WorldWideScience

Sample records for optical interference

  1. Optical interference with noncoherent states

    International Nuclear Information System (INIS)

    Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram

    2003-01-01

    We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources

  2. Image hiding using optical interference

    Science.gov (United States)

    Zhang, Yan; Wang, Weining

    2010-09-01

    Optical image encryption technology has attracted a lot of attentions due to its large capacitance and fast speed. In conventional image encryption methods, the random phase masks are used as encryption keys to encode the images into white noise distribution. Therefore, this kind of methods requires interference technology to record complex amplitude and is vulnerable to attack techniques. The image hiding methods which employ the phase retrieve algorithm to encode the images into two or more phase masks are proposed, the hiding process is carried out within a computer using iterative algorithm. But the iterative algorithms are time consumed. All method mentioned above are based on the optical diffraction of the phase masks. In this presentation, a new optical image hiding method based on optical interference is proposed. The coherence lights which pass through two phase masks are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are design analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the novelty of the new proposed methods. This method can be expanded for double images hiding.

  3. Optical interference coatings for optics and photonics [Invited].

    Science.gov (United States)

    Lee, Cheng-Chung

    2013-01-01

    Optical interference coatings play as an important role in the progress in optics and photonics. In this article we give a minireview of the evolution of optical interference coatings from the theory, the design, to the manufacture. Some interesting but challenging topics for the future are also discussed.

  4. Inertial and interference effects in optical spectroscopy

    International Nuclear Information System (INIS)

    Karstens, W; Smith, D Y

    2015-01-01

    Interference between free-space and material components of the displacement current plays a key role in determining optical properties. This is illustrated by an analogy between the Lorentz optical model and a-c circuits. Phase shifts in material-polarization currents, which are inertial, relative to the non-inertial vacuum-polarization current cause interference in the total displacement current and, hence, variation in E-M wave propagation. If the displacement-current is reversed, forward propagation is inhibited yielding the semimetallic reflectivity exhibited by intrinsic silicon. Complete cancellation involves material currents offsetting free-space currents to form current-loops that correspond to plasmons. (paper)

  5. Optical image hiding based on interference

    Science.gov (United States)

    Zhang, Yan; Wang, Bo

    2009-11-01

    Optical image processing has been paid a lot of attentions recently due to its large capacitance and fast speed. Many image encryption and hiding technologies have been proposed based on the optical technology. In conventional image encryption methods, the random phase masks are usually used as encryption keys to encode the images into random white noise distribution. However, this kind of methods requires interference technology such as holography to record complex amplitude. Furthermore, it is vulnerable to attack techniques. The image hiding methods employ the phase retrieve algorithm to encode the images into two or more phase masks. The hiding process is carried out within a computer and the images are reconstructed optically. But the iterative algorithms need a lot of time to hide the image into the masks. All methods mentioned above are based on the optical diffraction of the phase masks. In this presentation, we will propose a new optical image hiding method based on interference. The coherence lights pass through two phase masks and are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are designed analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the validity of the new proposed methods.

  6. Graded photonic crystals by optical interference holography

    International Nuclear Information System (INIS)

    Han, Chunrui; Tam, Wing Yim

    2012-01-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques. (paper)

  7. Interference lithography for optical devices and coatings

    Science.gov (United States)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self

  8. Modeling and analysis of laser active interference optical path

    Science.gov (United States)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Chen, Jian-biao; Ren, Jian-ying

    2017-10-01

    By using the geometrical optics and physical optics method, the models of wedge plate interference optical path, Michelson interferometer and Mach Zehnder interferometer thus three different active interference pattern are built. The optical path difference (OPD) launched by different interference patterns, fringe spacing and contrast expression have been derived. The results show that far field interference peak intensity of the wedge plate interference is small, so the detection distance is limited, Michelson interferometer with low contrast affects the performance of detection system, Mach Zehnder interferometer has greater advantages in peak intensity, the variable range of interference fringe spacing and contrast ratio. The results of this study are useful for the theoretical research and practical application of laser active interference detection.

  9. Diffractive interference optical analyzer (DiOPTER)

    Science.gov (United States)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  10. Performance comparison of optical interference cancellation system architectures.

    Science.gov (United States)

    Lu, Maddie; Chang, Matt; Deng, Yanhua; Prucnal, Paul R

    2013-04-10

    The performance of three optics-based interference cancellation systems are compared and contrasted with each other, and with traditional electronic techniques for interference cancellation. The comparison is based on a set of common performance metrics that we have developed for this purpose. It is shown that thorough evaluation of our optical approaches takes into account the traditional notions of depth of cancellation and dynamic range, along with notions of link loss and uniformity of cancellation. Our evaluation shows that our use of optical components affords performance that surpasses traditional electronic approaches, and that the optimal choice for an optical interference canceller requires taking into account the performance metrics discussed in this paper.

  11. Fiber Optic Pressure Sensor using Multimode Interference

    International Nuclear Information System (INIS)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J; Basurto-Pensado, M A; LiKamWa, P; May-Arrioja, D A

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 μV/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  12. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail: iruiz@inaoep.mx, E-mail: mbasurto@uaem.mx, E-mail: delta_dirac@hotmail.com, E-mail: daniel_may_arrioja@hotmail.com [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  13. Optical bistability using quantum interference in V-type atoms

    International Nuclear Information System (INIS)

    Anton, M A; Calderon, Oscar G

    2002-01-01

    The behaviour of a V-type three-level atomic system in a ring cavity driven by a coherent field is studied. We consider a V configuration under conditions such that interference between decay channels is important. We find that when quantum interference is taken into account, optical bistability can be realized with a considerable decrease in the threshold intensity and the cooperative parameter. On the other hand, we also include the finite bandwidth of the driving field and study its role in the optical bistable response. It is found that at certain linewidths of the driving field optical bistability is obtained even if the system satisfies the trapping condition and the threshold intensity can be controlled. Furthermore, a change from the optical bistability due to quantum interference to the usual bistable behaviour based on saturation occurs as the driving field linewidth increases

  14. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  15. Optical sensor in planar configuration based on multimode interference

    Science.gov (United States)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  16. Interference Characterization in Downlink Li-Fi Optical Attocell Networks

    OpenAIRE

    Surampudi, Atchutananda; Ganti, Radha Krishna

    2017-01-01

    Wireless access to data using visible light, popularly known as light-fidelity (Li-Fi), is one of the key emerging technologies which promises huge bandwidths and data rates. In Li-Fi, the data is modulated on optical intensities and transmitted and detected using light-emitting-diodes (LED) and photodiodes respectively. A network of such LED access points illuminates a given region in the form of attocells. Akin, to wireless networks, co-channel interference or simply interference is a major...

  17. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  18. Optical image encryption based on interference under convergent random illumination

    International Nuclear Information System (INIS)

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2010-01-01

    In an optical image encryption system based on the interference principle, two pure phase masks are designed analytically to hide an image. These two masks are illuminated with a plane wavefront to retrieve the original image in the form of an interference pattern at the decryption plane. Replacement of the plane wavefront with convergent random illumination in the proposed scheme leads to an improvement in the security of interference based encryption. The proposed encryption scheme retains the simplicity of an interference based method, as the two pure masks are generated with an analytical method without any iterative algorithm. In addition to the free-space propagation distance and the two pure phase masks, the convergence distance and the randomized lens phase function are two new encryption parameters to enhance the system security. The robustness of this scheme against occlusion of the random phase mask of the randomized lens phase function is investigated. The feasibility of the proposed scheme is demonstrated with numerical simulation results

  19. Evaporation Kinetics in Short-Chain Alcohols by Optical Interference

    Science.gov (United States)

    Rosbrugh, Ian M.; Nishimura, S. Y.; Nishimura, A. M.

    2000-08-01

    The evaporation rates of volatile organic liquids may be determined through the observation of optical interference of spatially coincident light that is reflected from the top (air-liquid) and bottom (liquid-surface) of a liquid drop on a glass surface. As an example of what is possible with this technique, the evaporation for a series of short-chain alcohols and acetone was investigated. For 1-propanol, 2-propanol, 2-methyl-1-propanol, and acetone, the kinetics of evaporation was determined to be zero order. For methanol and ethanol, the process was significantly higher than zero order.

  20. Noise and signal interference in optical fiber transmission systems an optimum design approach

    CERN Document Server

    Bottacchi, Stefano

    2008-01-01

    A comprehensive reference to noise and signal interference in optical fiber communications Noise and Signal Interference in Optical Fiber Transmission Systems is a compendium on specific topics within optical fiber transmission and the optimization process of the system design. It offers comprehensive treatment of noise and intersymbol interference (ISI) components affecting optical fiber communications systems, containing coverage on noise from the light source, the fiber and the receiver. The ISI is modeled with a statistical approach, leading to new useful computational m

  1. The Optical Society's 2016 topical meeting on optical interference coatings: introduction.

    Science.gov (United States)

    Ristau, Detlev; Li, Li; Sargent, Robert; Sytchkova, Anna

    2017-02-01

    This feature issue of Applied Optics is dedicated to the 13th Topical Meeting on Optical Interference Coatings, which was held June 19-24, 2016, in Tucson, Arizona, USA. The conference, taking place every three years, is a focal point for global technical interchange in the field of optical interference coatings and provides premier opportunities for people working in the field to present their new advances in research and development. Papers presented at the meeting covered a broad range of topics, including fundamental research on coating design theory, new materials, and deposition and characterization technologies, as well as the vast and growing number of applications in electronic displays, communication, optical instruments, high power and ultra-fast lasers, solar cells, space missions, gravitational wave detection, and many others.

  2. Improved contrast polymer light-emitting diode with optical interference layers

    International Nuclear Information System (INIS)

    Liu, H.Y.; Sun, R.G.; Yang, K.X.; Peng, J.B.; Cao, Y.; Joo, S.K.

    2007-01-01

    An improved contrast polymer light diode based on the destructive optical interference layers deposited between the glass substrate and ITO anode is fabricated. It is unnecessary to be considered that the additional optical interference structure will impede carrier injection from the electrode to the carrier-transporting layer. Due to the quarter-wavelength thickness of medial ITO layer, the reflected light from first Cr layer is inverted 180 o out of phase with the reflected light from second Cr layer, resulting in the destructive interference. It is evident that the contrast ratio of the device with the optical interference structure is about three times higher than that of the conventional device

  3. Optical bistability via quantum interference from incoherent pumping and spontaneous emission

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.

    2011-01-01

    We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  4. Interference contrast in multi-source few photon optics

    OpenAIRE

    Laskowski, Wieslaw; Wiesniak, Marcin; Zukowski, Marek; Bourennane, Mohamed; Weinfurter, Harald

    2009-01-01

    Many recent experiments employ several parametric down conversion (PDC) sources to get multiphoton interference. Such interference has applications in quantum information. We study here how effects due to photon statistics, misalignment, and partial distinguishability of the PDC pairs originating from different sources may lower the interference contrast in the multiphoton experiments.

  5. Improving Multi Access Interference Suppression in Optical CDMA by using all-Optical Signal Processing

    Directory of Open Access Journals (Sweden)

    T. B. Osadola

    2013-06-01

    Full Text Available This paper presents the study of a novel all-optical method for processing optical CDMA signals towards improving suppression of multi access interference. The main focus is on incoherent OCDMA systems using multiwavelength 2D-WH/TS codes generated using FBG based encoders and decoders. The MAI suppression capabilities based on its ability to eliminate selective wavelength pulse processing have been shown. A novel transmitter architecture that achieves up to 3dB power saving was also presented. As a result of hardware savings, processing cost will be significantly reduced and power budget improvement resulted in improved performance.

  6. A development optical course based on optical fiber white light interference

    Science.gov (United States)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  7. Interference electron microscopy of one-dimensional electron-optical phase objects

    International Nuclear Information System (INIS)

    Fazzini, P.F.; Ortolani, L.; Pozzi, G.; Ubaldi, F.

    2006-01-01

    The application of interference electron microscopy to the investigation of electron optical one-dimensional phase objects like reverse biased p-n junctions and ferromagnetic domain walls is considered. In particular the influence of diffraction from the biprism edges on the interference images is analyzed and the range of applicability of the geometric optical equation for the interpretation of the interference fringe shifts assessed by comparing geometric optical images with full wave-optical simulations. Finally, the inclusion of partial spatial coherence effects are discussed

  8. Propagation of an optical discharge through optical fibres upon interference of modes

    International Nuclear Information System (INIS)

    Bufetov, I A; Frolov, A A; Shubin, A V; Likhachev, M E; Lavrishchev, S V; Dianov, E M

    2008-01-01

    The propagation of an optical discharge (OD) through optical fibres upon interference of LP 01 and LP 02 modes is studied. Under these conditions after the OD propagation through the fibre, the formation of an axially-symmetric group sequence of voids with a spatial period equal to that of mode interference (200-500 μm depending on the parameters of the fibre) is observed. The groups of voids are formed near the sections of the fibre with a minimal diameter of the intensity distribution of laser radiation. Large spaces between voids in the fibre have allowed us to measure accurately the difference Δn of refractive indices of the fibre core and cladding and distribution of dopants in different cross sections of the fibre after the OD propagation. A substantial increase in Δn (up to ten times) is observed. Approximately half this increase is caused by compression and densification of the fibre material after the propagation of the optical discharge. (interaction of laser radiation with matter. laser plasma)

  9. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  10. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    Science.gov (United States)

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.

  11. Effects of layer nanodefects on the light transmission by optical elements with multilayer interference coatings

    International Nuclear Information System (INIS)

    Fekeshgazyi, Yi.V.; Syidenko, T.S.; Mitsa, O.V.; Barna, P.; Kyikyineshyi, O.Ye.

    2011-01-01

    The light transmission properties of optical elements with multilayer interference coatings have been studied. The reduction of transmittance maxima for optical elements with coating containing defects is found to be stronger for larger refractive indices of the substances that the defects are made of. The shape of transmittance curves is found to substantially depend on the defect dimensions along the direction of light propagation and the defect arrangement in the layer bulk. The results obtained are necessary for the developing of a technology aimed at manufacturing the optical elements with multilayer interference coatings for laser facilities and optical lenses.

  12. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  13. Quantum diffraction and interference of spatially correlated photon pairs and its Fourier-optical analysis

    International Nuclear Information System (INIS)

    Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi

    2006-01-01

    We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns

  14. Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system.

    Science.gov (United States)

    Wang, Xu; Hamanaka, Taro; Wada, Naoya; Kitayama, Ken-Ichi

    2005-07-11

    An optical thresholding technique based on super-continuum generation in dispersion flattened fiber is proposed and experimentally demonstrated to enable data-rate detection in optical code division multiple access networks. The proposed scheme exhibits an excellent discrimination between a desired signal and interference signals with features of pulse reshaping, low insertion loss, polarization independency as well as reasonable operation power.

  15. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    Science.gov (United States)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  16. Interference patterns of Bose-condensed gases in a two-dimensional optical lattice

    International Nuclear Information System (INIS)

    Liu Shujuan; Xiong Hongwei; Xu Zhijun; Huang Guoxiang

    2003-01-01

    For a Bose-condensed gas confined in a magnetic trap and in a two-dimensional (2D) optical lattice, the non-uniform distribution of atoms in different lattice sites is considered based on the Gross-Pitaevskii equation. A propagator method is used to investigate the time evolution of 2D interference patterns after (i) only the optical lattice is switched off, and (ii) both the optical lattice and the magnetic trap are switched off. An analytical description on the motion of side peaks in the interference patterns is presented by using the density distribution in a momentum space

  17. Frustration of Bragg reflection by cooperative dual-mode interference: a new mode of optical propagation.

    Science.gov (United States)

    Yariv, A

    1998-12-01

    A new optical mode of propagation is described, which is the natural eigenmode (supermode) of a fiber (or any optical waveguide) with two cospatial periodic gratings. The mode frustrates the backward Bragg scattering from the grating by destructive interference of its two constituent submodes (which are eigenmodes of a uniform waveguide). It can be used in a new type of spatial mode conversion in optical guides.

  18. Interference-free optical detection for Raman spectroscopy

    Science.gov (United States)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  19. A Review of Multimode Interference in Tapered Optical Fibers and Related Applications

    Science.gov (United States)

    Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Brambilla, Gilberto

    2018-01-01

    In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom. PMID:29538333

  20. A Review of Multimode Interference in Tapered Optical Fibers and Related Applications

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2018-03-01

    Full Text Available In recent years, tapered optical fibers (TOFs have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom.

  1. A Review of Multimode Interference in Tapered Optical Fibers and Related Applications.

    Science.gov (United States)

    Wang, Pengfei; Zhao, Haiyan; Wang, Xianfan; Farrell, Gerald; Brambilla, Gilberto

    2018-03-14

    In recent years, tapered optical fibers (TOFs) have attracted increasing interest and developed into a range of devices used in many practical applications ranging from optical communication, sensing to optical manipulation and high-Q resonators. Compared with conventional optical fibers, TOFs possess a range of unique features, such as large evanescent field, strong optical confinement, mechanical flexibility and compactness. In this review, we critically summarize the multimode interference in TOFs and some of its applications with a focus on our research project undertaken at the Optoelectronics Research Centre of the University of Southampton in the United Kingdom.

  2. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    Science.gov (United States)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  3. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  4. Thermooptic two-mode interference device for reconfigurable quantum optic circuits

    Science.gov (United States)

    Sahu, Partha Pratim

    2018-06-01

    Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.

  5. Cross-correlation interference effects in multiaccess optical communications

    Science.gov (United States)

    Peterson, G. D.; Gardner, C. S.

    1981-03-01

    An analysis is presented of the cross correlation between user codes in an optical code-division multiple-access communication system. The system model is a multiaccess satellite repeater, where the uplink and downlink channels are direct-detection optical-polarization modulation links. The error probability is obtained in terms of the cross correlation between the intended and interfering user codes. It is demonstrated that the system error rate can be minimized by the use of code sequences in which the normalized second moment of the cross correlation between codes is small.

  6. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    International Nuclear Information System (INIS)

    Hossein Asadpour, Seyyed; Solookinejad, G; Panahi, M; Ahmadi Sangachin, E

    2016-01-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily. (paper)

  7. Fiber Temperature Sensor Based on Micro-mechanical Membranes and Optical Interference Structure

    International Nuclear Information System (INIS)

    Liu Yueming; Tian Weijian; Hua Jing

    2011-01-01

    A novel fiber temperature sensor is presented theoretically and experimentally in this paper. Its working principle is based on Optical Fabry-Perot interference structure that is formed between a polished optical fiber end and micro-mechanical Bi-layered membranes. When ambient temperature is varying, Bi-layered membranes will be deflected and the length of Fabry-Perot cavity will be changed correspondingly. By detecting the reflecting optical intensity from the Fabry-Perot cavity, the ambient temperature can be measured. Using finite element software ANSYS, the sensor structure was optimized based on optical Interference theory and Bi-layered membranes thermal expansion theory, and theoretical characteristics was simulated by computer software. In the end, using optical fiber 2x2 coupler and photo-electrical detector, the fabricated sample sensor was tested successfully by experiment that demonstrating above theoretical analysis and simulation results. This sensor has some favorable features, such as: micro size owing to its micro-mechanical structure, high sensitivity owing to its working Fabry-Perot interference cavity structure, and optical integration character by using optical fiber techniques.

  8. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  9. A Review on Successive Interference Cancellation Scheme Based on Optical CDMA Network

    Science.gov (United States)

    Alsowaidi, N.; Eltaif, T.; Mokhtar, M. R.

    2014-12-01

    Due to various desirable features of optical code division multiple access (OCDMA), it is believed this technique once developed and commercially available will be an integral part of optical access networks. Optical CDMA system suffers from a problem called multiple access interference (MAI) which limits the number of active users, it occurs when number of active users share the same carriers. The aim of this paper is to review successive interference cancellation (SIC) scheme based on optical CDMA system. The paper also reviews the system performance in presence of shot noise, thermal noise, and phase-induced intensity noise (PIIN). A comprehensive review on the mathematical model of SIC scheme using direct detection (DS) and spectral amplitude coding (SAC) were presented in this article.

  10. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    Science.gov (United States)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  11. Distributed strain measurement using modal interference in a birefringent optical fiber

    International Nuclear Information System (INIS)

    Kumar, Dilip; Sengupta, S; Ghorai, S K

    2008-01-01

    We propose a method based on modal interference in a birefringent optical fiber for distributed strain measurement. A frequency-modulated optical signal from a laser diode was launched in a birefringent fiber whose 'V' number was set in the range 2.405–3.831. The beat signal produced due to the interference of two lower order modes LP 01 and LP 11 was detected in a photodetector. The change in propagation constants between two modes under loading conditions leads to a phase variation of interference signal. The amplitude of the beat frequency was measured in the frequency domain by varying the modulating frequency, and it provides the measurand distribution along the beam. Results for strain distribution of a simply supported beam (51.0 cm × 3.0 cm × 0.6 cm) for an applied load of 250–1500 g are presented

  12. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    Science.gov (United States)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  13. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    CERN Document Server

    Bondarenko, I V; Cimmino, A; Geltenbort, P; Frank, A I; Hoghoj, P; Klein, A G; Masalovich, S V; Nosov, V G

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress.

  14. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    International Nuclear Information System (INIS)

    Bondarenko, I.V.; Balashov, S.N.; Cimmino, A.; Geltenbort, P.; Frank, A.I.; Hoghoj, P.; Klein, A.G.; Masalovich, S.V.; Nosov, V.G.

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress

  15. Fabrication of quartz microcylinders by laser interference lithography for angular optical tweezers

    Science.gov (United States)

    Santybayeva, Zhanna; Meghit, Afaf; Desgarceaux, Rudy; Teissier, Roland; Pichot, Frederic; de Marin, Charles; Charlot, Benoit; Pedaci, Francesco

    2016-07-01

    The use of optical tweezers (OTs) and spin angular momentum transfer to birefringent particles allows new mechanical measurements in systems where torque and rotation are relevant parameters at the single-molecule level. There is a growing interest in developing simple, fast, and inexpensive protocols to produce a large number of submicron scale cylinders of quartz, a positive uniaxial birefringent crystal, to be employed for such angular measurements in OTs. Here, we show that laser interference lithography, a method well known for its simplicity, fulfills these requirements and produces quartz cylindrical particles that we successfully use to apply and measure optical torque in the piconewton nm range in an optical torque wrench.

  16. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  17. Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters

    International Nuclear Information System (INIS)

    Ferencz, K.; Szipoecs, R.

    1988-01-01

    First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)

  18. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory

    International Nuclear Information System (INIS)

    Ma Mingying; Wang Xiangzhao; Wang Fan

    2006-01-01

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy

  19. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.

    Science.gov (United States)

    Ma, Mingying; Wang, Xiangzhao; Wang, Fan

    2006-11-10

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.

  20. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.

    Science.gov (United States)

    Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael

    2017-07-04

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.

  1. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System

    Science.gov (United States)

    Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael

    2017-01-01

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613

  2. Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films

    DEFF Research Database (Denmark)

    Balzer, F.; Rubahn, Horst-Günter

    2000-01-01

    Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....

  3. Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach

    Directory of Open Access Journals (Sweden)

    Ø. Langangen

    2012-01-01

    Full Text Available The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light.

  4. Optical image encryption with silhouette removal based on interference and phase blend processing

    Science.gov (United States)

    Wang, Qu

    2012-10-01

    To completely eliminate the silhouette problem that inherently exists in the earlier interference-based encryption scheme with two phase-only masks (POMs), we propose a simple new encryption method based on optical interference of one random POM and two analytically obtained POMs. Different from the previous methods which require time-consuming iterative computation or postprocessing of the POMs for silhouette removal, our method can resolve the problem during the production of the POMs based on interference principle. Information associated with the original image is smoothed away by modulation of the random POM. Illegal deciphers cannot retrieve the primitive image using only one or two of the POMs. Incorporated with the linear phase blend operation, our method can provide higher robustness against brute force attacks. Simulation results are presented to support the validity and feasibility of our method.

  5. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    International Nuclear Information System (INIS)

    Popov, A K; Kimberg, V V

    1998-01-01

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  6. Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter.

    Science.gov (United States)

    Tilsch, Markus; Hendrix, Karen

    2008-05-01

    A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.

