction Interferometric Redatuming: Enhancing the Refracted Energy

    KAUST Repository

    Aldawood, Ali; Alshuhail, Abdulrahman Abdullatif Abdulrahman; Hanafy, Sherif

    2012-01-01

    onshore seismic data processing. Refraction tomography is becoming a common way to estimate an accurate near surface velocity model. One of the problems with refraction tomography is the low signal to noise ration in far offset data. To improve, we propose using super-virtual refraction interferometry to enhance the weak energy at far offsets. We use Interferometric Green's functions to redatum sources by cross-correlating two traces recorded at receiver stations, A and B, from a source at location W. The result is a redatumed trace with a virtual source at A and a receiver at B, which can also be obtained by correlating two traces recorded at A and B from different shots. Stacking them would enhance the signal-to-noise ratio of this "virtual" trace. We next augment redatuming with convolution and stacking. The trace recorded at B from a virtual source at A is convolved with the original trace recorded at A from a source at W. The result is a "super-virtual" trace at B in the far-offset from a source at W. Stacking N traces gives a vN-improvement. We applied our method to noisy synthetic and field data recorded over a complex near-surface and we could pick more traces at far offsets. It was possible to accommodate more picks resulting in a better subsurface coverage

  11. Quantum Discord Determines the Interferometric Power of Quantum States

    Science.gov (United States)

    Girolami, Davide; Souza, Alexandre M.; Giovannetti, Vittorio; Tufarelli, Tommaso; Filgueiras, Jefferson G.; Sarthour, Roberto S.; Soares-Pinto, Diogo O.; Oliveira, Ivan S.; Adesso, Gerardo

    2014-05-01

    Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.

  12. The Big Optical Array

    International Nuclear Information System (INIS)

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  13. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  14. Generation of Optical Vortex Arrays Using Single-Element Reversed-Wavefront Folding Interferometer

    Directory of Open Access Journals (Sweden)

    Brijesh Kumar Singh

    2012-01-01

    Full Text Available Optical vortex arrays have been generated using simple, novel, and stable reversed-wavefront folding interferometer. Two new interferometric configurations were used for generating a variety of optical vortex lattices. In the first interferometric configuration one cube beam splitter (CBS was used in one arm of Mach-Zehnder interferometer for splitting and combining the collimated beam, and one mirror of another arm is replaced by second CBS. At the output of interferometer, three-beam interference gives rise to optical vortex arrays. In second interferometric configuration, a divergent wavefront was made incident on a single CBS which splits and combines wavefronts leading to the generation of vortex arrays due to four-beam interference. It was found that the orientation and structure of the optical vortices can be stably controlled by means of changing the rotation angle of CBS.

  15. Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI

    Science.gov (United States)

    Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.

    2016-07-01

    The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.

  16. Optimal detection of burst events in gravitational wave interferometric observatories

    International Nuclear Information System (INIS)

    Vicere, Andrea

    2002-01-01

    We consider the problem of detecting a burst signal of unknown shape in the data from gravitational wave interferometric detectors. We introduce a statistic which generalizes the excess power statistic proposed first by Flanagan and Hughes, and then extended by Anderson et al. to the multiple detector case. The statistic that we propose is shown to be optimal for an arbitrary noise spectral characteristic, under the two hypotheses that the noise is Gaussian, albeit colored, and that the prior for the signal is uniform. The statistic derivation is based on the assumption that a signal affects only N parallel samples in the data stream, but that no other information is a priori available, and that the value of the signal at each sample can be arbitrary. This is the main difference from previous works, where different assumptions were made, such as a signal distribution uniform with respect to the metric induced by the (inverse) noise correlation matrix. The two choices are equivalent if the noise is white, and in that limit the two statistics do indeed coincide. In the general case, we believe that the statistic we propose may be more appropriate, because it does not reflect the characteristics of the noise affecting the detector on the supposed distribution of the gravitational wave signal. Moreover, we show that the proposed statistic can be easily implemented in its exact form, combining standard time-series analysis tools which can be efficiently implemented. We generalize this version of an excess power statistic to the multiple detector case, considering first a noise uncorrelated among the different instruments, and then including the effect of correlated noise. We discuss exact and approximate forms of the statistic; the choice depends on the characteristics of the noise and on the assumed length of the burst event. As an example, we show the sensitivity of the network of interferometers to a δ-function burst

  17. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  18. Optical readout of a triple-GEM detector by means of a CMOS sensor

    Energy Technology Data Exchange (ETDEWEB)

    Marafini, M. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Patera, V. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Pinci, D., E-mail: davide.pinci@roma1.infn.it [INFN Sezione di Roma (Italy); Sarti, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Sciubba, A. [INFN Sezione di Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma (Italy); Spiriti, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2016-07-11

    In last years, the development of optical sensors has produced objects able to provide very interesting performance. Large granularity is offered along with a very high sensitivity. CMOS sensors with millions of pixels able to detect as few as two or three photons per pixel are commercially available and can be used to read-out the optical signals provided by tracking particle detectors. In this work the results obtained by optically reading-out a triple-GEM detector by a commercial CMOS sensor will be presented. A standard detector was assembled with a transparent window below the third GEM allowing the light to get out. The detector is supplied with an Ar/CF{sub 4} based gas mixture producing 650 nm wavelength photons matching the maximum quantum efficiency of the sensor.

  19. New formulas for interferometric crosstalk penalty as a function of total crosstalk power, number of crosstalk contributions and signal extinction ratio

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen; Jeppesen, Palle

    2000-01-01

    Interferometric crosstalk, also called incoherent crosstalk, occurs when reception of a desired signal is disturbed by undesired crosstalk contributions having the same wavelength as the desired signal but independent amplitudes and phases. This crosstalk type is known to be among the most...... destructive phenomena in optical networks owing to its accumulative nature and strong impact on the transmission quality. New formulas state the crosstalk penalty as a function of the total crosstalk power, the number of contributions carrying this power and the signal extinction ratio. We consider both PIN...... and optically preamplified receivers. The authors know of no other published formulas which include the number of crosstalk contributions. The crosstalk penalty formulas are empirical, and they are based on a numerical model. This model is described briefly along with its experimental verification before...