  7. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  8. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    Science.gov (United States)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light

  9. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    International Nuclear Information System (INIS)

    Berger, Jana; Roch, Teja; Correia, Stelio; Eberhardt, Jens; Lasagni, Andrés Fabián

    2016-01-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm"2 and 89 mJ/cm"2, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  10. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jana; Roch, Teja [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany); Correia, Stelio; Eberhardt, Jens [Bosch Solar Energy AG, August-Broemel-Str. 6, 99310 Arnstadt (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff-und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institute of Manufacturing Technology, George-Baehr-Str.1, 01069 Dresden (Germany)

    2016-08-01

    In this study, a laser based process called Direct Laser Interference Patterning (DLIP) was used to fabricate micro-textured boron doped zinc oxide (ZnO:B) thin films to be used as electrodes in thin-film silicon solar cells. First, the ablation thresholds of the ZnO:B film were determined using a nanosecond pulsed laser at wavelengths of 266 and 355 nm (100 mJ/cm{sup 2} and 89 mJ/cm{sup 2}, respectively). After that, DLIP experiments were performed at 355 nm wavelength. Line-like periodic surface structures with spatial periods ranging from 0.8 to 5.0 μm were fabricated using two interfering laser beams. It was found that the structuring process of the transparent conducting oxide (TCO) is mainly based on a photo-thermal mechanism. The surface of the ZnO:B film was molten and evaporated at the interference maxima positions and the depth and width of the generated microfeatures depend on the laser parameters as well as the spatial period of the interference pattern. The optical properties of the structured TCOs were investigated as a function of the utilized laser processing parameters. Both diffuse and total transmission and the intensity of the diffraction orders were determined. These data were used to calculate the increase of the optical path of the transmitted light. - Highlights: • Direct Laser Interference Patterning (DLIP) on boron doped zinc oxide (LPCVD-ZnO:B) • No relevant decrease of total transmission • Periods of 1.5 μm provide large diffraction angle and good diffraction intensity. • Significant increase of optical path length could be reached.

  11. A Review on Successive Interference Cancellation-Based Optical PPM-CDMA Signaling

    Science.gov (United States)

    Alsowaidi, Naif; Eltaif, Tawfig; Mokhtar, Mohd Ridzuan

    2017-06-01

    This paper presents a comprehensive review of successive interference cancellation (SIC) scheme using pulse position modulation (PPM) for optical code division multiple access (OCDMA) systems. SIC scheme focuses on high-intensity signal, which will be selected after all users were detected, and then it will be subtracted from the overall received signal, hence, generating a new received signal. This process continues till all users eliminated one by one have been detected. It is shown that the random location of the sequences due to PPM encoding can reduce the probability of concentrated buildup of the pulse overlap in any one-slot time, and support SIC to easily remove the effect of the strongest signal at each stage of the cancellation process. The system bit error rate (BER) performance with modified quadratic congruence (MQC) codes used as signature sequence has been investigated. A detailed theoretical analysis of proposed system taking into account the impact of imperfect interference cancellation, the loss produced from the splitting during encoding and decoding, the channel loss and multiple access interference is presented. Results show that under average effective power constraint optical CDMA system using SIC scheme with M-ary PPM modulation outperforms conventional correlator detector and SIC scheme with on-off keying (OOK) modulation.

  12. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Analysis and design of the ultraviolet warning optical system based on interference imaging

    Science.gov (United States)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  14. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  15. Effects of optical interference and annealing on the performance of poly (3-hexylthiophene): fullerene based solar cells

    International Nuclear Information System (INIS)

    Hai-Long, You; Chun-Fu, Zhang

    2009-01-01

    In this paper, the effects of optical interference and annealing on the performance of P3HT:PCBM based organic solar cells are studied in detail. Due to the optical interference effect, short circuit current density (J SC ) shows obvious oscillatory behaviour with the variation of active layer thickness. With the help of the simulated results, the devices are optimized around the first two optical interference peaks. It is found that the optimized thicknesses are 80 and 208 nm. The study on the effect of annealing on the performance indicates that post-annealing is more favourable than pre-annealing. Based on post-annealing, different annealing temperatures are tested. The optimized annealing condition is 160° C for 10 min in a nitrogen atmosphere. The device shows that the open circuit voltage V OC achieves about 0.65V and the power conversion efficiency is as high as 4.0 % around the second interference peak

  16. Full-field optical coherence tomography using immersion Mirau interference microscope.

    Science.gov (United States)

    Lu, Sheng-Hua; Chang, Chia-Jung; Kao, Ching-Fen

    2013-06-20

    In this study, an immersion Mirau interference microscope was developed for full-field optical coherence tomography (FFOCT). Both the reference and measuring arms of the Mirau interferometer were filled with water to prevent the problems associated with imaging a sample in air with conventional FFOCT systems. The almost-common path interferometer makes the tomographic system less sensitive to environmental disturbances. En face OCT images at various depths were obtained with phase-shifting interferometry and Hariharan algorithm. This immersion interferometric method improves depth and quality in three-dimensional OCT imaging of scattering tissue.

  17. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  18. Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Rasmussen, Jesper Kiel; Povlsen, Jørn Hedegaard

    1995-01-01

    A 1-by-64 multimode interference power splitter in SiO2 has been designed for use in fiber-optics communication systems. The splitter exhibits a minimum loss of 0.5 db and a uniformity of 1.7 dB at a wavelength of 1.55 μm. The polarization sensitivity is below 0.14 dB, the reflection level below...... -55 dB, and the optical bandwidth 30 nm. The fabrication tolerances are ±0.1 mm on the length and ±3.5 μm on the width of the multimode section of the splitter. In comparison with a branching-type splitter it is found that the designed device is approximately 30% shorter than the branching-type device...

  19. Performance Analysis of SAC Optical PPM-CDMA System-Based Interference Rejection Technique

    Science.gov (United States)

    Alsowaidi, N.; Eltaif, Tawfig; Mokhtar, M. R.

    2016-03-01

    In this paper, we aim to theoretically analyse optical code division multiple access (OCDMA) system that based on successive interference cancellation (SIC) using pulse position modulation (PPM), considering the interference between the users, imperfection cancellation occurred during the cancellation process and receiver noises. Spectral amplitude coding (SAC) scheme is used to suppress the overlapping between the users and reduce the receiver noises effect. The theoretical analysis of the multiple access interference (MAI)-limited performance of this approach indicates the influence of the size of M-ary PPM on OCDMA system. The OCDMA system performance improves with increasing M-ary PPM. Therefore, it was found that the SIC/SAC-OCDMA system using PPM technique along with modified prime (MPR) codes used as signature sequence code offers significant improvement over the one without cancellation and it can support up to 103 users at the benchmarking value of bit error rate (BER) = 10-9 with prime number p = 11 while the system without cancellation scheme can support only up to 52 users.

  20. Nondestructive and in situ determination of graphene layers using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Fan, Shangchun; Gan, Xin; Lv, Ruitao

    2017-01-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry–Perot (F–P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F–P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µ m inner diameter by van der Waals interactions to construct micro F–P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F–P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F–P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials. (paper)

  1. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  2. Mean-field model for the interference of matter-waves from a three-dimensional optical trap

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.; Muruganandam, Paulsamy

    2003-01-01

    Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by Greiner et al. [Nature (London) 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally

  3. Interferences, ghost images and other quantum correlations according to stochastic optics

    International Nuclear Information System (INIS)

    Fonseca da Silva, Luciano; Dechoum, Kaled

    2012-01-01

    There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.

  4. Successive Interference Cancellation for DS-Optical PPM-CDMA Systems

    Science.gov (United States)

    Alsowaidi, N.; Eltaif, Tawfig; Mokhtar, M. R.

    2016-06-01

    In this paper we introduce a successive interference cancellation (SIC) scheme for direct sequence optical code division multiple access (DS-OCDMA) systems using pulse position modulation (PPM). Considering double-padded modified prime code (DPMPC) as a signature sequence code, results show that the system has better performance in terms of both capacity and bit error rate (BER) as compared to the one without cancellation scheme, where the system with SIC scheme can support up to 88 users while the system without SIC scheme can support only 38 users at similar BER=10-9. Although the receiver sensitivity is affected by the overlapping between users, which limits the system performance, the theoretical analysis of this issue indicates the influence of the size of M-ary PPM on OCDMA system. Hence, the BER value is still sufficient for good system performance.

  5. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  6. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    International Nuclear Information System (INIS)

    Tian, Si-Cong; Tong, Cun-Zhu; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang

    2015-01-01

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process

  7. PARASITIC INTERFERENCE IN LONG BASELINE OPTICAL INTERFEROMETRY: REQUIREMENTS FOR HOT JUPITER-LIKE PLANET DETECTION

    International Nuclear Information System (INIS)

    Matter, A.; Lopez, B.; Lagarde, S.; Danchi, W. C.; Robbe-Dubois, S.; Petrov, R. G.; Navarro, R.

    2009-01-01

    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from λ/500 to λ/5 in the L band (λ = 3.5 μm), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively λ/500 ∼ 2 nm and λ/30 ∼ 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to λ/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a

  8. 2×2 polymeric electro-optic MZI switch using multimode interference couplers

    Science.gov (United States)

    Li, H. P.; Liao, J. K.; Tang, X. G.; Lu, R. G.; Liu, Y. Z.

    2009-11-01

    We present the design of a 2×2 photonic switch operating at 1.55-μm wavelength using electro-optic (EO) polymer waveguides. A Mach-Zehnder interferometer (MZI) is used to implement the proposed switch in which two identical 2×2 multimode interference (MMI) couplers are connected by two identical parallel single mode waveguides (two MZI arms). These two single-mode waveguides with electrodes allow modulating the phase difference between the two MZI arms based on the EO effect. In the proposed switch, the EO polymer, IPC-E/polysulfone, is used for the core layer of optical waveguides. UV15 and NOA61 are employed for the lower and upper cladding layers, respectively. The singlemode waveguide structure and 2×2 MMI coupler have been designed and analyzed for the EO switch. Device performance has been simulated using the beam propagation method. It is found that the switch performance is most sensitive to the MMI width and less sensitive to the MMI length. Optimized structure has been obtained for the 2×2 polymeric EO switch, which has a crosstalk level better than -25 dB and insertion loss lower than -1.8 dB. This performance makes the switch a potential candidate for practical use in photonic systems.

  9. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  10. Distortion of optical feedback signals in microchip Nd:YAG lasers subjected to external multi-beam interference feedback

    International Nuclear Information System (INIS)

    Yi-Dong, Tan; Shu-Lian, Zhang; Zhou, Ren; Cheng, Ren; Yi-Nan, Zhang

    2010-01-01

    This paper proposes a theoretical analysis for the characteristics of an external cavity Nd:YAG laser with feedback of multiple-beam interference, which is induced by the multi-reentrance of the light from the external Fabry–Perot cavity. The theoretical model considers the multiple beam interference of the external Fabry–Perot cavity. It is found that the optical feedback signals are distorted to pulse waveforms instead of the sinusoidal ones in conventional feedback. The experimental results are in good agreement with the theoretical analysis. The obtained theoretical and experimental results can advance the development of a laser feedback interferometer

  11. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-01-01

    Application of the Fabry–Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μ m, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μ m. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C −1 caused by film thermal expansion in the range of 20–60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  −9.98  ×  10 −6 K −1 to  −2.09  ×  10 −6 K −1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range. (paper)

  12. Discussion and a new method of optical cryptosystem based on interference

    Science.gov (United States)

    Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang

    2017-02-01

    A discussion and an objective security analysis of the well-known optical image encryption based on interference are presented in this paper. A new method is also proposed to eliminate the security risk of the original cryptosystem. For a possible practical application, we expand this new method into a hierarchical authentication scheme. In this authentication system, with a pre-generated and fixed random phase lock, different target images indicating different authentication levels are analytically encoded into corresponding phase-only masks (phase keys) and amplitude-only masks (amplitude keys). For the authentication process, a legal user can obtain a specified target image at the output plane if his/her phase key, and amplitude key, which should be settled close against the fixed internal phase lock, are respectively illuminated by two coherent beams. By comparing the target image with all the standard certification images in the database, the system can thus verify the user's legality even his/her identity level. Moreover, in despite of the internal phase lock of this system being fixed, the crosstalk between different pairs of keys held by different users is low. Theoretical analysis and numerical simulation are both provided to demonstrate the validity of this method.

  13. Theory of the effect of odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Deng, L.; Garrett, W.R.

    1998-01-01

    We present a theory for two- and three-photon excitation, optical shifting, and four-wave mixing when a first laser is tuned onto, or near, a two-photon resonance and a second much more intense laser is tuned near or on resonance between the two-photon resonance and a second excited state. When the second excited state has a dipole-allowed transition back to the ground state and the concentration is sufficiently high, a destructive interference is produced between three-photon coupling of the ground state and the second excited state and one-photon coupling between the same states by the internally generated four-wave mixing field. This interference leads to several striking effects. For instance, as the onset of the interference occurs, the optical shifts in the two-photon resonance excitation line shape become smaller in copropagating geometry so that the line shapes for multiphoton ionization enhanced by the two-photon resonance eventually become unaffected by the second laser. In the same range of concentrations the four-wave mixing field evolves to a concentration-independent intensity. With counterpropagating laser beams the line shape exhibits normal optical shifts like those observed for both copropagating and counterpropagating laser beams at very low concentrations. The theoretical work presented here extends our earlier works by including the effect of laser bandwidth and by removing the restriction of having the second laser be tuned far from three-photon resonance. In this way we have now included, as a special case, the effect of both laser bandwidth and interference on laser-induced transparency. Unlike other effects related to odd-photon destructive interference, the effect of a broad bandwidth is to bring about the predicted effects at much lower concentrations. Studies in rubidium show good agreement between theory and experiment for both ionization line shapes and four-wave mixing intensity as a function of concentration. copyright 1998 The

  14. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  15. Direct imaging of optical interference in erbium-doped Al2O3 waveguides

    NARCIS (Netherlands)

    Hoven, van den G.N.; Polman, A.; Dam, van C.; Uffelen, van J.W.M.; Smit, M.K.

    1996-01-01

    Interference of 1.48-mu m light in multimode interference waveguides is made visible by imaging green and infrared upconversion luminescence from Er3+ ions dispersed in the waveguide. A two-dimensional mode density image can be derived from the data and agrees well with mode calculations for this

  16. Thin film interference optics for imaging the O II 834-A airglow

    Science.gov (United States)

    Seely, John F.; Hunter, William R.

    1991-01-01

    Normal incidence thin film interference mirrors and filters have been designed to image the O II 834-A airglow. It is shown that MgF2 is a useful spacer material for this wavelength region. The mirrors consist of thin layers of MgF2 in combination with other materials that are chosen to reflect efficiently in a narrow band centered at 834 A. Peak reflectance of 60 percent can be obtained with a passband 200 A wide. Al/MgF2/Si and Al/MgF2/SiC interference coatings have been designed to reflect 834 A and to absorb the intense H I 1216 A airglow. An In/MgF2/In interference filter is designed to transmit 834 A and attenuate 1216 A radiation. Interference photocathode coatings for rejecting 1216 A radiation are also discussed.

  17. Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2004-01-01

    Using the axially-symmetric time-dependent mean-field Gross-Pitaevskii equation we study the Josephson oscillation in a repulsive Bose-Einstein condensate trapped by a harmonic plus an one-dimensional optical-lattice potential to describe the experiments by Cataliotti et al. [Science 293 (2001) 843, New J. Phys. 5 (2003) 71.1]. After a study of the formation of matter-wave interference upon releasing the condensate from the optical trap, we directly investigate the alternating atomic superfluid Josephson current upon displacing the harmonic trap along the optical axis. The Josephson current is found to be disrupted upon displacing the harmonic trap through a distance greater than a critical distance signaling a superfluid to a classical insulator transition in the condensate

  18. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    Science.gov (United States)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  19. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.

    Science.gov (United States)

    Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A

    2018-05-01

    Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  20. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  1. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    Science.gov (United States)

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  2. Inter-symbol interference and beat noise in flexible data-rate coherent OCDMA and the BER improvement by using optical thresholding.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya; Kitayama, Ken-Ichi

    2005-12-26

    Impairments of inter-symbol interference and beat noise in coherent time-spreading optical code-division-multiple-access are investigated theoretically and experimentally by sweeping the data-rate from 622 Mbps up to 10 Gbps with 511-chip superstructured fiber Bragg grating. The BER improvement by using optical thresholding technique has been verified in the experiment.

  3. Educational Software for Interference and Optical Diffraction Analysis in Fresnel and Fraunhofer Regions Based on MATLAB GUIs and the FDTD Method

    Science.gov (United States)

    Frances, J.; Perez-Molina, M.; Bleda, S.; Fernandez, E.; Neipp, C.; Belendez, A.

    2012-01-01

    Interference and diffraction of light are elementary topics in optics. The aim of the work presented here is to develop an accurate and cheap optical-system simulation software that provides a virtual laboratory for studying the effects of propagation in both time and space for the near- and far-field regions. In laboratory sessions, this software…

  4. Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter.

    Science.gov (United States)

    Hendrix, Karen; Kruschwitz, Jennifer D T; Keck, Jason

    2014-02-01

    An angle-independent color mirror and an infrared dichroic beam splitter were the subjects of a design contest held in conjunction with the 2013 Optical Interference Coatings topical meeting of the Optical Society of America. A total of 17 designers submitted 63 designs, 22 for Problem A and 41 for Problem B. The submissions were created through a wide spectrum of design approaches and optimization strategies. Michael Trubetskov and Weidong Shen won the first contest by submitting color mirror designs with a zero color difference (ΔE00) between normal incidence and all other incidence angles up to 60° as well as the thinnest design. Michael Trubetskov also won the second contest by submitting beam-splitter designs that met the required transmission while having the lowest mechanical coating stress and thinnest design. Fabien Lemarchand received the second-place finish for the beam-splitter design. The submitted designs are described and evaluated.

  5. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    Science.gov (United States)

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  6. Influence of multiple reflection and optical interference on the magneto-optical properties of Co-Pt alloy films investigated by using the characteristic matrix method

    International Nuclear Information System (INIS)

    Zou, Z. Q.; Lee, Y. P.; Kim, K. W.

    2000-01-01

    The magneto-optical Kerr effect (MOKE) of a multilayered system was described by using the characteristic matrix method based on the electromagnetic wave theory. In addition to the multiple reflection and the optical interference, a contribution from the plasma resonance absorption of a metallic layer can be included in the formulation. As an example, we carried out a simulation of the MOKE for Co 0.25 Pt 0.75 alloy films with and without a Pt buffer layer. It was found that the Kerr rotation and the read-out figure of merit of a film directly deposited on a glass substrate were enhanced at a thickness below 40 nm owing to the multiple reflection and the optical interference. This enhancement was more remakable at long wavelengths when light was incident on the substrate side. However, the introduction of a Pt buffer layer was not beneficial in improving the Kerr rotation and the figure of merit, although it promoted the perpendicular magnetic anisotropy of the film, as reported. The simulated results for an alloy thickness beyond the penetration depth of light agreed well with the experimental data for a prepared 'thick' alloy film

  7. Characterization of optical and microstructural properties of semitransparent TiO{sub 2}/Ti/glass interference decorative coatings

    Energy Technology Data Exchange (ETDEWEB)

    Skowronski, L., E-mail: lukasz.skowronski@utp.edu.pl; Wachowiak, A.A.; Grabowski, A.

    2016-12-01

    Highlights: • The interference color TiO{sub 2}/Ti/glass systems were produced using the GIMS. • The thicknesses of Ti films (12–73 nm) is associated with the transmittance of samples. • The thicknesses of TiO{sub 2} film determine the color of a sample from gold (11 nm) to blue (47 nm). • The samples with thicker titanium film exhibit more saturated colors. • The elaborated method can be used to produce architectural glazing. - Abstract: This paper presents a study of the optical properties and the microstructure of semitransparent interference TiO{sub 2}/Ti/glass systems obtained by gas injection magnetron sputtering (GIMS). The samples are examined by means of spectroscopic ellipsometry, spectrophotometry and atomic force microscopy. The investigation is complemented by colorimetric measurements. Optical constants of titanium and titanium dioxide layers are determined and carefully studied. An influence of the deposition time on the thickness of metallic and dielectric films has been found. The thickness of Ti films ranges from 12 nm to 73 nm, while that of TiO{sub 2} films varies from 11 nm to 43 nm. This thickness directly determines the color of a sample from gold to blue, respectively.

  8. Stimulated Brillouin scattering phase-locking using a transient acoustic standing wave excited through an optical interference field

    International Nuclear Information System (INIS)

    Ondrej Slezak; Milan Kalal; Hon Jin Kong

    2010-01-01

    Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.

  9. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  10. Coherent double-color interference microscope for traceable optical surface metrology

    Science.gov (United States)

    Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-06-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.

  11. Coherent double-color interference microscope for traceable optical surface metrology

    International Nuclear Information System (INIS)

    Malinovski, I; França, R S; Bessa, M S; Silva, C R; Couceiro, I B

    2016-01-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed. (paper)

  12. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  13. Fiber optic adaptation of the interference filter photometer SPECTRAN for in-line measurements in PUREX process control

    International Nuclear Information System (INIS)

    Buerck, J.; Kraemer, K.; Koenig, W.

    1990-02-01

    The multicomponent version of the interference filter photometer SPECTRAN was adapted by radiation resistant quartz glass optical fibers to in-line flow cells in the aqueous and organic bypass stream of an uranium laboratory extraction column. A combined photometric/electrolytical conductivity measurement allows this modified process instrument to be used as uranium/plutonium in-line monitor in radioactive process streams. By applying a high performance 100 W quartz halogen lamp and suitable light focussing optics the light intensity, attenuated by coupling losses, could be increased to the desired level even when 1000 μm-single strand fibers (2x18 m) were used to transmit the light. In a series of calibration experiments the U(VI)- and U(IV)-extinction coefficients were determined as a function of nitric acid molarity (for U(VI) also in TBP/kerosene). Furthermore the validity of Lambert-Beer's law was examined for both oxidation states at different optical path lengths and nitric acid/electrolytical conductivity calibration functions between 0-100 g/l U(VI) and 0-4 mol/l HNO 3 were set up. (orig./EF) [de

  14. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    Science.gov (United States)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  15. Performance analysis of an optical self-interference cancellation system with a directly modulated laser-based demonstration.

    Science.gov (United States)

    Yu, Yinghong; Zhang, Yunhao; Huang, Lin; Xiao, Shilin

    2018-02-20

    In this paper, two main performance indices of the optical self-interference cancellation (OSIC) system are theoretically analyzed: cancellation bandwidth and depth. Delay deviation is investigated to be the determining factor of cancellation bandwidth, based on which the bandwidth advantage of the OSIC system over electrical schemes is also proven theoretically. Cancellation depth in the narrowband is mostly influenced by attenuation and delay-adjusting deviation, while in the broadband case, the performance is mostly limited by frequency-dependent amplitude and phase mismatch. The cancellation performance analysis is suitable for most linear modulation-demodulation OSIC systems, including the directly modulated laser (DML)-based OSIC system verified experimentally in this paper. The cancellation model is well demonstrated by the agreement between experimental cancellation results and predicted performance. For over-the-air demonstration with the employment of antennas, broadband cancellation within 450 MHz bandwidth of 22 dB and 25 dB is achieved at 900 MHz and 2.4 GHz, respectively. In addition, orthogonal frequency division multiplexing signals are employed to show in-band full-duplex transmission with good performance by the DML-based OSIC system, with successful suppression of self-interference and recovery of the signal of interest.

  16. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  17. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    Science.gov (United States)

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  18. Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference

    Science.gov (United States)

    Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff

    1999-02-02

    An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.

  19. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    Science.gov (United States)

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  20. Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

    Directory of Open Access Journals (Sweden)

    P. Heydari

    2014-10-01

    Full Text Available In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE was carried out with silver catalyst. Provided solution (or materiel in combination with laser interference lithography (LIL fabricated different reproducible pillars, holes and rhomboidal structures. As a result, Submicron patterning of porous areas and nanohole arrays on Si substrate with a minimum feature size of 600nm was achieved. Measured reflection spectra of the samples present different optical characteristics which is dependent on the shape, thickness of metal catalyst and periodicity of the structure. These structures can be designed to reach a photonic bandgap in special range or antireflection layer in energy harvesting applications. The resulted reflection spectra of applied method are comparable to conventional expensive and complicated dry etching techniques.

  1. Optical recording in functional polymer nanocomposites by multi-beam interference holography

    Science.gov (United States)

    Zhuk, Dmitrij; Burunkova, Julia; Kalabin, Viacheslav; Csarnovics, Istvan; Kokenyesi, Sandor

    2017-05-01

    Our investigations relate to the development of new polymer nanocomposite materials and technologies for fabrication of photonic elements like gratings, integrated elements, photonic crystals. The goal of the present work was the development and application of the multi-beam interference method for one step, direct formation of 1-, 2- or even 3D photonic structures in functional acrylate nanocomposites, which contain SiO2 and Au nanoparticles and which are sensitized to blue and green laser illumination. The presence of gold nanoparticles and possibility to excite plasmonic effects can essentially influence the polymerization processes and the spatial redistribution of nanoparticles in the nanocomposite during the recording. This way surface and volume phase reliefs can be recorded. It is essential, that no additional treatments of the material after the recording are necessary and the elements possess high transparency, are stable after some relaxation time. New functionalities can be provided to the recorded structures if luminescent materials are added to such materials.

  2. Optical multiple-image hiding based on interference and grating modulation

    International Nuclear Information System (INIS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng

    2012-01-01

    We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach. (paper)

  3. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  4. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bachari, Ayoob H.; Jalali, Fatemeh; Alahyarizadeh, Ghasem [Tehran Univ. (Iran, Islamic Republic of). Engineering Dept.

    2017-04-01

    Effects of spectral interferences on determination of the uranium concentration in phosphate ore were investigated by inductively coupled plasma optical emission spectroscopy (ICP-OES). Eleven high intensity emission lines including four lines recommended by ICP-OES apparatus were chosen to determine the uranium concentration. The ore samples were collected from phosphate acid producing industry in the south of Iran. Three different acid combinations [(HNO{sub 3}:HCl:HF-2:6:2), (H{sub 3}PO{sub 4}:H{sub 2}SO{sub 4}:HF-3:3:3), (HNO{sub 3}:H{sub 2}O{sub 2}:HF-4:2:2)] used in microwave digestion method to explore the spectral interference effects in different solvent environments. The results showed that the trusty uranium concentration, obtained in the 367.007 nm, 386.592 nm, 389.036 nm and 409.014 nm by second acid digestion method which were 0.665 ppm, 0.972 ppm, 0.670 ppm and 0.801 ppm, respectively. Although the line of 409.014 nm was reported as the best line for determining of the uranium concentration in several literatures, the results showed that this line has a significant spectral interference with vanadium in some ores which should be considered in determining of the uranium concentration. Spectral interference effects of some elements which have high concentrations in the phosphate ore including Ca, Fe, Mg, Pb, V, Mn, and Ti on the line intensities were also investigated. Results indicated that the chosen elements affect emission intensities of all of 11 lines. They also indicated that the line of 409.014 nm provides a trusty precision in the determination of the uranium concentration in the ore sample with low vanadium concentration (at least, U/V ratio of 1:5). Results show that the line of 409.014 nm provides acceptable precision with some corrections in comparison with other selected lines. For instance in high concentrations of other elements including Fe and Ti in the ore samples, strong influences on the line intensities of the 367.007 nm (by Fe

  5. Optical vortices and singularities due to interference in atomic radiation near a mirror.

    Science.gov (United States)

    Li, Xin; Shu, Jie; Arnoldus, Henk F

    2009-11-15

    We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous singularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.

  6. Optical sorting of nonspherical and living microobjects in moving interference structures

    Czech Academy of Sciences Publication Activity Database

    Jákl, Petr; Arzola, A. V.; Šiler, Martin; Chvátal, Lukáš; Volke-Sepulveda, K.; Zemánek, Pavel

    2014-01-01

    Roč. 22, č. 24 (2014), s. 29746-29760 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk LH12018; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : standing-wave * forces * microparticles * tweezers * chromatography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  7. Structural and optical properties of WO{sub 3} sputtered thin films nanostructured by laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hurtado, I., E-mail: ichurtado@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Tavera, T.; Yurrita, P.; Pérez, N. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE Goiru kalea 9, Polo de Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Mandayo, G.G.; Castaño, E. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain)

    2013-07-01

    A study of the influence of annealing temperature on the structural, morphological and optical properties of WO{sub 3} thin films is presented. The coatings are deposited by RF reactive magnetron sputtering and characterized by XRD analysis and FESEM. The XRD diagrams of the samples show a phase transition from tetragonal to monoclinic when the annealing temperature is raised from 800 to 900 °C. Moreover, the increase of the annealing temperature to 800 °C favors the presence of a granular structure on the surface of the film. A decrease in the optical energy band gap (3.65–3.5 eV and 3.5–3.05 eV for direct and indirect transitions respectively) with annealing temperature has been measured employing Tauc's relation. Furthermore, WO{sub 3} thin films are processed by laser interference lithography (LIL) and periodic nanostructures are obtained. The processed films are characterized by a hexagonal symmetry with a period of 340 nm and the diameter of the nanostructured holes of 150 nm. These films show improved morphological properties of interest in several applications (gas sensors, photonic crystals, etc.) independent of the annealing temperature.

  8. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    Science.gov (United States)

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  9. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  10. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    Science.gov (United States)

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  11. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    Science.gov (United States)

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process.

  12. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    Science.gov (United States)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  13. Magneto-optical quantum interferences in a system of spinor excitons

    Science.gov (United States)

    Kuan, Wen-Hsuan; Gudmundsson, Vidar

    2018-04-01

    In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.

  14. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  15. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  16. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  17. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-04-01

    Full Text Available Aerosol optical depth (AOD has been widely used in climate research, atmospheric environmental observations, and other applications. However, high AOD retrieval remains challenging over heavily polluted regions, such as the North China Plain (NCP. The Visible Infrared Imaging Radiometer Suite (VIIRS, which was designed as a successor to the Moderate Resolution Imaging Spectroradiometer (MODIS, will undertake the aerosol observations mission in the coming years. Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol loading through the 6SV radiative transfer model (RTM with a focus on three aspects: cloud masking, ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD retrievals. Second, the greenness of the surface could not be accurately identified by the top of atmosphere (TOA index, and the quality of the aggregation data may be artificially high. Thus, the AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data coverage (at least 37.97% of all data records were missing according to ground-based observations and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according to radiative simulations. To resolve these problems, the implementation of a spatial variability cloud mask method and surficial index are suggested in order to improve the algorithm.

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  19. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  20. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  1. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    International Nuclear Information System (INIS)

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-01

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report

  2. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation.

    Science.gov (United States)

    O'Brien, Daniel B; Massari, Aaron M

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  3. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, Daniel B.; Massari, Aaron M., E-mail: massari@umn.edu [Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States)

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  4. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  5. Transverse stress induced LP 02-LP 21 modal interference of stimulated Raman scattered light in a few-mode optical fiber

    Science.gov (United States)

    Sharma, A.; Posey, R.

    1996-02-01

    Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.

  6. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  7. Performance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference

    Directory of Open Access Journals (Sweden)

    Sujan Rajbhandari

    2009-06-01

    Full Text Available Artificial neural network (ANN has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER performance of digital pulse interval modulation (DPIM in diffuse indoor optical wireless (OW links subjected to the artificial light interference (ALI is reported with new receiver structure based on the discrete WT (DWT and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI and ALI.

  8. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    Science.gov (United States)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  9. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    Science.gov (United States)

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  10. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    Science.gov (United States)

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  11. Development of optical interference-type micro accelerometer for subsurface microseismic measurement; Micromachining ni yoru chika danseiha keisoku no tame no hikari kanshogata kasokudo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K; Niitsuma, H; Esashi, M [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-10-22

    Manufacture is under way of an optical interference-type micro accelerometer making use of the micromachining technology and an optical fiber measuring system for detecting microseismic waves in the ground. The sensor is required to be capable of detecting acceleration 0.1-1gal in amplitude, to be flat in amplitude characteristic in a frequency range of 10Hz-several kHz, to be ensured of straight phase characteristics to enable the measurement of transient phenomena, to be low in cross sensitivity, and to be high in resistance to water, pressure, and heat. The sensor is constructed in the following way. In the process for treating silicon, anisotropic etching is performed for the formation of a gap between the fiber end face and oscillator, boron is diffused, a stopper is formed, and then the silicon is subjected to penetrating etching. In the process for the optical fiber section, an optical fiber is inserted into a glass tube and fixed by an adhesive agent, and then the glass tube end face is polished, this together with the fiber end. Indium-tin oxide is sputtered onto the glass tube end. Finally, the sensor is assembled. 5 refs., 4 figs., 1 tab.

  12. Controlling Lateral Fano Interference Optical Force with Au-Ge2Sb2Te5 Hybrid Nanostructure

    DEFF Research Database (Denmark)

    Cao, Tun; Bao, Jiaxin; Mao, Libang

    2016-01-01

    is revealed through optical singularity in the Poynting vector. A thermal-electric simulation is adopted to investigate the temporal change of the Ge2Sb2Te5 film's temperature, which demonstrates the possibility of transiting the Ge2Sb2Te5 state by electrical heating. Our mechanism by tailoring the DQ...... in flexible nanomechanical control and may provide a new means of biomedical sensing and nano -optical conveyor belts....

  13. Determination of dynamic variations in the optical properties of graphene oxide in response to gas exposure based on thin-film interference.

    Science.gov (United States)

    Tabassum, Shawana; Dong, Liang; Kumar, Ratnesh

    2018-03-05

    We present an effective yet simple approach to study the dynamic variations in optical properties (such as the refractive index (RI)) of graphene oxide (GO) when exposed to gases in the visible spectral region, using the thin-film interference method. The dynamic variations in the complex refractive index of GO in response to exposure to a gas is an important factor affecting the performance of GO-based gas sensors. In contrast to the conventional ellipsometry, this method alleviates the need of selecting a dispersion model from among a list of model choices, which is limiting if an applicable model is not known a priori. In addition, the method used is computationally simpler, and does not need to employ any functional approximations. Further advantage over ellipsometry is that no bulky optics is required, and as a result it can be easily integrated into the sensing system, thereby allowing the reliable, simple, and dynamic evaluation of the optical performance of any GO-based gas sensor. In addition, the derived values of the dynamically changing RI values of the GO layer obtained from the method we have employed are corroborated by comparing with the values obtained from ellipsometry.

  14. Kvantová interference

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan

    2003-01-01

    Roč. 48, č. 4 (2003), s. 99-103 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : interference * quantum cryptography * quantum computing * quantum teleportation Subject RIV: BH - Optics, Masers, Lasers

  15. Proposal of ultra-compact NAND/NOR/XNOR all-optical logic gates based on a nonlinear 3x1 multimode interference

    Science.gov (United States)

    Tajaldini, Mehdi; Mat Jafri, M. Z.

    2014-05-01

    We present a highly miniaturized multimode interference (MMI) coupler based on nonlinear modal propagation analysis (NMPA) method as a novel design method and potential application for optical NAND, NOR and XNOR logic gates for Boolean logic signal processing devices. Crystalline polydiacetylene is used to allow the appearances of nonlinear effects in low input intensities and ultra- short length to control the MMI coupler as an active device to access light switching due to its high nonlinear susceptibility. We consider a 10x33 μm2 MMI structure with three inputs and one output. Notably, the access facets are single-mode waveguides with sub-micron width. The center input contributes to control the induced light propagation in MMI by intensity variation whereas others could be launched by particular intensity when they are ON and 0 in OFF. Output intensity is analyzed in various sets of inputs to show the capability of Boolean logic gates, the contrast between ON and OFF is calculated on mentioned gates to present the efficiency. Good operation in low intensity and highly miniaturized MMI coupler is observed. Furthermore, nonlinear effects could be realized through the modal interferences. The issue of high insertion loss is addressed with a 3×3 upgraded coupler. Furthermore, the main significant aspect of this paper is simulating an MMI coupler that is launched by three nonlinear inputs, simultaneously, whereas last presents have never studied more than one input in nonlinear regimes.

  16. The g-u interference oscillations observed in the emission cross sections and the optical polarizations in He+-He collisions

    International Nuclear Information System (INIS)

    Tani, M.; Hishikawa, A.; Okasaka, R.

    1991-01-01

    We have observed emission radiation from helium atoms excited in He + -He collisions by the direct and electron capture processes over the energy range 0.5-20 keV. The relative emission cross sections for transitions 2 1,3 P-3 1,3 S, 2 1,3 S-3 1,3 P and 2 1,3 P-2 1,3 D have been determined. Degrees of optical polarization have also been determined for the P- and D-state excitations. The emission cross section of the direct excitation and that of the electron capture excitation show oscillations against impact energy, which are in antiphase with each other. The polarization degrees for both processes are nearly the same magnitude and show weak oscillations in antiphase with each other. The oscillations of the cross section and those of the polarization degree are in phase in some cases and in antiphase in other cases. These oscillations are interpreted as due to the interference between the gerade and ungerade states of the helium quasimolecular ion. From the amplitude ratio and the phase correlation between the oscillations of the cross section and those of the polarization degree we find that the predominant g-u interference pair is Π g -Π u . (author)

  17. Demonstrations of Wave Optics (Interference and Diffraction of Light) for Large Audiences Using a Laser and a Multimedia Projector

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2011-01-01

    This article presents a new technique for performing most well-known demonstrations of wave optics. Demonstrations which are normally very hard to show to more than a few people can be presented easily to very large audiences with excellent visibility for everyone. The proposed setup is easy to put together and use and can be very useful for…

  18. Controlling the optical bistability via quantum interference in a four-level N-type atomic system

    International Nuclear Information System (INIS)

    Sahrai, M.; Asadpour, S.H.; Mahrami, H.; Sadighi-Bonabi, R.

    2011-01-01

    We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. The effect of spontaneously generated coherence on OB is discussed. → Spontaneously generated coherence makes the medium phase dependent. → The frequency of coupling field can reduce OB threshold. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.

  19. Optical image-hiding method with false information disclosure based on the interference principle and partial-phase-truncation in the fractional Fourier domain

    International Nuclear Information System (INIS)

    Dai, Chaoqing; Wang, Xiaogang; Zhou, Guoquan; Chen, Junlang

    2014-01-01

    An image-hiding method based on the optical interference principle and partial-phase-truncation in the fractional Fourier domain is proposed. The primary image is converted into three phase-only masks (POMs) using an analytical algorithm involved partial-phase-truncation and a fast random pixel exchange process. A procedure of a fake silhouette for a decryption key is suggested to reinforce the encryption and give a hint of the position of the key. The fractional orders of FrFT effectively enhance the security of the system. In the decryption process, the POM with false information and the other two POMs are, respectively, placed in the input and fractional Fourier planes to recover the primary image. There are no unintended information disclosures and iterative computations involved in the proposed method. Simulation results are presented to verify the validity of the proposed approach. (letters)

  20. Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions and squeezing in a superconducting quantum-interference device ring

    International Nuclear Information System (INIS)

    Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.

    2004-01-01

    In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring

  1. Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy

    Science.gov (United States)

    Ushenko, V. O.; Vanchuliak, O.; Sakhnovskiy, M. Y.; Dubolazov, O. V.; Grygoryshyn, P.; Soltys, I. V.; Olar, O. V.; Antoniv, A.

    2017-09-01

    The theoretical background of the azimuthally stable method of polarization-interference mapping of the histological sections of the biopsy of the prostate tissue on the basis of the spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of prostate tissue histological sections are found. The objective criteria of differentiation of benign and malignant conditions of prostate tissue are determined.

  2. Analysis of antibody aggregate content at extremely high concentrations using sedimentation velocity with a novel interference optics.

    Science.gov (United States)

    Schilling, Kristian; Krause, Frank

    2015-01-01

    Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum

  3. Interference Phenomenon with Mobile Displays

    Science.gov (United States)

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  4. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  5. Ultrahigh-sensitive multimode interference-based fiber optic liquid-level sensor realized using illuminating zero-order Bessel-Gauss beam

    Science.gov (United States)

    Saha, Ardhendu; Datta, Arijit; Kaman, Surjit

    2018-03-01

    A proposal toward the enhancement in the sensitivity of a multimode interference-based fiber optic liquid-level sensor is explored analytically using a zero-order Bessel-Gauss (BG) beam as the input source. The sensor head consists of a suitable length of no-core fiber (NCF) sandwiched between two specialty high-order mode fibers. The coupling efficiency of various order modes inside the sensor structure is assessed using guided-mode propagation analysis and the performance of the proposed sensor has been benchmarked against the conventional sensor using a Gaussian beam. Furthermore, the study has been corroborated using a finite-difference beam propagation method in Lumerical's Mode Solutions software to investigate the propagation of the zero-order BG beam inside the sensor structure. Based on the simulation outcomes, the proposed scheme yields a maximum absolute sensitivity of up to 3.551 dB / mm and a sensing resolution of 2.816 × 10 - 3 mm through the choice of an appropriate length of NCF at an operating wavelength of 1.55 μm. Owing to this superior sensing performance, the reported sensing technology expedites an avenue to devise a high-performance fiber optic-level sensor that finds profound implication in different physical, biological, and chemical sensing purposes.

  6. Generalized Multiphoton Quantum Interference

    Directory of Open Access Journals (Sweden)

    Max Tillmann

    2015-10-01

    Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.

  7. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  8. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  9. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  10. Laser reflector with an interference coating

    International Nuclear Information System (INIS)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-01-01

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd 3+ :YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  11. Does Laser Surgery Interfere with Optical Nerve Identification in Maxillofacial Hard and Soft Tissue?—An Experimental Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Bastian Bergauer

    2015-10-01

    Full Text Available The protection of sensitive structures (e.g., nerves from iatrogenic damage is of major importance when performing laser surgical procedures. Especially in the head and neck area both function and esthetics can be affected to a great extent. Despite its many benefits, the surgical utilization of a laser is therefore still limited to superficial tissue ablation. A remote feedback system which guides the laser in a tissue-specific way would provide a remedy. In this context, it has been shown that nerval structures can be specifically recognized by their optical diffuse reflectance spectra both before and after laser ablation. However, for a translation of these findings to the actual laser ablation process, a nerve protection within the laser pulse is of utmost significance. Thus, it was the aim of the study to evaluate, if the process of Er:YAG laser surgery—which comes with spray water cooling, angulation of the probe (60° and optical process emissions—interferes with optical tissue differentiation. For the first time, no stable conditions but the ongoing process of laser tissue ablation was examined. Therefore, six different tissue types (nerve, skin, muscle, fat, cortical and cancellous bone were acquired from 15 pig heads. Measurements were performed during Er:YAG laser ablation. Diffuse reflectance spectra (4500, wavelength range: 350–650 nm where acquired. Principal component analysis (PCA and quadratic discriminant analysis (QDA were calculated for classification purposes. The clinical highly relevant differentiation between nerve and bone was performed correctly with an AUC of 95.3% (cortial bone respectively 92.4% (cancellous bone. The identification of nerve tissue against the biological very similar fat tissue yielded good results with an AUC value of 83.4% (sensitivity: 72.3%, specificity: of 82.3%. This clearly demonstrates that nerve identification by diffuse reflectance spectroscopy works reliably in the ongoing process of

  12. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  13. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  14. "Quantum Interference with Slits" Revisited

    Science.gov (United States)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…

  15. A MATLAB code for counting the moiré interference fringes recorded by the optical-mechanical crack gauge TM-71

    Czech Academy of Sciences Publication Activity Database

    Marti, X.; Rowberry, Matthew David; Blahůt, Jan

    2013-01-01

    Roč. 52, MAR (2013), s. 164-167 ISSN 0098-3004 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : MATLAB code * TM-71 * moiré interference fringes * relative displacement Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.562, year: 2013

  16. 'Quantum interference with slits' revisited

    Science.gov (United States)

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.

  17. Quantum interference in plasmonic circuits.

    Science.gov (United States)

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  18. Interference of an array of independent Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Hadzibabic, Zoran; Stock, Sabine; Battelier, Baptiste; Bretin, Vincent; Dalibard, Jean

    2004-01-01

    We have observed high-contrast matter wave interference between 30 Bose-Einstein condensates with uncorrelated phases. Interferences were observed after the independent condensates were released from a one-dimensional optical lattice and allowed to overlap. This phenomenon is explained with a simple theoretical model, which generalizes the analysis of the interference of two condensates

  19. IETS and quantum interference

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2014-01-01

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....

  20. Interference Effects in Strong-Field Dissociative Ionization

    DEFF Research Database (Denmark)

    Yue, Lun; Madsen, Lars Bojer

    2015-01-01

    with simple energy conservation arguments. We explain the structures as interferences between wave packets released during different optical cycles, and during the same optical cycle, respectively. Both inter- and intracycle interference structures are clearly visible in the joint energy spectra. The shapes...

  1. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  2. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  3. Dark Matter Interference

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco

    2012-01-01

    We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...

  4. Interference patterns and extinction ratio of the diatom Coscinodiscus granii

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Ellegaard, M.

    2015-01-01

    We report experimental and theoretical verification of the nature and position of multiple interference points of visible light transmitted through the valve of the centric diatom species Coscinodiscus granii. Furthermore, by coupling the transmitted light into an optical fiber and moving...... the diatom valve between constructive and destructive interference points, an extinction ratio of 20 dB is shown...

  5. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  6. TWO-LAYER PHASE COMPENSATING INTERFERENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Georgiy V. Nikandrov

    2014-09-01

    Full Text Available The paper deals with creation of optical interferential coatings, giving the possibility to form the wave front without the change of energy characteristics of the incident and reflected radiation. Correction is achieved due to the layer, which thickness is a function of coordinate of an optical element surface. Selection technique is suggested for refractive index materials, forming two-layer interference coating that creates a coating with a constant coefficient of reflection on the surface of the optical element. By this procedure the change of coefficient of reflection for the optical element surface, arising because of the variable thickness is eliminated. Magnesium oxide and zirconium dioxide were used as the film-forming materials. The paper presents experimentally obtained thickness distribution of the layer, which is a part of the phase compensating coating. A new class of optical coatings proposed in the paper can find its application for correcting the form of a wave front.

  7. Interference and Sensitivity Analysis.

    Science.gov (United States)

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J; Halloran, M Elizabeth

    2014-11-01

    Causal inference with interference is a rapidly growing area. The literature has begun to relax the "no-interference" assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which causal effects in the presence of interference are not identified, either because randomization alone does not suffice for identification, or because treatment is not randomized and there may be unmeasured confounders of the treatment-outcome relationship. We develop sensitivity analysis techniques for these settings. We describe several sensitivity analysis techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected. We also develop two sensitivity analysis techniques for causal effects in the presence of unmeasured confounding which generalize analogous techniques when interference is absent. These two techniques for unmeasured confounding are compared and contrasted.

  8. Binaural Interference: Quo Vadis?

    Science.gov (United States)

    Jerger, James; Silman, Shlomo; Silverman, Carol; Emmer, Michele

    2017-04-01

    The reality of the phenomenon of binaural interference with speech recognition has been debated for two decades. Research has taken one of two avenues; group studies or case reports. In group studies, a sample of the elderly population is tested on speech recognition under three conditions; binaural, monaural right and monaural left. The aim is to determine the percent of the sample in which the expected outcome (binaural score-better-than-either-monaural score) is reversed (i.e., one of the monaural scores is better than the binaural score). This outcome has been commonly used to define binaural interference. The object of group studies is to answer the "how many" question, what is the prevalence of binaural interference in the sample. In case reports the binaural interference conclusion suggested by the speech recognition tests is not accepted until it has been corroborated by other independent diagnostic audiological measures. The aim is to attempt to determine the basis for the findings, to answer the "why" question. This article is at once tutorial, editorial and a case report. We argue that it is time to accept the reality of the phenomenon of binaural interference, to eschew group statistical approaches in search of an answer to the "how many" question, and to focus on individual case reports in search of an answer to the "why" question. American Academy of Audiology.

  9. Interference in immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Interfering factors are evident in both limited reagent (radioimmunoassay) and excess reagent (immunometric assay) technologies and should be suspected whenever there is a discrepancy between analytical results and clinical findings in the investigation of particular diseases. The overall effect of interference in immunoassay is analytical bias in result, either positive or negative of variable magnitude. The interference maybe caused by a wide spectrum of factors from poor sample collection and handling to physiological factors e.g. lipaemia, heparin treatment, binding protein abnormalities, autoimmunity and drug treatments. The range of interfering factors is extensive and difficult to discuss effectively in a short review

  10. General Quantum Interference Principle and Duality Computer

    International Nuclear Information System (INIS)

    Long Guilu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  11. Temporal overlap estimation based on interference spectrum in CARS microscopy

    Science.gov (United States)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  12. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  13. On the equivalence between Young's double-slit and crystal double-refraction interference experiments.