  20. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  1. Interferometric Star Tracker for High Precision Pointing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to adapt the precision star tracker it is currently developing under several DoD contracts for deep space lasercom beam...

  2. Self-tracking optical beam monitor

    International Nuclear Information System (INIS)

    Miyahara, T.; Mitsuhashi, T.

    1992-01-01

    A new optical beam monitor with a self-tracking system was constructed and tested at an undulator beam line of the Photon Factory. The monitor has a feedback system to receive a constant part of the radiation and gives a large range of linearity. The beam position is read out through a linear encoder to detect the self-tracking movement of a pair of photocathodes. The monitor except the feedback system is totally bakeable and UHV compatible and can be installed at a VUV or a soft x-ray beam line

  3. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  4. Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis

    International Nuclear Information System (INIS)

    Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F

    2010-01-01

    A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization

  5. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  6. A portfolio of products from the rapid terrain visualization interferometric SAR

    Science.gov (United States)

    Bickel, Douglas L.; Doerry, Armin W.

    2007-04-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor was built by Sandia National Laboratories for the Joint Programs Sustainment and Development (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieved better than HRTe Level IV position accuracy in near real-time. The system was flown on a deHavilland DHC-7 Army aircraft. This paper presents a collection of images and data products from the Rapid Terrain Visualization interferometric synthetic aperture radar. The imagery includes orthorectified images and DEMs from the RTV interferometric SAR radar.

  7. A new spectroscopic and interferometric study of the young stellar object V645 Cygni

    Science.gov (United States)

    Miroshnichenko, A. S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Kraus, S.; Manset, N.; Albert, L.; Balega, Y. Y.; Klochkova, V. G.; Rudy, R. J.; Lynch, D. K.; Mazuk, S.; Venturini, C. C.; Russell, R. W.; Grankin, K. N.; Puetter, R. C.; Perry, R. B.

    2009-04-01

    Aims: We present the results of high-resolution optical spectroscopy, low-resolution near-IR spectroscopy and near-infrared speckle interferometry of the massive young stellar object candidate V645 Cyg, acquired to refine its fundamental parameters and the properties of its circumstellar envelope. Methods: Speckle interferometry in the H- and K-bands and an optical spectrum in the range 5200-6680 Å with a spectral resolving power of R = 60 000 were obtained at the 6 m telescope of the Russian Academy of Sciences. Another optical spectrum in the range 4300-10 500 Å with R = 79 000 was obtained at the 3.6 m CFHT. Low-resolution spectra in the ranges 0.46-1.4 μm and 1.4-2.5 μm with R ~ 800 and ~700, respectively, were obtained at the 3 m Shane telescope of the Lick Observatory. Results: Using a novel kinematical method based on the non-linear modeling of the neutral hydrogen density profile in the direction toward the object, we propose a distance of D = 4.2 ± 0.2 kpc. We also suggest a revised estimate of the star's effective temperature, T_eff ~ 25 000 K. We resolved the object in both H- and K-bands. Using a two-component ring fit, we derived a compact component size of 14 mas and 12 mas in the H- and K-band, respectively, which correspond to 29 and 26 AU at the revised distance. Analysis of our own and previously published data indicates a ~2 mag decrease in the near-infrared brightness of V645 Cyg at the beginning of the 1980's. At the same time, the cometary nebular condensation N1 appears to fade in this wavelength range with respect to the N0 object, representing the star with a nearly pole-on optically-thick disk and an optically-thin envelope. Conclusions: We conclude that V645 Cyg is a young, massive, main-sequence star, which recently emerged from its cocoon and has already experienced its protostellar accretion stage. The presence of accretion is not necessary to account for the high observed luminosity of (2-6) × 104 M⊙ yr-1. The receding part of

  8. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  9. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, Pablo J. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)]. E-mail: pbarriga@cyllene.uwa.edu.au; Zhao Chunnong [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Blair, David G. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)

    2005-06-06

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen.

  10. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Barriga, Pablo J.; Zhao Chunnong; Blair, David G.

    2005-01-01

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen

  11. ACIGA's high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  12. On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors

    Directory of Open Access Journals (Sweden)

    Vinet Jean-Yves

    2009-07-01

    Full Text Available The sensitivity of present ground-based gravitational wave antennas is too low to detect many events per year. It has, therefore, been planned for years to build advanced detectors allowing actual astrophysical observations and investigations. In such advanced detectors, one major issue is to increase the laser power in order to reduce shot noise. However, this is useless if the thermal noise remains at the current level in the 100 Hz spectral region, where mirrors are the main contributors. Moreover, increasing the laser power gives rise to various spurious thermal effects in the same mirrors. The main goal of the present study is to discuss these issues versus the transverse structure of the readout beam, in order to allow comparison. A number of theoretical studies and experiments have been carried out, regarding thermal noise and thermal effects. We do not discuss experimental problems, but rather focus on some theoretical results in this context about arbitrary order Laguerre–Gauss beams, and other “exotic” beams.

  13. Measurement of chromatic dispersion of microstructure optical fibers using interferometric method

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Kaňka, Jiří; Honzátko, Pavel; Káčik, D.

    2008-01-01

    Roč. 38, č. 2 (2008), s. 295-303 ISSN 0078-5466 R&D Projects: GA AV ČR 1ET300670502; GA MŠk 1P05OC002 Institutional research plan: CEZ:AV0Z20670512 Keywords : chromatic dispersion * optica l fiber measurement * microstructure optica l fibers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.204, year: 2008

  14. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    Science.gov (United States)

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. GPC-enhanced read-out of holograms

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2015-01-01

    -holograms are encoded to create reconfigurable spot arrays and arbitrary extended patterns. For a given laser power, our experimental results show a significant intensity gain in the resulting diffraction patterns when we illuminate the holograms with a GPC-shaped beam as compared to the more common practice of hard...

  16. A microprocessor controlled read out system for drift chambers

    CERN Document Server

    Centro, Sandro; Cittolin, Sergio; Dreesen, P; Petrolo, E; Rubbia, Carlo; Schinzel, D

    1981-01-01

    Summary form only given, as follows. A General Purpose Microprocessor Controller GPMC has been developed for applications where CAMAC modules with complex control functions are needed. Each application requires an appropriate Interface Module (IM) to be connected to the GPMC. The GPMC consists of a 6800 Microprocessor, 16K EPROM, 2K RAM, CAMAC I/O ports and interface, a RS 232C serial interface, an Advanced Data Link controller and a port for controlling the IM, GPMC and IM are housed in a 2-U wide CAMAC module. A special IM has been designed, which has 1K bute of RAM with its own control and which allows autonomous setting and reading analog voltages through a DAC and ADC. The GPMC can take control of the IM memory and set new voltages. This system is used to control pedestals and gains of a driftchamber readout system, which is housed in a 5-U wide CAMAC module, holding 24 data cards corresponding to 24 sense wires. The data card receives pulses from the left and right end of a sense wire, amplifies and int...

  17. Optimising A Read Out for A Possible FCC hh Collision

    CERN Document Server

    Alagaraisamy, Revathy

    2017-01-01

    The Future Circular Collider Study (FCC) aims to provide a conceptual design for an accelerator to possibly be constructed in the 2040s-2050s. The most ambitious design proposed is a 100 km-circumference proton-proton collider (FCChh), designed to achieve a centre-of-mass energy of 100 TeV and exceeding . Thus,along with this the precision of the detector is increased via many ways,e.g: calculation and reduction of electronic noise with PCB readout in detector.

  18. The read-out chain of the CBM STS detector

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Joerg; Emschermann, David [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the QCD phase diagram at high baryon densities during nucleus-nucleus collisions in a fixed target setup. Its physics goals require interaction rates up to 10 MHz, which can be exploited with fast and radiation hard detectors equipped with free-streaming front-end and readout electronics, connected to a common Data Aquisition (DAQ) system to forward data to the First Level Event Selector (FLES). The core component of the CBM DAQ system is the Data Processing Board (DPB) implementing three important functionalities: - The incoming data via multiple lower-speed, short distance links is preprocessed, concentrated and forwarded to the FLES via higher-speed, long distance links. - The DPBs provide an interface for the Detector Control System (DCS) to configure readout and front-end electronics (FEE). - As part of the Timing and Fast Control (TFC) system the DPBs ensure transmission of the reference clock and synchronous commands necessary to synchronize the FEE. This contribution presents the readout and DAQ chain on the example of the core subdetector, the Silicon Tracking System (STS).

  19. Single-passage read-out of atomic quantum memory

    DEFF Research Database (Denmark)

    Fiurasek, J; Sherson, J; Opatrny, T

    2005-01-01

    Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb.......Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb....

  20. Manipulation and Read-out of Spins in Quantum Dots

    NARCIS (Netherlands)

    Vink, I.T.

    2008-01-01

    Besides an electric charge, electrons also have a tiny magnetic moment, called spin. In a magnetic field, the spin has two possible orientations: 'spin-up' (parallel to the field) and 'spin-down' (anti-parallel to the field) and can therefore be used as a quantum bit, the computational unit of a

  1. Study for the LHCb upgrade read-out board

    CERN Document Server

    Cachemiche, J P; Hachon, F; Le Gac, R; Marin, F; 10.1088/1748-0221/5/12/C12036

    2010-01-01

    The LHCb experiment envisages to upgrade its readout electronics in order to increase the readout rate from 1 MHz to 40 MHz. This electronics upgrade is very challenging, since readout boards will have to handle a higher number of serial links with an increased bandwidth. In addition, the new communication protocol (GBT) developed by the CERN micro-electronics group mixes data acquisition, slow control and clock distribution on the same link. To explore the feasibility of such a readout system, elementary building blocks have been studied. Their goals are multiple: understand signal integrity when using highly integrated high speed serial links running at 8 - 10 Gbits/s; test the implementation of the GBT protocol within FPGAs; understand advantages and limitations of commercial standard with a predefined interconnection topology; validate ideas on how to control easily such a system. We designed two boards compliant with the xTCA standard which meets an increasing interest in the physics community. The first...

  2. Automatic read out system for superheated emulsion based neutron detector

    International Nuclear Information System (INIS)

    Meena, J.P.; Parihar, A.; Vaijapurkar, S.G.; Mohan, Anand

    2010-01-01

    Full text: Defence Laboratory, Jodhpur (DLJ) has developed superheated emulsion technology for neutron and gamma measurements. The laboratory has attempted to develop reader system to display neutron dose and dose rate based on acoustic technique. The paper presents a microcontroller based automatic reader system for neutron measurements using indigenously developed superheated emulsion detector. The system is designed for real time counting of bubbles formed in superheated emulsion detector. A piezoelectric transducer is used for sensing bubble acoustic. The front end of system is mainly consisting of specially designed signal conditioning unit consisted of piezoelectric transducer, an amplifier, a high-pass filter, a differentiator, a comparator and monostable multivibrator. The system is based on PIC 18F6520 microcontroller having large internal SRAM, 10-bit internal ADC, I 2 C interface, UART/USART modules. The paper also describes the design of following peripheral units interfaced to microcontroller temperature and battery monitoring, display, keypad and a serial communication. The reader system measures and displays neutron dose and dose rate, number of bubble and elapsed time. The developed system can be used for detecting very low neutron leakage in the accelerators, nuclear reactors and nuclear submarines. The important features of system are compact, light weight, cost effective and high neutron sensitivity. The prototype was tested and evaluated by exposing to 241 Am-Be neutron source and results have been reported

  3. Effect of temperature on MRPC with pad read-outs

    International Nuclear Information System (INIS)

    Ding Weicheng; Wang Yi; Chen Huangshan; Wang Jingbo; Tuo Xianguo; Wang Min

    2013-01-01

    To obtain a quantitative understanding of the influence of temperature on the performance of multi-gap resistive plate chambers (MRPCs), we have tested the performance of a 10-gap, 12-pad, 2×2×12 cm 2 active area MRPC at different temperatures with cosmic rays. Presented are results from measurements of high-voltage scans, noise rate, dark current, streamer, time resolution, count rate, charge spectrum, and detection efficiency. The test results show that the MRPC performance is significantly affected by temperature arising from the temperature-dependence of the glass resistivity. (authors)

  4. SU-8 Cantilever Sensor with Integrated Read-Out

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte

    2007-01-01

    Cantilever baserede biosensorer kan bruges til så kaldet label-free detektion af små koncentrationer af molekyler i en opløsning. Når et specifikt molekyle binder til overfladen af en cantilever induceres et overfladestress som resulterer i en udbøjning af cantileveren. Cantileverens udbøjningen ...