    Science.gov (United States)

    Ossikovski, Razvigor; Arteaga, Oriol; Vizet, Jérémy; Garcia-Caurel, Enric

    2017-08-01

    We show, both analytically and experimentally, that under common experimental conditions the interference pattern produced in a classic Young's double-slit experiment is indistinguishable from that generated by means of a doubly refracting uniaxial crystal whose optic axis makes a skew angle with the light propagation direction. The equivalence between diffraction and crystal optics interference experiments, taken for granted by Arago and Fresnel in their pioneering research on the interference of polarized light beams, is thus rigorously proven.

  14. Codebook-based interference alignment for uplink MIMO interference channels

    KAUST Repository

    Lee, Hyun Ho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base

  15. Basic optics of effect materials.

    Science.gov (United States)

    Jones, Steven A

    2010-01-01

    Effect materials derive their color and effect primarily from thin-film interference. Effect materials have evolved over the decades from simple guanine crystals to the complex multilayer optical structures of today. The development of new complex effect materials requires an understanding of the optics of effect materials. Such an understanding would also benefit the cosmetic formulator as these new effect materials are introduced. The root of this understanding begins with basic optics. This paper covers the nature of light, interference of waves, thin-film interference, color from interference, and color travel.

  16. Interference and Diffraction.

    Science.gov (United States)

    Ross, Marc H.

    This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. The measurement of very small distances and sizes, and the concept of models are discussed in the introduction. The optics of slits is dealt with in chapter 2. Chapter 3 presents the optics of holes.…

  17. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  18. Young's double-slit interference with two-color biphotons.

    Science.gov (United States)

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  19. Quantum interference vs. quantum chaos in the nuclear shell model

    International Nuclear Information System (INIS)

    Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E

    2015-01-01

    In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%

  20. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  1. Problems in optics

    CERN Document Server

    Rousseau, Madeleine; Ter Haar, D

    1973-01-01

    This collection of problems and accompanying solutions provide the reader with a full introduction to physical optics. The subject coverage is fairly traditional, with chapters on interference and diffraction, and there is a general emphasis on spectroscopy.

  2. Quantum Interference and Entanglement Induced by Multiple Scattering of Light

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter

    2010-01-01

    We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two...... output modes. It is shown that quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our...

  3. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  4. Interference Imaging of Refractive Index Distribution in Thin Samples

    Directory of Open Access Journals (Sweden)

    Ivan Turek

    2004-01-01

    Full Text Available There are three versions of interference imaging of refractive index distribution in thin samples suggested in this contribution. These are based on imaging of interference field created by waves reflected from the front and the back sample surface or imaging of interference field of Michelson or Mach-Zehnder interferometer with the sample put in one of the interferometers arm. The work discusses the advantages and disadvantages of these techniques and presents the results of imaging of refrective index distribution in photorefractive record of a quasi-harmonic optical field in thin LiNbO3 crystal sample.

  5. Metasurface-Enabled Remote Quantum Interference.

    Science.gov (United States)

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  6. Optical biosensors.

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  8. Interference of biphotons upon parametric down-conversion in the field of biharmonic pumping

    International Nuclear Information System (INIS)

    Zolotoverkh, I I

    2014-01-01

    We report theoretical investigation of interference of biphotons emitted upon type-II collinear parametric down-conversion in the case of biharmonic pumping. Interference occurs when an optical or electronic shutter is used as an amplitude modulator in the experimental scheme. The phase of the interference is shown to depend on the time interval between the instant the shutter is opened and the instant corresponding to the maximum pump intensity. The main parameter affecting the visibility of the interference pattern is a time interval during which the shutter is open. (nonlinear optical phenomena)

  9. The intention interference effect.

    Science.gov (United States)

    Cohen, Anna-Lisa; Kantner, Justin; Dixon, Roger A; Lindsay, D Stephen

    2011-01-01

    Intentions have been shown to be more accessible (e.g., more quickly and accurately recalled) compared to other sorts of to-be-remembered information; a result termed an intention superiority effect (Goschke & Kuhl, 1993). In the current study, we demonstrate an intention interference effect (IIE) in which color-naming performance in a Stroop task was slower for words belonging to an intention that participants had to remember to carry out (Do-the-Task condition) versus an intention that did not have to be executed (Ignore-the-Task condition). In previous work (e.g., Cohen et al., 2005), having a prospective intention in mind was confounded with carrying a memory load. In Experiment 1, we added a digit-retention task to control for effects of cognitive load. In Experiment 2, we eliminated the memory confound in a new way, by comparing intention-related and control words within each trial. Results from both Experiments 1 and 2 revealed an IIE suggesting that interference is very specific to the intention, not just to a memory load.

  10. Beamforming design with proactive interference cancelation in MISO interference channels

    Science.gov (United States)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  11. Interference of Multiple Surface Plasmon Polaritons

    International Nuclear Information System (INIS)

    Wang, Dapeng; Yuan, Xiaocong; Lin, Jiao

    2017-01-01

    Benefiting from strongly electromagnetic confinement and enhancement effects, surface plasmon polaritons (SPPs) hold great promises for tailoring light on micro and nanoscale. By contrast with previous efforts which massively concentrate on localized SPP mode, we investigated the propagating SPPs in this paper. A number of symmetrical gratings on metal surface are employed to excite multiple SPPs. Interestingly, the exotic interfering phenomena have been observed. They show good agreement with free-space interferences and take advantage of precise controllability. These findings will be promising in the applications of optical tweezers and SPP lithography. (paper)

  12. Graphene quantum interference photodetector

    Directory of Open Access Journals (Sweden)

    Mahbub Alam

    2015-03-01

    Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.

  13. Substation electromagnetic interference

    International Nuclear Information System (INIS)

    Felic, G.; Shihab, S.

    1997-01-01

    The electric and magnetic transients in high voltage substations were studied. The electric field measurements were carried out in a 66 kV switchyard of a 500/220/66 kV substation in Melbourne, Australia. The measured waveforms make up a database to be used for reference in the testing of substation control and protection equipment. The objective of this study was to characterize the radiated interference caused by the operation of disconnect switches and circuit breakers. Disconnect switch transients can be a serious hazard for substations because the slow moving contacts during opening and closing can result in arcing events of several seconds duration. Circuit breaker transients were considered to be less hazardous. Transient magnetic fields of at least several tens of A/m can occur during the energization of the capacitor bank. Substation electronic equipment should be tested and protected against the coupling of these transients in order to avoid breakdowns. 5 refs., 4 figs

  14. Thickness and roughness measurements of nano thin films by interference

    Directory of Open Access Journals (Sweden)

    A Sabzalipour

    2011-06-01

    Full Text Available In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can measure a few nanometers films thickness. In addition, using the interference fringes intensity curve and its fluctuations, the roughness of surface is measured within a few nanometers accuracy. Comparison of our results with some direct methods of thickness and roughness measurements, i.e. using surface profilemeter and atomic force microscopy confirms the accuracy of the suggested improvements.

  15. Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering

    NARCIS (Netherlands)

    Peeters, Wouter Herman

    2010-01-01

    This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical

  16. Quantum walk on the line as an interference phenomenon

    International Nuclear Information System (INIS)

    Knight, Peter L.; Roldan, Eugenio; Sipe, J. E.

    2003-01-01

    We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be classically implemented, and indeed already has been. The walk is essentially two independent walks associated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution of walker positions and the propagation of light in a dispersive optical fiber

  17. Developmental Change in Proactive Interference.

    Science.gov (United States)

    Kail, Robert

    2002-01-01

    Two studies examined age-related change in proactive interference from previously learned material. The meta-analysis of 26 studies indicated that proactive interference decreased with age. The cross-sectional study found that third through sixth graders' and college students' recall was accurate on Trial 1, but became less so over Trials 2…

  18. Sleep can reduce proactive interference.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2014-01-01

    Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.

  19. Output Interference in Recognition Memory

    Science.gov (United States)

    Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.

    2011-01-01

    Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…

  20. Communications in interference limited networks

    CERN Document Server

    2016-01-01

    This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.

  1. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  2. Modern optical science

    International Nuclear Information System (INIS)

    2001-05-01

    This book deals with modern optical science, which gives description of properties of light and transmission, ray tracing like Gaussian image, ray tracing and optical system, properties about light wave, a vector properties of light, interference and an interferometer, transform and application of interferometer, diffraction, application on diffraction, solid optical science, measurement of light and laser such as basic principle of laser, kinds of laser, pulse laser, resonator and single mode and multimode.

  3. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  4. Detection-dependent six-photon Holland-Burnett state interference

    OpenAIRE

    Rui-Bo Jin; Mikio Fujiwara; Ryosuke Shimizu; Robert J. Collins; Gerald S. Buller; Taro Yamashita; Shigehito Miki; Hirotaka Terai; Masahiro Takeoka; Masahide Sasaki

    2016-01-01

    The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work,...

  5. Sedimentation Velocity Analysis of Large Oligomeric Chromatin Complexes Using Interference Detection.

    Science.gov (United States)

    Rogge, Ryan A; Hansen, Jeffrey C

    2015-01-01

    Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.

  6. Interference management using direct sequence spread spectrum ...

    African Journals Online (AJOL)

    Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.

  7. 'Quantum interference with slits' revisited

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, Tony [Princeton University, Princeton, NJ 08544 (United States); Boughn, Stephen, E-mail: trothman@princeton.ed, E-mail: sboughn@haverford.ed [Haverford College, Haverford, PA 09140 (United States)

    2011-01-15

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.

  8. Anomalous Fraunhofer Interference in Epitaxial Superconductor-Semiconductor Josephson Junctions

    DEFF Research Database (Denmark)

    Suominen, H. J.; Danon, J.; Kjaergaard, M.

    2017-01-01

    in the pattern of critical currents known as Fraunhofer patterns by analogy to the related interference effect in optics. Adding an in-plane field yields two further anomalies in the pattern. First, higher order nodes are systematically strengthened, indicating current flow along the edges of the device......, as a result of confinement of Andreev states driven by an induced flux dipole; second, asymmetries in the interference appear that depend on the field direction and magnitude. A model is presented, showing good agreement with experiment, elucidating the roles of flux focusing, Zeeman and spin-orbit coupling...

  9. Interference of conically scattered light in surface plasmon resonance.

    Science.gov (United States)

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  10. Interference by amplitude division with extended sources by paraxial boundary conditions

    International Nuclear Information System (INIS)

    Liñares, J; Nistal, M C

    2014-01-01

    We present a wave-optics paraxial approach to the interference by amplitude division produced by plane-parallel films (or plates) and non-plane-parallel films, or by equivalent optical devices such as a Michelson interferometer, when they are illuminated with extended (spatially incoherent) quasi-monochromatic sources. To the best of our knowledge, the most common approaches to the study of interference are based, for simplicity, on the combined use of geometrical optics concepts, such as the optical path length along a ray, together with some wave-optics concepts such as optical phases. However, interference phenomena have been the means by which the wave nature of light has been established and therefore geometrical and wave concepts are so far-off that their simultaneous use can give rise to misleading concepts. Therefore, the primary aim of this work is to provide an analytical homogeneous description of interference by amplitude division using only paraxial spherical waves and boundary conditions at smooth interfaces or discontinuities in such a way that the calculation of the total optical field, interference irradiance, fringe visibility, coherence degree, localization of the interference and so on, can be made in a unified way by taking a fully wave-optics approach. The paraxial regime is enough in most cases and, moreover, interference is generally collected by an optical instrument such as a lens or the eye itself, in which a paraxial approximation is required. This work is particularly aimed at university physics teachers and undergraduate and first year postgraduate students. (papers)

  11. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  12. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to

  13. Interference, reduced action, and trajectories

    OpenAIRE

    Floyd, Edward R.

    2006-01-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...

  14. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    International Nuclear Information System (INIS)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang

    2014-01-01

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  15. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  16. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    International Nuclear Information System (INIS)

    Shih, Y.H.; Rubin, M.H.; Sergienko, A.V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences

  17. Detection-dependent six-photon Holland-Burnett state interference

    Science.gov (United States)

    Jin, Rui-Bo; Fujiwara, Mikio; Shimizu, Ryosuke; Collins, Robert J.; Buller, Gerald S.; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Takeoka, Masahiro; Sasaki, Masahide

    2016-11-01

    The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work, we experimentally and theoretically demonstrate up to six-photon HBSI and study the properties of the interference patterns over a wide range of optical path length differences. It was found that the shape, the coherence time and the visibility of the interference patterns were strongly dependent on the detection schemes. This work paves the way for applications which are based on the envelope of the HBSI pattern, such as quantum spectroscopy and quantum metrology.

  18. Towards quantum computation with multi-particle interference

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Vincenzo; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm (Germany); Shih, Yanhua [Univ. of Maryland, Baltimore County, Baltimore, MD (Germany). Dept. of Physics

    2012-07-01

    One of the main challenges in quantum computation is the realization of entangled states with a large number of particles. We have experimentally demonstrated a novel factoring algorithm which relies only on optical multi-path interference and on the periodicity properties of Gauss sums with continuous arguments. An interesting implementation of such a method can, in principle, take advantage of matter-wave interferometers characterized by long-time evolution of a BEC in microgravity. A more recent approach to factorization aims to achieve an exponential speed-up without entanglement by exploiting multi-particle m-order interference. In this case, the basic requirement for quantum computation is interference of an exponentially large number of multi-particle amplitudes.

  19. Interference Cancellation for Hollow-Core Fiber Reference Cells

    DEFF Research Database (Denmark)

    Seppä, Jeremias; Merimaa, Mikko; Merimaa, Mikko

    2015-01-01

    Doppler-free saturated absorption spectroscopy of gases in hollow-core fiber (HCF)-based cells can be used for realizing new compact, robust, and portable frequency standards. In this paper, methods for cancelling interferences resulting from the optical connections between standard fiber and HCF...... and other factors such as varying coupling to HCF modes are investigated. Laser power modulation with simultaneous detection of ac and dc signal is used to separate saturated absorption from interferences. In addition, a technique of two piezoelectric stack actuators stretching the fiber at different...... locations is described. The presented experimental results demonstrate that 99% interference attenuation is readily attainable with the techniques. Frequency comb-referenced measurement of saturated acetylene absorption features near 1.54 μm, with fiber length and power modulation, is presented...

  20. Neutron interference by division of wave front

    International Nuclear Information System (INIS)

    Klein, A.G.; Kearney, P.D.; Opat, G.I.; Cimmimo, A.

    1981-01-01

    The highly successful perfect cyrstal neutron interferometer of the type first developed by Bonse and Rauch exhibits interference by amplitude division. It relies on dynamical Bragg diffraction in a highly perfect single crystal to provide the beamsplitting. This type of interferometer, topologically analogous to the Nach-Zehnder interferometer of classical optics, has been employed in a variety of interesting experiments using thermal neutrons. Its shortcomings, however, are its extreme sensitivity to mechanical and thermal disturbances, and its applicability only to wavelegths shorter than the Bragg cutoff (6.27 Angstrom in silicon). The authors discuss a novel type of neutron interferometer which was constructed and tested employing a split cylindrical zone plate with neutrons of 20 Angstrom wavelength. Its performance and relative merits are discussed

  1. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  2. WEED INTERFERENCE IN EGGPLANT CROPS

    Directory of Open Access Journals (Sweden)

    LUIZ JUNIOR PEREIRA MARQUES

    2017-01-01

    Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.

  3. Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

    Science.gov (United States)

    Chen, Ying-Chieh

    2009-01-01

    Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical…

  4. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...

  5. Parton showers with quantum interference

    CERN Document Server

    Nagy, Zoltan

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.

  6. Parton showers with quantum interference

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2007-01-01

    We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations

  7. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  8. Spatial interference from well-separated split condensates

    International Nuclear Information System (INIS)

    Zawadzki, M. E.; Griffin, P. F.; Riis, E.; Arnold, A. S.

    2010-01-01

    We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference between two condensates axially separated by up to 0.25 mm - the largest separation observed with this kind of interferometer. Clear planar fringes are observed using standard (i.e., nontomographic) resonant absorption imaging. The effect of a weak inverted parabola potential on fringe separation is observed and agrees well with theory.

  9. Interference of a thermal Tonks gas on a ring

    International Nuclear Information System (INIS)

    Das, Kunal K.; Girardeau, M.D.; Wright, E.M.

    2002-01-01

    A nonzero temperature generalization of the Fermi-Bose mapping theorem is used to study the exact quantum statistical dynamics of a one-dimensional gas of impenetrable bosons on a ring. We investigate the interference produced when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Nonzero temperature is shown not to be a limitation to obtaining high visibility fringes

  10. Interference profiles with multiple spherical waves: general case

    International Nuclear Information System (INIS)

    Zerbino, L.M.; Torroba, R.; Rodriquez, N.; Garavaglia, M.

    1984-01-01

    Characteristics of multiple-beam interference fringes, as in a Fabry-Perot interferometer with monochromatic light, are analyzed. The optical path and the optical-path difference between interfering beams are calculated for the most general case. Different refractive indices in the inner and outer media, and arbitrary locations of the light source and the point of observation, are taken into account. An expression of the impulse response of the system is given. The results obtained from experimental tests confirm the theoretical predictions. 8 references

  11. Integration of multiple theories for the simulation of laser interference lithography processes.

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  12. Integration of multiple theories for the simulation of laser interference lithography processes

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  13. Quantum interferences reconstruction with low homodyne detection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Martina; Randi, Francesco [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Titimbo, Kelvin; Zimmermann, Klaus; Benatti, Fabio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Kourousias, Georgios; Curri, Alessio [Sincrotrone Trieste S.C.p.A., Trieste (Italy); Floreanini, Roberto [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Parmigiani, Fulvio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy); University of Cologne, Institute of Physics II, Cologne (Germany); Fausti, Daniele [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy)

    2016-12-15

    Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5) below which quantum features, like quantum interferences, cannot be retrieved. Here, by numerical experiments, we demonstrate that quantum interferences can be effectively reconstructed also for low homodyne detection efficiency. In particular, we address the challenging case of a Schroedinger cat state and test the minimax and adaptive Wigner function reconstruction technique by processing homodyne data distributed according to the chosen state but with an efficiency η>0.5. By numerically reproducing the Schroedinger's cat interference pattern, we give evidence that quantum state reconstruction is actually possible in these conditions, and provide a guideline for handling optical tomography based on homodyne data collected by low efficiency detectors. (orig.)

  14. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  15. Electromagnetic Interference in Smart Grids

    NARCIS (Netherlands)

    Leferink, Frank; Keyer, Cees

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. If equipped with a communication link they are called smart meter. Because the smart meter is a key device in smart grids, any deviation has huge impact on

  16. Interference and memory capacity limitations.

    Science.gov (United States)

    Endress, Ansgar D; Szabó, Szilárd

    2017-10-01

    Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  18. Diophantine Optics

    Science.gov (United States)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  19. Fundamental studies of interferences in ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, L.K

    2000-11-01

    Methods of temperature measurement by mass spectrometry have been critically reviewed. It was concluded that the most appropriate method depended critically on the availability of fundamental data, hence a database of fundamental spectroscopic constants, for diatomic ions which cause interferences in ICP-MS, was compiled. The equilibration temperature, calculated using the different methods and using various diatomic ions as the thermometric probes, was between c.a. 400 - 10,000 K in the central channel, and between c.a. 600 - 16,000 K when the plasma was moved 1.8 mm off-centre. The wide range in temperature reflected the range of temperature measurement methods and uncertainty in the fundamental data. Optical studies using a fibre optic connected to a monochromator were performed in order to investigate the presence of interferences both in the plasma and the interface region of the ICP-MS, and the influence of a shielded torch on these interferences. It was possible to determine the presence of some species in the plasma, such as the strongly bound metal oxides, however, no species other than OH were detected in the interface region of the ICP-MS. The OH rotational temperature within the interface region of the ICP-MS was calculated to be between 2,000 - 4,000 K. The effect of sampling depth, operating power, radial position and solvent loading, with and without the shielded torch, on the dissociation temperature of a variety of polyatomic interferences was investigated. These calculated temperatures were then used to elucidate the site of formation for different polyatomic interferences. Results confirmed that strongly bound ions such as MO{sup +} were formed in the plasma, whereas weakly bound ions such as ArO{sup +} were formed in the interface region due to gross deviation of the calculated temperatures from those expected for a system in thermal equilibrium. (author)

  20. Characterization of Bragg gratings in Al2O3 waveguides fabricated by focused ion beam milling and laser interference lithography

    NARCIS (Netherlands)

    Ay, F.; Bernhardi, Edward; Agazzi, L.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus; de Ridder, R.M.

    Optical grating cavities in Al2O3 channel waveguides were successfully defined by focused ion beam milling and laser interference lithography. Both methods are shown to be suitable for realizing resonant structures for on-chip waveguide lasers.

  1. Hong–Ou–Mandel interference with two independent weak coherent states

    International Nuclear Information System (INIS)

    Chen Hua; An Xue-Bi; Wu Juan; Yin Zhen-Qiang; Wang Shuang; Chen Wei; Han Zhen-Fu

    2016-01-01

    Recently, the Hong–Ou–Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is ≤ 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection. (paper)

  2. REM sleep rescues learning from interference

    Science.gov (United States)

    McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.

    2015-01-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222

  3. Design of an optical spatial interferometer with transformation optics

    International Nuclear Information System (INIS)

    Naghibi, Atefeh; Shokooh-Saremi, Mehrdad

    2015-01-01

    In this paper, we apply transformation optics to design an optical spatial interferometer. The transformation equations are described and two-dimensional finite element simulations are presented to numerically confirm the functionality of the device. It is shown that a small change in the refractive index can alter the interference pattern and hence can be detected. The design of the interferometer could expand transformation optics’ applications and make way for introduction of new structures with unique electromagnetic or optical functionalities. (paper)

  4. Second-order temporal interference of two independent light beams at an asymmetrical beam splitter

    International Nuclear Information System (INIS)

    Liu Jianbin; Wang Jingjing; Xu Zhuo

    2017-01-01

    The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman’s path integral theory. The visibility of the second-order interference pattern is determined by the properties of the superposed light beams, the ratio between the intensities of these two light beams, and the reflectivity of the asymmetrical beam splitter. Some requirements about the asymmetrical beam splitter have to be satisfied in order to ensure that the visibility of the second-order interference pattern of nonclassical light beams exceeds the classical limit. The visibility of the second-order interference pattern of photons emitted by two independent single-photon sources is independent of the ratio between the intensities. These conclusions are important for the researches and applications in quantum optics and quantum information when an asymmetrical beam splitter is employed. (paper)

  5. Taking apart the enhanced backscattering cone: Interference fringes from reciprocal paths in multiple light scattering

    International Nuclear Information System (INIS)

    Bret, Boris P. J.; Ferreira, Flavio P.; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2010-01-01

    We report the decomposition of the enhanced backscattering cone into its constitutive interference fringes. These fringes are due to the constructive interference between reciprocal paths of any multiply scattered wave after ensemble averaging. An optical setup combining a two-point continuous-wave illumination and matching detection allows the observation of the fringes and, therefore, the quantitative characterization of the Green's function for light propagation between the two points in a multiple-scattering media.

  6. Carbon nanostructure composite for electromagnetic interference

    Indian Academy of Sciences (India)

    2015-05-30

    based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference.

  7. Applied Optics Golden Anniversary commemorative reviews: introduction.

    Science.gov (United States)

    Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C

    2013-01-01

    Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.

  8. Experimental research for γ-ray interference threshold effect of high electromagnetic pulse sensor

    International Nuclear Information System (INIS)

    Meng Cui; Chen Xiangyue; Nie Xin; Xiang Hui; Guo Xiaoqiang; Mao Congguang; Cheng Jianping; Ni Jianping

    2007-01-01

    The high electromagnetic pulse (EMP) sensor using optical-fiber to transmit signal can restrain electromagnetic interference. The Compton electrons scattered by γ-ray irradiated from nuclear explosion or nuclear explosion simulator can generate high EMP, γ-ray can penetrate the shielding box and irradiate the integrated circuit directly. The γ-ray irradiation effect includes interference, latch up and burn out, these will make the measurement result unbelievable. In this paper, the experimental method researching the γ-ray irradiation effect of high electromagnetic pulse sensor on Qiangguang-I accelerator is introduced. The γ-ray dose rate interference threshold is 2 x 10 6 Gy/s. (authors)

  9. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  10. Is the classical law of the addition of probabilities violated in quantum interference?