  5. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  6. Optical devices in adverse environments; Proceedings of the Meeting, Cannes, France, Nov. 19, 20, 1987

    International Nuclear Information System (INIS)

    Greenwell, R.A.

    1988-01-01

    Recent advances in the design of fiber-optic devices, test equipment, optical sensors, and lasers for operation in hostile environments are discussed in reviews and reports. Topics examined include radiation effects on optical fibers, the effect of H2 treatment and water content on the recovery of undoped core fibers after pulsed and continuous irradiation, the NATO test program for optical fibers and components, alpha-irradiation damage to borosilicate glasses, high-reliability optical components for undersea light-wave systems, the behavior of Si optoelectronic components under gamma irradiation, optical devices and sensors of special-purpose fibers, and a fiber-optic microprobe for interferometric measurements in generators

  7. Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations

    NARCIS (Netherlands)

    Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad

    2014-01-01

    We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the

  8. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  9. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  10. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    NARCIS (Netherlands)

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  11. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    Science.gov (United States)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  12. The use of Interferometric Microscopy to assess 3D modifications of deteriorated medieval glass.

    Science.gov (United States)

    Gentaz, L.; Lombardo, T.; Chabas, A.

    2012-04-01

    Due to low durability, Northern European medieval glass undergoes the action of the atmospheric environment leading in some cases to a state of dramatic deterioration. Modification features varies from a simple loss of transparency to a severe material loss. In order to understand the underlying mechanisms and preserve this heritage, fundamental research is necessary too. In this optic, field exposure of analogues and original stained glass was carried out to study the early stages of the glass weathering. Model glass and original stained glass (after removal of deterioration products) were exposed in real conditions in an urban site (Paris) for 48 months. A regular withdrawal of samples allowed a follow-up of short-term glass evolution. Morphological modifications of the exposed samples were investigated through conventional and non destructive microscopy, using respectively a Scanning Electron Microscope (SEM) and an Interferometric Microscope (IM). This latter allows a 3D quantification of the object with no sample preparation. For all glasses, both surface recession and build-up of deposit were observed as a consequence of a leaching process (interdiffusion of protons and glass cations). The build-up of a deposit comes from the reaction between the extracted glass cations and atmospheric gases. Instead, surface recession is due mainly to the formation of brittle layer of altered glass at the sub-surface, where a fracture network can appear, leading to the scaling of parts of this modified glass. Finally, dissolution of the glass takes place, inducing the formation of pits and craters. The arithmetic roughness (Ra) was used as an indicator of weathering increase, in order to evaluate the deterioration state. For instance, the Ra grew from few tens of nm for pristine glass to thousands of nm for scaled areas. This technique also allowed a precise quantification of dimensions (height, depth and width) of deposits and pits, and the estimation of their overall

  13. Medida del coeficiente d33 de piezocomposites por interferometría láser

    Directory of Open Access Journals (Sweden)

    Montero de Espinosa, F.

    2002-02-01

    Full Text Available The measurement of piezoelectric coefficient d33 is made using devices like the Berlincourt Meter ®, based on a force generator internally calibrated by a reference piezoelectric element which measures the charge ratio Culomb/Newton. For estructures such as piezoelectric composites, formed by materials of very different elastic properties, the measurements made by the described system present a great dispersión which depends on both the size of the pressing head and the aplied arm pressure. This work presents a set of systematic measurements of d33 for several piezocomposite geometries by means of optical interferometry. These measurements are compared with those obtained with the Berlincourt. It is observed that both techniques render closer results as the net step is reduced.La medida del coeficiente piezoeléctrico d33 se realiza utilizando equipos como el Berlincourt Meter ®, basados en un generador de fuerza calibrado internamente por un elemento piezoeléctrico de referencia que mide la relación de carga, Culombio/ Newton. Estos sistemas están absolutamente contrastados, tomando los grupos de investigación sus medidas como estándar. En el caso de estructuras tales como los composites piezoeléctricos, en los que la estructura está formada por materiales de muy distinta elasticidad, bien por este hecho, bien por la misma estructura, las medidas con el sistema descrito presentan una gran dispersión dependiendo del tamaño de la cabeza presionante y la presión del brazo. Dado que en el modelado de resonadores piezocomposite para su uso en aplicaciones con acoplamiento en aire es necesario conocer dicho parámetro sin incertidumbre, se presentan en el trabajo una serie de medidas sistemáticas de dicho coeficiente para varias geometrías de piezocomposites utilizando interferometría óptica. Se relaciona así mismo estas medidas con el resultado obtenido con el equipo estándar antes referido observando como cuanto más pequeño es

  14. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  15. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm

    International Nuclear Information System (INIS)

    Zhao, X; Rosen, D W

    2017-01-01

    As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM and M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM and M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM and M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM and M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process. (paper)

  16. Optical design methods, applications, and large optics; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    Science.gov (United States)

    Masson, Andre; Schulte In den Baeumen, J.; Zuegge, Hannfried

    1989-04-01

    Recent advances in the design of large optical components are discussed in reviews and reports. Sections are devoted to calculation and optimization methods, optical-design software, IR optics, diagnosis and tolerancing, image formation, lens design, and large optics. Particular attention is given to the use of the pseudoeikonal in optimization, design with nonsequential ray tracing, aspherics and color-correcting elements in the thermal IR, on-line interferometric mirror-deforming measurement with an Ar-ion laser, and the effect of ametropia on laser-interferometric visual acuity. Also discussed are a holographic head-up display for air and ground applications, high-performance objectives for a digital CCD telecine, the optics of the ESO Very Large Telescope, static wavefront correction by Linnik interferometry, and memory-saving techniques in damped least-squares optimization of complex systems.

  17. Online interferometric study of viscoelastic rupture and necking deformation of as-spun (iPP) fibres due to creep process.

    Science.gov (United States)

    Sokkar, Taha; El-Farahaty, Kermal; Azzam, Amira

    2015-01-01

    Creep deformation under constant load leads to rupture when the polymer chains can no longer separate and accommodate the load. This fracture phenomenon is investigated interferometrically. The creep behaviour of as-spun isotactic Polypropylene (iPP) fibres is studied at different stresses, different initial lengths and different radii. The creep rate, which defines the velocity of the creep deformation and the dimensional stability of the material, is studied. The failure time and stress of iPP due to creep process is determined. The necking deformation was in situ detected during creep process. The mean refractive indices (n(P) andn⊥) profiles of iPP fibres were determined at different positions along the fibre axis before and after necking. The relation between the creep behaviour and different optical and structural parameters is investigated. Microinterferograms are given for illustration. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  19. Experimental arrangement to measure dispersion in optical fiber devices

    International Nuclear Information System (INIS)

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  20. Integrated reconfigurable photonic filters based on interferometric fractional Hilbert transforms.

    Science.gov (United States)

    Sima, C; Cai, B; Liu, B; Gao, Y; Yu, Y; Gates, J C; Zervas, M N; Smith, P G R; Liu, D

    2017-10-01

    In this paper, we present integrated reconfigurable photonic filters using fractional Hilbert transformers (FrHTs) and optical phase tuning structure within the silica-on-silicon platform. The proposed structure, including grating-based FrHTs, an X-coupler, and a pair of thermal tuning filaments, is fabricated through the direct UV grating writing technique. The thermal tuning effect is realized by the controllable microheaters located on the two arms of the X-coupler. We investigate the 200 GHz maximum bandwidth photonic FrHTs based on apodized planar Bragg gratings, and analyze the reflection spectrum responses. Through device integration and thermal modulation, the device could operate as photonic notch filters with 5 GHz linewidth and controllable single sideband suppression filters with measured 12 dB suppression ratio. A 50 GHz instantaneous frequency measuring system using this device is also schematically proposed and analyzed with potential 3 dB measurement improvement. The device could be configured with these multiple functions according to need. The reconfigurable structure has great potential in ultrafast all-optical signal processing fields.

  1. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  2. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  3. Audio frequency in vivo optical coherence elastography

    Science.gov (United States)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  4. Audio frequency in vivo optical coherence elastography

    International Nuclear Information System (INIS)

    Adie, Steven G; Kennedy, Brendan F; Armstrong, Julian J; Alexandrov, Sergey A; Sampson, David D

    2009-01-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  5. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  6. Interferometric sensor based on the polarization-maintaining fibers

    Science.gov (United States)

    Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Vašinek, Vladimir; Liner, Andrej; Papes, Martin

    2012-01-01

    The interferometers composed of optical fibers are due to its high sensitivity capable of to measure various influences affecting the fiber. These influences may be bending or different sorts of fiber deformations, vibration, temperature, etc. In this case the vibration is the measured quantity, which is evaluated by analyzing the interference fringes representing changes in the fiber. Was used a Mach-Zehnder interferometer composed of the polarization maintaining elements. The polarization maintaining elements were used because of high sensitivity to polarization state inside the interferometer. The light was splitted into the two optical paths, where the first one is the reference fiber and it is separated from the actual phenomenon, and the second one is measuring fiber, which is directly exposed to vibration transmission from the underlying surface. The light source was narrowband DFB laser serating at a wavelength of 1550nm and as a detector an InGaAs PIN photodiode were used in this measurement. The electrical signal from the photodiode was amplified and fed into the measuring card. On the incoming signal the FFT was applied, which performs the transformation into the frequency domain and the results were further evaluated by software. We were evaluating the characteristic frequencies and their amplitude ratios. The frequency responses are unique for a given phenomenon, thus it is possible to identify recurring events by the characteristic frequencies and their amplitude ratios. The frequency range was limited by the properties of the used speaker, by the frequency characteristics of the filter in the amplifier and used resonant element. For the experiment evaluation the repeated impact of the various spherical objects on the surface board was performed and measured. The stability of amplitude and frequency and also the frequency range was verified in this measurement.

  7. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal; Schuster, Gerard T.

    2015-01-01

    the, e.g., well logs. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. These crosscorrelograms are then migrated using interferometric least

  8. Radon-domain interferometric interpolation for reconstruction of the near-offset gap in marine seismic data

    Science.gov (United States)

    Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo

    2018-04-01

    In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.

  9. Motion of the Lambert Glacier estimated by using differential Interferometric Synthetic Aperture Radar

    International Nuclear Information System (INIS)

    Liu, Shuang; Tong, Xiaohua; Xie, Huan; Liu, Xiangfeng; Liu, Jun

    2014-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is one of the most promising remote sensing technologies and has been widely applied in constructing topographic information and estimating the deformation of the Earth's surface. Ice velocity is an important parameter for calculating the mass balance and modelling ice shelve dynamics. Ice velocity is also an important indicator for climate changes. Therefore, it plays an important role in studying the global climate change and global sea level rise. In this paper, the ERS-1/2 tandem data and the ASTER GDEM are combined together to obtained the deformation in line of sight by using the differential Interferometric SAR for the Lambert Amery glacier in Antarctica. Then the surface parallel assumption is adopted in order to achieve the ice flow velocity. The results showed that ice velocity would be increased along the Lambert glacier; the maximum ice velocity would be reach about 450m/year in the study area

  10. SAR Interferogram Filtering of Shearlet Domain Based on Interferometric Phase Statistics

    Directory of Open Access Journals (Sweden)

    Yonghong He

    2017-02-01

    Full Text Available This paper presents a new filtering approach for Synthetic Aperture Radar (SAR interferometric phase noise reduction in the shearlet domain, depending on the coherent statistical characteristics. Shearlets provide a multidirectional and multiscale decomposition that have advantages over wavelet filtering methods when dealing with noisy phase fringes. Phase noise in SAR interferograms is directly related to the interferometric coherence and the look number of the interferogram. Therefore, an optimal interferogram filter should incorporate information from both of them. The proposed method combines the phase noise standard deviation with the shearlet transform. Experimental results show that the proposed method can reduce the interferogram noise while maintaining the spatial resolution, especially in areas with low coherence.