    International Nuclear Information System (INIS)

    Arsenovic, Dusan; Bozic, Mirjana; Vuskovic, Lepsa

    2002-01-01

    We analyse and compare the positive and negative arguments on whether quantum interference violates the classical law of the addition of probabilities. The analysis takes into account the results of recent interference experiments in neutron, electron and atom optics. Nonclassical behaviour of atoms was found in atomic experiments where the measurements included their time of arrival and space distribution. We determine probabilities of elementary events associated with the nonclassical behaviour of particles in interferometers. We show that the emergence of the interference pattern in the process of accumulation of such elementary events is consistent with the classical law of the addition of probabilities

  11. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Naveed Ahmad Shah

    2017-11-09

    Nov 9, 2017 ... Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is 'erased', the interference can reappear. Such a set-up is ...

  12. An accumulator model of semantic interference

    NARCIS (Netherlands)

    van Maanen, Leendert; van Rijn, Hedderik

    To explain latency effects in picture-word interference tasks, cognitive models need to account for both interference and stimulus onset asynchrony (SOA) effects. As opposed to most models of picture-word interference, which model the time course during the task in a ballistic manner, the RACE model

  13. 47 CFR 27.1221 - Interference protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Interference protection. 27.1221 Section 27... Technical Standards § 27.1221 Interference protection. (a) Interference protection will be afforded to BRS... height benchmark (hbm). (c) Protection for Receiving Antennas not Exceeding the Height Benchmark. Absent...

  14. Principles of Optics

    Science.gov (United States)

    Born, Max; Wolf, Emil

    1999-10-01

    Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past forty years. This edition has been thoroughly revised and updated, with new material covering the CAT scan, interference with broad-band light and the so-called Rayleigh-Sommerfeld diffraction theory. This edition also details scattering from inhomogeneous media and presents an account of the principles of diffraction tomography to which Emil Wolf has made a basic contribution. Several new appendices are also included. This new edition will be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

  15. Codebook-based interference alignment for uplink MIMO interference channels

    KAUST Repository

    Lee, Hyun Ho

    2014-02-01

    In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute the transmit precoder and inform its quantized index to the associated user via limited rate feedback link.We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load tomaintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF. © 2014 KICS.

  16. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  17. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  18. Interference Mitigation in Cognitive Femtocells

    DEFF Research Database (Denmark)

    Da Costa, Gustavo Wagner Oliveira; Cattoni, Andrea Fabio; Alvarez Roig, Victor

    2010-01-01

    , management and optimization can be prohibitive. Instead, self-optimization of an uncoordinated deployment should be considered. Cognitive Radio enabled femtocells are considered to be a promising solution to enable self-optimizing femtocells to effectively manage the inter-cell interference, especially...... in densely deployed femto scenarios. In this paper, two key elements of cognitive femtocells are combined: a power control algorithm and a fully distributed dynamic spectrum allocation method. The resulting solution was evaluated through system-level simulations and compared to the separate algorithms...

  19. Destructive Interference in Coherent Backscattering of Light by an Ensemble of Cold Atoms

    International Nuclear Information System (INIS)

    Kupriyanov, D.V.; Larionov, N.V.; Sokolov, I.M.; Havey, M.D.

    2005-01-01

    The coherent backscattering of light by an ensemble of cold atoms located in a magneto-optical trap is investigated theoretically. The dependence of the gain coefficient on the probe frequency is analyzed in a wide spectral range covering the entire hyperfine structure of the excited state. The calculation is performed for 85 Rb atoms. It is found that destructive interference can be observed at certain frequencies, which results in gain coefficients smaller than unity. The angular distribution of scattered light is investigated for corresponding frequencies and the dependence of the shape of the cone of destructive interference on the size of the atomic cloud and its optical thickness is analyzed

  20. Quantitative DIC microscopy using an off-axis self-interference approach.

    Science.gov (United States)

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  1. The Interference of Polarised Light

    Indian Academy of Sciences (India)

    IAS Admin

    the optics of crystals with C V Raman at the Raman Research. Institute (RRI) in ... trate this contribution by means of specific examples, which ... applied to astronomy. The role ... The study of the effect of polarisation states of the two beams on.

  2. Cavity enhanced interference of orthogonal modes in a birefringent medium

    Science.gov (United States)

    Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta

    2018-03-01

    Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.

  3. Coping with Radio Frequency Interference

    Science.gov (United States)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  4. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  5. Filtering algorithm for dotted interferences

    International Nuclear Information System (INIS)

    Osterloh, K.; Buecherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-01-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  6. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  7. Proactive Interference in Human Predictive Learning

    OpenAIRE

    Castro, Leyre; Ortega, Nuria; Matute, Helena

    2002-01-01

    The impairment in responding to a secondly trained association because of the prior training of another (i.e., proactive interference) is a well-established effect in human and animal research, and it has been demonstrated in many paradigms. However, learning theories have been concerned with proactive interference only when the competing stimuli have been presented in compound at some moment of the training phase. In this experiment we investigated the possibility of proactive interference b...

  8. Correlator receiver architecture with PnpN optical thyristor operating as optical hard-limiter

    Science.gov (United States)

    Kang, Tae-Gu; Ho Lee, Su; Park, Soonchul

    2011-07-01

    We propose novel correlator receiver architecture with a PnpN optical thyristor operating as optical hard-limiter, and demonstrate a multiple-access interference rejection of the proposed correlator receiver. The proposed correlator receiver is composed of the 1×2 splitter, optical delay line, 2×1 combiner, and fabricated PnpN optical thyristor. The proposed correlator receiver enhances the system performance because it excludes some combinations of multiple-access interference patterns from causing errors as in optical code-division multiple access systems with conventional optical receiver shown in all previous works. It is found that the proposed correlator receiver can fully reject the interference signals generated by decoding processing and multiple access for two simultaneous users.

  9. Using Interference to Block RFID Tags

    DEFF Research Database (Denmark)

    Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund

    We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag.......We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag....

  10. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  11. Chlorinated Cyanurates: Method Interferences and Application Implications

    Science.gov (United States)

    Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.

  12. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  13. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  14. Perspectives for quantum interference with biomolecules and biomolecular clusters

    International Nuclear Information System (INIS)

    Geyer, P; Sezer, U; Rodewald, J; Mairhofer, L; Dörre, N; Haslinger, P; Eibenberger, S; Brand, C; Arndt, M

    2016-01-01

    Modern quantum optics encompasses a wide field of phenomena that are either related to the discrete quantum nature of light, the quantum wave nature of matter or light–matter interactions. We here discuss new perspectives for quantum optics with biological nanoparticles. We focus in particular on the prospects of matter-wave interferometry with amino acids, nucleotides, polypeptides or DNA strands. We motivate the challenge of preparing these objects in a ‘biomimetic’ environment and argue that hydrated molecular beam sources are promising tools for quantum-assisted metrology. The method exploits the high sensitivity of matter-wave interference fringes to dephasing and shifts in the presence of external perturbations to access and determine molecular properties. (invited comment)

  15. An inter-lighting interference cancellation scheme for MISO-VLC systems

    Science.gov (United States)

    Kim, Kyuntak; Lee, Kyujin; Lee, Kyesan

    2017-08-01

    In this paper, we propose an inter-lighting interference cancellation (ILIC) scheme to reduce the interference between adjacent light-emitting diodes (LEDs) and enhance the transmission capacity of multiple-input-single-output (MISO)-visible light communication (VLC) systems. In indoor environments, multiple LEDs have normally been used as lighting sources, allowing the design of MISO-VLC systems. To enhance the transmission capacity, different data should be simultaneously transmitted from each LED; however, that can lead to interference between adjacent LEDs. In that case, relatively low-received power signals are subjected to large interference because wireless optical systems generally use intensity modulation and direct detection. Thus, only the signal with the highest received power can be detected, while the other received signals cannot be detected. To solve this problem, we propose the ILIC scheme for MISO-VLC systems. The proposed scheme preferentially detects the highest received power signal, and this signal is referred as interference signal by an interference component generator. Then, relatively low-received power signal can be detected by cancelling the interference signal from the total received signals. Therefore, the performance of the proposed scheme can improve the total average bit error rate and throughput of a MISO-VLC system.

  16. Quantum nonlocality of photon pairs in interference in a Mach-Zehnder interferometer

    Czech Academy of Sciences Publication Activity Database

    Trojek, P.; Peřina ml., Jan

    2003-01-01

    Roč. 53, č. 4 (2003), s. 335-349 ISSN 0011-4626 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : entangled photon pairs * nonlocal interference * Mach-Zehender interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.263, year: 2003

  17. Design of 1x2 wavelength demultiplexer based on multimode interference

    Czech Academy of Sciences Publication Activity Database

    Prajzler, Václav; Nekvindová, P.; Varga, Marián; Kromka, Alexander; Remeš, Zdeněk

    2014-01-01

    Roč. 16, 11-12 (2014), s. 1226-1231 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : demultiplexer * multimode interference * nanocrystalline diamond Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.429, year: 2014

  18. Structure with improved self-imaging in its graded-index multimode interference region

    International Nuclear Information System (INIS)

    Yin Rui; Jiang Xiaoqing; Yang Jianyi; Wang Minghua

    2002-01-01

    Propagation constant errors (PCEs) of guided modes in regions of multimode interference in optical networks were analyzed. Results show that a graded-index waveguide can effectively decrease the PCEs. An example based on an exponential function is presented. Numerical results show that addition of a graded-index waveguide greatly improves device performance in this structure

  19. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    -dynamic discontinuities, the intensities corresponding to the transition from regular to irregular interference were described. Numerical calculations of the shock-wave structure transformation in the conditions of hysteresis were performed. The results were compared with the experiments carried out by hydraulic analogy method. Practical significance. Results of the work complement well the theory of stationary gas-dynamic discontinuities interference and can be used at designing of perspective images of supersonic and hypersonic aircraft.

  20. Stroop interference and reverse Stroop interference as potential measures of cognitive ability during exposure to stress

    OpenAIRE

    景山, 望; 箱田, 裕司; Kageyama, Nozomu; Hakoda, Yuji

    2011-01-01

    Stroop interference and reverse-Stroop interference are one of the easiest and most powerful effects to demonstrate in a classroom. Therefore, they have been studied not only through basic research in the laboratory but also through applied research in extreme environments. First, we reviewed studies tha investigated Stroop interference and reverse-Stroop interference as hallmark measures of selective at attention and conflict resolution. Second, we reviewed studies that examined the effects ...

  1. Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence.

    Directory of Open Access Journals (Sweden)

    Gregory C Burgess

    2010-09-01

    Full Text Available A critical aspect of executive control is the ability to limit the adverse effects of interference. Previous studies have shown activation of left ventrolateral prefrontal cortex after the onset of interference, suggesting that interference may be resolved in a reactive manner. However, we suggest that interference control may also operate in a proactive manner to prevent effects of interference. The current study investigated the temporal dynamics of interference control by varying two factors - interference expectancy and fluid intelligence (gF - that could influence whether interference control operates proactively versus reactively.A modified version of the recent negatives task was utilized. Interference expectancy was manipulated across task blocks by changing the proportion of recent negative (interference trials versus recent positive (facilitation trials. Furthermore, we explored whether gF affected the tendency to utilize specific interference control mechanisms. When interference expectancy was low, activity in lateral prefrontal cortex replicated prior results showing a reactive control pattern (i.e., interference-sensitivity during probe period. In contrast, when interference expectancy was high, bilateral prefrontal cortex activation was more indicative of proactive control mechanisms (interference-related effects prior to the probe period. Additional results suggested that the proactive control pattern was more evident in high gF individuals, whereas the reactive control pattern was more evident in low gF individuals.The results suggest the presence of two neural mechanisms of interference control, with the differential expression of these mechanisms modulated by both experimental (e.g., expectancy effects and individual difference (e.g., gF factors.

  2. The Nature and Diagnosis of Interference Phenomena.

    Science.gov (United States)

    Denison, Norman

    1966-01-01

    The recognition of the systematic nature of the interference of the mother tongue when learning a second language is among the most significant advances in linguistics for the teaching and learning of foreign languages. The work of Weinreich showed that interference between language systems--the absorption of loan words, calques, and phonological,…

  3. Interferences in place attachment: implications for wilderness

    Science.gov (United States)

    Erin K. Sharpe; Alan W. Ewert

    2000-01-01

    Previous research on place attachment has tended to focus on attachment formation, with relatively little attention given to factors that disrupt or interfere with formed place attachments. Interferences to attachments are a worthy research area for two reasons: 1) The factors of place attachment are often more salient when being disrupted, and 2) place attachment...

  4. Interference and the Law of Energy Conservation

    Science.gov (United States)

    Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.

    2014-01-01

    Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…

  5. 47 CFR 24.237 - Interference protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Interference protection. 24.237 Section 24.237... SERVICES Broadband PCS § 24.237 Interference protection. (a) All licensees are required to coordinate their... protection criterion shall be such that the interfering signal will not produce more than 1.0 dB degradation...

  6. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  7. Electron quantum interferences and universal conductance fluctuations

    International Nuclear Information System (INIS)

    Benoit, A.; Pichard, J.L.

    1988-05-01

    Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr

  8. Complete destructive interference of partially coherent fields

    NARCIS (Netherlands)

    Gbur, G.J.; Visser, T.D.; Wolf, E.

    2004-01-01

    A three-point source model is used to study the interference of wavefields which are mutually partially coherent. It is shown that complete destructive interference of the fields is possible in such a "three-pinhole interferometer" even if the sources are not fully coherent with respect to each

  9. STRUCTURE FORMATION PRINCIPLES OF INTERFERENCE BEAM SPLITTERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2012-01-01

    Full Text Available The methodology of interference beam splitters construction, formed by symmetric cells of dielectric layers is considered. The methodology of short-wave and long-wave interference beam splitters formation is given. The impact analysis of symmetric cells number and their structure on output parameters is considered.

  10. Asymptomatic Bacteriuria and Bacterial Interference.

    Science.gov (United States)

    Nicolle, Lindsay E

    2015-10-01

    Asymptomatic bacteriuria is very common. In healthy women, asymptomatic bacteriuria increases with age, from women age 80 years, but is uncommon in men until after age 50 years. Individuals with underlying genitourinary abnormalities, including indwelling devices, may also have a high frequency of asymptomatic bacteriuria, irrespective of age or gender. The prevalence is very high in residents of long-term-care facilities, from 25% to 50% of women and 15% to 40% of men. Escherichia coli is the most frequent organism isolated, but a wide variety of other organisms may occur. Bacteriuria may be transient or persist for a prolonged period. Pregnant women with asymptomatic bacteriuria identified in early pregnancy and who are untreated have a risk of pyelonephritis later in pregnancy of 20% to 30%. Bacteremia is frequent in bacteriuric subjects following mucosal trauma with bleeding, with 5% to 10% of patients developing severe sepsis or septic shock. These two groups with clear evidence of negative outcomes should be screened for bacteriuria and appropriately treated. Asymptomatic bacteriuria in other populations is benign and screening and treatment are not indicated. Antimicrobial treatment has no benefits but is associated with negative outcomes including reinfection with antimicrobial resistant organisms and a short-term increased frequency of symptomatic infection post-treatment. The observation of increased symptomatic infection post-treatment, however, has led to active investigation of bacterial interference as a strategy to prevent symptomatic episodes in selected high risk patients.

  11. Belief attribution despite verbal interference.

    Science.gov (United States)

    Forgeot d'Arc, Baudouin; Ramus, Franck

    2011-05-01

    False-belief (FB) tasks have been widely used to study the ability of individuals to represent the content of their conspecifics' mental states (theory of mind). However, the cognitive processes involved are still poorly understood, and it remains particularly debated whether language and inner speech are necessary for the attribution of beliefs to other agents. We present a completely nonverbal paradigm consisting of silent animated cartoons in five closely related conditions, systematically teasing apart different aspects of scene analysis and allowing the assessment of the attribution of beliefs, goals, and physical causation. In order to test the role of language in belief attribution, we used verbal shadowing as a dual task to inhibit inner speech. Data on 58 healthy adults indicate that verbal interference decreases overall performance, but has no specific effect on belief attribution. Participants remained able to attribute beliefs despite heavy concurrent demands on their verbal abilities. Our results are most consistent with the hypothesis that belief attribution is independent from inner speech.

  12. Illusion induced overlapped optics.

    Science.gov (United States)

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  13. Laser self-mixing interference fibre sensor

    International Nuclear Information System (INIS)

    Zhu Jun; Zhao Yan; Jin Guofan

    2008-01-01

    Fibre sensors exhibit a number of advantages over other sensors such as high sensitivity, electric insulation, corrosion resistance, interference rejection and so on. And laser self-mixing interference can accurately detect the phase difference of feedback light. In this paper, a novel laser self-mixing interference fibre sensor that combines the advantages of fibre sensors with those of laser self-mixing interference is presented. Experimental configurations are set up to study the relationship between laser power output and phase of laser feedback light when the fibre trembles or when the fibre is stretched or pressed. The theoretical analysis of pressure sensors based on laser self-mixing interference is indicated to accord with the experimental results. (classical areas of phenomenology)

  14. Collision-induced destructive quantum interference

    International Nuclear Information System (INIS)

    Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng

    2005-01-01

    We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture

  15. Superhydrophobic surfaces: from fluid mechanics to optics

    NARCIS (Netherlands)

    Rathgen, H.

    2008-01-01

    In this thesis optical diraction was used to study the static and dynamic properties of microscopic liquid-gas interfaces that span between adjacent ridges of a superhydrophobic surface. An observed interference phenomenon at grazing incident angle led to the development of optical gratings with a

  16. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed H.; Salhab, Anas; Zummo, Salam; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered

  17. Optic neuritis

    Science.gov (United States)

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  18. Experimental occlusal interferences. Part II. Masseteric EMG responses to an intercuspal interference.

    Science.gov (United States)

    Christensen, L V; Rassouli, N M

    1995-07-01

    In 12 subjects, a rigid unilateral intercuspal interference (minimum mean height of 0.24 mm) was placed on either the right or left mandibular second premolar and first molar (sagittal physiological equilibrium point of the hemimandibular dental arch). During brisk and forceful clenching on the interference, bipolar surface electromyograms were obtained from the right and left masseter muscles. On the side opposite the interference, myoelectric clenching activity was significantly reduced. Correlation analyses showed that the interference elicited a non-linear (complex) co-ordination of the amplitude, but not the duration, of bilateral masseteric clenching activity, i.e. frequently there was significant motor facilitation on the side of the interference, and significant motor inhibition on the side opposite the interference. Theoretical considerations predicted that brief clenching on the interference would easily lead to frontal plane rotatory motions of the mandible which, indeed, occurred clinically.

  19. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    International Nuclear Information System (INIS)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-01-01

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  20. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    2017-01-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  1. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    Science.gov (United States)

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  2. Neurogenesis-mediated forgetting minimizes proactive interference.

    Science.gov (United States)

    Epp, Jonathan R; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A; Frankland, Paul W

    2016-02-26

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting.

  3. Fingerprint extraction from interference destruction terahertz spectrum.

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  4. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  5. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  6. Experimental occlusal interferences. Part III. Mandibular rotations induced by a rigid interference.

    Science.gov (United States)

    Rassouli, N M; Christensen, L V

    1995-10-01

    A rigid intercuspal interference (minimum mean height of 0.24 mm) was placed on either the right or left mandibular second premolar and first molar of 12 subjects. During brisk and forceful biting on the interference, rotational electrognathography measured maximum torque of the right and left mandibular condyles in the frontal and horizontal planes of orientation. All subjects showed frontal plan upward rotation (mean of 0.7 degrees) of the mandibular condyle contralateral to the interference. In 33% of the subjects there was no horizontal plane backward rotation. In 58% of the subjects there was horizontal plane backward rotation (mean of 0.5 degrees) of the mandibular condyle ipsilateral to the interference, and in one subject (8%) there was backward horizontal plane rotation (0.1 degree) of the mandibular condyle contralateral to the interference. It was inferred that the masseter muscle, ipsilateral to the interference, generated negative work in order to decelerate frontal plane 'unseating' of the mandibular condyle ipsilateral to the interference. It was inferred that the masseter muscle, contralateral to the interference, produced positive work in order to accelerate frontal plane 'seating' of the mandibular condyle contralateral to the interference. Finally, it was speculated that the impact forces of frontal plane 'seating' of the mandibular condyle, contralateral to the interference, might lead to 'vacuum sticking' of the temporomandibular joint disc because of the formation of negative hydrostatic pressures.

  7. Non-Invasive Study of Nerve Fibres using Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, A. R.; Brazhe, N. A.; Rodionova, N. N.

    2008-01-01

    This paper presents the results of a laser interference microscopy study of the morphology and dynamical properties of myelinated nerve fibres. We describe the principles of operation of the phase-modulated laser interference microscope and show how this novel technique allows us to obtain...... information non-invasively about the internal structure of different regions of a nerve fibre. We also analyse the temporal variations in the internal optical properties in order to detect the rhythmic activity in the nerve fibre at different time scales and to shed light on the underlying biological...

  8. Detection device for control rod interference

    International Nuclear Information System (INIS)

    Saito, Noboru.

    1984-01-01

    Purpose: To enable to detect the mechanical interference or friction between a control rod and a channel box automatically, simply and rapidly. Constitution: A signal from a gate circuit and a signal from a comparison mechanism are inputted into an AND circuit if a control rod has not been displaced by a predetermined distance within a prescribed time Δt after the output of an insertion or withdrawal signal for the control rod, by which a control-rod-interference signal is outputted from the AND circuit. Accordingly, the interference between the control rod and the channel box can be detected automatically, easily and rapidly. Furthermore, by properly adjusting the prescribed time Δt set by the gate circuit, the degree of the interference can also be detected, whereby the safety and the reliability of the reactor can be improved significantly. (Horiuchi, T.)

  9. Cognitive interference management in heterogeneous networks

    CERN Document Server

    Marabissi, Dania

    2015-01-01

    This brief investigates the role of interference management in Heterogeneous Networks (Het Nets), focusing on cognitive approaches and the use of beamforming. Key concepts of Het Nets are introduced and different deployment strategies are examined, such as sharing the same frequency band of the macro cells or using new high frequency bands. Particular attention is devoted to co-channel deployment and to the problem of interference management, addressing various strategies that can be adopted to handle the interference between the cells. In addition, the brief explores cognitive small cells which are able to avoid or limit interference by using suitable beamforming and resource allocation schemes. The suggested solutions are supported by numerical results in terms of performance evaluations and comparisons.

  10. Relay self interference minimisation using tapped filter

    KAUST Repository

    Jazzar, Saleh; Al-Naffouri, Tareq Y.

    2013-01-01

    In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage

  11. Assessment of life interference in anxious children

    DEFF Research Database (Denmark)

    Rapee, Ronald; Thastum, Mikael; Chavira, Denise

    associated with mental disorders arguably the key issue of relevance to both sufferers and therapists. Yet among both childhood and adult disorders the primary focus in terms of assessment and treatment is on symptoms, with far less attention paid to the impact of these symptoms on the sufferer's life....... This imbalance has particularly characterised research on child anxiety where few studies have examined either the impact of anxiety disorders on children's lives or the effects of treatments on life interference. To some extent this lack of attention has come from a lack of well developed measures to assess...... life interference derived from symptoms of anxiety. Broader and more general life interference measures tend to have minimal relevance for children with anxiety disorders. The current paper will describe two measures of life interference that have been developed at the Centre for Emotional Health...

  12. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  13. Release From Proactive Interference with Young Children

    Science.gov (United States)

    Cann, Linda F.; And Others

    1973-01-01

    This demonstration of release from proactive interference with young children confirms the suggestion that the technique is appropriate for the study of developmental changes in the encoding of information. (Authors/CB)

  14. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  15. Resolving Business Process Interference via Dynamic Reconfiguration

    NARCIS (Netherlands)

    van Beest, Nick R. T. P.; Bulanov, Pavel; Wortmann, Hans; Lazovik, Alexander; Maglio, PP; Weske, M; Yang, J; Fantinato, M

    2010-01-01

    For business processes supported by service-oriented information systems, concurrent execution of business processes still may yield undesired business outcomes as a result of process interference. For instance, concurrent processes may partially depend on a semantically identical process variable,

  16. Fading and interference mitigation in wireless communications

    CERN Document Server

    Panic, Stefan; Anastasov, Jelena; Spalevic, Petar

    2013-01-01

    The rapid advancement of various wireless communication system services has created the need to analyze the possibility of their performance improvement. Introducing the basic principles of digital communications performance analysis and its mathematical formalization, Fading and Interference Mitigation in Wireless Communications will help you stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference.The book presents a unified method for computing the performance of digital communication sys

  17. Visual Working Memory Capacity and Proactive Interference

    OpenAIRE

    Hartshorne, Joshua

    2008-01-01

    BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/P...