  11. Linear projection of technical noise for interferometric gravitational-wave detectors

    International Nuclear Information System (INIS)

    Smith, J R; Ajith, P; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B; Hough, J; Danzmann, K

    2006-01-01

    An international network of interferometric gravitational-wave detectors is now in operation, and has entered a period of intense commissioning focused on bringing the instruments to their theoretical sensitivity limits. To expedite this process, noise analysis techniques have been developed by the groups associated with each instrument. We present methods of noise analysis that were developed and utilized for the commissioning of the GEO 600 detector. The focal point of this paper is a technique called noise projection that is used to determine the levels of contribution of various noise sources to the detector output. Example applications of this method to control loops typical of those employed in an interferometric GW detector are presented. Possible extensions of noise projections, including technical noise subtraction and gravitational-wave vetoes are also discussed

  12. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  13. Interferometric investigation methods of plasma spatial characteristics on stellarators and tokamaks in submillimeter region

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.; Kononenko, V.I.; Epishin, V.A.; Topkov, A.N.

    1992-01-01

    The review of interferometric methods of plasma investigation in the wave submillimeter range is given. The diagnostic schemes in stellarators and tokamaks designed for experienced thermonuclear reactors and also the perspective ones, which are still out of practice, are shown. The methods of these diagnostics, their physical principles, the main possibilities and restrictions at changes of electron density, magnetic fields (currents) and their spatial distributions are described. 105 refs.; 9 figs.; 2 tables. (author)

  14. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2016-09-06

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  15. Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lee, B.H.; Ju, L.; Blair, D.G.

    2005-01-01

    We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions

  16. Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)]. E-mail: bhl@physics.uwa.edu.au; Ju, L. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia); Blair, D.G. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2005-05-23

    We show that a simple modification of proposed ribbon suspensions for laser interferometric gravitational wave detectors can substantially reduce the amplitude of violin modes at the expense of a small deterioration of suspension thermal noise. Using low loss fused silica, large amplitude peaks which cause dynamic range problems can be reduced by 21 dB. The total number of horizontal longitudinal direction violin modes below 5 kHz is reduced to less than half that expected with conventional ribbon suspensions.

  17. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    Science.gov (United States)

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  18. Characterization of the structure of the coating of multilayers using AFM and Interferometric Microscopy

    International Nuclear Information System (INIS)

    Jerez A, Martha I; Lara O, Laura; Morantes M, Luz D; Plata G, Arturo; Torres, Yezid; Tsygankov, Petr

    2011-01-01

    Ti / TiN films were deposited on H13 steel and silicon substrates with different deposition voltage, by means of the cathodic arc evaporation (CAE) technique, this process was carried out by nanolayers deposition, requiring a detailed survey on growth films, for the properties characterization such as grain size, thickness and roughness of the film was used the atomic force microscopy (AFM) techniques and Interferometric Microscopy. Obtaining a the films growth when varying the deposition voltage.

  19. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    Science.gov (United States)

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  20. Seismic time-lapse imaging using Interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal; Schuster, Gerard T.

    2016-01-01

    One of the problems with 4D surveys is that the environmental conditions change over time so that the experiment is insufficiently repeatable. To mitigate this problem, we propose the use of interferometric least-squares migration (ILSM) to estimate the migration image for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for ILSM. Results with synthetic and field data show that ILSM can eliminate artifacts caused by non-repeatability in time-lapse surveys.

  1. Dynamic spectro-polarimeter based on a modified Michelson interferometric scheme.

    Science.gov (United States)

    Dembele, Vamara; Jin, Moonseob; Baek, Byung-Joon; Kim, Daesuk

    2016-06-27

    A simple dynamic spectro-polarimeter based on a modified Michelson interferometric scheme is described. The proposed system can extract a spectral Stokes vector of a transmissive anisotropic object. Detail theoretical background is derived and experiments are conducted to verify the feasibility of the proposed novel snapshot spectro-polarimeter. The proposed dynamic spectro-polarimeter enables us to extract highly accurate spectral Stokes vector of any transmissive anisotropic object with a frame rate of more than 20Hz.

  2. Optics in neural computation

    Science.gov (United States)

    Levene, Michael John

    In all attempts to emulate the considerable powers of the brain, one is struck by both its immense size, parallelism, and complexity. While the fields of neural networks, artificial intelligence, and neuromorphic engineering have all attempted oversimplifications on the considerable complexity, all three can benefit from the inherent scalability and parallelism of optics. This thesis looks at specific aspects of three modes in which optics, and particularly volume holography, can play a part in neural computation. First, holography serves as the basis of highly-parallel correlators, which are the foundation of optical neural networks. The huge input capability of optical neural networks make them most useful for image processing and image recognition and tracking. These tasks benefit from the shift invariance of optical correlators. In this thesis, I analyze the capacity of correlators, and then present several techniques for controlling the amount of shift invariance. Of particular interest is the Fresnel correlator, in which the hologram is displaced from the Fourier plane. In this case, the amount of shift invariance is limited not just by the thickness of the hologram, but by the distance of the hologram from the Fourier plane. Second, volume holography can provide the huge storage capacity and high speed, parallel read-out necessary to support large artificial intelligence systems. However, previous methods for storing data in volume holograms have relied on awkward beam-steering or on as-yet non- existent cheap, wide-bandwidth, tunable laser sources. This thesis presents a new technique, shift multiplexing, which is capable of very high densities, but which has the advantage of a very simple implementation. In shift multiplexing, the reference wave consists of a focused spot a few millimeters in front of the hologram. Multiplexing is achieved by simply translating the hologram a few tens of microns or less. This thesis describes the theory for how shift

  3. How to design fiber optic sensors that work: basic technology, main problems, pitfalls, and potential solutions

    OpenAIRE

    Dakin, J.P.

    1999-01-01

    Summary• Overview of optical fibre sensor types(Classified according to operating principles)• Difference between intrinsic and extrinsic sensors• Intensity-based sensors• Spectrally-encoded sensors• Propagation-time-encoded sensors• Interferometric sensors• Discussion of how to avoid problems and make practical sensors• Multiplexed and distributed sensors

  4. An empirical InSAR-optical fusion approach to mapping vegetation canopy height

    Science.gov (United States)

    Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall

    2007-01-01

    Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...

  5. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging

    International Nuclear Information System (INIS)

    Wang, Daqian; Ding, Lili; Zhang, Wei; Zhang, Enyao; Yu, Xinglong; Luo, Zhaofeng; Ou, Huichao

    2012-01-01

    A new high-throughput surface plasmon resonance (SPR) biosensor based on differential interferometric imaging is reported. The two SPR interferograms of the sensing surface are imaged on two CCD cameras. The phase difference between the two interferograms is 180°. The refractive index related factor (RIRF) of the sensing surface is calculated from the two simultaneously acquired interferograms. The simulation results indicate that the RIRF exhibits a linear relationship with the refractive index of the sensing surface and is unaffected by the noise, drift and intensity distribution of the light source. The affinity and kinetic information can be extracted in real time from continuously acquired RIRF distributions. The results of refractometry experiments show that the dynamic detection range of SPR differential interferometric imaging system can be over 0.015 refractive index unit (RIU). High refractive index resolution is down to 0.45 RU (1 RU = 1 × 10 −6 RIU). Imaging and protein microarray experiments demonstrate the ability of high-throughput detection. The aptamer experiments demonstrate that the SPR sensor based on differential interferometric imaging has a great capability to be implemented for high-throughput aptamer kinetic evaluation. These results suggest that this biosensor has the potential to be utilized in proteomics and drug discovery after further improvement. (paper)

  6. PAU-SA: A Synthetic Aperture Interferometric Radiometer Test Bed for Potential Improvements in Future Missions

    Directory of Open Access Journals (Sweden)

    Merce Vall-llosera

    2012-06-01

    Full Text Available The Soil Moisture and Ocean Salinity (SMOS mission is an Earth Explorer Opportunity mission from the European Space Agency (ESA. Its goal is to produce global maps of soil moisture and ocean salinity using the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS. The purpose of the Passive Advanced Unit Synthetic Aperture (PAU-SA instrument is to study and test some potential improvements that could eventually be implemented in future missions using interferometric radiometers such as the Geoestacionary Atmosferic Sounder (GAS, the Precipitation and All-weather Temperature and Humidity (PATH and the Geostationary Interferometric Microwave Sounder (GIMS. Both MIRAS and PAU-SA are Y-shaped arrays with uniformly distributed antennas, but the receiver topology and the processing unit are quite different. The purpose of this work is to identify the elements in the MIRAS’s design susceptible of improvement and apply them in the PAU-SA instrument demonstrator, to test them in view of these future interferometric radiometer missions.

  7. Event reconstruction using the radio-interferometric technique in the frame of AERA

    Energy Technology Data Exchange (ETDEWEB)

    Rogozin, Dmytro [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    It is a well-known fact that there is coherent radio emission induced by extensive air-showers. This fact is exploited in the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. This is a unique radio experiment due to its world-largest size of 17 km{sup 2}, and due to its precise nanosecond timing calibration. These features become crucial for detection of highly inclined air-showers with their very large foot-prints, and for the ability to apply interferometric reconstruction techniques. The standard reconstruction techniques typically treat all radio stations as separate detectors. Nevertheless there is a possibility to do an interferometric analysis. This means combining all detected signals from all antennas in a specific way. In this talk we present a beam-forming interferometric technique and its application to AERA. According to the definition of the beam-forming quantities one can expect its correlation with the shower parameters such as energy of the primary particle and distance to the shower maximum. At the first step, Monte-Carlo simulations of AERA events including the noise from measured events were used to test these dependencies. The results and the future perspectives of this method are discussed with a particular emphasis on very inclined air-showers where the aforementioned correlations are assumed to be strongest.

  8. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  9. Interferometric constraints on quantum geometrical shear noise correlations

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron; Glass, Henry; Richard Gustafson, H.; Hogan, Craig J.; Kamai, Brittany L.; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan W.; Stoughton, Chris; Tomlin, Ray; Weiss, Rainer

    2017-07-20

    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches for faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.

  10. Development towards compact nitrocellulose interferometric biochips for dry eye diagnosis based on MMP9, S100A6 and CST4 biomarkers using a Point-of-Care device

    Science.gov (United States)

    Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.

    2018-02-01

    A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.

  11. Silicon-photonic interferometric biosensor using active phase demodulation

    Science.gov (United States)

    Marin, Y.; Toccafondo, V.; Velha, P.; Scarano, S.; Tirelli, S.; Nottola, A.; Jeong, Y.; Jeon, H. P.; Minunni, M.; Di Pasquale, F.; Oton, C. J.

    2018-02-01

    Silicon photonics is becoming a consolidated technology, mainly in the telecom/datacom sector, but with a great potential in the chemical and biomedical sensor market too, mainly due to its CMOS compatibility, which allows massfabrication of huge numbers of miniaturized devices at a very low cost per chip. Integrated photonic sensors, typically based on resonators, interferometers, or periodic structures, are easy to multiplex as the light is confined in optical waveguides. In this work, we present a silicon-photonic sensor capable of measuring refractive index and chemical binding of biomolecules on the surface, using a low-cost phase interrogation scheme. The sensor consists of a pair of balanced Mach-Zehnder interferometers with interaction lengths of 2.5 mm and 22 mm, wound to a sensing area of only 500 μm x500 μm. The phase interrogation is performed with a fixed laser and an active phase demodulation approach based on a phase generated carrier (PGC) technique using a phase demodulator integrated within the chip. No laser tuning is required, and the technique can extract the univocal phase value with no sensitivity fading. The detection only requires a photo-receiver per interferometer, analog-to-digital conversion, and simple processing performed in real-time. We present repeatable and linear refractive index measurements, with a detection limit down to 4.7·10-7 RIU. We also present sensing results on a chemically-functionalized sample, where anti-BSA to BSA (bovine serum albumin) binding curves are clearly visible for concentrations down to 5 ppm. Considering the advantages of silicon photonics, this device has great potential over several applications in the chemical/biochemical sensing industry.