  18. Cross-limb interference during motor learning.

    Directory of Open Access Journals (Sweden)

    Benedikt Lauber

    Full Text Available It is well known that following skill learning, improvements in motor performance may transfer to the untrained contralateral limb. It is also well known that retention of a newly learned task A can be degraded when learning a competing task B that takes place directly after learning A. Here we investigate if this interference effect can also be observed in the limb contralateral to the trained one. Therefore, five different groups practiced a ballistic finger flexion task followed by an interfering visuomotor accuracy task with the same limb. Performance in the ballistic task was tested before the training, after the training and in an immediate retention test after the practice of the interference task for both the trained and the untrained hand. After training, subjects showed not only significant learning and interference effects for the trained limb but also for the contralateral untrained limb. Importantly, the interference effect in the untrained limb was dependent on the level of skill acquisition in the interfering motor task. These behavioural results of the untrained limb were accompanied by training specific changes in corticospinal excitability, which increased for the hemisphere ipsilateral to the trained hand following ballistic training and decreased during accuracy training of the ipsilateral hand. The results demonstrate that contralateral interference effects may occur, and that interference depends on the level of skill acquisition in the interfering motor task. This finding might be particularly relevant for rehabilitation.

  19. Interference in the processing of adjunct control

    Directory of Open Access Journals (Sweden)

    Dan eParker

    2015-09-01

    Full Text Available Recent research on the memory operations used in language comprehension has revealed a selective profile of interference effects during memory retrieval. Dependencies such as subject-verb agreement show strong facilitatory interference effects from structurally inappropriate but feature-matching distractors, leading to illusions of grammaticality (Dillon, Mishler, Sloggett, & Phillips, 2013; Pearlmutter, Garnsey, & Bock, 1999; Wagers, Lau, & Phillips, 2009. In contrast, dependencies involving reflexive anaphors are generally immune to interference effects (Dillon et al., 2013; Sturt, 2003; Xiang, Dillon, & Phillips, 2009. This contrast has led to the proposal that all anaphors that are subject to structural constraints are immune to facilitatory interference. Here we use an animacy manipulation to examine whether adjunct control dependencies, which involve an interpreted anaphoric relation between a null subject and its licensor, are also immune to facilitatory interference effects. Our results show reliable facilitatory interference in the processing of adjunct control dependencies, which challenges the generalization that anaphoric dependencies as a class are immune to such effects. To account for the contrast between adjunct control and reflexive dependencies, we suggest that variability within anaphora could reflect either an inherent primacy of animacy cues in retrieval processes, or differential degrees of match between potential licensors and the retrieval probe.

  20. Investigation of Interference Models for RFID Systems

    Directory of Open Access Journals (Sweden)

    Linchao Zhang

    2016-02-01

    Full Text Available The reader-to-reader collision in an RFID system is a challenging problem for communications technology. In order to model the interference between RFID readers, different interference models have been proposed, mainly based on two approaches: single and additive interference. The former only considers the interference from one reader within a certain range, whereas the latter takes into account the sum of all of the simultaneous interferences in order to emulate a more realistic behavior. Although the difference between the two approaches has been theoretically analyzed in previous research, their effects on the estimated performance of the reader-to-reader anti-collision protocols have not yet been investigated. In this paper, the influence of the interference model on the anti-collision protocols is studied by simulating a representative state-of-the-art protocol. The results presented in this paper highlight that the use of additive models, although more computationally intensive, is mandatory to improve the performance of anti-collision protocols.

  1. Understanding quantum interference in general nonlocality

    International Nuclear Information System (INIS)

    Wang Haijun

    2011-01-01

    In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].

  2. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    Science.gov (United States)

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  3. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spe...

  4. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  5. Exogenous sample contamination. Sources and interference.

    Science.gov (United States)

    Cornes, Michael P

    2016-12-01

    Clinical laboratory medicine is involved in the vast majority of patient care pathways. It has been estimated that pathology results inform 60-70% of critical patient care decisions. The primary goal of the laboratory is to produce precise and accurate results which reflect the true situation in vivo. It is not surprising that interference occurs in laboratory analysis given the complexity of some of the assays used to perform them. Interference is defined as "the effect of a substance upon any step in the determination of the concentration or catalytic activity of the metabolite". Exogenous interferences are defined as those that derive from outside of the body and are therefore not normally found in a specimen and can cause either a positive or negative bias in analytical results. Interferences in analysis can come from various sources and can be classified as endogenous or exogenous. Exogenous substances could be introduced at any point in the sample journey. The laboratory must take responsibility for the quality of results produced. It has a responsibility to have processes in place to identify and minimise the occurrence and effect contamination and interference. To do this well the laboratory needs to work with clinicians and manufacturers. Failure to identify an erroneous result could have an impact on patient care, patient safety and also on hospital budgets. However it is not always easy to recognise interferences. This review summarises the types and sources of exogenous interference and some steps to minimise the impact they have. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  6. Enhanced optomechanical readout using optical coalescence

    DEFF Research Database (Denmark)

    Genes, Claudiu; Xuereb, André; Pupillo, Guido

    2013-01-01

    of a symmetric Fabry-Pérot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy and interfere in the cavity output field. In the case of a movable middle reflector we show that the interference...... in this generic “optical coalescence” phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics....

  7. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in [Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-15

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  8. DNA conformation on surfaces measured by fluorescence self-interference.

    Science.gov (United States)

    Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R

    2006-02-21

    The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.

  9. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  10. Reciprocity in optics

    International Nuclear Information System (INIS)

    Potton, R J

    2004-01-01

    The application of reciprocity principles in optics has a long history that goes back to Stokes, Lorentz, Helmholtz and others. Moreover, optical applications need to be seen in the context of applications of reciprocity in particle scattering, acoustics, seismology and the solution of inverse problems, generally. In some of these other fields vector wave propagation is, as it is in optics, of the essence. For this reason the simplified approach to light wave polarization developed by, and named for, Jones is explored initially to see how and to what extent it encompasses reciprocity. The characteristic matrix of a uniform dielectric layer, used in the analysis of interference filters and mirrors, is reciprocal except when the layer is magneto-optical. The way in which the reciprocal nature of a characteristic matrix can be recognized is discussed next. After this, work on the influence of more realistic attributes of a dielectric stack on reciprocity is reviewed. Some of the numerous technological applications of magneto-optic non-reciprocal media are identified and the potential of a new class of non-reciprocal components is briefly introduced. Finally, the extension of the classical reciprocity concept to systems containing components that have nonlinear optical response is briefly mentioned

  11. Epulis and pyogenic granuloma with occlusal interference

    Directory of Open Access Journals (Sweden)

    Widowati Witjaksono

    2005-06-01

    Full Text Available In dental clinic of Hospital University Science Malaysia (HUSM, there were cases with Localized Gingival Enlargement (LGE in the oral cavity with occlusal interference. In this study, three cases were observed. They were a 13 - year- old female with fibrous lge around 31 and 32 with occlusal interference in protrusive movement due to X bite, a 15 - year – old female with pyogenic granuloma near 11 & 21 with occlusal interference due to deep bite; and a 24 – year – old female who was eight months in pregnancy with pyogenic granuloma on the 34-35 and severe generalized pregnancy gingivitis with occlusal interference in centric occlusion and lateral movement. Clinical and histopathological diagnosis of the first case showed fibrous epulis, whereas the second and third cases disclosed pyogenic granuloma. Chronic trauma of the gingiva due to occlusal interference was assumed to be the cause of those LGE in case 1 and 2, while in case 3 poor oral hygiene and chronic trauma were assumed to be the etiologic factors.

  12. Autobiographical thinking interferes with episodic memory consolidation.

    Directory of Open Access Journals (Sweden)

    Michael Craig

    Full Text Available New episodic memories are retained better if learning is followed by a few minutes of wakeful rest than by the encoding of novel external information. Novel encoding is said to interfere with the consolidation of recently acquired episodic memories. Here we report four experiments in which we examined whether autobiographical thinking, i.e. an 'internal' memory activity, also interferes with episodic memory consolidation. Participants were presented with three wordlists consisting of common nouns; one list was followed by wakeful rest, one by novel picture encoding and one by autobiographical retrieval/future imagination, cued by concrete sounds. Both novel encoding and autobiographical retrieval/future imagination lowered wordlist retention significantly. Follow-up experiments demonstrated that the interference by our cued autobiographical retrieval/future imagination delay condition could not be accounted for by the sound cues alone or by executive retrieval processes. Moreover, our results demonstrated evidence of a temporal gradient of interference across experiments. Thus, we propose that rich autobiographical retrieval/future imagination hampers the consolidation of recently acquired episodic memories and that such interference is particularly likely in the presence of external concrete cues.

  13. Neural mechanisms of proactive interference-resolution.

    Science.gov (United States)

    Nee, Derek Evan; Jonides, John; Berman, Marc G

    2007-12-01

    The ability to mitigate interference from information that was previously relevant, but is no longer relevant, is central to successful cognition. Several studies have implicated left ventrolateral prefrontal cortex (VLPFC) as a region tied to this ability, but it is unclear whether this result generalizes across different tasks. In addition, it has been suggested that left anterior prefrontal cortex (APFC) also plays a role in proactive interference-resolution although support for this claim has been limited. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate the role of these regions in resolving proactive-interference across two different tasks performed on the same subjects. Results indicate that both left VLPFC and left APFC are involved in the resolution of proactive interference across tasks. However, different functional networks related to each region suggest dissociable roles for the two regions. Additionally, regions of the posterior cingulate gyrus demonstrated unique involvement in facilitation when short- and long-term memory converged. This pattern of results serves to further specify models of proactive interference-resolution.

  14. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    Science.gov (United States)

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  15. Iterative Soft Decision Interference Cancellation for DS-CDMA Employing the Distribution of Interference

    Directory of Open Access Journals (Sweden)

    Gerstacker WolfgangH

    2010-01-01

    Full Text Available A well-known receiver strategy for direct-sequence code-division multiple-access (DS-CDMA transmission is iterative soft decision interference cancellation. For calculation of soft estimates used for cancellation, the distribution of residual interference is commonly assumed to be Gaussian. In this paper, we analyze matched filter-based iterative soft decision interference cancellation (MF ISDIC when utilizing an approximation of the actual probability density function (pdf of residual interference. In addition, a hybrid scheme is proposed, which reduces computational complexity by considering the strongest residual interferers according to their pdf while the Gaussian assumption is applied to the weak residual interferers. It turns out that the bit error ratio decreases already noticeably when only a small number of residual interferers is regarded according to their pdf. For the considered DS-CDMA transmission the bit error ratio decreases by 80% for high signal-to-noise ratios when modeling all residual interferers but the strongest three to be Gaussian distributed.

  16. Experimental occlusal interferences. Part IV. Mandibular rotations induced by a pliable interference.

    Science.gov (United States)

    Christensen, L V; Rassouli, N M

    1995-11-01

    In 12 subjects, a pliable, yet unbreakable, intercuspal interference (aluminum shim onlay splint; uniform height of 0.25 mm) was placed between either the right or left maxillary and mandibular second premolars and first molars. During brief and forceful biting (dynamic chewing stroke of about 20 kg force) the interference emulated a semisoft food bolus, and at the end of biting (subsequent static clenching stroke of about 20 kg force) it emulated a rigid metal interference. During dynamic/static biting, rotational electrognathography measured maximum frontal and horizontal plane torque of the right and left mandibular condyles. Eleven subjects (92%) showed frontal plane upward rotation (mean of 1.0 degree) of the condyle contralateral to the interference, and one subject (8%) showed frontal plane upward rotation (0.4 degree) of the condyle ipsilateral to the interference. Two subjects (17%) showed no horizontal plane rotation; seven subjects (58%) showed backward rotation (mean of 0.4 degree) of the condyle contralateral to the interference; and three subjects (25%) showed backward rotation (mean of 0.3 degree) of the condyle ipsilateral to the interference. It is suggested that, in the presence of an occlusal interference, mastication may have both short- and long-term detrimental effects.

  17. Interference Calculus A General Framework for Interference Management and Network Utility Optimization

    CERN Document Server

    Schubert, Martin

    2012-01-01

    This book develops a mathematical framework for modeling and optimizing interference-coupled multiuser systems. At the core of this framework is the concept of general interference functions, which provides a simple means of characterizing interdependencies between users. The entire analysis builds on the two core axioms scale-invariance and monotonicity. The proposed network calculus has its roots in power control theory and wireless communications. It adds theoretical tools for analyzing the typical behavior of interference-coupled networks. In this way it complements existing game-theoretic approaches. The framework should also be viewed in conjunction with optimization theory. There is a fruitful interplay between the theory of interference functions and convex optimization theory. By jointly exploiting the properties of interference functions, it is possible to design algorithms that outperform general-purpose techniques that only exploit convexity. The title “network calculus” refers to the fact tha...

  18. Mitigation of MIMO Co-Channel Interference using robust interference cancellation receiver

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; De Carvalho, Elisabeth; Prasad, Ramjee

    2007-01-01

    (STBC) link may become equivalent to an interfering Spatial Multiplexing (SM) link. Using this knowledge and understanding, we propose an interference cancellation receiver robust to different types of MIMO interferers at cell edge for the Downlink (DL) of cellular systems. The receiver systematically...... performs a multiple symbol processing: this is the appropriate processing when the signal of interest or the signal of interferer is correlated across symbols, which is the case for STBC transmission. We evaluated different link combinations in terms of Signal to Interference and Noise Ratio (SINR......) statistics and Bit Error Rate (BER) performance in cellular Orthogonal Frequency Division Multiple Access (OFDMA) systems. We have found that the proposed multiple-symbol linear interference cancellation receiver performs satisfactorily when any kind of single 'logical' stream MIMO scheme is present...

  19. Time and interference: Effects on working memory.

    Science.gov (United States)

    Botto, Marta; Palladino, Paola

    2016-05-01

    This study tested predictions from the time-based resource-sharing (TBRS) model with a classical verbal working memory (WM) task, where target and non-target information interfere strongly with each other. Different predictions can be formulated according to the dominant perspectives (TBRS and interference hypothesis) on the role of inhibitory control in WM task performance. Here, we aimed to trace the activation of irrelevant information, examining priming effects in a lexical decision task immediately following WM recall. Results indicate the roles of both time and interference constraints in determining task performance. In particular, the role of time available seemed crucial at the highest WM loads (i.e., 3 and 4 memoranda). These were also associated with a higher activation of no-longer-relevant information but, in this case, independently from time available for processing. © 2015 The British Psychological Society.

  20. Autonomy, Competence and Non-interference.

    Science.gov (United States)

    Roberts, Joseph T F

    2017-12-30

    In light of the variety of uses of the term autonomy in recent bioethics literature, in this paper, I suggest that competence, not being as contested, is better placed to play the anti-paternalistic role currently assigned to autonomy. The demonstration of competence, I will argue, can provide individuals with robust spheres of non-interference in which they can pursue their lives in accordance with their own values. This protection from paternalism is achieved by granting individuals rights to non-interference upon demonstration of competence. In this paper, I present a risk-sensitive account of competence as a means of grounding rights to non-interference. On a risk-sensitive account of competence individuals demonstrate their competence by exercising three capacities to the extent necessary to meet a threshold determined by the riskiness of the decision. These three capacities are the capacity to (i) acquire knowledge, (ii) use instrumental rationality, and (iii) form and revise a life plan.

  1. Interference Reduction Selected Measurement Signals of Ships

    Directory of Open Access Journals (Sweden)

    Jan Monieta

    2014-08-01

    Full Text Available The paper presents problems encountered at the signal processing of mechanical values with electric methods. Depending on the measured quantity, the location of the sensors and the analysis frequency band, they are differently interferences. The article presents the results of applying the analysis of parameters of working and accompanying process marine medium speed reciprocating engines in the time, amplitude, frequency domain and wavelet analysis to select a reasonable method. The applied signal acquisition program allows you to perform some analysis of signals in different areas and the transformation of the data to other programs. The ways of interference reducing at various stages of their occurrence and analysis are presented. [b]Keywords[/b]: electrical signals, domain analysis, measurement interference

  2. Doubly differential diffraction at a time grating in above-threshold ionization: Intracycle and intercycle interferences

    Energy Technology Data Exchange (ETDEWEB)

    Arbo, Diego G., E-mail: diego@iafe.uba.ar [Institute for Astronomy and Space Physics, IAFE (CONICET-UBA), CC 67, Suc. 28 (1428) Buenos Aires (Argentina); Ishikawa, Kenichi L. [Photon Science Center, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Persson, Emil; Burgdoerfer, Joachim [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrass e 8-10/136, A-1040 Vienna (Austria)

    2012-05-15

    We analyze the doubly differential electron distribution in atomic above-threshold ionization by a linearly-polarized short-laser pulse. We generalize the one-dimensional (1D) simple man's model (SMM) of Arbo et al. , to a three dimensional (3D) description by using the saddle-point approximation (SPA). We prove that the factorization of the photoelectron spectrum in terms of intracycle and intercycle interference patterns can be extended to the doubly differential momentum distribution. Intercycle interference corresponds to the well-known ATI peaks of the photoelectron spectrum arising from the superposition of electron trajectories released at complex times during different optical cycles, whereas intracycle interference comes from the coherent superposition of trajectories released within the same optical cycle. We verify the SPA predictions by comparison with time-dependent distorted wave calculations and the solutions of the full 3D time-dependent Schroedinger equation (TDSE). An analytical expression for the complete interference pattern within the SPA is presented showing excellent agreement with the numerical calculations. We show that the recently proposed semiclassical description based on the SMM in terms of a diffraction process at a time grating remains unchanged when considering the full 3D problem within the SPA.

  3. Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-06-01

    Full Text Available In this paper, a method of using a one-dimensional position-sensitive detector (PSD by replacing charge-coupled device (CCD to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe’s phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.

  4. Third party interference monitoring based on distributed fiber sensor and field trail

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yongjun; Tan, Dongjie; Juan, Zheng; Wang, Likun; Chen, Pengchao [PetroChina Pipeline R and D Center (China)

    2009-07-01

    This paper describes a novel pipeline third party interference (TPI) monitoring system, which detects micro vibration along pipeline, through fiber cable laying in one ditch. A special optical path was designed by redundant optical fiber cores among fiber cable. This new sensor technology detects illegal excavation through detect phase changes. This innovative signal analysis technology avoids the disturbance of light intensity fluctuation and phase fading. Excavator, digging and impact of freely falling body were used to test this pipeline monitoring system. Different type of cable, such as straight buried cable, steel wire armored cable and silicone tube, were all test in order to test sensitivity. Field trail shows that this system can detect, alarm and. locate different third party interference along pipeline. (author)

  5. 32nm 1-D regular pitch SRAM bitcell design for interference-assisted lithography

    Science.gov (United States)

    Greenway, Robert T.; Jeong, Kwangok; Kahng, Andrew B.; Park, Chul-Hong; Petersen, John S.

    2008-10-01

    As optical lithography advances into the 45nm technology node and beyond, new manufacturing-aware design requirements have emerged. We address layout design for interference-assisted lithography (IAL), a double exposure method that combines maskless interference lithography (IL) and projection lithography (PL); cf. hybrid optical maskless lithography (HOMA) in [2] and [3]. Since IL can generate dense but regular pitch patterns, a key challenge to deployment of IAL is the conversion of existing designs to regular-linewidth, regular-pitch layouts. In this paper, we propose new 1-D regular pitch SRAM bitcell layouts which are amenable to IAL. We evaluate the feasibility of our bitcell designs via lithography simulations and circuit simulations, and confirm that the proposed bitcells can be successfully printed by IAL and that their electrical characteristics are comparable to those of existing bitcells.

  6. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  7. Frequent video game players resist perceptual interference.

    Directory of Open Access Journals (Sweden)

    Aaron V Berard

    Full Text Available Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT, a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  8. Frequent video game players resist perceptual interference.

    Science.gov (United States)

    Berard, Aaron V; Cain, Matthew S; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT), a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  9. An interference model of visual working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. LANGUAGE AND CULTURE INTERFERENCE IN PLURILINGUAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Hackett-Jones, A.V.

    2016-09-01

    Full Text Available The article deals with interlingual phenomena that occur in the process of multiple language acquisition in a learning environment. The notions of language interference and transfer put forward by the theories of bilingualism, give useful insights when applied to the modern day educational trends. Language and culture interference is an important aspect to be considered with regard to teaching of plurilingual learners, whose communicative competence is formed on the basis of several linguistic and cultural systems that interact with each other and exert mutual influence.

  11. Sensorimotor Interference When Reasoning About Described Environments

    Science.gov (United States)

    Avraamides, Marios N.; Kyranidou, Melina-Nicole

    The influence of sensorimotor interference was examined in two experiments that compared pointing with iconic arrows and verbal responding in a task that entailed locating target-objects from imagined perspectives. Participants studied text narratives describing objects at locations around them in a remote environment and then responded to targets from memory. Results revealed only minor differences between the two response modes suggesting that bodily cues do not exert severe detrimental interference on spatial reasoning from imagined perspective when non-immediate described environments are used. The implications of the findings are discussed.

  12. Laser diode current controller with a high level of protection against electromagnetic interference

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Jedlička, Petr; Číp, Ondřej; Růžička, Bohdan

    2003-01-01

    Roč. 74, č. 8 (2003), s. 3816 - 3819 ISSN 0034-6748 R&D Projects: GA AV ČR IBS2508201; GA AV ČR IAA2065803; GA ČR GA101/01/1104; GA AV ČR IBS2065009 Institutional research plan: CEZ:AV0Z2065902 Keywords : laser diode * electromagnetic interference * ripple free voltage Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.343, year: 2003

  13. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    Science.gov (United States)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  14. Combine EPR and two-slit experiments: Interference of advanced waves

    Science.gov (United States)

    Klyshko, D. N.

    1988-10-01

    A nonclassical interference effect, using two-photon correlations in nonlinear optical interactions, is discussed. The apparent nonlocality could be conveniently interpreted in terms of advanced waves, emitted by one detector toward the other. A new Bell-type experiment is proposed, in which the measured photon's parameter is the wave-vector (instead of the polarisation), so that the observable can take more than two possible values.

  15. Highly sensitive biosensing based on interference from light scattering in capillary tubes

    DEFF Research Database (Denmark)

    Sørensen, H.S.; Larsen, N.B.; Latham, J.C.

    2006-01-01

    Human IgG interactions with surface bound protein A are monitored label-free using microinterferometric backscatter detection. An electromagnetic wave-based model is developed and used to quantitatively describe the change in interference pattern as a consequence of the molecular interaction...... to other specific interacting layers, and simplicity of the optical sensor make this technique a powerful tool in biosensing. (c) 2006 American Institute of Physics....

  16. Design and Fabrication of Slotted Multimode Interference Devices for Chemical and Biological Sensing

    Directory of Open Access Journals (Sweden)

    M. Mayeh

    2009-01-01

    Full Text Available We present optical sensors based on slotted multimode interference waveguides. The sensor can be tuned to highest sensitivity in the refractive index ranges necessary to detect protein-based molecules or other water-soluble chemical or biological materials. The material of choice is low-loss silicon oxynitride (SiON which is highly stable to the reactivity with biological agents and processing chemicals. Sensors made with this technology are suited to high volume manufacturing.

  17. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    Science.gov (United States)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  18. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    Science.gov (United States)

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  19. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Alexandr M. Kuzminskiy

    2007-10-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  20. Multiple-Antenna Interference Cancellation for WLAN with MAC Interference Avoidance in Open Access Networks

    Directory of Open Access Journals (Sweden)

    Kuzminskiy Alexandr M

    2007-01-01

    Full Text Available The potential of multiantenna interference cancellation receiver algorithms for increasing the uplink throughput in WLAN systems such as 802.11 is investigated. The medium access control (MAC in such systems is based on carrier sensing multiple-access with collision avoidance (CSMA/CA, which itself is a powerful tool for the mitigation of intrasystem interference. However, due to the spatial dependence of received signal strengths, it is possible for the collision avoidance mechanism to fail, resulting in packet collisions at the receiver and a reduction in system throughput. The CSMA/CA MAC protocol can be complemented in such scenarios by interference cancellation (IC algorithms at the physical (PHY layer. The corresponding gains in throughput are a result of the complex interplay between the PHY and MAC layers. It is shown that semiblind interference cancellation techniques are essential for mitigating the impact of interference bursts, in particular since these are typically asynchronous with respect to the desired signal burst. Semiblind IC algorithms based on second- and higher-order statistics are compared to the conventional no-IC and training-based IC techniques in an open access network (OAN scenario involving home and visiting users. It is found that the semiblind IC algorithms significantly outperform the other techniques due to the bursty and asynchronous nature of the interference caused by the MAC interference avoidance scheme.

  1. RNA interference: its use as antiviral therapy

    NARCIS (Netherlands)

    Haasnoot, J.; Berkhout, B.

    2006-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more

  2. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  3. A slow component of classic Stroop interference

    NARCIS (Netherlands)

    Phaf, R. Hans; Horsman, Hark H.; van der Moolen, Bas; Roos, Yvo B. W. E. M.; Schmand, Ben

    2010-01-01

    The interference in colour naming may extend beyond critical Stroop trials. This "slow'' effect was first discovered in emotional Stroop tasks, but is extended here to classical Stroop. In two experiments, meaningless coloured letter strings followed a colour word or neutral word. Student

  4. Stroop interference and disorders of selective attention

    NARCIS (Netherlands)

    Kingma, A.; LaHeij, W.; Fasotti, L.; Eling, P.

    1996-01-01

    Fourteen patients with a right-hemisphere CVA and 8 patients with a left-hemisphere CVA were examined for selective attention deficits using a variant of the Stroop color-word task: the picture-word interference task. Experiments 1 and 2 first compared the performance of the two patient groups and a

  5. Inhibition of virus replication by RNA interference

    NARCIS (Netherlands)

    Haasnoot, P. C. Joost; Cupac, Daniel; Berkhout, Ben

    2003-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene

  6. 47 CFR 74.703 - Interference.

    Science.gov (United States)

    2010-10-01

    ... energy outside its assigned channel. Upon notice by the FCC to the station licensee or operator that such... suspended and not resumed until the interference has been eliminated. However, short test transmissions may... services provided by existing and future commercial or public safety wireless licensees in the 700 MHz...

  7. Generalized quantum interference of correlated photon pairs

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  8. Cue-Dependent Interference in Comprehension

    Science.gov (United States)

    Van Dyke, Julie A.; McElree, Brian

    2011-01-01

    The role of interference as a primary determinant of forgetting in memory has long been accepted, however its role as a contributor to poor comprehension is just beginning to be understood. The current paper reports two studies, in which speed-accuracy tradeoff and eye-tracking methodologies were used with the same materials to provide converging…

  9. A model for interference and forgetting

    NARCIS (Netherlands)

    Raaijmakers, J.G.W.; Mensink, G.J.M.A

    1988-01-01

    A new model for interference and forgetting is presented. The model is based on the search of associative memory (SAM) theory for retrieval from long-term memory by J. G. Raaijmakers and R. M. Shiffrin, see record 1981-20491-001). It includes a contextual fluctuation process that enables it to

  10. Preserved Proactive Interference in Autism Spectrum Disorder

    Science.gov (United States)

    Carmo, Joana C.; Duarte, Elsa; Pinho, Sandra; Filipe, Carlos N.; Marques, J. Frederico

    2016-01-01

    In this study, we aimed to evaluate further the functioning and structuring of the semantic system in autism spectrum disorders (ASD). We analyzed the performance of 19 high-functioning young adults with ASD and a group of 20 age-, verbal IQ- and education-matched individuals with the Proactive Interference (PI) Paradigm to evaluate semantic…

  11. Exploiting Genetic Interference for Antiviral Therapy.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Tanner

    2016-05-01

    Full Text Available Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings.

  12. RNA interference in plant parasitic nematodes

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... grower preference or by government restrictions to limit the environmental ... risks associated with chemical control and (c) the pro- vision of ... certain model organisms. The first ... reproductive system (Lilley et al., 2005b), sperm (Urwin .... interference of dual oxidase in the plant nematode Meloidogyne.

  13. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  14. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  15. Semantic category interference in overt picture naming

    NARCIS (Netherlands)

    Maess, B.; Friederici, A.D.; Damian, M.F.; Meyer, A.S.; Levelt, W.J.M.

    2002-01-01

    The study investigated the neuronal basis of the retrieval of words from the mental lexicon. The semantic category interference effect was used to locate lexical retrieval processes in time and space. This effect reflects the finding that, for overt naming, volunteers are slower when naming pictures

  16. The Acceptability of Speech with Radio Interference

    DEFF Research Database (Denmark)

    Baykaner, K.; Hummersone, H.; Mason, R.

    2014-01-01

    A listening test was conducted to investigate the acceptability of audio-on-audio interference for radio programs featuring speech as the target. Twenty-one subjects, including naïve and expert listeners, were presented with 200 randomly assigned pairs of stimuli and asked to report, for each trial...

  17. Polarization modulation in Young's interference experiment

    International Nuclear Information System (INIS)

    Tervo, Jani

    2008-01-01

    Polarization properties at the observation screen in Young's interference experiment are examined. Several recent results on the modulation of Stokes parameters, including the minimum number of modulated parameters, are reviewed. The theory is then applied to find out the relation between the Stokes parameters at the pinholes and the Pancharatnam-Berry phase at the screen.

  18. New two-port multimode interference reflectors

    NARCIS (Netherlands)

    Kleijn, E.; Smit, M.K.; Wale, M.J.; Leijtens, X.J.M.

    2012-01-01

    Multi-mode interference reflectors (MIRs) are versatile components. Two new MIR designs with a fixed 50/50 reflection to transmission ratio are introduced. Measurements on these new devices and on devices similar to those in [1] are presented and compared to the design values. Measured losses are

  19. Movement Interference in Autism-Spectrum Disorder

    Science.gov (United States)

    Gowen, E.; Stanley, J.; Miall, R. C.

    2008-01-01

    Movement interference occurs when concurrently observing and executing incompatible actions and is believed to be due to co-activation of conflicting populations of mirror neurons. It has also been suggested that mirror neurons contribute towards the imitation of observed actions. However, the exact neural substrate of imitation may depend on task…

  20. Analysis of subpulse generation from delayed-interference signal-wavelength converter for wide carrier recovery rate range

    DEFF Research Database (Denmark)

    Sakaguchi, J.; Nielsen, Mads Lønstrup; Ohira, T.

    2008-01-01

    The generation of subpulses in delayed-interference signal-wavelength converters (DISCS) had been suspected as a Curse of waveform degradation in their application in ultrafast (similar to 160GHz) optical time division multiplexing (OTDM) communication systems. We reported its first observation...

  1. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  2. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  3. Coulomb nuclear interference with deuterons in even palladium isotopes

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Ukita, G.M.

    2004-01-01

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on 104,106,108,110 Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12 0 ≤θ lab ≤64 0 . A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = δ LC /δ LN , the ratio of charge to isoscalar deformation lengths, and of (δ LN ) 2 were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For 104 Pd, and preliminary for 108 Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for 106 Pd, C = 1.06(3) and for 110 Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  4. Coulomb nuclear interference with deuterons in even palladium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  5. Interference effects of categorization on decision making.

    Science.gov (United States)

    Wang, Zheng; Busemeyer, Jerome R

    2016-05-01

    Many decision making tasks in life involve a categorization process, but the effects of categorization on subsequent decision making has rarely been studied. This issue was explored in three experiments (N=721), in which participants were shown a face stimulus on each trial and performed variations of categorization-decision tasks. On C-D trials, they categorized the stimulus and then made an action decision; on X-D trials, they were told the category and then made an action decision; on D-alone trials, they only made an action decision. An interference effect emerged in some of the conditions, such that the probability of an action on the D-alone trials (i.e., when there was no explicit categorization before the decision) differed from the total probability of the same action on the C-D or X-D trials (i.e., when there was explicit categorization before the decision). Interference effects are important because they indicate a violation of the classical law of total probability, which is assumed by many cognitive models. Across all three experiments, a complex pattern of interference effects systematically occurred for different types of stimuli and for different types of categorization-decision tasks. These interference effects present a challenge for traditional cognitive models, such as Markov and signal detection models, but a quantum cognition model, called the belief-action entanglement (BAE) model, predicted that these results could occur. The BAE model employs the quantum principles of superposition and entanglement to explain the psychological mechanisms underlying the puzzling interference effects. The model can be applied to many important and practical categorization-decision situations in life. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  7. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  8. Dynamical modeling of pulsed two-photon interference

    International Nuclear Information System (INIS)

    Fischer, Kevin A; Lagoudakis, Konstantinos G; Vučković, Jelena; Müller, Kai

    2016-01-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong–Ou–Mandel, and Mach–Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers. (paper)

  9. Dependency-dependent interference: NPI interference, agreement attraction, and global pragmatic inferences

    Directory of Open Access Journals (Sweden)

    Ming eXiang

    2013-10-01

    Full Text Available Previous psycholinguistics studies have shown that when forming a long distance dependency in online processing, the parser sometimes accepts a sentence even though the required grammatical constraints are only partially met. A mechanistic account of how such errors arise sheds light on both the underlying linguistic representations involved and the processing mechanisms that put such representations together. In the current study, we contrast the NPI (negative polarity items interference effect, as shown by the acceptance of an ungrammatical sentence like The bills that democratic senators have voted for will ever become law, with the well-known phenomenon of agreement attraction (The key to the cabinets are…. On the surface, these two types of errors look alike and thereby can be explained as being driven by the same source: similarity based memory interference. However, we argue that the linguistic representations involved in NPI licensing are substantially different from those of subject-verb agreement, and therefore the interference effects in each domain potentially arise from distinct sources. In particular, we show that NPI interference at least partially arises from pragmatic inferences. In a self-paced reading study with an acceptability judgment task, we showed NPI interference was modulated by participants’ general pragmatic communicative skills, as quantified by the Autism-Spectrum Quotient (Baron-Cohen 2001, especially in offline tasks. Participants with more autistic traits were actually less prone to the NPI interference effect than those with fewer autistic traits. This result contrasted with agreement attraction conditions, which were not influenced by individual pragmatic skill differences. We also show that different NPI licensors have distinct interference profiles. We discuss two kinds of interference effects for NPI licensing: memory-retrieval based and pragmatically triggered.

  10. The Approximate Capacity Region of the Symmetric $K$-user Gaussian Interference Channel with Strong Interference

    KAUST Repository

    Chaaban, Anas; Sezgin, Aydin

    2016-01-01

    The symmetric K-user interference channel is studied with the goal of characterizing its capacity region in the strong interference regime within a constant gap. The achievable rate region of a scheme combining rate-splitting at the transmitters and interference alignment and successive decoding/computation at the receivers is derived. Next it is shown that this scheme achieves the so-called greedy-max corner points of the capacity region within a constant gap. By combining this result with previous results by Ordentlich et al. on the sum-capacity of the symmetric interference channel, a constant gap characterization of the capacity region for the strong interference regime is obtained. This leads to the first approximate characterization of the capacity region of the symmetric K-user IC. Furthermore, a new scheme that achieves the sum-capacity of the channel in the strong interference regime within a constant gap is also proposed, and the corresponding gap is calculated. The advantage of the new scheme is that it leads to a characterization within a constant gap without leaving an outage set contrary to the scheme by Ordentlich et al..

  11. (Sub-)Optimality of Treating Interference as Noise in the Cellular Uplink With Weak Interference

    KAUST Repository

    Gherekhloo, Soheil; Chaaban, Anas; Di, Chen; Sezgin, Aydin

    2015-01-01

    Despite the simplicity of the scheme of treating interference as noise (TIN), it was shown to be sum-capacity optimal in the Gaussian interference channel (IC) with very-weak (noisy) interference. In this paper, the two-user IC is altered by introducing an additional transmitter that wants to communicate with one of the receivers of the IC. The resulting network thus consists of a point-to-point channel interfering with a multiple access channel (MAC) and is denoted by PIMAC. The sum-capacity of the PIMAC is studied with main focus on the optimality of TIN. It turns out that TIN in its naive variant, where all transmitters are active and both receivers use TIN for decoding, is not the best choice for the PIMAC. In fact, a scheme that combines both time division multiple access and TIN (TDMA-TIN) strictly outperforms the naive-TIN scheme. Furthermore, it is shown that in some regimes, TDMA-TIN achieves the sum-capacity for the deterministic PIMAC and the sum-capacity within a constant gap for the Gaussian PIMAC. In addition, it is shown that, even for very-weak interference, there are some regimes where a combination of interference alignment with power control and TIN at the receiver side outperforms TDMA-TIN. As a consequence, on the one hand, TIN in a cellular uplink is approximately optimal in certain regimes. On the other hand, those regimes cannot be simply described by the strength of interference.

  12. The Approximate Capacity Region of the Symmetric $K$-user Gaussian Interference Channel with Strong Interference

    KAUST Repository

    Chaaban, Anas

    2016-03-01

    The symmetric K-user interference channel is studied with the goal of characterizing its capacity region in the strong interference regime within a constant gap. The achievable rate region of a scheme combining rate-splitting at the transmitters and interference alignment and successive decoding/computation at the receivers is derived. Next it is shown that this scheme achieves the so-called greedy-max corner points of the capacity region within a constant gap. By combining this result with previous results by Ordentlich et al. on the sum-capacity of the symmetric interference channel, a constant gap characterization of the capacity region for the strong interference regime is obtained. This leads to the first approximate characterization of the capacity region of the symmetric K-user IC. Furthermore, a new scheme that achieves the sum-capacity of the channel in the strong interference regime within a constant gap is also proposed, and the corresponding gap is calculated. The advantage of the new scheme is that it leads to a characterization within a constant gap without leaving an outage set contrary to the scheme by Ordentlich et al..

  13. (Sub-)Optimality of Treating Interference as Noise in the Cellular Uplink With Weak Interference

    KAUST Repository

    Gherekhloo, Soheil

    2015-11-09

    Despite the simplicity of the scheme of treating interference as noise (TIN), it was shown to be sum-capacity optimal in the Gaussian interference channel (IC) with very-weak (noisy) interference. In this paper, the two-user IC is altered by introducing an additional transmitter that wants to communicate with one of the receivers of the IC. The resulting network thus consists of a point-to-point channel interfering with a multiple access channel (MAC) and is denoted by PIMAC. The sum-capacity of the PIMAC is studied with main focus on the optimality of TIN. It turns out that TIN in its naive variant, where all transmitters are active and both receivers use TIN for decoding, is not the best choice for the PIMAC. In fact, a scheme that combines both time division multiple access and TIN (TDMA-TIN) strictly outperforms the naive-TIN scheme. Furthermore, it is shown that in some regimes, TDMA-TIN achieves the sum-capacity for the deterministic PIMAC and the sum-capacity within a constant gap for the Gaussian PIMAC. In addition, it is shown that, even for very-weak interference, there are some regimes where a combination of interference alignment with power control and TIN at the receiver side outperforms TDMA-TIN. As a consequence, on the one hand, TIN in a cellular uplink is approximately optimal in certain regimes. On the other hand, those regimes cannot be simply described by the strength of interference.

  14. Chemical control of channel interference in two-photon absorption processes.

    Science.gov (United States)

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan; Ruud, Kenneth

    2014-05-20

    The two-photon absorption (TPA) process is the simplest and hence the most studied nonlinear optical phenomenon, and various aspects of this process have been explored in the past few decades, experimentally as well as theoretically. Previous investigations have shown that the two-photon (TP) activity of a molecular system can be tuned, and at present, performance-tailored TP active materials are easy to develop by monitoring factors such as length of conjugation, dimensionality of charge-transfer network, strength of donor-acceptor groups, polarity of solvents, self-aggregation, H-bonding, and micellar encapsulation to mention but a few. One of the most intriguing phenomena affecting the TP activity of a molecule is channel interference. The phrase "channel interference" implies that if the TP transition from one electronic state to another involves more than one optical pathway or channel, characterized by the corresponding transition dipole moment (TDM) vectors, the channels may interfere with each other depending upon the angles between the TDM vectors and hence can either increase (constructive interference) or decrease (destructive interference) the overall TP activity of a system to a significant extent. This phenomenon was first pointed out by Cronstrand, Luo, and Ågren [Chem. Phys. Lett. 2002, 352, 262-269] in two-dimensional systems (i.e., only involving two components of the transition moment vectors). For three-dimensional molecules, an extended version of this idea was required. In order to fill this gap, we developed a generalized model for describing and exploring channel interference, valid for systems of any dimensionality. We have in particular applied it to through-bond (TB) and through-space (TS) charge-transfer systems both in gas phase and in solvents with different polarities. In this Account, we will, in addition to briefly describing the concept of channel interference, discuss two key findings of our recent work: (1) how to control the

  15. Bio-Optics and Bio-Inspired Optical Materials.

    Science.gov (United States)

    Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2017-10-25

    Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.

  16. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  17. Quasiparticle Interference Studies of Quantum Materials.

    Science.gov (United States)

    Avraham, Nurit; Reiner, Jonathan; Kumar-Nayak, Abhay; Morali, Noam; Batabyal, Rajib; Yan, Binghai; Beidenkopf, Haim

    2018-06-03

    Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Adaptive transmit selection with interference suppression

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    This paper studies the performance of adaptive transmit channel selection in multipath fading channels. The adaptive selection algorithms are configured for single-antenna bandwidth-efficient or power-efficient transmission with as low transmit channel estimations as possible. Due to the fact that the number of active co-channel interfering signals and their corresponding powers experience random behavior, the adaptation to channels conditions, assuming uniform buffer and traffic loading, is proposed to be jointly based on the transmit channels instantaneous signal-to-noise ratios (SNRs) and signal-to- interference-plus- noise ratios (SINRs). Two interference cancelation algorithms, which are the dominant cancelation and the less complex arbitrary cancelation, are considered, for which the receive antenna array is assumed to have small angular spread. Analytical formulation for some performance measures in addition to several processing complexity and numerical comparisons between various adaptation schemes are presented. ©2010 IEEE.

  19. Autonomy, Competence and Non-interference

    OpenAIRE

    Roberts, Joseph T.F.

    2017-01-01

    In light of the variety of uses of the term autonomy in recent bioethics literature, in this paper, I suggest that competence, not being as contested, is better placed to play the anti-paternalistic role currently assigned to autonomy. The demonstration of competence, I will argue, can provide individuals with robust spheres of non-interference in which they can pursue their lives in accordance with their own values. This protection from paternalism is achieved by granting individuals rights ...

  20. Angularly resolved electron wave packet interferences

    International Nuclear Information System (INIS)

    Varju, K; Johnsson, P; Mauritsson, J; Remetter, T; Ruchon, T; Ni, Y; Lepine, F; Kling, M; Khan, J; Schafer, K J; Vrakking, M J J; L'Huillier, A

    2006-01-01

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation

  1. Angularly resolved electron wave packet interferences

    Energy Technology Data Exchange (ETDEWEB)

    Varju, K [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Johnsson, P [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Mauritsson, J [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Remetter, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ruchon, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ni, Y [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Lepine, F [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Kling, M [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Khan, J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Vrakking, M J J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden)

    2006-09-28

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation.

  2. Attosecond interference control of XUV photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: lupeixiang@mail.hust.edu.cn

    2008-04-28

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution.

  3. Attosecond interference control of XUV photoionization

    International Nuclear Information System (INIS)

    Cao Wei; Lu Peixiang; Lan Pengfei; Li Yuhua; Wang Xinlin

    2008-01-01

    The characterizing of attosecond pulses has great importance for the investigation of ultrafast phenomena. Here, we proposed a novel and efficient scheme for measuring attosecond XUV pulses, which is based on laser-dressed XUV photoionization. The ultrashort attosecond gating of photoionization leads to an interference structure in the photoelectron spectrum. Then the duration of the attosecond XUV pulse can be retrieved directly from the photoelectron spectrum with a rather high resolution

  4. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Science.gov (United States)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  5. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  6. Proactive interference effects on sentence production

    OpenAIRE

    FERREIRA, VICTOR S.; FIRATO, CARLA E.

    2002-01-01

    Proactive interference refers to recall difficulties caused by prior similar memory-related processing. Information-processing approaches to sentence production predict that retrievability affects sentence form: Speakers may word sentences so that material that is difficult to retrieve is spoken later. In this experiment, speakers produced sentence structures that could include an optional that, thereby delaying the mention of a subsequent noun phrase. This subsequent noun phrase was either (...

  7. Readout of the atomtronic quantum interference device

    Science.gov (United States)

    Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi

    2018-01-01

    A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.

  8. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  9. A Decentralized Receiver in Gaussian Interference

    Directory of Open Access Journals (Sweden)

    Christian D. Chapman

    2018-04-01

    Full Text Available Bounds are developed on the maximum communications rate between a transmitter and a fusion node aided by a cluster of distributed receivers with limited resources for cooperation, all in the presence of an additive Gaussian interferer. The receivers cannot communicate with one another and can only convey processed versions of their observations to the fusion center through a Local Array Network (LAN with limited total throughput. The effectiveness of each bound’s approach for mitigating a strong interferer is assessed over a wide range of channels. It is seen that, if resources are shared effectively, even a simple quantize-and-forward strategy can mitigate an interferer 20 dB stronger than the signal in a diverse range of spatially Ricean channels. Monte-Carlo experiments for the bounds reveal that, while achievable rates are stable when varying the receiver’s observed scattered-path to line-of-sight signal power, the receivers must adapt how they share resources in response to this change. The bounds analyzed are proven to be achievable and are seen to be tight with capacity when LAN resources are either ample or limited.

  10. Visual working memory capacity and proactive interference.

    Science.gov (United States)

    Hartshorne, Joshua K

    2008-07-23

    Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  11. Visual working memory capacity and proactive interference.

    Directory of Open Access Journals (Sweden)

    Joshua K Hartshorne

    Full Text Available BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/PRINCIPAL FINDINGS: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. CONCLUSIONS/SIGNIFICANCE: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  12. Immunizing digital systems against electromagnetic interference

    International Nuclear Information System (INIS)

    Ewing, P.D.; Korsah, K.; Antonescu, C.

    1993-01-01

    This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced

  13. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  14. Interference in wireless ad hoc networks with smart antennas

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-01-01

    In this paper, we show that the use of directional antennas in wireless ad hoc networks can actually increase interference due to limitations of virtual carrier sensing. We derive a simple mathematical expression for interference in both physical

  15. Cooperation for Interference Management: A GDoF Perspective

    KAUST Repository

    Gherekhloo, Soheil; Chaaban, Anas; Sezgin, Aydin

    2016-01-01

    The impact of cooperation on interference management is investigated by studying an elemental wireless network, the so-called symmetric interference relay channel (IRC), from a generalized degrees of freedom (GDoF) perspective. This is motivated

  16. Imperfect generalized transmit beamforming with co-channel interference cancelation

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    of outdated statistical ordering of the interferers instantaneous powers on the effectiveness of dominant interference cancelation is investigated against the less complex adaptive arbitrary cancelation scheme. For the system models described above, new exact

  17. On full duplex Gaussian relay channels with self-interference

    KAUST Repository

    Behboodi, Arash; Chaaban, Anas; Mathar, Rudolf; Alouini, Mohamed-Slim

    2016-01-01

    Self interference (SI) in full duplex (FD) systems is the interference caused by the transmission stream on the reception stream. Being one of the main restrictive factors for performance of practical full duplex systems, however, not too much

  18. The Cost of Learning: Interference Effects in Memory Development

    Science.gov (United States)

    Darby, Kevin P.; Sloutsky, Vladimir M.

    2015-01-01

    Learning often affects future learning and memory for previously learned information by exerting either facilitation or interference effects. Several theoretical accounts of interference effects have been proposed, each making different developmental predictions. This research examines interference effects across development, with the goal of better understanding mechanisms of interference and of memory development. Preschool-aged children and adults participated in a three-phased associative learning paradigm containing stimuli that were either unique or repeated across phases. Both age groups demonstrated interference effects, but only for repeated items. Whereas proactive interference effects were comparable across age groups, retroactive interference reached catastrophic-like levels in children. Additionally, retroactive interference increased in adults when contextual differences between phases were minimized (Experiment 2), and decreased in adults who were more successful at encoding repeated pairs of stimuli during a training phase (Experiment 3). These results are discussed with respect to theories of memory and memory development. PMID:25688907

  19. Release from Proactive Interference: Insufficiency of an Attentional Account

    Science.gov (United States)

    MacLeod, Colin M.