  12. Carrier and aberrations removal in interferometric fringe projection profilometry

    Science.gov (United States)

    Blain, P.; Michel, F.; Renotte, Y.; Habraken, S.

    2012-04-01

    A profilometer which takes advantage of polarization states splitting technique and monochromatic light projection method as a way to overcome ambient lighting for in-situ measurement is under development [1, 2]. Because of the Savart plate which refracts two out of axis beams, the device suffers from aberrations (mostly coma and astigmatism). These aberrations affect the quality of the sinusoidal fringe pattern. In fringe projection profilometry, the unwrapped phase distribution map contains the sum of the object's shape-related phase and carrier-fringe-related phase. In order to extract the 3D shape of the object, the carrier phase has to be removed [3, 4]. An easy way to remove both the fringe carrier and the aberrations of the optical system is to measure the phases of the test object and to measure the phase of a reference plane with the same set up and to subtract both phase maps. This time consuming technique is suitable for laboratory but not for industry. We propose a method to numerically remove both the fringe carrier and the aberrations. A first reference phase of a calibration plane is evaluated knowing the position of the different elements in the set up and the orientation of the fringes. Then a fitting of the phase map by Zernike polynomials is computed [5]. As the triangulation parameters are known during the calibration, the computation of Zernike coefficients has only to be made once. The wavefront error can be adjusted by a scale factor which depends on the position of the test object.

  13. Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber

    International Nuclear Information System (INIS)

    Staples, J.W.; Wilcox, R.; Byrd, J.M.

    2007-01-01

    Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized

  14. On the COSMO-SkyMed Exploitation for Interferometric DEM Generation

    Science.gov (United States)

    Teresa, C. M.; Raffaele, N.; Oscar, N. D.; Fabio, B.

    2011-12-01

    DEM products for Earth observation space-borne applications are being to play a role of increasing importance due to the new generation of high resolution sensors (both optical and SAR). These new sensors demand elevation data for processing and, on the other hand, they provide new possibilities for DEM generation. Till now, for what concerns interferometric DEM, the Shuttle Radar Topography Mission (SRTM) has been the reference product for scientific applications all over the world. SRTM mission [1] had the challenging goal to meet the requirements for a homogeneous and reliable DEM fulfilling the DTED-2 specifications. However, new generation of high resolution sensors (including SAR) pose new requirements for elevation data in terms of vertical precision and spatial resolution. DEM are usually used as ancillary input in different processing steps as for instance geocoding and Differential SAR Interferometry. In this context, the recent SAR missions of DLR (TerraSAR-X and TanDEM-X) and ASI (COSMO-SkyMed) can play a promising role thanks to their high resolution both in space and time. In particular, the present work investigates the potentialities of the COSMO/SkyMed (CSK) constellation for ground elevation measurement with particular attention devoted to the impact of the improved spatial resolution wrt the previous SAR sensors. The recent scientific works, [2] and [3], have shown the advantages of using CSK in the monitoring of terrain deformations caused by landslides, earthquakes, etc. On the other hand, thanks to the high spatial resolution, CSK appears to be very promising in monitoring man-made structures, such as buildings, bridges, railways and highways, thus enabling new potential applications (urban applications, precise DEM, etc.). We present results obtained by processing both SPOTLIGHT and STRIPMAP acquisitions through standard SAR Interferometry as well as multi-pass interferometry [4] with the aim of measuring ground elevation. Acknowledgments

  15. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  16. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.

    Science.gov (United States)

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-05-24

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  17. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei

    2012-05-01

    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  18. The influence of underwater turbulence on optical phase measurements

    Science.gov (United States)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  19. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  20. INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Sung; Wajima, Kiyoaki; Algaba, Juan-Carlos; Zhao, Guang-Yao; Hodgson, Jeffrey A.; Byun, Do-Young; Kang, Sincheol; Kim, Soon-Wook; Kino, Motoki [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Kim, Dae-Won; Park, Jongho; Kim, Jae-Young; Trippe, Sascha [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Miyazaki, Atsushi [Japan Space Forum, 3-2-1, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 Japan (Japan); Kim, Jeong-Sook, E-mail: sslee@kasi.re.kr [National Astronomical Observatory of Japan, 2211 Osawa, Mitaka, Tokyo 1818588 (Japan)

    2016-11-01

    We present results of single-epoch very long baseline interferometry (VLBI) observations of gamma-ray bright active galactic nuclei (AGNs) using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of a KVN key science program, Interferometric Monitoring of Gamma-Ray Bright AGNs. We selected a total of 34 radio-loud AGNs of which 30 sources are gamma-ray bright AGNs with flux densities of >6 × 10{sup −10} ph cm{sup −2} s{sup −1}. Single-epoch multifrequency VLBI observations of the target sources were conducted during a 24 hr session on 2013 November 19 and 20. All observed sources were detected and imaged at all frequency bands, with or without a frequency phase transfer technique, which enabled the imaging of 12 faint sources at 129 GHz, except for one source. Many of the target sources are resolved on milliarcsecond scales, yielding a core-jet structure, with the VLBI core dominating the synchrotron emission on a milliarcsecond scale. CLEAN flux densities of the target sources are 0.43–28 Jy, 0.32–21 Jy, 0.18–11 Jy, and 0.35–8.0 Jy in the 22, 43, 86, and 129 GHz bands, respectively. Spectra of the target sources become steeper at higher frequency, with spectral index means of −0.40, −0.62, and −1.00 in the 22–43 GHz, 43–86 GHz and 86–129 GHz bands, respectively, implying that the target sources become optically thin at higher frequencies (e.g., 86–129 GHz).