    1975-01-01

    If an attentional cue affects retroactive interference, perhaps a similar mechanism underlies release from proactive interference. This study tested this hypothesis by inserting an attentional cue before the final trial in Wickens' paradigm. (Author/RK)

  20. Interference-aware random beam selection for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.; Sayed, Mostafa M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2012-01-01

    . In this paper, we develop interference-aware random beam selection schemes that provide enhanced throughput for the secondary link under the condition that the interference observed at the primary link is within a predetermined acceptable value. For a secondary

  1. Continuous Correctness of Business Processes Against Process Interference

    NARCIS (Netherlands)

    van Beest, Nick; Bucur, Doina

    2013-01-01

    In distributed business process support environments, process interference from multiple stakeholders may cause erroneous process outcomes. Existing solutions to detect and correct interference at runtime employ formal verification and the automatic generation of intervention processes at runtime.

  2. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  3. Quantum optics and fundamentals of quantum theory

    International Nuclear Information System (INIS)

    Dusek, M.

    1997-01-01

    Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)

  4. Quantum optics of lossy asymmetric beam splitters

    NARCIS (Netherlands)

    Uppu, Ravitej; Wolterink, Tom; Tentrup, Tristan Bernhard Horst; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering

  5. Optical Computing

    OpenAIRE

    Woods, Damien; Naughton, Thomas J.

    2008-01-01

    We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, re...

  6. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  7. All-fiber maskless lithographic technology to form microcircular interference pattern on Azo polymer film

    Science.gov (United States)

    Kim, Junki; Jung, Yongmin; Oh, Kyunghwan; Chun, Chaemin; Hong, Jeachul; Kim, Dongyu

    2005-03-01

    We report a novel all-fiber, maskless lithograpic technology to form various concentric grating patterns for micro zone plate on azo polymer film. The proposed technology is based on the interference pattern out of the cleaved end of a coreless silica fiber (CSF)-single mode fiber (SMF) composite. The light guided along SMF expands into the CSF segment to generate various circular interference patterns depending on the length of CSF. Interference patterns are experimentally observed when the CSF length is over a certain length and the finer spacing between the concentric rings are obtained for a longer CSF. By using beam propagation method (BPM) package, we could further investigated the concentric interference patterns in terms of intensity distribution and fringe spacing as a function of CSF length. These intereference patterns are directly projected over azo polymer film and their intensity distrubution formed surface relief grating (SRG) patterns. Compared to photoresist films azo polymer layers produce surface relief grating (SRG), where the actual mass of layer is modulated rather than refractive index. The geometric parameters of the CSF length as well as diameter and the spacing between the cleaved end of a CSF and azo polymer film, were found to play a major role to generate various concentric structures. With the demonstration of the circular SRG patterns, we confirmed that the proposed technique do have an ample potential to fabricate micro fresnel zone plate, that could find applications in lens arrays for optical beam formings as well as compact photonic devices.

  8. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror

    Science.gov (United States)

    Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu

    2018-06-01

    In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.

  9. Interference of diffraction and transition radiation and its application as a beam divergence diagnostic

    Directory of Open Access Journals (Sweden)

    R. B. Fiorito

    2006-05-01

    Full Text Available We have observed the interference of optical diffraction radiation (ODR and optical transition radiation (OTR produced by the interaction of a relativistic electron beam with a micromesh foil and a mirror. The production of forward directed ODR from electrons passing through the holes and wires of the mesh and their separate interactions with backward OTR from the mirror are analyzed with the help of a simulation code. By careful choice of the micromesh properties, mesh-mirror spacing, observation wavelength, and filter band pass, the interference of the ODR produced from the unperturbed electrons passing through the open spaces of the mesh and OTR from the mirror are observable above a broad incoherent background from interaction of the heavily scattered electrons passing through the mesh wires. These interferences (ODTRI are sensitive to the beam divergence and can be used to directly diagnose this parameter. We compare experimental divergence values obtained using ODTRI, conventional OTRI, for the case when front foil scattering is negligible, and computed values obtained from transport code calculations and multiple screen beam size measurements. We obtain good agreement in all cases.

  10. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  11. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  12. Interference from retrieval cues in Parkinson's disease.

    Science.gov (United States)

    Crescentini, Cristiano; Marin, Dario; Del Missier, Fabio; Biasutti, Emanuele; Shallice, Tim

    2011-11-01

    Existing studies on memory interference in Parkinson's disease (PD) patients have provided mixed results and it is unknown whether PD patients have problems in overcoming interference from retrieval cues. We investigated this issue by using a part-list cuing paradigm. In this paradigm, after the study of a list of items, the presentation of some of these items as retrieval cues hinders the recall of the remaining ones. We tested PD patients' (n = 19) and control participants' (n = 16) episodic memory in the presence and absence of part-list cues, using initial-letter probes, and following either weak or strong serial associative encoding of list items. Both PD patients and control participants showed a comparable and significant part-list cuing effect after weak associative encoding (13% vs. 12% decrease in retrieval in part-list cuing vs. no part-list cuing -control- conditions in PD patients and control participants, respectively), denoting a similar effect of cue-driven interference in the two populations when a serial retrieval strategy is hard to develop. However, only PD patients showed a significant part-list cuing effect after strong associative encoding (20% vs. 5% decrease in retrieval in patients and controls, respectively). When encoding promotes the development of an effective serial retrieval strategy, the presentation of part-list cues has a specifically disruptive effect in PD patients. This indicates problems in strategic retrieval, probably related to PD patients' increased tendency to rely on external cues. Findings in control conditions suggest that less effective encoding may have contributed to PD patients' memory performance.

  13. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  14. On interference of cumulative proton production mechanisms

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1993-01-01

    The dynamical picture of the cumulative proton production in hA-collisions by means of diagram analysis with NN interaction described by a non-relativistic NN potential is considered. The contributions of the various mechanisms (spectator, direct and rescattering) for backward hemisphere proton production within the framework of this common approach is calculated. The emphasis is on the comparison of the relative contributions of these mechanisms for various angles, taking into account the interference of these contributions. Comparison with experimental data is also presented. (author)

  15. Interference effects in negative ion formation

    International Nuclear Information System (INIS)

    Alvarez, I.; Morales, A.; de Urquijo, J.; Cisneros, C.

    1984-01-01

    This paper presents recent data on differential cross sections for H - formation from collisions of H + and H 0 with Ar in the energy range 1.0 to 4 keV. Experimental data exhibit a sharp maximum at 0 0 scattering angle as well as an oscillatory structure. The functional form and scaling properties strongly indicate that there is a glory maximum which occurs when the classical deflection function changes over from attractive to repulsive at some finite impact parameter. The oscillations are predicted by the Bessel function and may be said to arise from interference of the contributions from the two branches of the deflection function near to a glory

  16. Interference Coordination for 5G New Radio

    DEFF Research Database (Denmark)

    Alvarez, Beatriz Soret; De Domenico, Antonio; Bazzi, Samer

    2018-01-01

    The arrival of the 5G NR provides a unique opportunity for introducing new inter-cell interference coordination (ICIC) mechanisms. The objective is twofold: to better exploit the benefits of ICIC in coherence with the rest of radio resource management (RRM) principles in 5G, and to support new...... results quantify the performance benefits of the different techniques under heterogeneous key performance indicators (KPIs). We also discuss the standardization effort required for having each of these techniques included in the 5G NR specifications....

  17. Using RNA Interference to Study Protein Function

    OpenAIRE

    Curtis, Carol D.; Nardulli, Ann M.

    2009-01-01

    RNA interference can be extremely useful in determining the function of an endogenously-expressed protein in its normal cellular environment. In this chapter, we describe a method that uses small interfering RNA (siRNA) to knock down mRNA and protein expression in cultured cells so that the effect of a putative regulatory protein on gene expression can be delineated. Methods of assessing the effectiveness of the siRNA procedure using real time quantitative PCR and Western analysis are also in...

  18. Quantum interference effects in nanostructured Au

    CERN Document Server

    Pratumpong, P; Evans, S D; Johnson, S; Howson, M A

    2002-01-01

    We present results on the magnetoresistance and temperature dependence of the resistivity for nanostructured Au produced by chemical means. The magnetoresistance was typical of highly disordered metals exhibiting quantum interference effects. We fitted the data and were able to determine the spin-orbit scattering relaxation time to be 10 sup - sup 1 sup 2 s and we found the inelastic scattering time at 10 K to be 10 sup - sup 1 sup 1 s. The inelastic scattering rate varied as T sup 3 between 4 and 20 K, which is typical for electron-phonon scattering in disordered metals.

  19. Preserved cumulative semantic interference despite amnesia

    Directory of Open Access Journals (Sweden)

    Gary Michael Oppenheim

    2015-05-01

    As predicted by Oppenheim et al’s (2010 implicit incremental learning account, WRP’s BCN RTs demonstrated strong (and significant repetition priming and semantic blocking effects (Figure 1. Similar to typical results from neurally intact undergraduates, WRP took longer to name pictures presented in semantically homogeneous blocks than in heterogeneous blocks, an effect that increased with each cycle. This result challenges accounts that ascribe cumulative semantic interference in this task to explicit memory mechanisms, instead suggesting that the effect has the sort of implicit learning bases that are typically spared in hippocampal amnesia.

  20. Phasor Measurement Unit under Interference Conditions

    DEFF Research Database (Denmark)

    Ghiga, Radu; Martin, Kenneth E.; Wu, Qiuwei

    2017-01-01

    interference condition scenarios. In the first scenario, noise is added to the PMU input signal. The test runs a sweep of Signalto-Noise Ratios (SNR) and the accuracy versus the noise level is obtained. The second scenario injects multiple harmonics with the input to test the influence on accuracy. The last...... scenario focuses on instrument transformer saturation which leads to a modified waveform injected in the PMU. This test goes through different levels of Current Transformer (CT) saturation and analyzes the effect of saturation on the accuracy of PMUs. The test results show PMU measurements will be degraded...

  1. Cell-phone interference with pocket dosimeters

    International Nuclear Information System (INIS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A

    2005-01-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  2. Cell-phone interference with pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M; Ayyangar, Komanduri M; Raman, Natarajan V; Enke, Charles A [Department of Radiation Oncology, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521 (United States)

    2005-05-07

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag. (note)

  3. Interference Coordination for 5G New Radio

    DEFF Research Database (Denmark)

    Alvarez, Beatriz Soret; De Domenico, Antonio; Bazzi, Samer

    2017-01-01

    The arrival of the 5G NR provides a unique opportunity for introducing new inter-cell interference coordination (ICIC) mechanisms. The objective is twofold: to better exploit the benefits of ICIC in coherence with the rest of radio resource management (RRM) principles in 5G, and to support new se...... results quantify the performance benefits of the different techniques under heterogeneous key performance indicators (KPIs). We also discuss the standardization effort required for having each of these techniques included in the 5G NR specifications....

  4. Medical applications of superconducting quantum interference devices

    International Nuclear Information System (INIS)

    Uehara, Gen

    2011-01-01

    SQUIDs (Superconducting Quantum Interference Devices) are applied to clinical areas and basic medical science fields because of their potential for measuring a minute magnetic signal from the human body. Magnetoencephalography, one of their applications, is used for the functional mapping of the brain cortex before surgery and the localization of focus of epilepsy. Recently, their applications to the early-stage detection of dementia and the localization of brain ischemia are suggested. Another application of SQUIDs is magnetospinography, which detects the conduction block in spinal cord signal propagation. (author)

  5. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  6. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  7. Human response to interference with TV picture quality

    Energy Technology Data Exchange (ETDEWEB)

    Janischewskyj, W.; Harvey, E.B.

    1980-10-01

    Corona on transmission line conductors and spark gaps on loose or defective transmission line hardware can give rise to visual interference to television interference. The extent to which the interference is a concern (i.e., annoying) depends on the intensity of the interference as well as the strength of the television signal and can best be expressed as a function of the signal-to-noise ratio (SNR), the decibel difference between the wanted signal and the unwanted noise (interference). The study documented in this report has assessed, through subjective testing involving over 500 subjects, the interference level, as a function of SNR, of three different sources of interference: wet-weather conductor corona, a large spark gap (5 mm), and a small spark gap (0.8 mm). The results of the study should be particularly useful to the utility industry in assessing the environmental impact of high-voltage transmission lines.

  8. Interference and protection of electromagnetic pulse to digital signal processor

    International Nuclear Information System (INIS)

    Wang Yan; Jiao Hongling; He Shanhong; Pan Chao; Feng Deren; Che Wenquan; Xiong Ying

    2013-01-01

    The effective electromagnetic pulse protection is studied in this paper, first the interference of electromagnetic pulse simulator path is analyzed, including the digital signal processor (DSP) and the discharge circuit of coupling interference and net electricity coupling interference. Using the structure optimization design, the hardware block reinforcement measurement and the setting of open software trap, and the watchdog anti-jamming measures, the interference test is completed such as the central processor core voltage of DSP, input/output (I/O) ports of DSP and the display screen. The experimental results show that the combination of hardware and software protection reinforcement technology is effective, and the interference pulse amplitude of DSP board I/O port and the kernel work voltage are reduced, and the interference duration is reduced from 2 μs to 400 ns. The interference pulse is effectively restrained. (authors)

  9. Survey and analysis of line-frequency interference in the CEBAF accelerator

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Li, Rui.

    1995-01-01

    Feedthrough of interference from the AC power line into accelerator components is a problem which in pulsed accelerators can be reduced by operation synchronous with the AC line. This means of avoiding line-frequency effects is ineffective for continuous wave machines such as the CEBAF accelerator. We have measured line-frequency perturbations at CEBAF both in beam position and energy by using the beam position monitor system as a multiple-channel sampling oscilloscope. Comparing these data against the measured static optics (taken synchronously with the AC line) we have been able to identify point sources of interference, and resolve line-synchronous variations in the beam energy at a level near 0.001%. 3 refs., 2 figs., 1 tab

  10. Interference of guiding modes in 'traffic' circle waveguides composed of dielectric spherical particles

    International Nuclear Information System (INIS)

    Polishchuk, I.Ya.; Gozman, M.I.; Samoylova, O.M.; Burin, A.L.

    2009-01-01

    The interference of guiding polariton modes propagating through the waveguide composed of dielectric spherical particles forming a 'traffic' circle docked by two linear entrance and exit chains is investigated. The dependence of intensity of the polariton wave on the position of the particle on the circle was studied using the multisphere Mie scattering formalism. We show that, if the frequency of light belongs to the pass-band of the circular part of this waveguide, the electromagnetic waves may be considered as two optical beams running along the circle in opposite directions and interfering with each other. Indeed, the obtained intensity behavior can be represented as a simple superposition of two waves propagating along the circle in opposite directions. The applications of this interference are discussed

  11. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    Science.gov (United States)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  12. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    Directory of Open Access Journals (Sweden)

    Jongpal Kim

    2015-12-01

    Full Text Available To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  13. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    Science.gov (United States)

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  14. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Science.gov (United States)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  15. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  16. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  17. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  18. Understanding interference experiments with polarized light through photon trajectories

    International Nuclear Information System (INIS)

    Sanz, A.S.; Davidovic, M.; Bozic, M.; Miret-Artes, S.

    2010-01-01

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.

  19. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  20. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen

    2014-01-01

    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  1. [Optic mixing of colours in Seurat's painting].

    Science.gov (United States)

    Cernea, Paul

    2002-01-01

    Georges Seurat is the initiator and master of the divisionism. He founds the neoimpressionism current that tries to reproduce the nature exclusively through coloured vibration. Seurat applies the colours in small touches uniformly distributed on the canvas; the colours merge if they are looked by a certain distance, through optical interference. When the spectator approaches from the picture, the special frequency decreases, the optical merging does not appear and the onlooker looks a lot of coloured spots. When the spectator moves away from the picture, the optical interference appears and the clarity of the image becomes perfectly. This current opened the way of the future's modern painting performed by Cézanne, Renoir, Van Gogh.

  2. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  3. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  4. Relay self interference minimisation using tapped filter

    KAUST Repository

    Jazzar, Saleh

    2013-05-01

    In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage and reduce the required transmitted signal power. One problem that faces relays communications is the leaked signal from the relay\\'s output to its input. This will cause an SI problem where the new received signal at the relay\\'s input will be added with the unwanted leaked signal from the relay\\'s output. A Solution is proposed in this paper to estimate and minimise this SI which is based upon using a tapped filter at the destination. To get the optimum weights for this tapped filter, some channel parameters must be estimated first. This is performed blindly at the destination without the need of any training. This channel parameter estimation method is named the blind-self-interference-channel-estimation (BSICE) method. The next step in the proposed solution is to estimate the tapped filter\\'s weights. This is performed by minimising the mean squared error (MSE) at the destination. This proposed method is named the MSE-Optimum Weight (MSE-OW) method. Simulation results are provided in this paper to verify the performance of BSICE and MSE-OW methods. © 2013 IEEE.

  5. Interference pattern period measurement at picometer level

    Science.gov (United States)

    Xiang, Xiansong; Wei, Chunlong; Jia, Wei; Zhou, Changhe; Li, Minkang; Lu, Yancong

    2016-10-01

    To produce large scale gratings by Scanning Beam Interference Lithography (SBIL), a light spot containing grating pattern is generated by two beams interfering, and a scanning stage is used to drive the substrate moving under the light spot. In order to locate the stage at the proper exposure positions, the period of the Interference pattern must be measured accurately. We developed a set of process to obtain the period value of two interfering beams at picometer level. The process includes data acquisition and data analysis. The data is received from a photodiode and a laser interferometer with sub-nanometer resolution. Data analysis differs from conventional analyzing methods like counting wave peaks or using Fourier transform to get the signal period, after a preprocess of filtering and envelope removing, the mean square error is calculated between the received signal and ideal sinusoid waves to find the best-fit frequency, thus an accuracy period value is acquired, this method has a low sensitivity to amplitude noise and a high resolution of frequency. With 405nm laser beams interfering, a pattern period value around 562nm is acquired by employing this process, fitting diagram of the result shows the accuracy of the period value reaches picometer level, which is much higher than the results of conventional methods.

  6. Interference of ascorbic acid with chemical analytes.

    Science.gov (United States)

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (Pascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (Pcholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  7. Normalized GNSS Interference Pattern Technique for Altimetry

    Directory of Open Access Journals (Sweden)

    Miguel Angel Ribot

    2014-06-01

    Full Text Available It is well known that reflected signals from Global Navigation Satellite Systems (GNSS can be used for altimetry applications, such as monitoring of water levels and determining snow height. Due to the interference of these reflected signals and the motion of satellites in space, the signal-to-noise ratio (SNR measured at the receiver slowly oscillates. The oscillation rate is proportional to the change in the propagation path difference between the direct and reflected signals, which depends on the satellite elevation angle. Assuming a known receiver position, it is possible to compute the distance between the antenna and the surface of reflection from the measured oscillation rate. This technique is usually known as the interference pattern technique (IPT. In this paper, we propose to normalize the measurements in order to derive an alternative model of the SNR variations. From this model, we define a maximum likelihood estimate of the antenna height that reduces the estimation time to a fraction of one period of the SNR variation. We also derive the Cramér–Rao lower bound for the IPT and use it to assess the sensitivity of different parameters to the estimation of the antenna height. Finally, we propose an experimental framework, and we use it to assess our approach with real GPS L1 C/A signals.

  8. Investigation of the AZ 5214E photoresist by the laser interference, EBDW and NSOM lithographies

    Energy Technology Data Exchange (ETDEWEB)

    Škriniarová, J., E-mail: jaroslava.skriniarova@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Pudiš, D. [Department of Physics, University of Žilina, Žilina (Slovakia); Andok, R. [Department of E-Beam Lithography, Institute of Informatics, Slovak Academy of Sciences, Bratislava (Slovakia); Lettrichová, I. [Department of Physics, University of Žilina, Žilina (Slovakia); Uherek, F. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Applicability of the AZ 5214E photoresist for three different lithographies. • Useful for the fabrication of 1D and 2D periodic and irregular structures. • 2D structures with 260 nm period achieved by the laser interference lithography. • Structures with period below 500 nm achieved with the e-beam direct-write lithography. • Holes of 270 nm diameter made by the near-field scanning optical microscopy lithography. - Abstract: In this paper we show a comparison of chosen lithographies used for the AZ 5214E photoresist, which is normally UV sensitive but has also been investigated for its sensitivity to e-beam exposure. Three lithographies, the E-Beam Direct Write lithography (EBDW), laser Interference Lithography (IL) and the non-contact Near-field Scanning Optical Microscopy (NSOM) lithography, are discussed here and the results on exposed arrays of simple patterns are shown. With the EBDW and IL we achieved periods of the structures around half-micron, and we demonstrate attainability of dimensions smaller or comparable than usually achieved by a standard optical photolithography with the investigated photoresist. With the non-contact NSOM lithography structures with periods slightly above a micron were achieved.

  9. Erbium Doped Fiber Optic Gravimeter

    International Nuclear Information System (INIS)

    Pérez-Sánchez, G G; Pérez-Torres, J R; Flores-Bravo, J A; Álvarez-Chávez, J A; Martínez-Piñón, F

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor. (paper)

  10. Evaluation of interference fit and bone damage of an uncemented femoral knee implant.

    Science.gov (United States)

    Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico

    2018-01-01

    During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  12. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    Science.gov (United States)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  13. Emerging optical nanoscopy techniques

    Directory of Open Access Journals (Sweden)

    Montgomery PC

    2015-09-01

    Full Text Available Paul C Montgomery, Audrey Leong-Hoi Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube, Unistra-CNRS, Strasbourg, France Abstract: To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. Keywords: microscopy, imaging, superresolution, nanodetection, biophysics, medical imaging

  14. Distributed interference alignment iterative algorithms in symmetric wireless network

    Directory of Open Access Journals (Sweden)

    YANG Jingwen

    2015-02-01

    Full Text Available Interference alignment is a novel interference alignment way,which is widely noted all of the world.Interference alignment overlaps interference in the same signal space at receiving terminal by precoding so as to thoroughly eliminate the influence of interference impacted on expected signals,thus making the desire user achieve the maximum degree of freedom.In this paper we research three typical algorithms for realizing interference alignment,including minimizing the leakage interference,maximizing Signal to Interference plus Noise Ratio (SINR and minimizing mean square error(MSE.All of these algorithms utilize the reciprocity of wireless network,and iterate the precoders between original network and the reverse network so as to achieve interference alignment.We use the uplink transmit rate to analyze the performance of these three algorithms.Numerical simulation results show the advantages of these algorithms.which is the foundation for the further study in the future.The feasibility and future of interference alignment are also discussed at last.

  15. Simultaneous Wireless Information and Power Transfer for MIMO Interference Channel Networks Based on Interference Alignment

    Directory of Open Access Journals (Sweden)

    Anming Dong

    2017-09-01

    Full Text Available This paper considers power splitting (PS-based simultaneous wireless information and power transfer (SWIPT for multiple-input multiple-output (MIMO interference channel networks where multiple transceiver pairs share the same frequency spectrum. As the PS model is adopted, an individual receiver splits the received signal into two parts for information decoding (ID and energy harvesting (EH, respectively. Aiming to minimize the total transmit power, transmit precoders, receive filters and PS ratios are jointly designed under a predefined signal-to-interference-plus-noise ratio (SINR and EH constraints. The formulated joint transceiver design and power splitting problem is non-convex and thus difficult to solve directly. In order to effectively obtain its solution, the feasibility conditions of the formulated non-convex problem are first analyzed. Based on the analysis, an iterative algorithm is proposed by alternatively optimizing the transmitters together with the power splitting factors and the receivers based on semidefinite programming (SDP relaxation. Moreover, considering the prohibitive computational cost of the SDP for practical applications, a low-complexity suboptimal scheme is proposed by separately designing interference-suppressing transceivers based on interference alignment (IA and optimizing the transmit power allocation together with splitting factors. The transmit power allocation and receive power splitting problem is then recast as a convex optimization problem and solved efficiently. To further reduce the computational complexity, a low-complexity scheme is proposed by calculating the transmit power allocation and receive PS ratios in closed-form. Simulation results show the effectiveness of the proposed schemes in achieving SWIPT for MIMO interference channel (IC networks.

  16. Pattern effects and noise accumulation in concatenated all-optical regenerators

    DEFF Research Database (Denmark)

    Lading, Brian; Mørk, Jesper; Bischoff, Svend

    2001-01-01

    In future high-speed networks, interferometric structures based on semiconductor optical amplifiers (SOAs) are strong candidates for wavelength conversion applications and signal regeneration. One of the latest reported interferometric devices is the semiconductor delayed-interference signal...

  17. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  18. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  19. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  20. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical