Sample records for optical imaging system

  1. Optical Digital Image Storage System (United States)


    This could be accomplished even if the files were artificially determined. " Super files," composed of a number of files, could be artificially order to expedite transfer through the scanning process. These " super files" could later be broken down into their actual component files. Another...hesitant about implementing an optical disk system. While Sandra Napier believed it "looks promising," she felt an optical disk replacement of microfilm

  2. Physical Optics Based Computational Imaging Systems (United States)

    Olivas, Stephen Joseph

    There is an ongoing demand on behalf of the consumer, medical and military industries to make lighter weight, higher resolution, wider field-of-view and extended depth-of-focus cameras. This leads to design trade-offs between performance and cost, be it size, weight, power, or expense. This has brought attention to finding new ways to extend the design space while adhering to cost constraints. Extending the functionality of an imager in order to achieve extraordinary performance is a common theme of computational imaging, a field of study which uses additional hardware along with tailored algorithms to formulate and solve inverse problems in imaging. This dissertation details four specific systems within this emerging field: a Fiber Bundle Relayed Imaging System, an Extended Depth-of-Focus Imaging System, a Platform Motion Blur Image Restoration System, and a Compressive Imaging System. The Fiber Bundle Relayed Imaging System is part of a larger project, where the work presented in this thesis was to use image processing techniques to mitigate problems inherent to fiber bundle image relay and then, form high-resolution wide field-of-view panoramas captured from multiple sensors within a custom state-of-the-art imager. The Extended Depth-of-Focus System goals were to characterize the angular and depth dependence of the PSF of a focal swept imager in order to increase the acceptably focused imaged scene depth. The goal of the Platform Motion Blur Image Restoration System was to build a system that can capture a high signal-to-noise ratio (SNR), long-exposure image which is inherently blurred while at the same time capturing motion data using additional optical sensors in order to deblur the degraded images. Lastly, the objective of the Compressive Imager was to design and build a system functionally similar to the Single Pixel Camera and use it to test new sampling methods for image generation and to characterize it against a traditional camera. These computational

  3. Generalized pupil aberrations of optical imaging systems (United States)

    Elazhary, Tamer T.

    In this dissertation fully general conditions are presented to correct linear and quadratic field dependent aberrations that do not use any symmetry. They accurately predict the change in imaging aberrations in the presence of lower order field dependent aberrations. The definitions of the image, object, and coordinate system are completely arbitrary. These conditions are derived using a differential operator on the scalar wavefront function. The relationships are verified using ray trace simulations of a number of systems with varying degrees of complexity. The math is shown to be extendable to provide full expansion of the scalar aberration function about field. These conditions are used to guide the design of imaging systems starting with only paraxial surface patches, then growing freeform surfaces that maintain the analytic conditions satisfied for each point in the pupil. Two methods are proposed for the design of axisymmetric and plane symmetric optical imaging systems. Design examples are presented as a proof of the concept.

  4. Novel optical system for neonatal brain imaging (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria


    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  5. Multiband optics for imaging systems (Conference Presentation) (United States)

    Sanghera, Jasbinder S.; Gibson, Daniel J.; Bayya, Shyam S.; Nguyen, Vinh Q.; Kotov, Mikhail; McClain, Collin


    There is a strong desire to reduce size and weight of single and multiband IR imaging systems in Intelligence, Surveillance and Reconnaissance (ISR) operations on hand-held, helmet mounted or airborne platforms. NRL is developing new IR glasses that expand the glass map and provide compact solutions to multispectral imaging systems. These glasses were specifically designed to have comparable glass molding temperatures and thermal properties to enable lamination and co-molding of the optics which leads to a reduction in the number of air-glass interfaces (lower Fresnel reflection losses). Our multispectral optics designs using these new materials demonstrate reduced size, complexity and improved performance. This presentation will cover discussions on the new optical materials, multispectral designs, as well fabrication and characterization of new optics. Additionally, graded index (GRIN) optics offer further potential for both weight savings and increased performance but have so far been limited to visible and NIR bands (wavelengths shorter than about 0.9 µm). NRL is developing a capability to extend GRIN optics to longer wavelengths in the infrared by exploiting diffused IR transmitting chalcogenide glasses. These IR-GRIN lenses are compatible with all IR wavebands (SWIR, MWIR and LWIR) and can be used alongside conventional materials. The IR-GRIN lens technology, design space and anti-reflection considerations will be presented in this talk.

  6. Optical secure image verification system based on ghost imaging (United States)

    Wu, Jingjing; Haobogedewude, Buyinggaridi; Liu, Zhengjun; Liu, Shutian


    The ghost imaging can perform Fourier-space filtering by tailoring the configuration. We proposed a novel optical secure image verification system based on this theory with the help of phase matched filtering. In the verification process, the system key and the ID card which contain the information of the correct image and the information to be verified are put in the reference and the test paths, respectively. We demonstrate that the ghost imaging configuration can perform an incoherent correlation between the system key and the ID card. The correct verification manifests itself with a correlation peak in the ghost image. The primary image and the image to be verified are encrypted and encoded into pure phase masks beforehand for security. Multi-image secure verifications can also be implemented in the proposed system.

  7. Performance of laser based optical imaging system (United States)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh


    Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night ( 1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of 500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for night imaging and higher frame

  8. Analysis of optical amplifier noise in coherent optical communication systems with optical image rejection receivers

    DEFF Research Database (Denmark)

    Jørgensen, Bo Foged; Mikkelsen, Benny; Mahon, Cathal J.


    performance. Two types of optical image rejection receivers are investigated: a novel, all-optical configuration and the conventional, microwave-based configuration. The analysis shows that local oscillator-spontaneous emission beat noise (LO-SP), signal-spontaneous emission beat noise (S-SP), and spontaneous......A detailed theoretical analysis of optical amplifier noise in coherent optical communication systems with heterodyne receivers is presented. The analysis quantifies in particular how optical image rejection receiver configurations reduce the influence of optical amplifier noise on system......-spontaneous beat noise (SP-SP) can all be reduced by 3 dB, thereby doubling the dynamic range of the optical amplifier. A 2.5-dB improvement in dynamic range has been demonstrated experimentally with the all-optical image rejection configuration. The implications of the increased dynamic range thus obtained...

  9. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da


    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  10. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B


    Full Text Available  “Rectification” of Greek literature Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction”, now known as Snell's law. [5] Some History of Arabic Optics 2 See [4]  Arabic military interest in optics (Caliphs... science. Vol 2. Mathematics and the physical sciences, Routledge, 1996 [5] image used: “Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction”, now known as Snell's law.”, image from http...

  11. Document Indexing for Image-Based Optical Information Systems. (United States)

    Thiel, Thomas J.; And Others


    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  12. Optical-digital hybrid image search system in cloud environment (United States)

    Ikeda, Kanami; Kodate, Kashiko; Watanabe, Eriko


    To improve the versatility and usability of optical correlators, we developed an optical-digital hybrid image search system consisting of digital servers and an optical correlator that can be used to perform image searches in the cloud environment via a web browser. This hybrid system employs a simple method to obtain correlation signals and has a distributed network design. The correlation signals are acquired by using an encoder timing signal generated by a rotating disk, and the distributed network design facilitates the replacement and combination of the digital correlation server and the optical correlator.

  13. An integral design strategy combining optical system and image processing to obtain high resolution images (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun


    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  14. A dual-modal retinal imaging system with adaptive optics. (United States)

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua


    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  15. Establishing Information Security Systems via Optical Imaging (United States)


    Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...SLM Object~~~, ........ . . . . . . . . . . . . . . . . . Laser CCD DJ Fig. 9. A schematic for computational ghost imaging: BD, bucket detector...polarization. (c) Since the sophisticated optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to


    Directory of Open Access Journals (Sweden)

    R. V. Anitropov


    Full Text Available Subject of Research. The research results, structural composition analysis and the parametric synthesis of the projected imaging and non-imaging optical systems were presented. We made an attempt to use the gained experience about imaging systems while designing non-imaging systems, by adapting the composition theory for the calculations of non-imaging systems. Several patterns were revealed, which provide a deeper understanding of the design process of non-imaging optical systems; measures of its optimization were proposed. Method. We investigated the applicability of the theory of composition and synthesis of non-imaging optical systems. The main provisions of the theory of composition are based on the division of all available optical elements in four types depending on their functionality, which corresponds to a modular design. Similar items were identified in non-imaging optical systems and adaptation of composition theory to their design became possible. Main Results. General design patterns of imaging and non-imaging optical systems were studied. Classification of systems, components, as well as technical and generic characteristics of imaging and non-imaging optical systems was determined. Search mechanism of the initial optical system by means of structural and parametric synthesis of non-imaging optical system was formalized. The basic elements were determined included in non-imaging systems and their classification by functionality was done. They were subdivided into basic, corrective, wide angle and high aperture ones. The rules for formation of these elements and their composition were determined: surface reflecting, refracting, spherical and nonspherical elements with total internal reflection. The foundations of composition theory for non-imaging optical systems were laid. The approbation of this method was carried out on the example of the illumination system calculation for surgical room. A 3D model of an illumination optical

  17. Compensating focusing for space hyper spectral imager's fore optical system

    Institute of Scientific and Technical Information of China (English)

    Yicha Zhang; Wei Liu


    @@ The performance of space hyper spectral imager is severely affected by turbulent orbit temperature. Turbulence results in a defocus in the fore optical system of the imager. To address this problem, a focusing system is added. A number of simulation methods are applied on the fore optical system to study the relationship between temperature and focusing. In addition, this process is conducted to obtain a practical reference for focusing while the imager is flying on orbit. The obtained correlation between focusing and temperature is proven effective based on ground imaging and simulation testing.%The performance of space hyper spectral imager is severely affected by turbulent orbit temperature. Turbulence results in a defocus in the fore optical system of the imager. To address this problem, a focusing system is added. A number of simulation methods are applied on the fore optical system to study the relationship between temperature and focusing. In addition, this process is conducted to obtain a practical reference for focusing while the imager is flying on orbit. The obtained correlation between focusing and temperature is proven effective based on ground imaging and simulation testing.

  18. An adaptive optics imaging system designed for clinical use. (United States)

    Zhang, Jie; Yang, Qiang; Saito, Kenichi; Nozato, Koji; Williams, David R; Rossi, Ethan A


    Here we demonstrate a new imaging system that addresses several major problems limiting the clinical utility of conventional adaptive optics scanning light ophthalmoscopy (AOSLO), including its small field of view (FOV), reliance on patient fixation for targeting imaging, and substantial post-processing time. We previously showed an efficient image based eye tracking method for real-time optical stabilization and image registration in AOSLO. However, in patients with poor fixation, eye motion causes the FOV to drift substantially, causing this approach to fail. We solve that problem here by tracking eye motion at multiple spatial scales simultaneously by optically and electronically integrating a wide FOV SLO (WFSLO) with an AOSLO. This multi-scale approach, implemented with fast tip/tilt mirrors, has a large stabilization range of ± 5.6°. Our method consists of three stages implemented in parallel: 1) coarse optical stabilization driven by a WFSLO image, 2) fine optical stabilization driven by an AOSLO image, and 3) sub-pixel digital registration of the AOSLO image. We evaluated system performance in normal eyes and diseased eyes with poor fixation. Residual image motion with incremental compensation after each stage was: 1) ~2-3 arc minutes, (arcmin) 2) ~0.5-0.8 arcmin and, 3) ~0.05-0.07 arcmin, for normal eyes. Performance in eyes with poor fixation was: 1) ~3-5 arcmin, 2) ~0.7-1.1 arcmin and 3) ~0.07-0.14 arcmin. We demonstrate that this system is capable of reducing image motion by a factor of ~400, on average. This new optical design provides additional benefits for clinical imaging, including a steering subsystem for AOSLO that can be guided by the WFSLO to target specific regions of interest such as retinal pathology and real-time averaging of registered images to eliminate image post-processing.

  19. An Analysis of the Magneto-Optic Imaging System (United States)

    Nath, Shridhar


    The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.

  20. Optical Image Classification Using Optical/digital Hybrid Image Processing Systems. (United States)

    Li, Xiaoyang


    Offering parallel and real-time operations, optical image classification is becoming a general technique in the solution of real-life image classification problems. This thesis investigates several algorithms for optical realization. Compared to other statistical pattern recognition algorithms, the Kittler-Young transform can provide more discriminative feature spaces for image classification. We shall apply the Kittler-Young transform to image classification and implement it on optical systems. A feature selection criterion is designed for the application of the Kittler -Young transform to image classification. The realizations of the Kittler-Young transform on both a joint transform correlator and a matrix multiplier are successively conducted. Experiments of applying this technique to two-category and three-category problems are demonstrated. To combine the advantages of the statistical pattern recognition algorithms and the neural network models, processes using the two methods are studied. The Karhunen-Loeve Hopfield model is developed for image classification. This model has significant improvement in the system capacity and the capability of using image structures for more discriminative classification processes. As another such hybrid process, we propose the feature extraction perceptron. The application of feature extraction techniques to the perceptron shortens its learning time. An improved activation function of neurons (dynamic activation function), its design and updating rule for fast learning process and high space-bandwidth product image classification are also proposed. We have shortened by two-thirds the learning time on the feature extraction perceptron as compared with the original perceptron. By using this architecture, we have shown that the classification performs better than both the Kittler-Young transform and the original perceptron.

  1. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram


    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  2. Magneto-optical system for high speed real time imaging (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.


    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  3. Analog signal processing for optical coherence imaging systems (United States)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  4. Visible-Light Tomography Using an Optical Imaging-System

    NARCIS (Netherlands)

    Ingesson, L. C.; Koning, J. J.; Donne, A. J. H.; D.C. Schram,


    A system for tomography in the wavelength range 200-1 100 nm has been designed for the Rijnhuizen Tokamak Project (RTP). The plasma is viewed from five directions in one poloidal plane with a total of 80 detectors. An optical imaging system consisting of two spherical mirrors for each viewing direct

  5. Driving micro-optical imaging systems towards miniature camera applications (United States)

    Brückner, Andreas; Duparré, Jacques; Dannberg, Peter; Leitel, Robert; Bräuer, Andreas


    Up to now, multi channel imaging systems have been increasingly studied and approached from various directions in the academic domain due to their promising large field of view at small system thickness. However, specific drawbacks of each of the solutions prevented the diffusion into corresponding markets so far. Most severe problems are a low image resolution and a low sensitivity compared to a conventional single aperture lens besides the lack of a cost-efficient method of fabrication and assembly. We propose a microoptical approach to ultra-compact optics for real-time vision systems that are inspired by the compound eyes of insects. The demonstrated modules achieve a VGA resolution with 700x550 pixels within an optical package of 6.8mm x 5.2mm and a total track length of 1.4mm. The partial images that are separately recorded within different optical channels are stitched together to form a final image of the whole field of view by means of image processing. These software tools allow to correct the distortion of the individual partial images so that the final image is also free of distortion. The so-called electronic cluster eyes are realized by state-of-the-art microoptical fabrication techniques and offer a resolution and sensitivity potential that makes them suitable for consumer, machine vision and medical imaging applications.

  6. 4F-based optical phase imaging system

    DEFF Research Database (Denmark)


    The invention relates to 4F-based optical phase imaging system and in particular to reconstructing quantitative phase information of an object when using such systems. The invention applies a two-dimensional, complex spatial light modulator (SLM) to impress a complex spatial synthesized modulation...... in addition to the complex spatial modulation impressed by the object. This SLM is arranged so that the synthesized modulation is superimposed with the object modulation and is thus placed at an input plane to the phase imaging system. By evaluating output images from the phase imaging system, the synthesized...... modulation is selected to optimize parameters in the output image which improves the reconstruction of qualitative and quantitative object phase information from the resulting output images....

  7. Optical design and characterization of an advanced computational imaging system (United States)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang


    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  8. Electro-optical imaging system performance measurement

    NARCIS (Netherlands)

    Bijl, P.; Toet, A.; Valeton, J.M.


    The minimum resolvable temperature difference (MRTD), the minimum resolvable contrast (MRC), and the triangle orientation discrimination (TOD) are end-to-end EO system performance measures; that is, laboratory measures that characterize EO system performance with a human observer in the loop. Such s

  9. Reflective optical imaging system for extreme ultraviolet wavelengths (United States)

    Viswanathan, V.K.; Newnam, B.E.


    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  10. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems. (United States)

    Downie, J D; Goodman, J W


    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  11. Digital optical tomography system for dynamic breast imaging. (United States)

    Flexman, Molly L; Khalil, Michael A; Al Abdi, Rabah; Kim, Hyun K; Fong, Christopher J; Desperito, Elise; Hershman, Dawn L; Barbour, Randall L; Hielscher, Andreas H


    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  12. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J


    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  13. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy (United States)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)


    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  14. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems (United States)

    Downie, John D.


    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  15. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems (United States)

    Downie, John D.


    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  16. High Speed Optical Tomography System for Imaging Dynamic Transparent Media (United States)

    McMackin, Lenore; Hugo, Ronald J.; Pierson, R. E.; Truman, C. R.


    We describe the design and operation of a high speed optical tomography system for measuring two-dimensional images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. The tomographic reconstructions have a spatial resolution of approximately 2.0 mm and can measure temperature variations across the flow with an accuracy of about 0.7 C. Series of animated reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  17. Test for optical systems in laser projection imaging for PCB (United States)

    Qin, Ouyang; Zhou, Jinyun; Lei, Liang; Lin, Qinghua


    Projection imaging is one of the most important steps in the fabrication of Printed Circuit Board. In order to meet the increasing demand for higher resolution, speed and larger area of imaging, a novel Laser Projection Imaging (LPI) has been developed to take the place of the conventional Hg lamp exposure. We set up a system with resolution 10μm over large exposure area of 460mm×610mm on substrate materials. The system is available by the combination of three main parts: an XeF excimer laser with a wavelength of 351nm and single pulse energy of 120mJ, an illumination system with numerical aperture (NA) value of 0.02, and a double telecentric optical projection lens with NA value of 0.025. Such designs can theoretically meet the demand of actual lithography. However, experiments have shown that the propagation loss ratio of laser power from the light source to the substrate can be up to 50% or more so as to hardly achieve the expected results. In this paper, we present our results of experiments under different conditions on laser projection imaging equipment, and meanwhile, parameters such as gas lifetime, pulse repetition rate, exposure dose, as well as the optical lose of quartz microlens array are analyzed. Finally, we acquired the optimum exposure parameters.

  18. High-sensitive scanning laser magneto-optical imaging system. (United States)

    Murakami, Hironaru; Tonouchi, Masayoshi


    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47 x 10(-5) rad/microm Oe shows a magnetic sensitivity of about 5 microT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa(2)Cu(3)O(7-delta) (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  19. Optical image encryption topology. (United States)

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen


    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  20. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle. (United States)

    Miida, Yusuke; Matsuura, Yuji


    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  1. EUV optical system for the reticle imaging microscope (RIM) (United States)

    Glatzel, H.; Daniel, J.; Khajehnouri, K.; Mueller, U.; Roff, T.; Rosenbohm, J.; Sporer, S.


    The EUV optical system of the Reticle Imaging Microscope (RIM) for EUV mask inspection consists of a pinched Xeplasma source, a pupil-relayed Koehler-type illumination system and an equal-radii Cassegrain-type microscope with a 10x magnification1. The 3D surface topologies were characterized over spatial wavelengths ranging from the clear apertures down to a few nanometers by using a portfolio of instruments including contacting profilometry, phase-shifting interferometry at 633 nm at various magnifications and Atomic Force Microscopy. Measured 3D topography maps were Fourier analyzed and Power Spectral Densities (PSDs) are computed over spatial periods ranging from the critical aperture down to a few nm. Integrated RMS surface errors over typically reported spatial period ranges were computed. For a different optical system we improved our polishing process to reduce surface errors for spatial periods below 10 mm. PSDs and integrated RMS surface errors will be shown in comparison with typical RIM surfaces. All surfaces of the RIM optical system were coated with high-reflectivity coatings to maximize optical throughput. A description of the coatings and their performance had been published recently by Michael Kriese et al.2 The transmitted wavefront error (TWF) of the imager module was measured in a double pass configuration using a Fizeau-type Interferometer at 633 nm wavelength and a convex retrosphere. The measured TWF will be shown over the entire Numerical Aperture (NA = 0.0625) of the microscope. The integrated RMS of the TWF measured 0.79 nm.

  2. Optimized optical clearing method for imaging central nervous system (United States)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan


    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  3. Optical Design for Biomedical Imaging

    CERN Document Server

    Liang, Rongguang


    Designing an efficient imaging system for biomedical optics requires a solid understanding of the special requirements of the optical systems for biomedical imaging and the optical components used in the systems. However, a lack of reference books on optical design (imaging and illumination) for biomedical imaging has led to some inefficient systems. This book fills the gap between biomedical optics and optical design by addressing the fundamentals of biomedical optics and optical engineering, and biomedical imaging systems. The first half provides a brief introduction to biomedical optics and

  4. Imaging quality evaluation method of pixel coupled electro-optical imaging system (United States)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui


    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  5. On the importance of image formation optics in the design of infrared spectroscopic imaging systems. (United States)

    Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit


    Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.

  6. Simulation of electro-optical imaging system based on OpenGL (United States)

    Zhu, Yong; Fu, Qiang; Duan, Jin; Jing, Wen-bo


    With the development of electro-optical imaging system technology and simulation technology, and the demand of optimizing the new type electro-optical imaging system theoretical model, more and more scientific research institutes, colleges and universities research on the simulation of electro-optical imaging system, and the better results were obtained. Simulation technology saved the cost of system design development, meanwhile, some complex and hard to re-implement experiments can be carried repeatedly. According to the demand of complex environment construction technology and the requirement of imaging simulation system fidelity, considering the performance of electro-optical imaging system, an electro-optical imaging system is modeled. The modeling has two aspects which is scene characteristic modeling and electro-optical system modeling. Scene characteristic modeling can construct dynamic scenes in different kinds of complex environments by using powerful OpenGL three-dimension model visualization technology. Electro-optical system modeling is consist of optical system and imaging detector. Electro-optical imaging system simulation model is established with the analysis of electro-optical imaging system theory. The use of modular design concept and general interface technology is combined. Different imaging effect is received under different parameters by modifying the model's related parameters. The experimental results show that, the image produced from simulation basically reflects the performance of imaging system, so this kind of image can be used as a information source for imaging system performance analysis. It provides a simple and feasible method for the analysis of imaging system performance, which has a very important practical significance.

  7. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter


    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  8. Visual analysis of the computer simulation for both imaging and non-imaging optical systems (United States)

    Barladian, B. K.; Potemin, I. S.; Zhdanov, D. D.; Voloboy, A. G.; Shapiro, L. S.; Valiev, I. V.; Birukov, E. D.


    Typical results of the optic simulation are images generated on the virtual sensors of various kinds. As a rule, these images represent two-dimensional distribution of the light values in Cartesian coordinates (luminance, illuminance) or in polar coordinates (luminous intensity). Using the virtual sensors allows making the calculation and design of different kinds of illumination devices, providing stray light analysis, synthesizing of photorealistic images of three-dimensional scenes under the complex illumination generated with optical systems, etc. Based on rich experience in the development and practical using of computer systems of virtual prototyping and photorealistic visualization the authors formulated a number of basic requirements for the visualization and analysis of the results of light simulations represented as two-dimensional distribution of luminance, illuminance and luminous intensity values. The requirements include the tone mapping operators, pseudo color imaging, visualization of the spherical panorama, regression analysis, the analysis of the image sections and regions, analysis of pixel values, the image data export, etc. All those requirements were successfully satisfied in designed software component for visual analysis of the light simulation results. The module "LumiVue" is an integral part of "Lumicept" modeling system and the corresponding plug-in of computer-aided design and support for CATIA product. A number of visual examples of analysis of calculated two-dimensional distribution of luminous intensity, illuminance and luminance illustrate the article. The examples are results of simulation and design of lighting optical systems, secondary optics for LEDs, stray light analysis, virtual prototyping and photorealistic rendering.

  9. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system (United States)

    Nam, Y. B.; Lee, D. J.; Lee, J.; Kim, C.; Yun, G. S.; Lee, W.; Park, H. K.


    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ˜2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  10. Dual-path handheld system for cornea and retina imaging using optical coherence tomography (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun


    A dual-path handheld system is proposed for cornea and retina imaging using spectral domain optical coherence tomography. The handheld sample arm is designed to acquire two images simultaneously. Both eyes of a person can be imaged at the same time to obtain the images of the cornea of one eye and the retina of the other eye. Cornea, retina, and optic disc images are acquired with the proposed sample arm. Experimental results demonstrate the usefulness of this system for imaging of different eye segments. This system reduces the time required for imaging of the two eyes and is cost effective.

  11. A minimal optical trapping and imaging microscopy system.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules.

  12. Implementing Optical Storage: How to Select a Document Image Management System. (United States)

    O'Connor, Mary Ann


    Describes document image management systems that are used for optical storage to facilitate information retrieval. Document image management applications are described, considerations in evaluating system features and functions are presented, and criteria for evaluating vendors of document image management systems are suggested. (two references)…

  13. Study on the MWIR imaging ability of optical readout bimaterial microcantilever FPA uncooled infrared imaging system (United States)

    Zhou, Bingbing; Feng, Yun; Zhao, Yuejin; Dong, Liquan; Liu, Ming; Chu, Xuhong; Yu, Xiaomei


    In this paper, we analyze and experimentally demonstrate the medium-wave infrared (MWIR) imaging ability based on optical readout bimaterial microcantilever focal plane array (FPA) uncooled infrared imaging system. Multiband infrared imaging technology has been a hotspot in the field of infrared imaging. In the infrared band, medium-wave infrared (3 5 μm) has minimal attenuation of atmospheric infrared window, and it also covers many atomic and molecular absorption peak. Imaging study on MWIR radiation source also appears particularly important. First of all, we introduce the bimaterial microcantilever IR sensing principle and the fabrication of the bimaterial microcantilever FPA. Secondly, the paper introduces the theory of the optical-thermal-mechnical reading based on FPA. Finally, the experimental platform was constructed to conduct the MWIR imaging experiment. The medium-wave infrared radiation source consists of a continuous-wave optical parametric oscillator (OPO) that is pumped by a polarization-maintained, single-mode fiber amplifier. The length of the 50mm periodically polarized LiNbO3 crystal (5%MgO) is used as the nonlinear crystal. The stable cavity of the ring is designed, and the output of the 3 4 μm band is realized by the design of the nonlinear crystal polarization period. And the FPA employed in our experiment contains 256×256 pixels fabricated on a glass substrate, whose working bandwidth is covering the three IR atmospheric windows. The experimental results show that the bimaterial microcantilever FPA has a good imaging ability to the MWIR sources.

  14. Development of an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (United States)

    Ando, Koki; Oka, Miki; Yamamoto, Seiichi


    We developed an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (PSPMT). The alpha-particle imaging system consists of an optical lens, an extension tube and a 1 in. square high quantum efficiency (HQE) type PSPMT. After a ZnS(Ag) is attached to subject, the scintillation image of ZnS(Ag) is focused on the photocathode of the PSPMT by the use of the optical lens. With this configuration we could image the alpha particle distribution with energy information without contacting to the subject. The spatial resolution and energy resolution were 0.8 mm FWHM and 50% FWHM at 5 mm from the optical lens, respectively. We could successfully image the alpha particle distribution in uranium ore. The developed alpha-particle imaging system will be a new tool for imaging alpha emitters with energy information without contacting the subject.

  15. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction (United States)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang


    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  16. Optical multipolar spread functions of an aplanatic imaging system (United States)

    Rouxel, Jérémy R.; Toury, Timothée


    The electromagnetic field near the focus of a perfect imaging system is calculated for different multipolar sources that play an important role in the radiation of nanostructures. Those multipoles are the exact and extended multipoles occurring in electrodynamics. The theory of diffraction of vector waves is reviewed rigorously for a dipolar radiation and applied to the imaging of multipolar sources. Different geometries are considered in order to connect with experiments and the multipolar spread functions are given in a ready-to-use format up to the octupolar order, in the general case and in the paraxial approximation. Defocus imaging is finally considered to provide a first step toward multipolar imaging.

  17. Imaging system of wavelet optics described by the Gaussian linear frequency-modulated complex wavelet (United States)

    Tan, Liying; Ma, Jing; Wang, Guangming


    The image formation and the point-spread function of an optical system are analyzed by use of the wavelet basis function. The image described by a wavelet is no longer an indivisible whole image. It is, rather, a complex image consisting of many wavelet subimages, which come from the changes of different parameters (scale) a and c, and parameters b and d show the positions of wavelet subimages under different scales. A Gaussian frequency-modulated complex-valued wavelet function is introduced to express the point-spread function of an optical system and used to describe the image formation. The analysis, in allusion to the situation of illumination with a monochromatic plain light wave, shows that using the theory of wavelet optics to describe the image formation of an optical system is feasible.


    Directory of Open Access Journals (Sweden)

    N. D. Zoric


    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  19. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin


    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  20. Method used to test the imaging consistency of binocular camera's left-right optical system (United States)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui


    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  1. Automated alignment system for optical wireless communication systems using image recognition. (United States)

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst


    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  2. Cerenkov Radiation Energy Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems: e13300

    National Research Council Canada - National Science Library

    Robin S Dothager; Reece J Goiffon; Erin Jackson; Scott Harpstrite; David Piwnica-Worms


    .... Principal Findings To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes 64Cu and 18F can be spectrally coupled...

  3. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System Project (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  4. Improving the Performance of Three-Mirror Imaging Systems with Freeform Optics (United States)

    Howard, Joseph M.; Wolbach, Steven


    The image quality improvement for three-mirror systems by Freeform Optics is surveyed over various f-number and field specifications. Starting with the Korsch solution, we increase the surface shape degrees of freedom and record the improvements.

  5. Sensorless adaptive optics system based on image second moment measurements (United States)

    Agbana, Temitope E.; Yang, Huizhen; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel


    This paper presents experimental results of a static aberration control algorithm based on the linear relation be- tween mean square of the aberration gradient and the second moment of point spread function for the generation of control signal input for a deformable mirror (DM). Results presented in the work of Yang et al.1 suggested a good feasibility of the method for correction of static aberration for point and extended sources. However, a practical realisation of the algorithm has not been demonstrated. The goal of this article is to check the method experimentally in the real conditions of the present noise, finite dynamic range of the imaging camera, and system misalignments. The experiments have shown strong dependence of the linearity of the relationship on image noise and overall image intensity, which depends on the aberration level. Also, the restoration capability and the rate of convergence of the AO system for aberrations generated by the deformable mirror are experi- mentally investigated. The presented approach as well as the experimental results finds practical application in compensation of static aberration in adaptive microscopic imaging system.

  6. Shack-Hartmann sensor based optical quality testing of whole slide imaging systems for digital pathology

    NARCIS (Netherlands)

    Shakeri, S.M.; Hulsken, B.; Van Vliet, L.J.; Stallinga, S.


    Whole Slide Imaging (WSI) systems are used in the emerging field of digital pathology for capturing high-resolution images of tissue slides at high throughput. We present a technique to measure the optical aberrations of WSI systems using a Shack-Hartmann wavefront sensor as a function of field posi

  7. Aberrations in shift-invariant linear optical imaging systems using partially coherent fields

    CERN Document Server

    Beltran, Mario A; Paganin, David M


    Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral density under the space-frequency formulation of statistically stationary partially coherentfields. We also develop expressions for the output cross{spectral density and associated spectral density for weak-phase, weak-phase-amplitude, and single-material objects in one transverse spatial dimension.

  8. Three dimensional image reconstruction based on a wide-field optical coherence tomography system (United States)

    Feng, Yinqi; Feng, Shengtong; Zhang, Min; Hao, Junjun


    Wide-field optical coherence tomography has a promising application for its high scanning rate and resolution. The principle of a wide-field optical coherence tomography system is described, and 2D images of glass slides are reconstructed using eight-stepped phase-shifting method in the system. Using VC6.0 and OpenGL programming, 3D images are reconstructed based on the Marching Cube algorithm with 2D image sequences. The experimental results show that the depth detection and three-dimensional tomography for translucent materials could be implemented efficiently in the WFOCT system.

  9. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system]. (United States)

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu


    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  10. Very high resolution optical transition radiation imaging system: Comparison between simulation and experiment

    CERN Document Server

    Bolzon, B; Aumeyr, Thomas; Boogert, Stewart Takashi; Karataev, Pavel; Kruchinin, Konstantin; Lefevre, Thibaut; Mazzoni, Stefano; Nevay, Laurence James; Shevelev, M; Terunuma, N; Urakawa, J; Welsch, Carsten


    Optical transition radiation (OTR) has become a commonly used method for 2D beam imaging measurements. In the Accelerator Test Facility 2 (ATF2) at KEK, beam sizes smaller than the OTR point spread function have been measured. Simulations of the OTR imaging system have been performed using the ZEMAX software to study the effects of optical errors such as aberrations, diffraction, and misalignments of optical components. This paper presents a comparison of simulations of the OTR point spread function with experimental data obtained at ATF2. It shows how the quantification and control of optical errors impacts on optimizing the resolution of the system. We also show that the OTR point spread function needs to be predicted accurately to optimize any optical system and to predict the error made on measurement.

  11. Very high resolution optical transition radiation imaging system: Comparison between simulation and experiment

    Directory of Open Access Journals (Sweden)

    B. Bolzon


    Full Text Available Optical transition radiation (OTR has become a commonly used method for 2D beam imaging measurements. In the Accelerator Test Facility 2 (ATF2 at KEK, beam sizes smaller than the OTR point spread function have been measured. Simulations of the OTR imaging system have been performed using the ZEMAX software to study the effects of optical errors such as aberrations, diffraction, and misalignments of optical components. This paper presents a comparison of simulations of the OTR point spread function with experimental data obtained at ATF2. It shows how the quantification and control of optical errors impacts on optimizing the resolution of the system. We also show that the OTR point spread function needs to be predicted accurately to optimize any optical system and to predict the error made on measurement.

  12. Image enhancement of optical images for binary system of melanocytes and keratinocytes (United States)

    Takanezawa, S.; Baba, A.; Sako, Y.; Ozaki, Y.; Date, A.; Toyama, K.; Morita, S.


    Automatic determination of the cell shapes of large numbers of melanocytes based on optical images of human skin models have been largely unsuccessful (the complexities introduced by dendrites and the melanin pigmentation over the keratinocytes to give unclear outlines). Here, we present an image enhancement procedure for enhancing the contrast of images with removing the non-uniformity of background. The brightness is normalized also for the non-uniform population density of melanocytes.

  13. Single Camera 3-D Coordinate Measuring System Based on Optical Probe Imaging

    Institute of Scientific and Technical Information of China (English)


    A new vision coordinate measuring system——single camera 3-D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.

  14. Unified optical distortion correction method for imaging systems using a concise geometrical transformation model (United States)

    Chang, Shengqian; Liu, Siqi; Yuan, Fei; Zheng, Zhenrong


    Since optical distortion has been a big trouble for various kinds of imaging systems, finding a simple correction method with wide applications is of significant importance. In this paper, we propose a unified and simple correction method, performing well for both photographic and projective imaging systems. The basic idea is regarding the optical distortion as geometrical deformation between the object and image, without considering the specific features of an optical system. First of all, a calibration template is employed to establish the geometrical transformation model (GTM) for the distortion of a built optical system. Two alternative algorithms are given to estimate the GTM in algebraic form. The computation is very simple because no intrinsic parameters of the optical system are needed to establish the GTM. Besides, the errors introduced by the fabricating and assembling process can be eliminated. Then, the corrected image of the photographic system or the pre-distorted image of the projective systems can be obtained accordingly utilizing the GTM. Experiments are conducted to demonstrate the effectiveness of our method with wide applications.

  15. Application of real image display and generation technique in space optical system (United States)

    He, Ruicong; Lin, Li


    In space optical system, image display and generation can be influenced by various factors such as stray light, space distance, orbit parameters and so on. To acquire accurate and clear image, these factors should be considered. Before acquiring the real image, simulation is necessary. Through comparing the simulated image with the real one, accuracy can be proved. This paper focuses on building a three-dimensional (3D) model of a satellite and simulating its orbit according to the real data. The 3D images of the satellite should be acquired in specific positions and postures from a camera on another satellite. 3D Studio Max is the software used in the process to build models, simulate and generate images. It is a 3D computer graphics program for making 3D animations, models, and images. Also in the paper, stray light relevant to the satellite surfaces is analyzed. Tracepro is the software used in the stray light analyze to trace the light on the surfaces. It is an optical engineering software program for designing and analyzing optical and illumination systems. Stray light analyzing result is addicted to the 3D images, so that the images are more precise. Therefore, the final images can be complete images including light intensity information of the satellite surfaces which makes the images more real.

  16. Design of optical system with three-dimensional image visualization using an array of microlenses (United States)

    Santalina, I. Yu; Toropova, A. P.


    The algorithm of calculation of the optical imaging system of a three-dimensional image based on the method of integral photography was given in this article. The algorithm is easy to use and allows the calculate schemes with different microlens arrays, a CCD array of the camera and the projector.

  17. Configurable adaptive optical system for imaging of ground-based targets from space (United States)

    McComas, Brian K.; Friedman, Edward J.; Hooker, R. Brian; Cermak, Michael A.


    Space-based, high resolution, Earth remote sensing systems, that employ large, flexible, lightweight primary mirrors, will require active wavefront correction, in the form of active and adaptive optics, to correct for thermally and vibrationally induced deformations in the optics. These remote sensing systems typically have a large field-of-view. Unlike the adaptive optics on ground-based astronomical telescopes, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct the wavefront over the entire field-of-view, which can be several degrees. The error functions for astronomical adaptive optics have been developed for the narrow field-of-view correction of atmospheric turbulence and do not address the needs of wide field space-based systems. To address these needs, a new wide field adaptive optics theory and a new error function are developed. Modeling and experimental results demonstrate the validity of the wide field adaptive optics theory and new error function. This new error function, which is a new extension of conventional adaptive optics, lead to the development of three new types of imaging systems: wide field-of-view, selectable field-of-view, and steerable field-of-view. These new systems can have nearly diffraction-limited performance across the entire field-of-view or a narrow movable region of high-resolution imaging. The factors limiting system performance will be shown. The range of applicability of the wide field adaptive optics theory is shown. The range of applicability is used to avoid limitations in system performance and to estimate the optical systems parameters, which will meet the system"s performance requirements.

  18. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank


    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  19. Phase-retrieval algorithms applied in a 4-f system for optical image encryption: a comparison (United States)

    Situ, Guohai; Zhang, Jingjuan


    Phase retrieval algorithms based on 4-f system for optical image encryption are compared in respect of the image retrieval quality and the convergence. Simulation results show that enlarging the searching space can decrypt the image with extremely high quality, while employing the searching strategy of modifying both the phase-distributions in the input and the frequency planes can result in much faster convergence for the algorithm.

  20. End-to-End Image Simulator for Optical Imaging Systems: Equations and Simulation Examples

    Directory of Open Access Journals (Sweden)

    Peter Coppo


    Full Text Available The theoretical description of a simplified end-to-end software tool for simulation of data produced by optical instruments, starting from either synthetic or airborne hyperspectral data, is described and some simulation examples of hyperspectral and panchromatic images for existing and future design instruments are also reported. High spatial/spectral resolution images with low intrinsic noise and the sensor/mission specifications are used as inputs for the simulations. The examples reported in this paper show the capabilities of the tool for simulating target detection scenarios, data quality assessment with respect to classification performance and class discrimination, impact of optical design on image quality, and 3D modelling of optical performances. The simulator is conceived as a tool (during phase 0/A for the specification and early development of new Earth observation optical instruments, whose compliance to user’s requirements is achieved through a process of cost/performance trade-off. The Selex Galileo simulator, as compared with other existing image simulators for phase C/D projects of space-borne instruments, implements all modules necessary for a complete panchromatic and hyper spectral image simulation, and it allows excellent flexibility and expandability for new integrated functions because of the adopted IDL-ENVI software environment.

  1. Hand-held probe based optical imaging system towards breast cancer diagnosis (United States)

    Ge, Jiajia; Jayachandran, Bhavani; Regalado, Steven; Zhu, Banghe; Godavarty, Anuradha


    Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. However, the currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Herein, a hand-held based optical imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of the hand-held optical probe are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving the overall signal strength; (ii) to adapt to the contour of tissue surface, thus decreasing the leakage of excitation and emission signal at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. The increased detected signal strength as well as total interrogated tissue volume is demonstrated by simulation studies (i.e. forward model) over a 5×10×10 cc slab phantom. The appropriate number and layout of the source and detection points on the probe head is determined and the hand-held optical probe is developed. A frequency-domain ICCD (intensified charge coupled device) detection system, which allows simultaneous multiple points detection, is developed and coupled to the hand-held probe in order to perform fluorescence-enhanced optical imaging of tissue phantoms. In the future, imaging of homogenous liquid phantoms will be used for the assessment of this hand-held system, followed by extensive imaging studies on different phantoms types under various experimental conditions.

  2. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yipeng; Tan, Wenjiang, E-mail:; Si, Jinhai; Ren, YuHu; Xu, Shichao; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xianning-xilu 28, Xi' an 710049 (China); Tong, Junyi [Departments of Applied Physics, Xi' an University of Technology, Xi' an 710048 (China)


    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  3. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle (United States)

    Inoue, S.; Katagiri, T.; Matsuura, Y.


    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  4. System and method for optical fiber based image acquisition suitable for use in turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin


    A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.

  5. The design and characterization of a digital optical breast cancer imaging system. (United States)

    Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H


    Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.

  6. Effect of optical surface flatness performance on spatial-light-modulator-based imaging system (United States)

    Zhou, Hongqiang; Wan, Yuhong; Man, Tianlong; Han, Ying


    Spatial light modulator (SLM) has various of applications in the field of imaging, beam shaping, adaptive optics and so on. While SLM is used as an aberration correction element in super-resolution microscopy, the surface flatness of SLM could affect the imaging performance of the system due to the higher sensitivity to aberrations of these kind microscopic techniques. In this paper, the optical surface flatness of SLM is measured experimentally by employing the image plane digital holography. The topography of SLM is retrieved from the captured hologram. Aiming to the application of SLM as an adaptive correction element in super resolution microscopy, the aberrations introduced by the surface flatness of SLM are further evaluated and corrected in the same optical system.

  7. Imaging Freeform Optical Systems Designed with NURBS Surfaces (United States)


    Fortunately, an all-reflective corrector avoids the issues of chromatic aberration, which are severe for a refractive corrector over this...with NURBS Freeform Surfaces,” OSA Freeform Optics Conference, Renewable Energy and Environment Congress (2013). 16. M. P. Chrisp, B. Primeau, M

  8. Asymmetric Threat Assessment Using Electro-Optical Image Systems

    NARCIS (Netherlands)

    Schwering, P.B.W.; Schutte, K.


    Asymmetric threat assessment from military platforms, including early detection and classification by electro-optical means, is a complicated matter. These threats can be for instance explosives-packed rubber boats, minecarrying swimmers and divers in a marine environment or terrorists, improvised e

  9. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis


    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  10. Restoration of digital images with known space-variant blurs from conventional optical systems (United States)

    Costello, Thomas P.; Mikhael, Wasfy B.


    Space-variant (SV) digital image restoration methods attempt to restore images degraded by blurs that vary over the image field. One specific source of SV blurs is that of geometrical optical aberrations, which divert light rays as they pass through the optical system away from an ideal focal point. For simple optical system, aberrations can become significant even at moderate field angles. Restoration methods have been developed for some space- variant aberrations when they are individually dominant, but such dominance is not typically characteristic of conventional optical systems. In this paper, an iterative method of restoration that is applicable to generalized, known space-variant blurs is applied to simulations of images generated with a spherical lines. The method is based on the Gauss-Seidel method of solution to systems of linear equations. The method is applied to sub-images having off- axis displacements of up to 453 pixels, and found to be superior in restoration effectiveness to Fourier methods in that range of field angles.

  11. A novel multimodal optical imaging system for early detection of oral cancer (United States)

    Malik, Bilal H.; Jabbour, Joey M.; Cheng, Shuna; Cuenca, Rodrigo; Cheng, Yi-Shing Lisa; Wright, John M.; Jo, Javier A.; Maitland, Kristen C.


    Objectives Several imaging techniques have been advocated as clinical adjuncts to improve identification of suspicious oral lesions. However, these have not yet shown superior sensitivity or specificity over conventional oral examination techniques. We developed a multimodal, multi-scale optical imaging system that combines macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM) for early detection of oral cancer. We tested our system on excised human oral tissues. Study Design A total of four tissue specimen were imaged. These specimens were diagnosed as one each: clinically normal, oral lichen planus, gingival hyperplasia, and superficially-invasive squamous cell carcinoma (SCC). The optical and fluorescence lifetime properties of each specimen were recorded. Results Both quantitative and qualitative differences between normal, benign and SCC lesions can be resolved with FLIM-RCM imaging. The results demonstrate that an integrated approach based on these two methods can potentially enable rapid screening and evaluation of large areas of oral epithelial tissue. Conclusions Early results from ongoing studies of imaging human oral cavity illustrate the synergistic combination of the two modalities. An adjunct device based on such optical characterization of oral mucosa can potentially be used to detect oral carcinogenesis in early stages. PMID:26725720

  12. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. (United States)

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S


    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  13. Fiber optic sensing and imaging

    CERN Document Server


    This book is designed to highlight the basic principles of fiber optic imaging and sensing devices. The editor has organized the book to provide the reader with a solid foundation in fiber optic imaging and sensing devices. It begins with an introductory chapter that starts from Maxwell’s equations and ends with the derivation of the basic optical fiber characteristic equations and solutions (i.e. fiber modes). Chapter 2 reviews most common fiber optic interferometric devices and Chapter 3 discusses the basics of fiber optic imagers with emphasis on fiber optic confocal microscope. The fiber optic interferometric sensors are discussed in detail in chapter 4 and 5. Chapter 6 covers optical coherence tomography and goes into the details of signal processing and systems level approach of the real-time OCT implementation. Also useful forms of device characteristic equations are provided so that this book can be used as a reference for scientists and engineers in the optics and related fields.

  14. Sensor-less aberration correction in optical imaging systems using blind optimization (United States)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.


    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  15. A miniaturized imaging system for optical guided surgery of head and neck cancer (United States)

    Atallah, Ihab; Milet, Clément; Dorval, Paul; Gayet, Pascal; Rizo, Philippe; Henry, Maxime; Reyt, Emile; Josserand, Véronique; Hurbin, Amandine; Righini, Christian; Coll, Jean-Luc


    Near-infrared fluorescence image-guided surgery, FIGS, has lately shown a huge potential in oncologic and lymphatic related surgeries. In some indications such as liver or heart surgery, fluorescence-reachable anatomic structures are limited by the access to the surgical field. Nevertheless, most of the systems available on the market are too large to image the sides of cavities. Small devices are clearly required to improve workability of fluorescence imaging systems. The current work describes the evaluation of Fluostick a CE med certified instrument dedicated to narrow area imaging. This small size device is made of an optical head connected to a control box. We tested this instrumentation at the preclinical level for the optical-guided surgery of head and neck tumors.

  16. Cryptanalysis of optical security systems with significant output images. (United States)

    Situ, Guohai; Gopinathan, Unnikrishnan; Monaghan, David S; Sheridan, John T


    The security of the encryption and verification techniques with significant output images is examined by a known-plaintext attack. We introduce an iterative phase-retrieval algorithm based on multiple intensity measurements to heuristically estimate the phase key in the Fourier domain by several plaintext-cyphertext pairs. We obtain correlation output images with very low error by correlating the estimated key with corresponding random phase masks. Our studies show that the convergence behavior of this algorithm sensitively depends on the starting point. We also demonstrate that this algorithm can be used to attack the double random phase encoding technique.

  17. Characteristic analysis of aspheric quasi-optical lens antenna in millimeter-wave radiometer imaging system. (United States)

    Kim, Won-Gyum; Moon, Nam-Won; Singh, Manoj Kumar; Kim, Hwang-Kyeom; Kim, Yong-Hoon


    Quasi-optical imaging systems require low blurring effect and large depth of focus (DOF) to get an acceptable sharpness of the image. To reduce aberration-limited blurring, the aspheric convex plano lenses with an aperture diameter of 350 mm are designed in W-band. We analyzed theoretically and experimentally the millimeter-wave band lens characteristics, such as beam spot size, spatial resolution (SR), and DOF, via f-number. It is first used to verify the DOF through f-number in the system-level test with the developed W-band radiometer imaging system. We have confirmed that the larger f-number of quasi-optical lens leads to a larger DOF but a lower SR.

  18. Optical image encryption based on diffractive imaging. (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R


    In this Letter, we propose a method for optical image encryption based on diffractive imaging. An optical multiple random phase mask encoding system is applied, and one of the phase-only masks is selected and laterally translated along a preset direction during the encryption process. For image decryption, a phase retrieval algorithm is proposed to extract a high-quality plaintext. The feasibility and effectiveness of the proposed method are demonstrated by numerical results. The proposed method can provide a new strategy instead of conventional interference methods, and it may open up a new research perspective for optical image encryption.

  19. 6DOF optical tracking system using afocal optics for image guided surgery

    Directory of Open Access Journals (Sweden)

    Chae You Seong


    Full Text Available Image guided surgery using medical robots is becoming popular these days. For image guided surgery, a tracking system is required to provide 6DOF information of patient coordinate, surgical instruments and medical robots used in surgery. To provide 6DOF information, a marker has to be attached to the target. However, it is hard to use many markers all together because the markers will take too much space in the surgical area. The tracking system proposed in this study utilizes down sized markers compared to traditional markers by using micro-engraved data-coded pattern with a lens instead of using geometrically specified marker spheres as a tracking target. A tracking system is developed that has a measurement area of 1m to 2.5m from the tracking system. Experiment has been done for surgical navigation using the proposed tracking system and a medical robot.

  20. A horizontal parallax table-top floating image system with freeform optical film structure (United States)

    Chou, Ping-Yen; Huang, Yi-Pai; Liao, Chien-Chung; Chang, Chuan-Chung; Chuang, Fu-Ming Fleming; Tsai, Chao-Hsu


    In this paper, a new structure of horizontal parallax light field 3D floating image display system was proposed. The structure consists of pico-projectors, Fresnel lens, micro-lens array and sub-lens array with freeform shape. By the functions of optical components, each light field of projectors could be controlled as a fan ray, which has high directivity in horizontal and wide scattered angle in vertical. Furthermore, according to the reverse light tracing and integral image display technique, horizontal parallax floating 3D could be demonstrated in the system. Simulated results show that the proposed 3D display structure has a good image quality and the crosstalk is also limited below 22.9%. Compared with other 3D technologies, this structure could have more benefits, including displaying real high resolution floating image, unnecessary of physical hardware on the image plane, scalability of large size system, without the noise from spinning component, and so on.

  1. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation) (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao


    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  2. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases (United States)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  3. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan


    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  4. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server


    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  5. Image Formation in High Contrast Optical Systems: The Role of Polarization (United States)

    Breckinridge, James B.


    To find evidence of life in the Universe outside our solar system is one of the most compelling and visionary adventures of the 21st century. The technologies to create the telescopes and instruments that will enable this discovery are now within the grasp of mankind. Direct imaging of a very faint planet around a neighboring bright star requires high contrast or a hypercontrast optical imaging system capable of controlling unwanted radiation within the system to one part in ten to the 11th. This paper identifies several physical phenomena that affect image quality in high contrast imaging systems. Polarization induced at curved metallic surfaces and by anisotropy in the deposition process (Smith-Purcell effect) along with beam shifts introduced by the Goos-Hachen effect are discussed. A typical configuration is analyzed, and technical risk mitigation concepts are discussed.

  6. Design of visible/long-wave infrared dual-band imaging optical system (United States)

    Zhang, Lingzhi; Lai, Jianjun; Huang, Ying


    An efficient small size and low weight optical lens system covering the visible and long-wave infrared dual-band is designed. The chromatic aberration caused by the wide bands from visible to long-wave infrared is one of the tough problems though large efforts have been done in the related communities. In this paper, for materials used as the base of the achromatic design, we choose two suitable materials (Zns and Kbr) that allow transmission both of visible and long-wave infrared (LWIR) light. Though the two materials have proved the ability to correct three wavelengths for each spectral range, the correction from the materials compensation is not enough and aspheric even diffractive surface was selected to join this optical system for reducing the aberration. The design results show a good image quality for infrared band imaging while the corresponding visible imaging is acceptable to be used to extract the outline of objects.

  7. Image processing for optical mapping. (United States)

    Ravindran, Prabu; Gupta, Aditya


    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  8. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin


    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  9. In vivo sectional imaging of the retinal periphery using conventional optical coherence tomography systems

    Directory of Open Access Journals (Sweden)

    Abhishek Kothari


    Full Text Available Optical coherence tomography (OCT has transformed macular disease practices. This report describes the use of conventional OCT systems for peripheral retinal imaging. Thirty-six eyes with peripheral retinal pathology underwent imaging with conventional OCT systems. In vivo sectional imaging of lattice degeneration, snail-track degeneration, and paving-stone degeneration was performed. Differences were noted between phenotypes of lattice degeneration. Several findings previously unreported in histopathology studies were encountered. Certain anatomic features were seen that could conceivably explain clinical and intraoperative behavior of peripheral lesions. Peripheral OCT imaging helped elucidate clinically ambiguous situations such as retinal breaks, subclinical retinal detachment, retinoschisis, choroidal nevus, and metastasis. Limitations of such scanning included end-gaze nystagmus and far peripheral lesions. This first of its kind study demonstrates the feasibility of peripheral retinal OCT imaging and expands the spectrum of indications for which OCT scanning may be clinically useful.

  10. Damage analysis of CMOS electro-optical imaging system by a continuous wave laser (United States)

    Yoon, Sunghee; Jhang, Kyung-Young; Shin, Wan-Soon


    EOIS (electro-optical imaging system) is vulnerable to laser beam because EOIS focuses the incident laser beam onto the image sensor via lens module. Accordingly, the laser-induced damage of EOIS is necessary to be identified for the counter-measure against the laser attack. In this study, the damage of CMOS EOIS and image sensor induced by CW (continuous wave) NIR (near infrared) laser was experimentally investigated. When the laser was emitted to CMOS EOIS, a temporary damage was occurred first such as flickering or dazzling and then a permanent damage was followed as the increase of laser irradiance and irradiation time. If the EIOS is composed of the optical equipment made of heatresistant material, laser beam can penetrate the lens module of EOIS without melting the lens and lens guide. Thus, it is necessary to investigate the damage of CMOS image sensor by the CW laser and we performed experimentally investigation of damage on the CMOS image sensor similar with case of CMOS EOIS. And we analyzed the experiment results by using OM (optical microscopy) and check the image quality through tomography. As the increase of laser irradiance and irradiation time, the permanent damage such as discoloration and breakdown were sequentially appeared.

  11. The Application of Fluorescence Optical Imaging in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Alexander Pfeil


    Full Text Available Objective. The aim of this study was to visualize soft tissue inflammation using FOI on patients with Systemic Sclerosis (SSc characterized by SSc-related Raynaud’s phenomenon and to detect the therapeutic response to treatment with iloprost or alprostadil. Methods. Twenty-one patients with SSc and Raynaud’s phenomenon and twenty-six healthy controls were prospectively included. The SSc patients were intravenously treated with iloprost or alprostadil over seven days. FOI was performed at baseline and after seven days using an intravenous application of indocyanine green (ICG. The hands were divided into nineteen segments per hand. All segments were quantitatively evaluated to determine changes in ICG. Results. The sensitivity and specificity of FOI in the detection of ICG enhancement in patients with SSc were 95% versus 96%. At baseline, 31.5% hand segments showed ICG enhancement. After seven days of either iloprost or alprostadil therapy a significant reduction in the ICG was observed which ranged from 40.9% to 24.7%. Conclusion. The study demonstrates that the FOI technique is able to visualize soft-tissue inflammation with both high sensitivity and specificity. The anti-inflammatory therapeutic effects of iloprost were slightly stronger than alprostadil. FOI offers promising benefits in the diagnosis and therapy of patients with SSc-associated Raynaud’s phenomenon.

  12. Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system. (United States)

    Feng, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Yu, Xiaomei; Kong, Lingqin; Ma, Wei; Liu, Xiaohua


    The structured light illumination method is applied in an optical readout uncooled infrared imaging system to improve the IR image quality. The unavoidable nonuniform distribution of the initial bending angles of the bimaterial cantilever pixels in the focal plane array (FPA) can be well compensated by this method. An ordinary projector is used to generate structured lights of different intensity distribution. The projected light is divided into patches of rectangular regions, and the brightness of each region can be set automatically according to the deflection angles of the FPA and the light intensity focused on the imaging plane. By this method, the FPA image on the CCD plane can be much more uniform and the image quality of the IR target improved significantly. A comparative experiment is designed to verify the effectiveness. The theoretical analysis and experimental results show that the proposed structured light illumination method outperforms the conventional one, especially when it is difficult to perfect the FPA fabrication.

  13. Cerenkov radiation energy transfer (CRET imaging: a novel method for optical imaging of PET isotopes in biological systems.

    Directory of Open Access Journals (Sweden)

    Robin S Dothager

    Full Text Available BACKGROUND: Positron emission tomography (PET allows sensitive, non-invasive analysis of the distribution of radiopharmaceutical tracers labeled with positron (β(+-emitting radionuclides in small animals and humans. Upon β(+ decay, the initial velocity of high-energy β(+ particles can momentarily exceed the speed of light in tissue, producing Cerenkov radiation that is detectable by optical imaging, but is highly absorbed in living organisms. PRINCIPAL FINDINGS: To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes (64Cu and (18F can be spectrally coupled by energy transfer to high Stokes-shift quantum nanoparticles (Qtracker705 to produce highly red-shifted photonic emissions. Efficient energy transfer was not detected with (99mTc, a predominantly γ-emitting isotope. Similar to bioluminescence resonance energy transfer (BRET and fluorescence resonance energy transfer (FRET, herein we define the Cerenkov radiation energy transfer (CRET ratio as the normalized quotient of light detected within a spectral window centered on the fluorophore emission divided by light detected within a spectral window of the Cerenkov radiation emission to quantify imaging signals. Optical images of solutions containing Qtracker705 nanoparticles and [(18F]FDG showed CRET ratios in vitro as high as 8.8±1.1, while images of mice with subcutaneous pseudotumors impregnated with Qtracker705 following intravenous injection of [(18F]FDG showed CRET ratios in vivo as high as 3.5±0.3. CONCLUSIONS: Quantitative CRET imaging may afford a variety of novel optical imaging applications and activation strategies for PET radiopharmaceuticals and other isotopes in biomaterials, tissues and live animals.

  14. An airborne thematic thermal infrared and electro-optical imaging system (United States)

    Sun, Xiuhong; Shu, Peter


    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  15. Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System (United States)

    Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth


    The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.

  16. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.


    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  17. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System (United States)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin


    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. In this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from 9 μm practical laser spot size to a practical laser spot size of 4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging of the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between 4, 7, and 45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. We also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.

  18. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation (United States)

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K.; Helmstetter, Fred J.; Chang, Woo-Jin; Pashaie, Ramin


    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light-tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  19. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems (United States)

    Leitel, R.; Dannberg, P.; Brückner, A.; Bräuer, A.


    Micro-optical systems, that utilize multiple channels for imaging instead of a single one, are frequently discussed for ultra-compact applications such as digital cameras. The strategy of their fabrication differs due to different concepts of image formation. Illustrated by recently implemented systems for multi-aperture imaging, typical steps of wafer-level fabrication are discussed in detail. In turn, the made progress may allow for additional degrees of freedom in optical design. Pressing ahead with very short overall lengths and multiple diaphragm array layers, results in the use of extremely thin glass substrates down to 100 microns in thickness. The desire for a wide field of view for imaging has led to chirped arrays of microlenses and diaphragms. Focusing on imaging quality, aberrations were corrected by introducing toroidal lenslets and elliptical apertures. Such lenslets had been generated by thermal reflow of lithographic patterned photoresist and subsequent molding. Where useful, the system's performance can be further increased by applying aspheric microlenses from reactive ion etching (RIE) transfer or by achromatic doublets from superimposing two moldings with different polymers. Multiple diaphragm arrays prevent channel crosstalk. But using simple metal layers may lead to multiple reflections and an increased appearance of ghost images. A way out are low reflecting black matrix polymers that can be directly patterned by lithography. But in case of environmental stability and high resolution, organic coatings should be replaced by patterned metal coatings that exhibit matched antireflective layers like the prominent black chromium. The mentioned components give an insight into the fabrication process of multi-aperture imaging systems. Finally, the competence in each step decides on the overall image quality.

  20. Development of a Confocal Optical System Design for Molecular Imaging Applications of Biochip

    Directory of Open Access Journals (Sweden)

    Guoliang Huang


    Full Text Available A novel confocal optical system design and a dual laser confocal scanner have been developed to meet the requirements of highly sensitive detection of biomolecules on microarray chips, which is characterized by a long working distance (wd>3.0 mm, high numerical aperture (NA=0.72, and only 3 materials and 7 lenses used. This confocal optical system has a high scanning resolution, an excellent contrast and signal-to-noise ratio, and an efficiency of collected fluorescence of more than 2-fold better than that of other commercial confocal biochip scanners. The scanner is as equally good for the molecular imaging detection of enclosed biochips as for the detection of biological samples on a slide surface covered with a cover-slip glass. Some applications of gene and protein imagings using the dual laser confocal scanner are described.

  1. Development of a simultaneous optical/PET imaging system for awake mice (United States)

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga


    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.

  2. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    CERN Document Server

    Kawachi, A; Jimbo, J; Kamei, S; Kifune, T; Kubo, H; Kushida, J; Le Bohec, S; Miyawaki, K; Mori, M; Nishijima, K; Patterson, J R; Suzuki, R; Tanimori, T; Yanagita, S; Yoshikoshi, T; Yuki, A


    A new imaging atmospheric Cherenkov telescope (CANGAROO-II) with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing CFRP (Carbon Fiber Reinforced Plastic) laminates were developed for the telescope. The attitude of each facet can be adjusted by stepping motors. In this paper, we describe the design, manufacturing, alignment procedure, and the performance of the CANGAROO-II optical reflector system.

  3. Error correction based on micro-scanning preprocessing for an optical micro-scanning thermal microscope imaging system (United States)

    Gao, Meijing; Xu, Jie; Tan, Ailing; Zu, Zhenlong; Yang, Ming; Wang, Jingyuan


    In recent years, various thermal microscope imaging systems have been developed to meet the demands of micro-thermal analysis for large-scale integrated circuits, biomedical, science, and research fields. However, conventional thermal microscope imaging systems, which use cooled infrared detectors are heavy and expensive. In order to solve this problem, we developed a thermal microscope imaging system based on an uncooled infrared detector. However, the spatial resolution of the thermal microscope imaging system based on an uncooled infrared detector is low. With optical micro-scanning technology, the spatial resolution of the thermal microscope imaging system can be increased without increasing the detector dimension or reducing the detector unit size. In order to improve its spatial resolution, a micro-scanning system based on optical plate rotation was developed, and an optical microscanning thermal microscope imaging system was obtained after the integrated design. Due to environmental factors, mechanical vibration, alignment error and other factors, there is micro-scanning error in the designed micro-scanning thermal microscope imaging system. The four low-resolution images collected by micro-scanning thermal microscope imaging system are not standard down-sampled images. The quality of the image interpolated directly by four collected images is reduced and the performance of the micro-scanning system isn't fully exploited. Therefore, based on the proposed second-order oversampling reconstruction micro-scanning error correction algorithm and the new edge directed interpolation algorithm, a new micro-scanning error correction technique is proposed. Simulations and experiments show that the proposed technique can effectively reduce optical micro-scanning error, improve the systems spatial resolution and optimize the effect of the imaging system. It can be applied to other electro-optical imaging systems to improve their spatial resolution.

  4. An automated dental caries detection and scoring system for optical images of tooth occlusal surface. (United States)

    Ghaedi, Leila; Gottlieb, Riki; Sarrett, David C; Ismail, Amid; Belle, Ashwin; Najarian, Kayvan; Hargraves, Rosalyn Hobson


    Dental caries are one of the most prevalent chronic diseases. The management of dental caries demands detection of carious lesions at early stages. This study aims to design an automated system to detect and score caries lesions based on optical images of the occlusal tooth surface according to the International Caries Detection and Assessment System (ICDAS) guidelines. The system detects the tooth boundaries and irregular regions, and extracts 77 features from each image. These features include statistical measures of color space, grayscale image, as well as Wavelet Transform and Fourier Transform based features. Used in this study were 88 occlusal surface photographs of extracted teeth examined and scored by ICDAS experts. Seven ICDAS codes which show the different stages in caries development were collapsed into three classes: score 0, scores 1 and 2, and scores 3 to 6. The system shows accuracy of 86.3%, specificity of 91.7%, and sensitivity of 83.0% in ten-fold cross validation in classification of the tooth images. While the system needs further improvement and validation using larger datasets, it presents promising potential for clinical diagnostics with high accuracy and minimal cost. This is a notable advantage over existing systems requiring expensive imaging and external hardware.

  5. Optical stream-cipher-like system for image encryption based on Michelson interferometer. (United States)

    Yang, Bing; Liu, Zhengjun; Wang, Bo; Zhang, Yan; Liu, Shutian


    A novel optical image encryption scheme based on interference is proposed. The original image is digitally encoded into one phase-only mask by employing an improved Gerchberg-Saxton phase retrieval algorithm together with another predefined random phase mask which serves as the encryption key. The decryption process can be implemented optically based on Michelson interferometer by using the same key. The scheme can be regarded as a stream-cipher-like encryption system, the encryption and decryption keys are the same, however the operations are different. The position coordinates and light wavelength can also be used as additional keys during the decryption. Numerical simulations have demonstrated the validity and robustness of the proposed method.

  6. A comparative study between the imaging system and the optical tracking system in proton therapy at CNAO

    CERN Document Server

    Desplanques, Maxime; Fontana, Giulia; Pella, Andrea; Riboldi, Marco; Fattori, Giovanni; Donno, Andrea; Baroni, Guido; Orecchia, Roberto


    The synergy between in-room imaging and optical tracking, in co-operation with highly accurate robotic patient handling represents a concept for patient-set-up which has been implemented at CNAO (Centro Nazionale di Adroterapia Oncologica). In-room imaging is based on a double oblique X-ray projection system; optical tracking consists of the detection of the position of spherical markers placed directly on the patient’s skin or on the immobilization devices. These markers are used as external fiducials during patient positioning and dose delivery. This study reports the results of a comparative analysis between in-room imaging and optical tracking data for patient positioning within the framework of high-precision particle therapy. Differences between the optical tracking system (OTS) and the imaging system (IS) were on average within the expected localization accuracy. On the first 633 fractions for head and neck (H&N) set-up procedures, the corrections applied by the IS, after patient positioning usin...

  7. Hidden image recovery using a biased photorefractive crystal in the Fourier plane of an optical imaging system. (United States)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Xu, Tao; Wang, Yanping; Sun, Zhixu; Ma, Chong; Wang, Jinjin; Song, Feng; Sun, Ming; Li, Li; Sheng, Chuanxiang


    Self-diffraction can be induced using a biased photorefractive crystal in the Fourier plane of an imaging system where the light beam intensity is naturally high due to the concentration effect of an optical lens. The spatial frequency spectrum of the output image is proportional to the optical power density distribution in the Fourier plane. A photorefractive crystal with small size can be used and hence an reduced amount of biased voltage is needed to obtain significant diffraction effect in the image plane. When the input image is an overlay of a signal and a noise pattern, theoretic model reveals that the induced diffraction in the Fourier plane may be preferably applied on the noise pattern. In order to illustrate the effect experimentally, a signal from a weakly illuminated object is coupled with an overwhelming noise pattern and then the hidden signal is successfully recovered using a SBN61 crystal with an applied voltage of 800 V in the Fourier plane. Such technology can be employed in encrypted spatial communication systems for security purposes.

  8. Active optical zoom system (United States)

    Wick, David V.


    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  9. Analysis on the effect of hypersonic vehicle's optical window on infrared thermal imaging system (United States)

    Dong, Liquan; Han, Ying; Kong, Lingqin; Liu, Ming; Zhao, Yuejin; Zhang, Li; Li, Yanhong; Tian, Yi; Sa, Renna


    According to the aero-thermal effects and aero-thermal radiation effects of the optical window, the thermo-optic effect, the elasto-optical effect and the thermal deformation of the optical window are analyzed using finite element analysis method. Also, the peak value and its location of the point spread function, which is caused by the thermo-optic effect and the dome thermal deformation, are calculated with the variance of time. Furthermore, the temperature gradient influence to the transmission of optical window, the variation trend of transmission as well as optical window radiation with time are studied based on temperature distribution analysis. The simulations results show that: When the incident light is perpendicular to the optical window, image shift is mainly caused by its thermal deformation, and the value of image shift is very small. Image shift is determined only by the angle of the incident light. With a certain incident angle, image shift is not affected by the gradient refractive index change. The optical window transmission is mainly affected by temperature gradient and thus not neglectable to image quality. Therefore, the selection of window cooling methods, needs not only consider the window temperature but try to eliminate the temperature gradient. When calculating the thermal radiation, the optical window should be regarded as volume radiation source instead of surface radiator. The results provide the basis for the optical window design, material selection and the later image processing.

  10. Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging (United States)

    Fard, Ali M.; Vacas-Jacques, Paulino; Hamidi, Ehsan; Wang, Hao; Carruth, Robert W.; Gardecki, Joseph A.; Tearney, Guillermo J.


    Owing to its superior resolution, intravascular optical coherence tomography (IVOCT) is a promising tool for imaging the microstructure of coronary artery walls. However, IVOCT does not identify chemicals and molecules in the tissue, which is required for a more complete understanding and accurate diagnosis of coronary disease. Here we present a dual-modality imaging system and catheter that uniquely combines IVOCT with diffuse near-infrared spectroscopy (NIRS) in a single dual-modality imaging device for simultaneous acquisition of microstructural and compositional information. As a proof-of-concept demonstration, the device has been used to visualize co-incident microstructural and spectroscopic information obtained from a diseased cadaver human coronary artery. PMID:24514658

  11. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope (United States)

    Kawachi, A.; Hayami, Y.; Jimbo, J.; Kamei, S.; Kifune, T.; Kubo, H.; Kushida, J.; LeBohec, S.; Miyawaki, K.; Mori, M.; Nishijima, K.; Patterson, J. R.; Suzuki, R.; Tanimori, T.; Yanagita, S.; Yoshikoshi, T.; Yuki, A.


    A new imaging atmospheric Cherenkov telescope with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing carbon fiber reinforced plastic laminates were developed for the telescope. The reflector has a parabolic shape ( f/1.1) with a 30 m 2 surface area, which consists of 60 spherical mirror facets. The image size of each mirror facet is 0°.08 (FWHM) on average. The attitude of each facet can be adjusted by stepping motors. After the first in situ adjustment, a point image of about 0°.14 (FWHM) over 3° field of view was obtained. The effect of gravitational load on the optical system was confirmed to be negligible at the focal plane. The telescope has been in operation with an energy threshold for γ-rays of ≲300 GeV since May 1999.

  12. Scintillating balloon-enabled fiber-optic system for radionuclide imaging of atherosclerotic plaques. (United States)

    Zaman, Raiyan T; Kosuge, Hisanori; Carpenter, Colin; Sun, Conroy; McConnell, Michael V; Xing, Lei


    Atherosclerosis underlies coronary artery disease, the leading cause of death in the United States and worldwide. Detection of coronary plaque inflammation remains challenging. In this study, we developed a scintillating balloon-enabled fiber-optic radionuclide imaging (SBRI) system to improve the sensitivity and resolution of plaque imaging using (18)F-FDG, a marker of vascular inflammation, and tested it in a murine model. The fiber-optic system uses a Complementary Metal-Oxide Silicon (CMOS) camera with a distal ferrule terminated with a wide-angle lens. The novelty of this system is a scintillating balloon in the front of the wide-angle lens to image light from the decay of (18)F-FDG emission signal. To identify the optimal scintillating materials with respect to resolution, we calculated the modulation transfer function of yttrium-aluminum-garnet doped with cerium, anthracene, and calcium fluoride doped with europium (CaF2:Eu) phosphors using an edge pattern and a thin-line optical phantom. The scintillating balloon was then fabricated from 10 mL of silicone RTV catalyst mixed with 1 mL of base and 50 mg of CaF2:Eu per mL. The addition of a lutetium oxyorthosilicate scintillating crystal (500 μm thick) to the balloon was also investigated. The SBRI system was tested in a murine atherosclerosis model: carotid-ligated mice (n = 5) were injected with (18)F-FDG, followed by ex vivo imaging of the macrophage-rich carotid plaques and nonligated controls. Confirmatory imaging of carotid plaques and controls was also performed by an external optical imaging system and autoradiography. Analyses of the different phosphors showed that CaF2:Eu enabled the best resolution of 1.2 μm. The SBRI system detected almost a 4-fold-higher radioluminescence signal from the ligated left carotid artery than the nonligated right carotid: 1.63 × 10(2) ± 4.01 × 10(1) vs. 4.21 × 10(1) ± 2.09 × 10(0) (photon counts), P = 0.006. We found no significant benefit to adding a

  13. Spectral resolution enhancement of hyperspectral imagery by a multiple-aperture compressive optical imaging system

    Directory of Open Access Journals (Sweden)

    Hoover Fabian Rueda Chacon


    Full Text Available The Coded Aperture Snapshot Spectral Imaging (CASSI system captures the three-dimensional (3D spatio-spectral information of a scene using a set of two-dimensional (2D random-coded Focal Plane Array (FPA measurements. A compressive sensing reconstruc-tion algorithm is then used to recover the underlying spatio-spectral 3D data cube. The quality of the reconstructed spectral images depends exclusively on the CASSI sensing matrix, which is determined by the structure of a set of random coded apertures. In this paper, the CASSI system is generalized by developing a multiple-aperture optical imaging system such that spectral resolution en-hancement is attainable. In the proposed system, a pair of high-resolution coded apertures is introduced into the CASSI system, allow-ing it to encode both spatial and spectral characteristics of the hyperspectral image. This approach allows the reconstruction of super-resolved hyperspectral data cubes, where the number of spectral bands is significantly increased and the quality in the spatial domain is greatly improved. Extensively simulated experiments show a gain in the peak-signal-to-noise ratio (PSNR, along with a better fit of the reconstructed spectral signatures to the original spectral data.  

  14. Optical system design

    CERN Document Server

    Fischer, Robert F


    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  15. Shack-Hartmann sensor based optical quality testing of whole slide imaging systems for digital pathology (United States)

    Shakeri, S. M.; Hulsken, Bas; van Vliet, Lucas J.; Stallinga, Sjoerd


    Whole Slide Imaging (WSI) systems are used in the emerging field of digital pathology for capturing high-resolution images of tissue slides at high throughput. We present a technique to measure the optical aberrations of WSI systems using a Shack-Hartmann wavefront sensor as a function of field position. The resulting full-field aberration maps for the lowest order astigmatism and coma are analyzed using nodal aberration theory. According to this theory two coefficients describe the astigmatism and coma inherent to the optical design and another six coefficients are needed to describe the cumulative effects of all possible misalignments on astigmatism and coma. The nodal aberration theory appears to fit well to the experimental data. We have measured and analyzed the full-field aberration maps for two different objective lens-tube lens assemblies and found that only the optical design related astigmatism coefficient differed substantially between the two cases, but in agreement with expectations. We have also studied full-field aberration maps for intentional decenter and tilt and found that these affect the misalignment coefficient for constant coma (decenter) and the misalignment coefficient for linear astigmatism (tilt), while keeping all other nodal aberration theory coefficients constant.

  16. Nonlinear optical techniques for imaging and manipulating the mouse central nervous system (United States)

    Farrar, Matthew John

    The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.

  17. Imaging systems and applications. (United States)

    Catrysse, Peter B; Imai, Francisco H; Linne von Berg, Dale C; Sheridan, John T


    Imaging systems have numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging system requires the integration of optics, sensing, image processing, and display rendering. This issue features original research ranging from fundamental theories to novel imaging modalities and provides a systems perspective to imaging.

  18. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.


    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  19. Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging (United States)

    Aharon, Ofir; Abdulhalim, Ibrahim; Arnon, Ofer; Rosenberg, Lior; Dyomin, Victor; Silberstein, Eldad


    Skin cancer diagnosis depends not only on histopathological examination but also on visual inspection before and after the excision of suspected lesion. Neoplasm is accompanied with changes in birefringence of collagen, pleomorphicity, and hyperchromatic state of epithelial nuclei. These phenomena can be measured by spectral and polarization changes of light backscattered by the examined tissue. A new differential spectropolarimetric system is proposed using liquid crystal devices, one as a tunable filter and the other as a polarization rotator, both operating at wide spectral ranges from the visible to the near-infrared. Since collagen's fibrils texture orientation depends on its location in the skin and since it is not well organized, our system scans the bipolarization states by continuously rotating the linearly polarized light incident on a skin lesion, and collecting differential contrasts between sequenced images when simultaneously averaging the statistical readout of a video camera. This noninvasive method emphasizes areas on skin where the neoplasm, or tumor, minimizes the statistical polarization change of the scattered light from the lesion. The module can be considered as an assistant tool for epiluminescence microscopy. Images of skin tumors were captured in vivo before the patients having their surgery and compared to histopathological results.

  20. Systems design of COATLI: an all-sky robotic optical imager with 0.3 arcsec image quality (United States)

    Cuevas, Salvador; Langarica, Rosalia; Watson, Alan M.; Fuentes-Fernández, Jorge; Ángeles, Fernando; Farah, Alejandro S.; Figueroa, Liliana; Becerra-Godínez, Rosa L.; Chapa, Oscar; Román-Zúñiga, Carlos G.; Quiróz, Fernando; Tejada, Carlos; Álvarez-Núñez, Luis C.; Ruz, Jaime; Tinoco, Silvio J.


    COATLI is a new instrument and telescope that will provide 0.3 arcsec FWHM images from 550 to 920 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited imager. The imager has a steering mirror for fast guiding, a blue channel using an EMCCD from 400 to 550 nm to measure image motion, a red channel using a standard CCD from 550 to 920 nm, and an active optics system based on a deformable mirror to compensate static aberrations in the red channel. Since the telescope is small, fast guiding will provide diffraction-limited image quality in the red channel over a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, México, in 2016 and will initially operate with a simple interim imager. The definitive COATLI instrument will be installed in 2017. In this work we present the general optomechanical and control electronics design of COATLI.

  1. Optical imaging and metrology

    CERN Document Server

    Osten, Wolfgang


    A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.

  2. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens (United States)

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan


    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  3. Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak (United States)

    Jiang, Min; Shi, Zhongbing; Zhu, Yilun


    The optical system of the electron cyclotron emission imaging diagnostics on the HL-2A tokamak has been optimized in both the narrow zoom pattern and the wide zoom pattern. The two main features of the improved optical system are (1) larger coverage of the measurement region in the plasma and (2) a flatter imaging surface. The new optics has good focal characteristics over the whole plasma cross section. The curvature of the field of the image surface (ΔR between the core channel and the edge channel) is within 5.3 cm in the narrow zoom pattern and 6.7 cm in the wide zoom pattern after optimization, whereas the values with the present optics were 23 cm in the narrow zoom pattern and 15 cm in the wide zoom pattern. The optics will be fabricated, tested and installed on the HL-2A tokamak before the next experimental campaign.

  4. Real-time dynamic optical imaging of ACC-M tumor cells killed by HSV-tk/ACV system. (United States)

    Xiong, Tao; Li, Yongjin; Li, Zhiyang; Xie, Xiangmo; Lu, Lisha


    HSV-tk/ACV induced and killed human adenoid cystic carcinoma cell (ACC-M) in vivo and in vitro, which were observed through optical imaging and green fluorescence protein (GFP) tagging technique. ACC-M was transfected with TK-GFP, and the single clone cell ACC-M-TK-GFP was selected by G418. With fluorescent stereomicroscope, whole-body fluorescent imaging system and fluorescent microscope, we could observe ACV treated ACC-M-TK-GFP cells in cell level and nude mice. The therapies of tumor were visualized clearly with optical imaging. This study proves that optical imaging is a very good approach for studying the effect of HSV-tk/ACV on the ACC-M tumor cells and decreasing the amount of vessel about tumors cell. Optical imaging will become a visual groundwork for monitoring tumor growth and evaluating in vivo curative effect of antitumor drugs.

  5. Image aberrations in optical three-dimensional measurement systems with fringe projection. (United States)

    Brakhage, Peter; Notni, Gunther; Kowarschik, Richard


    In optical shape measurement systems, systematic errors appear as a result of imaging aberrations of the lens assemblies in the cameras and projectors. A mathematical description of this effect is intended to correct the whole measurement area with a few independent coefficients. We apply the ideas of photogrammetry to one- and two-dimensional fringe projection techniques. We also introduce some new terms for close-range applications and telecentric objectives. Further, an algorithm for distance-dependent corrections is introduced. Also, we describe a new method with which to determine coefficients of aberration with an optimization-based method.

  6. A fast atlas-guided high density diffuse optical tomography system for brain imaging (United States)

    Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei


    Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.

  7. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Robert J., E-mail:; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C. [Biomedical Optics Research Laboratory, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)


    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  8. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging (United States)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.


    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  9. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function (United States)

    Zalvidea; Colautti; Sicre


    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  10. Non-Contact Optical Fluorescence Tomography for Small Animal Imaging: System Development and Multispectral Applications



    Optical Fluorescence Tomography (OFT) of live small animals can yield optimum 3-dimensional imaging performance when large amounts of tomographic boundary information are used for reconstruction. Commonly, multiple source-detector projection measurements distributed over the tissue surface of the imaging object are used to generate raw data for tomography. Recent advances in multispectral optical tomography, however, provide an attractive alternative method to harness tomographic boundary dat...

  11. X-ray optical system for imaging laser plumes with a spatial resolution of up to 70 nm (United States)

    Nechai, A. N.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Toropov, M. N.; Chkhalo, N. I.; Tsybin, N. N.; Shcherbakov, A. V.


    We consider an X-ray optical system which permits obtaining laser plume images at a wavelength of 13.5 nm with a resolution of up to 70 nm. The X-ray optical system comprises an X-ray Schwarzschild objective made up of two aspherical multilayer mirrors, a scintillator (YAG : Ce ceramics), which converts X-rays to the visible radiation, and a visible-optical system, which images the scintillator surface onto a CCD camera. The spatial resolution of the system is limited by the resolution of the optical system (0.7 μm) and the magnification (10×) of the X-ray objective and is as high as 70 nm. The effect of Schwarzschild objective mirror shapes on the spatial resolution is analysed. The profile of concave mirror aspherisation is considered, which provides the attainment of the diffraction-limited quality of the objective. Data are given for the quantum efficiency of the system at a wavelength of 13.5 nm. We describe the experimental test bench intended for studying the developed X-ray optical system and outline the first experimental data which illustrate its efficiency. Owing to the natural division into the 'X-ray' and 'visible' parts, the optical system under discussion permits an easy change of the magnification and the field of view without realigning the X-ray optical elements. The wavelength may be varied in a range between 3 and 40 nm by changing the multilayer mirrors.


    Institute of Scientific and Technical Information of China (English)

    何润; 高海芸


    By use of the basic theory of wave optics, the image of complex optical systems are analyzed. And combined with the programming language MATLAB, the optical system imaging results are displayed by numerical simulation. The results show that based on the analysis of single-lens imaging system, the imaging of arbitrarily complex optical system can be analyze. So as an auxiliary teaching way, these will be helpful to understand the image of optical system.%利用波动光学的基本理论,对复杂的光学系统的成像进行分析,并结合MATLAB语言的编程和图像处理功能,通过数值模拟形象地把光学系统成像的结果显示出来。结果表明,在对单透镜系统成像分析的基础上,可以对各种复杂的光学系统的成像进行分析。利用这种方法作为辅助教学手段,有助于学生更加深刻地理解光学系统的成像,提高教学质量。

  13. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design (United States)

    Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.


    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.

  14. Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation) (United States)

    Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.


    The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.

  15. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. (United States)

    Li, Yan; Jing, Joseph; Qu, Yueqiao; Miao, Yusi; Zhang, Buyun; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping


    We present a tri-modality imaging system and fully integrated tri-modality probe for intravascular imaging. The tri-modality imaging system is able to simultaneously acquire optical coherence tomography (OCT), ultrasound (US), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. We conducted imaging from a male New Zealand white rabbit to evaluate the performance of the tri-modality system. In addition, tri-modality images of rabbit aortas were correlated with hematoxylin and eosin (H&E) histology to check the measurement accuracy. The fully integrated miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  16. Optical imaging. Expansion microscopy. (United States)

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S


    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  17. Optomechatronics for Biomedical Optical Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Cho Hyungsuck


    Full Text Available The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical phenomena. This paper addresses the technical issues related to tissue imaging, visualization of interior surfaces of organs, laparoscopic and endoscopic imaging and imaging of neuronal activities and structures. Within such problem domains the paper overviews the states of the art technology focused on how optical components are fused together with those of mechatronics to create the functionalities required for the imaging systems. Future perspective of the optical imaging in biomedical field is presented in short.

  18. Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device

    Institute of Scientific and Technical Information of China (English)

    Jiang Bao-Guang; Cao Zhao-Liang; Mu Quan-Quan; Hu Li-Fa; Li Chao; Xuan Li


    In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7 mm). A Shack-Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 λ, where A is wavelength.The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the diffraction limit resolution. The carbon granule on the white paper which has a size of 4.7μm is seen clearly. The size of the retina cell is between 4 and 10 μm. So this system has an ability to image the human eye's retina.

  19. Optical assembly of a visible through thermal infrared multispectral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)


    The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

  20. Digital-signal-processor-based dynamic imaging system for optical tomography. (United States)

    Lasker, Joseph M; Masciotti, James M; Schoenecker, Matthew; Schmitz, Christoph H; Hielscher, Andreas H


    In this article, we introduce a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this continuous wave instrument is a digital signal processor (DSP) that collects, collates, processes, and filters the digitized data set. The processor is also responsible for managing system timing and the imaging routines which can acquire real-time data at rates as high as 150 Hz. Many of the synchronously timed processes are controlled by a complex programmable logic device that is also used in conjunction with the DSP to orchestrate data flow. The operation of the system is implemented through a comprehensive graphical user interface designed with LABVIEW software which integrates automated calibration, data acquisition, data organization, and signal postprocessing. Performance analysis demonstrates very low system noise (approximately 1 pW rms noise equivalent power), excellent signal precision (<0.04%-0.2%) and long term system stability (<1% over 40 min). A large dynamic range (approximately 190 dB) accommodates a wide scope of measurement geometries and tissue types. First experiments on tissue phantoms show that dynamic behavior is accurately captured and spatial location can be correctly tracked using this system.

  1. Development and processing of hyperspectral images in optical-electronic remote sensing systems (United States)

    Kozinov, I. A.; Maltsev, G. N.


    The development and processing of three-dimensional images as a "hypercube" of spectral data in hyperspectral optical-electronic remote sensing systems are described in a formalized manner. The correlation identification of observed objects on the basis of spectral features is considered. The criterion for determining of similarity between vectors of recorded and reference spectral images of objects is based on their cross-correlation. Taking into the fact that the total spectral data array recorded by currently applicable hyperspectrometers is excessive for the solution of many issues related to remote sensing of the Earth, this paper proposes a method making it possible to reduce spectral data redundancy by selection of the most informative spectral channels. The essential dimension of the spectral data makes it possible to solve issues related to identification and classification of objects by spectral features through a limited number of very informative spectral channels selected in the areas where the function describing a spectral image of the observed object undergoes well-defined changes in behavior. The algorithm for selection of the most informative spectral channels, which is based on the determination of jump coordinates (major changes) of a spectral image, is substantiated. The selected channels meet the maximum likelihood criterion. The obtained experimental research data on object identification quality with involvement of real hyperspectral data of aerospace Earth remote sensing systems are reported. Five to twenty spectral readouts are needed to provide identification by a limited number of very informative spectral channels. This confirms the idea of existing essential dimensionality of the spectral data.

  2. Computed anatomical modelling of the optic pathway and oculomotor system using magnetic resonance imaging. (United States)

    Juanes, J A; Ruisoto, P; Prats-Galino, A; Framiñán, A; Riesco, J M


    This study presents a computer-based tool for three-dimensional (3D) visualization of the optic pathway and oculomotor system using 3D high-resolution magnetic resonance imaging (MRI) datasets from a healthy subject. The 3D models were built as wireframe grids co-registered with MRI sections. First, 3D anatomical models were generated of the visual pathway from the eyeball to the primary visual cortex and of the cranial oculomotor nerves from the brain stem to the extrinsic eye muscles. Second, a graphical user interface allowed individual and group visualization, translation, rotation and zooming of the 3D models in different spatial positions simultaneously with MRI orthogonal cut planes. Educational and clinical applications are also discussed.

  3. Optically-induced-potential-based image encryption. (United States)

    Chen, Bing-Chu; Wang, He-Zhou


    We present a technique of nonlinear image encryption by use of virtual optics. The image to be encrypted is superposed on a random intensity image. And this superposed image propagates through a nonlinear medium and a 4-f system with single phase key. The image is encrypted to a stationary white noise. The decryption process is sensitive to the parameters of the encryption system and the phase key in 4-f system. This sensitivity makes attackers hard to access the phase key. In nonlinear medium, optically-induced potentials, which depend on intensity of optical wave, make the superposition principle frustrated. This nonlinearity based on optically induced potentials highly improves the secrecy level of image encryption. Resistance against attacks based on the phase retrieval technique proves that it has the high secrecy level. This nonlinear image encryption based on optically induced potentials is proposed and demonstrated for the first time.

  4. Simulations of optical microscope images (United States)

    Germer, Thomas A.; Marx, Egon


    The resolution of an optical microscope is limited by the optical wavelengths used. However, there is no fundamental limit to the sensitivity of a microscope to small differences in any of a feature's dimensions. That is, those limits are determined by such things as the sensitivity of the detector array, the quality of the optical system, and the stability of the light source. The potential for using this nearly unbounded sensitivity has sparked interest in extending optical microscopy to the characterization of sub-wavelength structures created by photolithography and using that characterization for process control. In this paper, an analysis of the imaging of a semiconductor grating structure with an optical microscope will be presented. The analysis includes the effects of partial coherence in the illumination system, aberrations of both the illumination and the collection optics, non-uniformities in the illumination, and polarization. It can thus model just about any illumination configuration imaginable, including Koehler illumination, focused (confocal) illumination, or dark-field illumination. By propagating Jones matrices throughout the system, polarization control at the back focal planes of both illumination and collection can be investigated. Given a detailed characterization of the microscope (including aberrations), images can be calculated and compared to real data, allowing details of the grating structure to be determined, in a manner similar to that found in scatterometry.

  5. [A review of Dyson optical system in the measure of infrared imaging spectrum]. (United States)

    Liu, Yu-juan; Tang, Yu-guo; Bayanheshig; Cui, Ji-cheng; Qi, Xiang-dong


    It is difficult for the traditional infrared imaging spectrometers to satisfy the requirement of high signal to noise ratio (SNR) and small size simultaneously. The new infrared remote sensing imaging spectrometers based on Dyson concentric optical configuration have the advantages of high aperture, high SNR, simpleness small volume and low weight. The Dyson imaging spectrometers can achieve high SNR, which is difficult for the traditional imaging spectrometers for infrared imaging spectrum. The present review introduces the beginning, the development and the present research of the Dyson imaging spectrometers, especially illustrates the principle of Dyson concentric spectrometer, difficulty during its manufacture and the application in the high-performance infrared remote sensing imaging spectrometers, providing a reference for the high-performance research of infrared remote sensing imaging spectrometers.

  6. The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    CERN Document Server

    Jovanovic, N; Guyon, O; Clergeon, C; Singh, G; Kudo, T; Garrel, V; Newman, K; Doughty, D; Lozi, J; Males, J; Minowa, Y; Hayano, Y; Takato, N; Morino, J; Kuhn, J; Serabyn, E; Norris, B; Tuthill, P; Schworer, G; Stewart, P; Close, L; Huby, E; Perrin, G; Lacour, S; Gauchet, L; Vievard, S; Murakami, N; Oshiyama, F; Baba, N; Matsuo, T; Nishikawa, J; Tamura, M; Lai, O; Marchis, F; Duchene, G; Kotani, T; Woillez, J


    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner worki...

  7. Design and construction of an optical test bed for eLISA imaging systems and tilt-to-length coupling

    CERN Document Server

    Chwalla, Michael; Barranco, Germán Fernández; Fitzsimons, Ewan; Gerberding, Oliver; Heinzel, Gerhard; Killow, Christian J; Lieser, Maike; Perreur-Lloyd, Michael; Robertson, David I; Schuster, Sönke; Schwarze, Thomas S; Tröbs, Michael; Ward, Henry; Zwetz, Max


    The evolved Laser Interferometer Space Antenna (eLISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams will couple into the length measurement and represent a significant noise source (tilt-to-length (TTL) coupling). Imaging systems are foreseen to reduce this TTL coupling. We have designed and built two different imaging systems to suppress this coupling. To investigate tilt-to-length coupling experimentally we designed and constructed an optical test bed. It consists of a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator...

  8. Acousto-optic laser optical feedback imaging

    CERN Document Server

    Jacquin, Olivier; Lacot, Eric; Hugon, Olivier; De Chatellus, Hugues Guillet; François, Ramaz


    We present a photon noise and diffraction limited imaging method combining the imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this work, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging (AO-LOFI) technique, and we demonstrate the suppression of the parasitic feedback.

  9. Novel 2D-sequential color code system employing Image Sensor Communications for Optical Wireless Communications

    Directory of Open Access Journals (Sweden)

    Trang Nguyen


    Full Text Available The IEEE 802.15.7r1 Optical Wireless Communications Task Group (TG7r1, also known as the revision of the IEEE 802.15.7 Visible Light Communication standard targeting the commercial usage of visible light communication systems, is of interest in this paper. The paper is mainly concerned with Image Sensor Communications (ISC of TG7r1; however, the major challenge facing ISC, as addressed in the Technical Consideration Document (TCD of TG7r1, is Image Sensor Compatibility among the variety of different commercial cameras on the market. One of the most challenging but interesting compatibility requirements is the need to support the verified presence of frame rate variation. This paper proposes a novel design for 2D-sequential color code. Compared to a QR-code-based sequential transmission, the proposed design of 2D-sequential code can overcome the above challenge that it is compatible with different frame rate variations and different shutter operations, and has the ability to mitigate the rolling effect as well as the rotating effect while effectively minimizing transmission overhead. Practical implementations are demonstrated and a performance comparison is presented.

  10. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity (United States)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith


    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  11. Canopy induced aberration correction in airborne electro-optical imaging systems (United States)

    Harder, James A.; Sprague, Michaelene W.


    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  12. Modeling the transmission and thermal emission in a pupil image behind the Keck II adaptive optics system (United States)

    Arriaga, Pauline; Fitzgerald, Michael P.; Lyke, James E.; Campbell, Randall D.; Wizinowich, Peter L.; Adkins, Sean M.; Matthews, Keith Y.


    The design and performance of astronomical instruments depend critically on the total system throughput as well as the background emission from the sky and instrumental sources. In designing a pupil stop for background- limited imaging, one seeks to balance throughput and background rejection to optimize measurement signal-to-noise ratios. Many sources affect transmission and emission in infrared imaging behind the Keck Observatory's adaptive optics systems, such as telescope segments, segment gaps, secondary support structure, and AO bench optics. Here we describe an experiment, using the pupil-viewing mode of NIRC2, to image the pupil plane as a function of wavelength. We are developing an empirical model of throughput and background emission as a function of position in the pupil plane. This model will be used in part to inform the optimal design of cold pupils in future instruments, such as the new imaging camera for OSIRIS.

  13. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  14. Some methods for determining the limit of potential image quality of optical systems of various complexities using the database (United States)

    Bezdidko, S.


    In the article some methods for processing the information contained in a database are offered with the purpose of extraction of the knowledge, the experience and the intuition of the designers, coded in the database. It gives much attention to the methods for determinating limit potential image quality of optical systems of various complexities.

  15. Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging

    NARCIS (Netherlands)

    M. Draijer; E. Hondebrink; T. van Leeuwen; W. Steenbergen


    We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the signal-to-n

  16. Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Draijer, M.; Hondebrink, E.; van Leeuwen, T.; Steenbergen, W.


    We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the

  17. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. (United States)

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre


    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.

  18. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. (United States)

    Park, Jesung; Jo, Javier A; Shrestha, Sebina; Pande, Paritosh; Wan, Qiujie; Applegate, Brian E


    Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.

  19. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling (United States)

    Chwalla, M.; Danzmann, K.; Fernández Barranco, G.; Fitzsimons, E.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Lieser, M.; Perreur-Lloyd, M.; Robertson, D. I.; Schuster, S.; Schwarze, T. S.; Tröbs, M.; Ward, H.; Zwetz, M.


    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments.

  20. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study. (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu


    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  1. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models (United States)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José


    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  2. Adaptive optics optical coherence tomography for retina imaging

    Institute of Scientific and Technical Information of China (English)

    Guohua Shi; Yun Dai; Ling Wang; Zhihua Ding; Xuejun Rao; Yudong Zhang


    When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.

  3. Stereoscopic optical viewing system (United States)

    Tallman, Clifford S.


    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  4. Advanced Imaging Optics Utilizing Wavefront Coding.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  5. Fluorescence imaging spectrometer optical design (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.


    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  6. High-accuracy and robust face recognition system based on optical parallel correlator using a temporal image sequence (United States)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko


    Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.

  7. Clinically applicable optical imaging technology for body size and shape analysis: comparison of systems differing in design. (United States)

    Bourgeois, B; Ng, B K; Latimer, D; Stannard, C R; Romeo, L; Li, X; Shepherd, J A; Heymsfield, S B


    Recent advances have extended anthropometry beyond flexible tape measurements to automated three-dimensional optical devices that rapidly acquire hundreds of body surface dimensions. Three new devices were recently introduced that share in common inexpensive optical cameras. The design, and thus potential clinical applicability, of these systems differ substantially leading us to critically evaluate their accuracy and precision. 113 adult subjects completed evaluations by the three optical devices (KX-16 (16 stationary cameras), Proscanner (1 vertically oscillating camera), and Styku scanner (1 stationary camera)), air displacement plethysmography (ADP), dual-energy X-ray absorptiometry (DXA) and a flexible tape measure. Optical measurements were compared to reference method estimates that included results acquired by flexible tape, DXA and ADP. Optical devices provided respective circumference and regional volume estimates that overall were well-correlated with those obtained from flexible tape measurements (for example, hip circumference: R(2), 0.91, 0.90, 0.96 for the KX-16, Proscanner, and Styku scanner, respectively) and DXA (for example, trunk volume: R(2), 0.97, 0.97, and 0.98). Total body volumes measured by the optical devices were highly correlated with those from the ADP system (all R(2)s, 0.99). Coefficient of variations obtained from duplicate measurements (n, 55) were larger in optical than in reference measurements and significant (Pmethod estimates. Overall, the evaluated optical imaging systems differing in design provided body surface measurements that compared favorably with corresponding reference methods. However, our evaluations uncovered system measurement limitations, such as discrepancies in landmarking, that with correction have the potential to improve future developed devices.European Journal of Clinical Nutrition advance online publication, 6 September 2017; doi:10.1038/ejcn.2017.142.

  8. CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics. (United States)

    Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro


    We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.

  9. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation) (United States)

    Abookasis, David; Volkov, Boris; Kofman, Itamar


    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  10. Imaging interferometric microscopy-approaching the linear systems limits of optical resolution. (United States)

    Kuznetsova, Yuliya; Neumann, Alexander; Brueck, S R


    The linear systems optical resolution limit is a dense grating pattern at a lambda/2 pitch or a critical dimension (resolution) of lambda/4. However, conventional microscopy provides a (Rayleigh) resolution of only ~ 0.6lambda/NA, approaching lambda/1.67 as NA ?lambda1. A synthetic aperture approach to reaching the lambda/4 linear-systems limit, extending previous developments in imaginginterferometric microscopy, is presented. Resolution of non-periodic 180-nm features using 633-nm illumination (lambda/3.52) and of a 170-nm grating (lambda/3.72) is demonstrated. These results are achieved with a 0.4-NA optical system and retain the working distance, field-of-view, and depth-of-field advantages of low-NA systems while approaching ultimate resolution limits.

  11. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies (United States)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie


    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  12. On-sky performance during verification and commissioning of the Gemini Planet Imager's adaptive optics system

    CERN Document Server

    Poyneer, Lisa A; Macintosh, Bruce; Palmer, David W; Perrin, Marshall D; Sadakuni, Naru; Savransky, Dmitry; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey K; Dillon, Daren; Gavel, Donald; Goodsell, Stephen J; Hartung, Markus; Hibon, Pascale; Rantakyro, Fredrik T; Thomas, Sandrine; Veran, Jean-Pierre


    The Gemini Planet Imager instrument's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. It features several new technologies, including computationally efficient wavefront reconstruction with the Fourier transform, modal gain optimization every 8 seconds, and the spatially filtered wavefront sensor. It also uses a Linear-Quadratic-Gaussian (LQG) controller (aka Kalman filter) for both pointing and focus. We present on-sky performance results from verification and commissioning runs from December 2013 through May 2014. The efficient reconstruction and modal gain optimization are working as designed. The LQG controllers effectively notch out vibrations. The spatial filter can remove aliases, but we typically use it oversized by about 60% due to stability problems.

  13. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system. (United States)

    Shen, Mingya; Xiao, Feng; Alameh, Kamal


    A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below -36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

  14. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging (United States)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.


    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  15. An in situ optical imaging system for measuring lipid uptake, vessel contraction, and lymph flow in small animal lymphatic vessels (United States)

    Kassis, Timothy; Weiler, Michael J.; Dixon, J. Brandon


    All dietary lipids are transported to venous circulation through the lymphatic system, yet the underlying mechanisms that regulate this process remain unclear. Understanding how the lymphatics functionally respond to changes in lipid load is important in the diagnosis and treatment of lipid and lymphatic related diseases such as obesity, hypercholesterolemia, and lymphedema. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. A custom-built optical set-up provides us with the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. This is achieved by dividing the light path into two optical bands. Utilizing high-speed and back-illuminated CCD cameras and post-acquisition image processing algorithms, we have the potential quantify correlations between vessel contraction, lymph flow and lipid concentration of mesenteric lymphatic vessels in situ. Local flow velocity is measured through lymphocyte tracking, vessel contraction through measurements of the vessel walls and lipid uptake through fluorescence intensity tracking of a fluorescent long chain fatty acid analogue, Bodipy FL C16. This system will prove to be an invaluable tool for both scientists studying lymphatic function in health and disease, and those investigating strategies for targeting the lymphatic system with orally delivered drugs.

  16. Optical imaging probes in oncology. (United States)

    Martelli, Cristina; Lo Dico, Alessia; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa


    Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management.Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation.The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed.

  17. Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL (United States)

    Bean, Richard J.; Aquila, Andrew; Samoylova, Liubov; Mancuso, Adrian P.


    The high degree of spatial coherence and extreme pulse energies available at x-ray free electron laser (XFEL) sources naturally support coherent diffractive imaging applications. In order to optimally exploit these unique properties, the optical systems at XFELs must be highly transmissive, focus to appropriate sizes matched to the scale of samples to be investigated and must minimally perturb the wavefront of the XFEL beam. We present the design and simulated performance of two state-of-the-art Kirkpatrik-Baez mirror systems that form the primary foci of the single particles, clusters and biomolecules and serial femtosecond crystallography (SPB/SFX) instrument of the European XFEL. The two systems, presently under construction, will produce 1 μm and 100 nm scale foci across a 3-16 keV photon energy range. Targeted applications include coherent imaging of weakly scattering, often biological, specimens.

  18. Influences of Atmospheric Turbulence on Image Resolution of Airborne and Space-Borne Optical Remote Sensing System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-fang; YU Xin; YAN Ji-xiang


    A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the air borne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1cm, and for the space-borne remote sensing system, the errors are around 1cm. The results are similar to that obtained by the previous Fried-method. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.

  19. Toward a real time stand-off submillimeter-wave imaging system with large field of view: quasi-optical system design considerations (United States)

    Gandini, Erio; Llombart, Nuria


    In the frame-work of the European project CONSORTIS, a stand-off system for concealed object detections working at submillimeter-wave frequencies is being developed. The system is required to perform real-time image acquisition over a large field of view at a short range using both an active and a passive sensor operating in the frequency range from 250 to 600 GHz. In this contribution, the main trade-offs associated with the quasi-optical system design are presented. The imaging distance is from 2 m to 5 m range with a spatial resolution lower than 2 cm. Focal plane arrays will be used to achieve high imaging frame rates. Two configurations are considered in CONSORTIS: a sparse array of active transceivers and incoherent passive staring array with a large number of elements. Both cases use mechanical scanning to achieve the required field of view. This paper presents an in-depth analysis of the different trade-offs driving the quasi-optical design: from the mechanical scanner considerations to the optical beam quality required over the whole field of view. This analysis starts from the fundamental limitations of the quasi-optical mechanical systems. The limitations of the optics are discussed considering a canonical elliptical reflector as a reference. After this fundamental analysis, we compare the performances of several practical standard implementations, based on dual-reflectors and lenses, with canonical geometries. It is shown that, at short ranges, the main limitation of the optical system is the poor beam quality associated with the wide angular field of view and none of the standard implementation fulfills the requirements. In the last section, a technique to overcome this limitation is investigated. In particular, the use of optics with oversized reflectors can significantly improve the performance over a larger field of view if the coma aberrations are limited by a good angular filter.

  20. On Peres' statement "opposite momenta lead to opposite directions", decaying systems and optical imaging

    CERN Document Server

    Struyve, W; De Neve, J; De Weirdt, S


    We re-examine Peres' statement ``opposite momenta lead to opposite directions''. It will be shown that Peres' statement is only valid in the large distance or large time limit. In the short distance or short time limit an additional deviation from perfect alignment occurs due to the uncertainty of the location of the source. This error contribution plays a major role in Popper's orginal experimental proposal. Peres' statement applies rather to the phenomenon of optical imaging, which was regarded by him as a verification of his statement. This is because this experiment can in a certain sense be seen as occurring in the large distance limit. We will also reconsider both experiments from the viewpoint of Bohmian mechanics. In Bohmian mechanics particles with exactly opposite momenta will move in opposite directions. In addition it will prove particularly usefull to use Bohmian mechanics because the Bohmian trajectories coincide with the conceptual trajectories drawn by Pittman et al. In this way Bohmian mechan...

  1. Magnetic resonance imaging of optic nerve

    Directory of Open Access Journals (Sweden)

    Foram Gala


    Full Text Available Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI, plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies.

  2. High resolution in vitro bioluminescence imaging using a multimodal optical system (United States)

    Altabella, L.; Gigliotti, C. R.; Perani, L.; Crippa, M. P.; Boschi, F.; Spinelli, A. E.


    Bioluminescence in vitro studies are usually performed with dedicated microscopes. In this work, we developed a novel image recovery algorithm and a multimodal system prototype to perform bioluminescence microscopy. We performed a feasibility study using GEANT4 Monte Carlo (MC) simulation of bioluminescent cells acquired at low SNR frames and processed using a Super Resolution Regularization Algorithm (SRRA). The method was also tested using in vitro cell acquisition. The results obtained with MC simulations showed an improvement in the spatial resolution from 90 μ m to 10 μ m and from 110 μ m to 13 μ m for in vitro imaging of mesothelioma cells.

  3. A three-channel miniaturized optical system for multi-resolution imaging (United States)

    Belay, Gebirie Y.; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo


    Inspired by the natural compound eyes of insects, multichannel imaging systems embrace many channels that scramble their entire Field-Of-View (FOV). Our aim in this work was to attain multi-resolution capability into a multi-channel imaging system by manipulating the available channels to possess different imaging properties (focal length, angular resolution). We have designed a three-channel imaging system where the first and third channels have highest and lowest angular resolution of 0.0096° and 0.078° and narrowest and widest FOVs of 7° and 80°, respectively. The design of the channels has been done for a single wavelength of 587.6 nm using CODE V. The three channels each consist of 4 aspherical lens surfaces and an absorbing baffle that avoids crosstalk among the neighbouring channels. The aspherical lens surfaces have been fabricated in PMMA by ultra-precision diamond tooling and the baffles by metal additive manufacturing. The profiles of the fabricated lens surfaces have been measured with an accurate multi-sensor coordinate measuring machine and compared with the corresponding profiles of the designed lens surfaces. The fabricated lens profiles are then incorporated into CODE V to realistically model the three channels and also compare their performances with those of the nominal design. We can conclude that the performances of the two latter models are in a good agreement.

  4. A gel-based skin and blood flow model for a Doppler optical coherence tomography (DOCT) imaging system (United States)

    Lawlor, Kate; O'Connell, Marie-Louise; Jonathan, Enock; Leahy, Martin J.


    Since its discovery in 1842 by Christian Johann Doppler, the Doppler Effect has had many applications in the scientific world. In recent years, the phenomenon has been integrated with Optical Coherence Tomography (OCT) yielding Doppler Optical Coherence Tomography (DOCT), a technique that is useful for high-resolution imaging of the skin microcirculation. However, interpretation of DOCT images is rather challenging. Thus, our study aims to aid understanding of DOCT images with respect to parameters of microcirculation components such as blood vessel size, depth and angular position. To this end, we have constructed a gel-based tissue and blood-flow model for performing DOCT studies under well controlled conditions. We present results from a pilot study using a gel-based tissue and blood flow model. Human blood was pumped through the model at various velocities from a commercial calibrated syringe pump, serving as a standard reference point for all velocity measurements. The range of velocity values was chosen to coincide with that found in the human vasculature. Simultaneous DOCT imaging at different flow rates contributed to establishing the capabilities and limitations of the DOCT system under investigation. We present preliminary results as first step to developing a robust validation protocol with which to aid future research in this area.

  5. A comparison between a time domain and continuous wave small animal optical imaging system. (United States)

    Keren, S; Gheysens, O; Levin, C S; Gambhir, S S


    We present a phantom study to evaluate the performance of the eXplore Optix (Advanced Research Technologies-GE Healthcare), the first commercially available time-domain tomography system for small animal fluorescence imaging, and compare its capabilities with the widely used IVIS 200 (Xenogen Corporation-Caliper) continuous wave planar imaging system. The eXplore Optix, based on point-wise illumination and collection scheme, is found to be a log order more sensitive with significantly higher detection depth and spatial resolution as compared with the wide-area illumination IVIS 200 under the conditions tested. A time-resolved detection system allows the eXplore Optix to measure the arrival time distribution of fluorescence photons. This enables fluorescence lifetime measurement, absorption mapping, and estimation of fluorescent inclusion depth, which in turn is used by a reconstruction algorithm to calculate the volumetric distribution of the fluorophore concentration. An increased acquisition time and lack of ability to image multiple animals simultaneously are the main drawbacks of the eXplore Optix as compared with the IVIS 200.

  6. Optical image processing by using a photorefractive spatial soliton waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bao-Lai, E-mail: [College of Physics Science & Technology, Hebei University, Baoding 071002 (China); Wang, Ying; Zhang, Su-Heng; Guo, Qing-Lin; Wang, Shu-Fang; Fu, Guang-Sheng [College of Physics Science & Technology, Hebei University, Baoding 071002 (China); Simmonds, Paul J. [Department of Physics and Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725 (United States); Wang, Zhao-Qi [Institute of Modern Optics, Nankai University, Tianjin 300071 (China)


    By combining the photorefractive spatial soliton waveguide of a Ce:SBN crystal with a coherent 4-f system we are able to manipulate the spatial frequencies of an input optical image to perform edge-enhancement and direct component enhancement operations. Theoretical analysis of this optical image processor is presented to interpret the experimental observations. This work provides an approach for optical image processing by using photorefractive spatial solitons. - Highlights: • A coherent 4-f system with the spatial soliton waveguide as spatial frequency filter. • Manipulate the spatial frequencies of an input optical image. • Achieve edge-enhancement and direct component enhancement operations of an optical image.

  7. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain (United States)

    Sui, Liansheng; Xu, Minjie; Tian, Ailing


    A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.

  8. Active optical zoom for space-based imaging (United States)

    Wick, David V.; Bagwell, Brett E.; Sweatt, William C.; Peterson, Gary L.; Martinez, Ty; Restaino, Sergio R.; Andrews, Jonathan R.; Wilcox, Christopher C.; Payne, Don M.; Romeo, Robert


    The development of sensors that are compact, lighter weight, and adaptive is critical for the success of future military initiatives. Space-based systems need the flexibility of a wide FOV for surveillance while simultaneously maintaining high-resolution for threat identification and tracking from a single, nonmechanical imaging system. In order to meet these stringent requirements, the military needs revolutionary alternatives to conventional imaging systems. We will present recent progress in active optical (aka nonmechanical) zoom for space applications. Active optical zoom uses multiple active optics elements to change the magnification of the imaging system. In order to optically vary the magnification of an imaging system, continuous mechanical zoom systems require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of elements. By incorporating active elements into the optical design, we have designed, demonstrated, and patented imaging systems that are capable of variable optical magnification with no macroscopic moving parts.

  9. Imaging System (United States)


    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  10. Reorganization of neural systems mediating peripheral visual selective attention in the deaf: An optical imaging study. (United States)

    Seymour, Jenessa L; Low, Kathy A; Maclin, Edward L; Chiarelli, Antonio M; Mathewson, Kyle E; Fabiani, Monica; Gratton, Gabriele; Dye, Matthew W G


    Theories of brain plasticity propose that, in the absence of input from the preferred sensory modality, some specialized brain areas may be recruited when processing information from other modalities, which may result in improved performance. The Useful Field of View task has previously been used to demonstrate that early deafness positively impacts peripheral visual attention. The current study sought to determine the neural changes associated with those deafness-related enhancements in visual performance. Based on previous findings, we hypothesized that recruitment of posterior portions of Brodmann area 22, a brain region most commonly associated with auditory processing, would be correlated with peripheral selective attention as measured using the Useful Field of View task. We report data from severe to profoundly deaf adults and normal-hearing controls who performed the Useful Field of View task while cortical activity was recorded using the event-related optical signal. Behavioral performance, obtained in a separate session, showed that deaf subjects had lower thresholds (i.e., better performance) on the Useful Field of View task. The event-related optical data indicated greater activity for the deaf adults than for the normal-hearing controls during the task in the posterior portion of Brodmann area 22 in the right hemisphere. Furthermore, the behavioral thresholds correlated significantly with this neural activity. This work provides further support for the hypothesis that cross-modal plasticity in deaf individuals appears in higher-order auditory cortices, whereas no similar evidence was obtained for primary auditory areas. It is also the only neuroimaging study to date that has linked deaf-related changes in the right temporal lobe to visual task performance outside of the imaging environment. The event-related optical signal is a valuable technique for studying cross-modal plasticity in deaf humans. The non-invasive and relatively quiet characteristics of

  11. Prototype Optical Correlator For Robotic Vision System (United States)

    Scholl, Marija S.


    Known and unknown images fed in electronically at high speed. Optical correlator and associated electronic circuitry developed for vision system of robotic vehicle. System recognizes features of landscape by optical correlation between input image of scene viewed by video camera on robot and stored reference image. Optical configuration is Vander Lugt correlator, in which Fourier transform of scene formed in coherent light and spatially modulated by hologram of reference image to obtain correlation.

  12. Optical and digital image processing

    CERN Document Server

    Cristobal, Gabriel; Thienpont, Hugo


    In recent years, Moore's law has fostered the steady growth of the field of digital image processing, though the computational complexity remains a problem for most of the digital image processing applications. In parallel, the research domain of optical image processing has matured, potentially bypassing the problems digital approaches were suffering and bringing new applications. The advancement of technology calls for applications and knowledge at the intersection of both areas but there is a clear knowledge gap between the digital signal processing and the optical processing communities. T

  13. Imaging of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Minerva [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)], E-mail:; Masterson, Karen [Head and Neck and Maxillofacial Radiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Delavelle, Jacqueline [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Viallon, Magalie [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Vargas, Maria-Isabel [Neuroradiology, Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland); Becker, Christoph D. [Department of Radiology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH - 1211 Geneva 14 (Switzerland)


    This article provides an overview of the imaging findings of diseases affecting the optic nerve with special emphasis on clinical-radiological correlation and on the latest technical developments in MR imaging and CT. The review deals with congenital malformations, tumors, toxic/nutritional and degenerative entities, inflammatory and infectious diseases, compressive neuropathy, vascular conditions and trauma involving the optic nerve from its ocular segment to the chiasm. The implications of imaging findings on patient management and outcome and the importance of performing high-resolution tailored examinations adapted to the clinical situation are discussed.

  14. Radiation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.


    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  15. Radiation imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.


    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  16. Status and performance of the Gemini Planet Imager adaptive optics system

    CERN Document Server

    Bailey, Vanessa P; Macintosh, Bruce A; Savransky, Dmitry; Wang, Jason J; De Rosa, Robert J; Follette, Katherine B; Ammons, S Mark; Hayward, Thomas; Ingraham, Patrick; Maire, Jérôme; Palmer, David W; Perrin, Marshall D; Rajan, Abhijith; Rantakyrö, Fredrik T; Thomas, Sandrine; Véran, Jean-Pierre


    The Gemini Planet Imager is a high-contrast near-infrared instrument specifically designed to image exoplanets and circumstellar disks over a narrow field of view. We use science data and AO telemetry taken during the first 1.5 yr of the GPI Exoplanet Survey to quantify the performance of the AO system. In a typical 60 sec H-band exposure, GPI achieves a 5$\\sigma$ raw contrast of 10$^{-4}$ at 0.4"; typical final 5$\\sigma$ contrasts for full 1 hr sequences are more than 10 times better than raw contrasts. We find that contrast is limited by bandwidth wavefront error over much of the PSF. Preliminary exploratory factor analysis can explain 60-70% of the variance in raw contrasts with combinations of seeing and wavefront error metrics. We also examine the effect of higher loop gains on contrast by comparing wavefront error maps reconstructed from AO telemetry to concurrent IFS images. These results point to several ways that GPI performance could be improved in software or hardware.

  17. Computational optical sensing and imaging: introduction to feature issue. (United States)

    Gerwe, David R; Harvey, Andrew; Gehm, Michael E


    The 2012 Computational Optical Sensing and Imaging (COSI) conference of the Optical Society of America was one of six colocated meetings composing the Imaging and Applied Optics Congress held in Monterey, California, 24-28 June. COSI, together with the Imaging Systems and Applications, Optical Sensors, Applied Industrial Optics, and Optical Remote Sensing of the Environment conferences, brought together a diverse group of scientists and engineers sharing a common interest in measuring and processing of information carried by optical fields. This special feature includes several papers based on presentations given at the 2012 COSI conference as well as independent contributions, which together highlight several important trends.

  18. Micro-optics for imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Robert R.


    This project investigates the fundamental imaging capability of an optic with a physical thickness substantially less than 1 mm. The analysis assumes that post-processing can overcome certain restrictions such as detector pixel size and image degradation due to aberrations. A first order optical analysis quickly reveals the limitations of even an ideal thin lens to provide sufficient image resolution and provides the justification for pursuing an annular design. Some straightforward examples clearly show the potential of this approach. The tradeoffs associated with annular designs, specifically field of view limitations and reduced mid-level spatial frequencies, are discussed and their impact on the imaging performance evaluated using several imaging examples. Additionally, issues such as detector acceptance angle and the need to balance aberrations with resolution are included in the analysis. With these restrictions, the final results present an excellent approximation of the expected performance of the lens designs presented.

  19. A configurable terasample-per-second imaging system for optical SETI (United States)

    Mead, Curtis Charles

    A new instrument for conducting astronomical searches for nanosecond-scale optical pulses has been designed, built, and is now operating at Oak Ridge Observatory in Harvard, MA. The Advanced All-sky Camera, based on the previous generation ASIC-based design, is implemented using Xilinx Virtex-5 LX110 FPGAs to create a flexible and configurable system. Each FPGA has 32 1.5 Gsps analog-to-digital converters, implemented as 8-level flash ADCs using 256 of the Virtex-5's LVDS input pairs. Thirty-two FPGAs in the system total 1024 ADC channels, each with 8kB of sample memory, for triggering on and recording coincident pulse waveforms from an array of 1024 photomultiplier tube anodes. The camera performs a transit-mode search of the Northern sky from --20° communications, describes briefly the original all-sky camera and its limitations, presents the design of the PulseNet-V FPGAs and the Advanced All-sky Camera, and concludes with tests and initial observations using the new system.

  20. Keck Adaptive Optics Imaging of Nearby Young Stars: Detection of Close Multiple Systems

    CERN Document Server

    Brandeker, A; Najita, J R; Brandeker, Alexis; Jayawardhana, Ray; Najita, Joan


    Using adaptive optics on the Keck II 10-meter telescope on Mauna Kea, we have surveyed 24 of the nearest young stars known in search of close companions. Our sample includes members of the MBM 12 and TW Hydrae young associations and the classical T Tauri binary UY Aurigae in the Taurus star-forming region. We present relative photometry and accurate astrometry for 10 close multiple systems. The multiplicity frequency in the TW Hydrae and MBM 12 groups are high in comparison to other young regions, though the significance of this result is low because of the small number statistics. We resolve S 18 into a triple system including a tight 63 mas (projected separation of 17 AU at a distance of 275 pc) binary for the first time, with a hierarchical configuration reminiscent of VW Chamaeleontis and T Tauri. Another tight binary in our sample -- TWA 5Aab (54 mas or 3 AU at 55 pc) -- offers the prospect of dynamical mass measurement using astrometric observations within a few years, and thus could be important for te...

  1. SU-E-J-134: An Augmented-Reality Optical Imaging System for Accurate Breast Positioning During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D; Malhotra, H; French, S [Roswell Park Cancer Institute, Buffalo, NY (United States); Hoffmann, K [Neurosurgery at SUNY at Buffalo, Buffalo, NY (United States); Merrow, C [Bassett Healthcare, Oneonta, NY (United States)


    Purpose: Breast radiotherapy, particularly electronic compensation, may involve large dose gradients and difficult patient positioning problems. We have developed a simple self-calibrating augmented-reality system, which assists in accurately and reproducibly positioning the patient, by displaying her live image from a single camera superimposed on the correct perspective projection of her 3D CT data. Our method requires only a standard digital camera capable of live-view mode, installed in the treatment suite at an approximately-known orientation and position (rotation R; translation T). Methods: A 10-sphere calibration jig was constructed and CT imaged to provide a 3D model. The (R,T) relating the camera to the CT coordinate system were determined by acquiring a photograph of the jig and optimizing an objective function, which compares the true image points to points calculated with a given candidate R and T geometry. Using this geometric information, 3D CT patient data, viewed from the camera's perspective, is plotted using a Matlab routine. This image data is superimposed onto the real-time patient image, acquired by the camera, and displayed using standard live-view software. This enables the therapists to view both the patient's current and desired positions, and guide the patient into assuming the correct position. The method was evaluated using an in-house developed bolus-like breast phantom, mounted on a supporting platform, which could be tilted at various angles to simulate treatment-like geometries. Results: Our system allowed breast phantom alignment, with an accuracy of about 0.5 cm and 1 ± 0.5 degree. Better resolution could be possible using a camera with higher-zoom capabilities. Conclusion: We have developed an augmented-reality system, which combines a perspective projection of a CT image with a patient's real-time optical image. This system has the potential to improve patient setup accuracy during breast radiotherapy, and could

  2. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab


    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  3. Study Of The Theory Of Optical Stabilizing Image (United States)

    Zhijian, Wang; Jianping, Zheng


    In this paper, all varieties of the optical stabilizing image methods have been summarized into an optical stabilization pattern, and a mathematical model of the optical stabilizing image are proposed. Some representative systems are analyzed by means of this model in orde to show how to use this model.

  4. Optical Brain Imaging: A Powerful Tool for Neuroscience. (United States)

    Zhu, Xinpei; Xia, Yanfang; Wang, Xuecen; Si, Ke; Gong, Wei


    As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.

  5. Novel Intraoperative Near-Infrared Fluorescence Camera System for Optical Image-Guided Cancer Surgery

    Directory of Open Access Journals (Sweden)

    J. Sven D. Mieog


    Full Text Available Current methods of intraoperative tumor margin detection using palpation and visual inspection frequently result in incomplete resections, which is an important problem in surgical oncology. Therefore, real-time visualization of cancer cells is needed to increase the number of patients with a complete tumor resection. For this purpose, near-infrared fluorescence (NIRF imaging is a promising technique. Here we describe a novel, handheld, intraoperative NIRF camera system equipped with a 690 nm laser; we validated its utility in detecting and guiding resection of cancer tissues in two syngeneic rat models. The camera system was calibrated using an activated cathepsin-sensing probe (ProSense, VisEn Medical, Woburn, MA. Fluorescence intensity was strongly correlated with increased activated-probe concentration (R2 = .997. During the intraoperative experiments, a camera exposure time of 10 ms was used, which provided the optimal tumor to background ratio. Primary mammary tumors (n = 20 tumors were successfully resected under direct fluorescence guidance. The tumor to background ratio was 2.34 using ProSense680 at 10 ms camera exposure time. The background fluorescence of abdominal organs, in particular liver and kidney, was high, thereby limiting the ability to detect peritoneal metastases with cathepsin-sensing probes in these regions. In conclusion, we demonstrated the technical performance of this new camera system and its intraoperative utility in guiding resection of tumors.

  6. Retinal Optical Coherence Tomography Imaging (United States)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  7. Explaining the Effect of a Grid by Using an Optical Analog to an X-ray Radiographic Imaging System (United States)

    Honnicke, M. G.; Gavinho, L.; Cusatis, C.


    Compton scattering and diffuse scattering degenerate the contrast in radiographic images. To avoid such scattering effects, a grid, between the patient and the film is currently used to improve the image quality. Teaching this topic to medical physics students requires demonstration experiments. In this paper, an optical analog to an x-ray…

  8. 3D integral imaging with optical processing (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram


    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  9. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads;


    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  10. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  11. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system. (United States)

    Yao, Jianing; Thompson, Kevin P; Ma, Bin; Ponting, Michael; Rolland, Jannick P


    In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture.

  12. Optical design of low cost imaging systems for mobile medical applications (United States)

    Kass, Alexander; Slyper, Ronit; Levitz, David


    Colposcopes, the gold standard devices for imaging the cervix at high magnfication, are expensive and sparse in low resource settings. Using a lens attachment, any smartphone camera can be turned into an imaging device for tissues such as the cervix. We create a smartphone-based colposcope using a simple lens design for high magnification. This particular design is useful because it allows parameters such as F-number, depth of field, and magnification to be controlled easily. We were therefore able to determine a set of design steps which are general to mobile medical imaging devices and allow them to maintain requisite image quality while still being rugged and affordable.

  13. Image Mosaicking Approach for a Double-Camera System in the GaoFen2 Optical Remote Sensing Satellite Based on the Big Virtual Camera. (United States)

    Cheng, Yufeng; Jin, Shuying; Wang, Mi; Zhu, Ying; Dong, Zhipeng


    The linear array push broom imaging mode is widely used for high resolution optical satellites (HROS). Using double-cameras attached by a high-rigidity support along with push broom imaging is one method to enlarge the field of view while ensuring high resolution. High accuracy image mosaicking is the key factor of the geometrical quality of complete stitched satellite imagery. This paper proposes a high accuracy image mosaicking approach based on the big virtual camera (BVC) in the double-camera system on the GaoFen2 optical remote sensing satellite (GF2). A big virtual camera can be built according to the rigorous imaging model of a single camera; then, each single image strip obtained by each TDI-CCD detector can be re-projected to the virtual detector of the big virtual camera coordinate system using forward-projection and backward-projection to obtain the corresponding single virtual image. After an on-orbit calibration and relative orientation, the complete final virtual image can be obtained by stitching the single virtual images together based on their coordinate information on the big virtual detector image plane. The paper subtly uses the concept of the big virtual camera to obtain a stitched image and the corresponding high accuracy rational function model (RFM) for concurrent post processing. Experiments verified that the proposed method can achieve seamless mosaicking while maintaining the geometric accuracy.

  14. [Research on optimization of imaging system of the hand vein optical properties]. (United States)

    Lan, Huiying; Shi, Yan; Wang, Longwu


    Due to the difficulties of the copying, vein identification has developed rapidly in recent years. The light source selection directly affects the image quality. This paper acquired by experiment the reflectivities of vein and non-vein irradiation with different wavelengths of near infra-red. Comparing the strength of reflectivities of various wave lengths, we found that there were the strongest contrasts between vein and non-vein in the 810 nm, and 810 nm near infra-red was suitable to a vein imaging light source. Finally, clear hand vein images were obtained with the selected light source.

  15. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo


    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  16. Advances in the Simultaneous Multiple Surface optical design method for imaging and non-imaging applications


    Wang, Lin


    Classical imaging optics has been developed over centuries in many areas, such as its paraxial imaging theory and practical design methods like multi-parametric optimization techniques. Although these imaging optical design methods can provide elegant solutions to many traditional optical problems, there are more and more new design problems, like solar concentrator, illumination system, ultra-compact camera, etc., that require maximum energy transfer efficiency, or ultra-compact optical stru...

  17. Optical image processing by using a photorefractive spatial soliton waveguide (United States)

    Liang, Bao-Lai; Wang, Ying; Zhang, Su-Heng; Guo, Qing-Lin; Wang, Shu-Fang; Fu, Guang-Sheng; Simmonds, Paul J.; Wang, Zhao-Qi


    By combining the photorefractive spatial soliton waveguide of a Ce:SBN crystal with a coherent 4-f system we are able to manipulate the spatial frequencies of an input optical image to perform edge-enhancement and direct component enhancement operations. Theoretical analysis of this optical image processor is presented to interpret the experimental observations. This work provides an approach for optical image processing by using photorefractive spatial solitons.

  18. Optical Waveguide Sensing and Imaging

    CERN Document Server

    Bock, Wojtek J; Tanev, Stoyan


    The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinarry team of Editors was to provide an useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.

  19. Implementation Of A Prototype Digital Optical Cellular Image Processor (DOCIP) (United States)

    Huang, K. S.; Sawchuk, A. A.; Jenkins, B. K.; Chavel, P.; Wang, J. M.; Weber, A. G.; Wang, C. H.; Glaser, I.


    A processing element of a prototype digital optical cellular image processor (DOCIP) is implemented to demonstrate a particular parallel computing and interconnection architecture. This experimental digital optical computing system consists of a 2-D array of 54 optical logic gates, a 2-D array of 53 subholograms to provide interconnections between gates, and electronic input/output interfaces. The multi-facet interconnection hologram used in this system is fabricated by a computer-controlled optical system to offer very flexible interconnections.

  20. Exploiting data redundancy in computational optical imaging. (United States)

    Munro, Peter R T


    We present an algorithm which exploits data redundancy to make computational, coherent, optical imaging more computationally efficient. This algorithm specifically addresses the computation of how light scattered by a sample is collected and coherently detected. It is of greatest benefit in the simulation of broadband optical systems employing coherent detection, such as optical coherence tomography. Although also amenable to time-harmonic data, the algorithm is designed to be embedded within time-domain electromagnetic scattering simulators such as the psuedo-spectral and finite-difference time domain methods. We derive the algorithm in detail as well as criteria which ensure accurate execution of the algorithm. We present simulations that verify the developed algorithm and demonstrate its utility. We expect this algorithm to be important to future developments in computational imaging.

  1. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy


    Fujimoto, James G.; Pitris, Costas; Boppart, Stephen A.; Brezinski, Mark E.


    Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging te...

  2. Millipixel scale landmark location in images: The optics, the imaging system, and the Cramer-Rao bound on performance (United States)

    Gutierrez, Jose Alejandro


    Landmark location uncertainty in digital images, which is extensively used in high precision photogrammetry and machine vision applications, consist of the error measurement when locating the position of a specific image feature. Landmark location uncertainty has been previously described in the literature for particular landmark designs within the scope of specific applications and using simplified models. For the first time, a general framework to determine landmark location uncertainty in presented in this work. The framework includes the determination of the performance floor by means of the Cramer-Rao Lower Bound (CRLB). The methodology presented, considers the complete physical model of image formation, including 6 degree of freedom, landmark to camera geometry, diffraction, defocus, lens distortion, gray-scale, pixel geometry, and pixel sensitive area. With the framework developed, an analysis tool was created to model true engineering cases to allow the investigator to predict performance for any configuration of landmark, camera, imager and estimator used. This tool includes the determination of the CRLB performance floor for the configuration used. Additionally, this work also pioneers novel landmark location estimation algorithms with confidence intervals at tens of milli-pixel level, which not only perform more than 10 times better than existing estimation algorithms but also has been experimentally verified. The Cramer-Rao Lower Bound methodology introduced in the present work establishes a theoretical statistical minimum limit on the landmark location uncertainty. Knowledge of this bound provides the means to evaluate the actual performance of both existing and future landmark location estimators. The approach presented in this work includes a mix of analysis, where feasible, and numerical work where required, including numerically deriving the partial derivatives needed to compute statistical distributions and the Cramer-Rao Lower Bound.

  3. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions (United States)

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  4. Optomechatronics for Biomedical Optical Imaging: An Overview


    Cho Hyungsuck


    The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical ...

  5. Novel optical scanning cryptography using Fresnel telescope imaging. (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren


    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  6. Electro-Optic Imaging Fourier Transform Spectral Polarimeter Project (United States)

    National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...

  7. Evaluation of choroidal thickness via enhanced depth-imaging optical coherence tomography in patients with systemic hypertension

    Directory of Open Access Journals (Sweden)

    Mustafa Gök


    Full Text Available Purpose: The purpose was to evaluate choroidal thickness via spectral domain optical coherence tomography (SD-OCT and to compare the data with those of 24-h blood pressure monitoring, elastic features of the aorta, and left ventricle systolic functions, in patients with systemic hypertension. Materials and Methods: This was a case-control, cross-sectional prospective study. A total of 116 patients with systemic hypertension, and 116 healthy controls over 45 years of age, were included. Subfoveal choroidal thickness (SFCT was measured using a Heidelberg SD-OCT platform operating in the enhanced depth imaging mode. Patients were also subjected to 24-h ambulatory blood pressure monitoring (ABPM and standard transthoracic echocardiography (STTE. Patients were divided into dippers and nondippers using ABPM data and those with or without left ventricular hypertrophy (LVH+ and LVH- based on STTE data. The elastic parameters of the aorta, thus aortic strain (AoS, the beta index (BI, aortic distensibility (AoD, and the left ventricular mass index (LVMI, were calculated from STTE data. Results: No significant difference in SFCT was evident between patients and controls (P ≤ 0.611. However, a significant negative correlation was evident between age and SFCT in both groups (r = −0.66/−0.56, P ≤ 0.00. No significant SFCT difference was evident between the dipper and nondipper groups (P ≤ 0.67, or the LVH (+ and LVH (- groups (P ≤ 0.84. No significant correlation was evident between SFCT and any of AoS, BI, AoD, or LVMI. Discussion : The choroid is affected by atrophic changes associated with aging. Even in the presence of comorbid risk factors including LVH and arterial stiffness, systemic hypertension did not affect SFCT.

  8. Adaptive optics and phase diversity imaging for responsive space applications.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark William; Wick, David Victor


    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  9. Optimal design and experimental verification of a magnetically actuated optical image stabilization system for cameras in mobile phones (United States)

    Chiu, Chi-Wei; Chao, Paul C.-P.; Kao, Nicholas Y.-Y.; Young, Fu-Kuan


    A novel miniaturized optical image stabilizer (OIS) is proposed, which is installed inside the limited inner space of a mobile phone. The relation between the VCM electromagnetic force inside the OIS and the applied voltage is first established via an equivalent circuit and further validated by a finite element model. Various dimensions of the VCMs are optimized by a genetic algorithm (GA) to maximize sensitivities and also achieving high uniformity of the magnetic flux intensity.

  10. Design parameters for wearable optical imagers (United States)

    Akin, Ata; Kim, Sanghyun; Pourrezaei, Kambiz; Chance, Britton; Nioka, Shoko


    This paper summarizes the design steps that are followed during the development of the portable optical imager for breast cancer screening. The design steps considered the parameters such as total power consumption versus battery weight and size, speed of data acquisition versus cost and complexity of the design (functionality), graphical display versus operating system choice. We have used a single board computer system that uses Windows CE as the real time operating system. This choice was preferred since our graphical display requirements can only be carried out with the CE environment's GUI kernels.

  11. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  12. A simple multipurpose double-beam optical image analyzer

    CERN Document Server

    Popowicz, Adam


    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing ca be carried out. The optical system is straightforward and easy implementable as it consists of only three lens and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam-splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located in different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  13. A simple multipurpose double-beam optical image analyzer (United States)

    Popowicz, A.; Blachowicz, T.


    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing can be carried out. The optical system is straightforward and easily implementable as it consists of only three lenses and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located at different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  14. Section on High Resolution Optical Imaging (HROI) (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  15. Nonlinear optical microscopy for imaging thin films and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.


    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  16. Accurate test of optical wave front for optical imaging system%光学成像系统光学波前的高精度测试

    Institute of Scientific and Technical Information of China (English)

    邵晶; 马冬梅; 聂真威


    Based on the Extended Nijboer-Zernike theory, the effect of different amplitudes for exit pupils on the image intensity in the focal plane was analyzed. A novel approach was applied to testing the wavefront according to the actual condition of the amplitude in the exit pupil, which can help eliminating the error caused by the nonuniformity illuminated pupil and the Fast Fourier Transform in the o-riginal phase retrieval algorithms. A testing experiment was performed on an imaging optical system, and obtained results show that the tested wave fronts in the exit pupil of a camera lens are 0. 196 5X in PV and 0. 022 4X in RMS (the testing wavelength X is 632. 8 nm). The aberrations in the wavefront are mainly astigmatism, coma and high order astigmatism. Furthermore, the approach can also be used to analyze the amplitude in the exit pupil of a camera lens and calculate the light intensity distribution on other focal planes. The experiment proves this approach available.%基于扩展奈波尔-泽尼克理论,分析了不同出瞳振幅分布情况对光学系统焦面处光强分布的影响.针对光学成像系统出瞳振幅实际分布状态,提出了一种新的测试光学波前的方法,解决了相位恢复算法中出瞳振幅分布不均匀和快速傅里叶变换引入计算误差的问题.通过测评实验,对一光学系统进行了测试,获得的光学系统出瞳波前(PV)值为0.196 5λ,RMS值为0.022 4λ(测试波长λ=632.8 nm),此波前中主要含有像散、彗差和高阶像散等像差.该方法亦可用于分析光学系统出瞳振幅分布,数值计算其他焦面处的光强分布.测评实验证明了此方法的有效性.

  17. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters. (United States)

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert


    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  18. Optical controlled keyboard system (United States)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej


    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  19. High spatial resolution optical imaging of the multiple T Tauri system LkH{\\alpha} 262/LkH{\\alpha} 263

    CERN Document Server

    Velasco, S; Oscoz, A; Mackay, C; Labadie, L; Garrido, A Pérez; Crass, J; Díaz-Sánchez, A; Femenía, B; González-Escalera, V; King, D L; López, R L; Puga, M; Rodríguez-Ramos, L F; Zuther, J


    We report high spatial resolution i' band imaging of the multiple T Tauri system LkH$\\alpha$ 262/LkH$\\alpha$ 263 obtained during the first commissioning period of the Adaptive Optics Lucky Imager (AOLI) at the 4.2 m William Herschel Telescope, using its Lucky Imaging mode. AOLI images have provided photometry for each of the two components LkH$\\alpha$ 263 A and B (0.41 arcsec separation) and marginal evidence for an unresolved binary or a disc in LkH$\\alpha$ 262. The AOLI data combined with previously available and newly obtained optical and infrared imaging show that the three components of LkH$\\alpha$ 263 are co-moving, that there is orbital motion in the AB pair, and, remarkably, that LkH$\\alpha$ 262-263 is a common proper motion system with less than 1 mas/yr relative motion. We argue that this is a likely five-component gravitationally bounded system. According to BT-settl models the mass of each of the five components is close to 0.4 M$_{\\odot}$ and the age is in the range 1-2 Myr. The presence of discs...

  20. Encoded diffractive optics for full-spectrum computational imaging (United States)

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang


    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  1. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix


    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  2. Scanned Image Projection System Employing Intermediate Image Plane (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)


    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  3. Thermal/Optical analysis of optical system of star tracker (United States)

    Lu, Si-yu; Huang, Yi-fan


    Spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. Star tracker is a high accurate 3-axis attitude measuring instrument used in various spacecrafts. In this paper, an effective scheme to the thermal/optical analysis in optical system of star sensor was described and the concept of thermal optical analysis of star tracker optical system was introduced in detail. Using finite element analysis (FEA) and ray tracing, we can study the relationship of optical properties of optical systems and optical system's temperature distribution . A lens system configuration having six uncemented elements was discussed. The lens system was a 56mm EFL, which was different from common lens used in imaging system that this lens system was required to have a high resolving power in design thoughts. It was designed to determine the attitude of space platform by detecting and mapping the geometric pattern of stars. Based on this system, the FEA models of the optical system were established for temperature distribution calculation and for thermal-elastic structural deformation analysis respectively. Using the models, the steady-state temperature distributions of the tracker were simulated. The rigid body displacements of the optical components under homogeneous temperature changes and certain temperature distributions were derived out. It is convenient to use Zernike polynomials as the data transmission between optical and structural analysis programs. Here, Zernike polynomials and their fitting method are used as an example to determine the thermal induced optical degradations of the optical system.

  4. Digital Optical Control System (United States)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.


    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  5. An Opto-VLSI-based reconfigurable optical adddrop multiplexer employing an off-axis 4-f imaging system. (United States)

    Shen, Mingya; Xiao, Feng; Ahderom, Selam; Alameh, Kamal


    A novel reconfigurable optical add-drop multiplexer (ROADM) structure is proposed and demonstrated experimentally. The ROADM structure employs two arrayed waveguide gratings (AWGs), an array of optical fiber pairs, an array of 4-f imaging microlenses that are offset in relation to the axis of symmetry of the fiber pairs, and a reconfigurable Opto-VLSI processor that switches various wavelength channels between the fiber pairs to achieve add or drop multiplexing. Experimental results are shown, which demonstrate the principle of add/drop multiplexing with crosstalk of less than -27dB and insertion loss of less than 8dB over the Cband for drop and through operation modes.

  6. Optical Complex Systems 2008 (United States)

    Brun, Guillaume

    The Optical Complex Systems are more and more in the heart of various systems that industrial applications bring to everyday life. From environment up to spatial applications, OCS is also relevant in monitoring, transportation, robotics, life sciences, sub-marine, and even for agricultural purposes.

  7. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm (United States)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin


    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  8. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E


    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  9. On-Line Long-Exposure Phase Diversity: a Powerful Tool for Sensing Quasi-Static Aberrations of Extreme Adaptive Optics Imaging Systems

    CERN Document Server

    Mugnier, L M; Fusco, T; Cornia, A; Dandy, S


    The phase diversity technique is a useful tool to measure and pre-compensate for quasi-static aberrations, in particular non-common path aberrations, in an adaptive optics corrected imaging system. In this paper, we propose and validate by simulations an extension of the phase diversity technique that uses long exposure adaptive optics corrected images for sensing quasi-static aberrations during the scientific observation, in particular for high-contrast imaging. The principle of the method is that, for a sufficiently long exposure time, the residual turbulence is averaged into a convolutive component of the image and that phase diversity estimates the sole static aberrations of interest. The advantages of such a procedure, compared to the processing of short-exposure image pairs, are that the separation between static aberrations and turbulence-induced ones is performed by the long-exposure itself and not numerically, that only one image pair must be processed, that the estimation benefits from the high SNR ...

  10. Medical Imaging System (United States)


    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  11. Optics Supply Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, J


    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  12. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography (United States)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias


    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  13. Translational research of optical molecular imaging for personalized medicine. (United States)

    Qin, C; Ma, X; Tian, J


    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  14. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    State-of-the-art optical fiber technology can contribute towards complex multi-element broadband terahertz imaging systems. Classical table-top terahertz imaging systems are generally limited to a single emitter/receiver pair, which constrains their imaging capability to tedious raster scanning...... imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  15. Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain. (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R


    We propose a new method using coherent diffractive imaging for optical color-image encryption and synthesis in the Fresnel domain. An optical multiple-random-phase-mask encryption system is applied, and a strategy based on lateral translations of a phase-only mask is employed during image encryption. For the decryption, an iterative phase retrieval algorithm is applied to extract high-quality decrypted color images from diffraction intensity maps (i.e., ciphertexts). In addition, optical color-image synthesis is also investigated based on coherent diffractive imaging. Numerical results are presented to demonstrate feasibility and effectiveness of the proposed method. Compared with conventional interference methods, coherent diffractive imaging approach may open up a new research perspective or can provide an effective alternative for optical color-image encryption and synthesis.

  16. Design and simulation of high resolution optical imaging system based on near-field using solid immersion lens with NA = 2.2 (United States)

    Abbasian, Karim; Sadeghi, Rasool; Sadeghi, Parvin


    In this work, by changing annular aperture zones transmittance, we could get a spot size smaller than any reported one by utilizing annular aperture. Where, by dividing the annular aperture to more than three zones and utilizing of Sony corporation Produced SIL that has NA higher than 2, we could improve imaging resolution for radial polarization (RP); also we could decrease the FWHM from around ? to near ?. Here, the FWHM variation, according to the refractive index changing, has decreased to zero for RP. After that, circular polarization (CP) has been introduced to get a spot size less than ?. This image resolution improving can be applied to enhance optical data storage, microscopes and lithographic and other high accurate optical systems.

  17. Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system. (United States)

    Tsai, Meng-Tsan; Li, Dean-Ru; Chan, Ming-Che


    A new approach to non-invasive image-guided laser micro-treatment is demonstrated by a dual-wavelength fiber laser source and an integrated fiber-based multi-modal system. The fiber-based source, operated in 1.55 and 1.2 μm simultaneously, was directly connected to an integrated fiber-based multi-modal system for imaging and laser micro-treatment at the same time. The 1.2 μm radiations, within the 1.2-1.35 μm bio-penetration window of skin, were utilized for spectral domain optical coherence tomography imaging. The 1.55 μm radiations, highly absorptive to waters, were utilized for laser microsurgery. The new approach, which is simple in configuration and accurately controls the positions and exposure time of the laser microsurgery, shows great promises for future clinical applications.

  18. Systems engineering and analysis of electro-optical and infrared systems

    CERN Document Server

    Arrasmith, William Wolfgang


    Introduction to Electro-optic and Infrared (EO/IR) Systems Engineering?Radiation in the Visible and Infrared Parts of the Electromagnetic SpectrumRadiation SourcesThe Effect of the Atmosphere on Optical PropagationBasic OpticsOptical ModulationThe Detection of Optical RadiationNoise in the Optical Detection ProcessTechnical Performance Measures and Metrics of Optical DetectorsModern Detectors and their Measures of PerformanceThe Effects of Cooling on Optical Detector NoiseSignal and Image ProcessingElectro-Optic and Infrared Systems AnalysisLaser Imaging Systems?Spectral Imaging?LIDAR and LADA

  19. Living Brain Optical Imaging: Technology, Methods and Applications (United States)

    Tsytsarev, Vassiliy; Bernardelli, Chad; Maslov, Konstantin I.


    Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies.

  20. Array imaging system for lithography (United States)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard


    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  1. Sagittal laser optical tomography for imaging of rheumatoid finger joints

    Energy Technology Data Exchange (ETDEWEB)

    Hielscher, Andreas H [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Klose, Alexander D [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Scheel, Alexander K [Department of Nephrology and Rheumatology, Georg-August University, Goettingen (Germany); Moa-Anderson, Bryte [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Backhaus, Marina [Department of Rheumatology and Clinical Immunology, Charite University Hospital, Berlin (Germany); Netz, Uwe [Institute for Medical Physics and Laser Medicine, Free University of Berlin, Berlin (Germany); Beuthan, Juergen [Institute for Medical Physics and Laser Medicine, Free University of Berlin, Berlin (Germany)


    We present a novel optical tomographic imaging system that was designed to determine two-dimensional spatial distribution of optical properties in a sagittal plane through finger joints. The system incorporates a single laser diode and a single silicon photodetector into a scanning device that records spatially resolved light intensities as they are transmitted through a finger. These data are input to a model-based iterative image reconstruction (MOBIIR) scheme, which uses the equation of radiative transfer (ERT) as a forward model for light propagation through tissue. We have used this system to obtain tomographic images of six proximal interphalangeal finger joints from two patients with rheumatoid arthritis. The optical images were compared to clinical symptoms and ultrasound images.

  2. Early-time observations of gamma-ray burst error boxes with the Livermore optical transient imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G G


    Despite the enormous wealth of gamma-ray burst (GRB) data collected over the past several years the physical mechanism which causes these extremely powerful phenomena is still unknown. Simultaneous and early time optical observations of GRBs will likely make an great contribution t o our understanding. LOTIS is a robotic wide field-of-view telescope dedicated to the search for prompt and early-time optical afterglows from gamma-ray bursts. LOTIS began routine operations in October 1996 and since that time has responded to over 145 gamma-ray burst triggers. Although LOTIS has not yet detected prompt optical emission from a GRB its upper limits have provided constraints on the theoretical emission mechanisms. Super-LOTIS, also a robotic wide field-of-view telescope, can detect emission 100 times fainter than LOTIS is capable of detecting. Routine observations from Steward Observatory's Kitt Peak Station will begin in the immediate future. During engineering test runs under bright skies from the grounds of Lawrence Livermore National Laboratory Super-LOTIS provided its first upper limits on the early-time optical afterglow of GRBs. This dissertation provides a summary of the results from LOTIS and Super-LOTIS through the time of writing. Plans for future studies with both systems are also presented.

  3. Extreme Adaptive Optics Planet Imager: XAOPI

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K


    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  4. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function (United States)

    Kassis, Timothy; Kohan, Alison B.; Weiler, Michael J.; Nipper, Matthew E.; Cornelius, Rachel; Tso, Patrick; Brandon Dixon, J.


    Nearly all dietary lipids are transported from the intestine to venous circulation through the lymphatic system, yet the mechanisms that regulate this process remain unclear. Elucidating the mechanisms involved in the functional response of lymphatics to changes in lipid load would provide valuable insight into recent implications of lymphatic dysfunction in lipid related diseases. Therefore, we sought to develop an in situ imaging system to quantify and correlate lymphatic function as it relates to lipid transport. The imaging platform provides the capability of dual-channel imaging of both high-speed bright-field video and fluorescence simultaneously. Utilizing post-acquisition image processing algorithms, we can quantify correlations between vessel pump function, lymph flow, and lipid concentration of mesenteric lymphatic vessels in situ. All image analysis is automated with customized LabVIEW virtual instruments; local flow is measured through lymphocyte velocity tracking, vessel contraction through measurements of the vessel wall displacement, and lipid uptake through fluorescence intensity tracking of an orally administered fluorescently labelled fatty acid analogue, BODIPY FL C16. This system will prove to be an invaluable tool for scientists studying intestinal lymphatic function in health and disease, and those investigating strategies for targeting the lymphatics with orally delivered drugs to avoid first pass metabolism.

  5. Mitigation Approaches for Optical Imaging through Clouds and Fog (United States)


    communications, remote sensing, and imaging. The advantages of performing imaging in the optical band are manifold. Modern Lidar and Ladar systems are preferred...image, the area search rate is low for this approach. This method is widely used in LIDAR applications in clear weather conditions. One intermediate...the average. This can be done by forcing the expectation of the Froebenius norm of H to 1. The resulting receiving image at the photodetectors can be

  6. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  7. Digital image compression for a 2f multiplexing optical setup (United States)

    Vargas, J.; Amaya, D.; Rueda, E.


    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  8. NAOMI: nanoparticle-assisted optical molecular imaging (United States)

    Faber, Dirk J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; van Leeuwen, Ton G.


    We present our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using biodegradable nanoparticles. Our focus is on using optical coherence tomography(OCT) as the imaging modality. We propose to use nanoparticles based on biodegradable polymers, loaded with carefully selected dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. Moreover, we perform a qualitative pilot study using these biodegradable nanoparticles, measuring their optical properties which are found to be in line with theoretical predictions.

  9. Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor. (United States)

    Su, Jianping; Zhang, Jun; Yu, Lingfeng; G Colt, Henri; Brenner, Matthew; Chen, Zhongping


    A fast-scan-rate swept laser for optical coherence tomography (OCT) is suitable to record and analyze a 3-D image volume. However, the whole OCT system speed is limited by data streaming, processing, and storage. In this case, postprocessing is a common technique. Endoscopic clinical applications prefer onsite diagnosis, which requires a real-time technique. Parallel digital signal processors were applied to stream and process data directly from a data digitizer. A real-time system with 20-kHz axial line speed, which was limited only by our swept laser scan rate, was implemented. To couple with the system speed, an endoscope based on an improved 3-D microelectromechanical motor (diameter 1.5 mm, length 9.4 mm) was developed. In vivo 3-D imaging of the human airway was demonstrated.

  10. Imaging of acoustic fields using optical feedback interferometry. (United States)

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry


    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  11. IRIA State-of-the-Art Report: Optical-Mechanical, Active/Passive Imaging Systems. Volume I. (United States)


    J. Klein, " Optical Antenna Gain 2: Receiving Antennas", Applied Optics, Optical Society of America, Washington, DC, Volume 13, 1974.7 149 ~RIM V...Fourier Optics, McGraw-Hill, New York, NY, 1968. 227 SRIM [2-18] J. J. Degnan and B. J. Klein, " Optical Antenna Gain 2: Receiving Antennas" A lied Optics...and B. J. Klein, " Optical Antenna Gain 2: Receiving Antennas", Applied Optics, Optical Society of America, Washington, DC, Volume 13, 1974, pp.2397

  12. Radio-Optical Imaging of ATLBS Survey

    Indian Academy of Sciences (India)

    Kshitij Thorat


    We present the radio-optical imaging of ATLBS, a sensitive radio survey (Subrahmanyan et al. 2010). The primary aim of the ATLBS survey is to image low-power radio sources which form the bulk of the radio source population to moderately high red-shifts ( ∼ 1.0). The accompanying multiband optical and near infra-red observations provide information about the hosts and environments of the radio sources. We give here details of the imaging of the radio data and optical data for the ATLBS survey.

  13. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz


    We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...... efficient and compact implementation by combining the conversion to an analytic signal with a pulse shaping function without the need for extra resources as compared to the Hilbert transform method. The conversion of the analytic signal to amplitude and phase is done by use of the coordinate rotation...... digital computer (CORDIC) algorithm, which is an efficient algorithm that maps well to the field programmable gate array. Flow phantom experiments, and the use of this system for in vivo imaging of cardiac dynamics in the chick embryo, are presented. We demonstrate the visualization of blood flow...

  14. Imaging systems and applications: introduction to the feature. (United States)

    Imai, Francisco H; Linne von Berg, Dale C; Skauli, Torbjørn; Tominaga, Shoji; Zalevsky, Zeev


    Imaging systems have numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging system requires the integration of optics, sensing, image processing, and display rendering. This issue features original research ranging from design of stimuli for human perception, optics applications, and image enhancement to novel imaging modalities in both color and infrared spectral imaging, gigapixel imaging as well as a systems perspective to imaging.

  15. High-performance adaptive optics system with long-term stability using liquid-crystal-on-silicon spatial light modulator for high-resolution retinal imaging (United States)

    Huang, Hongxin; Inoue, Takashi; Toyoda, Haruyoshi; Hara, Tsutomu


    An adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid-crystal spatial light modulator was developed. For routine clinical applications, long-term stability of the AO system is very important because unavoidable eye movement may degrade the instrument's performance. We studied the long-term performance of the aberration correction with healthy human eyes. Retinal image acquisition and AO data collection were performed simultaneously for periods of several minutes. We confirmed that, for more than 90% of the periods, the root-mean-square errors of residual wavefront were below the Marechal criterion. Drifts and microsaccades of fixational eye movement were examined using retinal images and residual aberrations. The results showed significant correlation between the transverse shift of retinal image and the low-order residual wavefront aberration during the drifts.

  16. Optical system defect propagation in ABCD systems

    DEFF Research Database (Denmark)

    McKinley, W.G.; Yura, H.T.; Hanson, Steen Grüner


    We describe how optical system defects (tilt/jitter, decenter, and despace) propagate through an arbitrary paraxial optical system that can be described by an ABCD ray transfer matrix. A pedagogical example is given that demonstrates the effect of alignment errors on a typical optical system....... © 1988 Optical Society of America...

  17. Optical Tomography Imaging in Pneumatic Conveyor

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim


    Full Text Available This paper describes the development of a tomographic system by employing optical sensors using low cost approach. The final aim of this project is achieving real-time monitoring of solid particles having low concentration flow when conveyed in vertical pneumatic conveyor. The developed tomography system consists of 32 pairs of Light Emitting Diode (LED and silicon PIN photodiode. These sensors are used to monitor the emitted radiation for fluctuations caused by particles interfering with the beam when passing through it. A good design of sensor fixture may increase the collimating of light beam from a light source that passes through a flow regime. The obtained information from sensors provided the cross-sectional material distribution in conveyor. By using this information, the relationships between particle distribution and light attenuation effects are investigated by using computer programming to reconstruct the image. The results obtained from this investigation shows that the low cost optical sensors are suitable for monitoring low and medium concentration flowing materials. Optical sensors provide an opportunity to design sensors with a very wide bandwidth, thus enabling the measurement of high speed flowing particles or droplets.

  18. Progresses in 3D integral imaging with optical processing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Corral, Manuel; Martinez-Cuenca, Raul; Saavedra, Genaro; Navarro, Hector; Pons, Amparo [Department of Optics. University of Valencia. Calle Doctor Moliner 50, E46 100, Burjassot (Spain); Javidi, Bahram [Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-1157 (United States)], E-mail:


    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  19. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered-blimp platform, and aircraft relevant to optical communications and imaging systems: preliminary results (United States)

    Majumdar, Arun K.; Eaton, Frank D.; Jensen, Michael L.; Kyrazis, Demos T.; Schumm, Bryce; Dierking, Matthew P.; Shoemake, Marjorie A.; Dexheimer, Dari; Ricklin, Jennifer C.


    New results of the (temperature) refractive index structure parameter (C T2), C n2 are presented from fast response sensor observations near the ground and also using a kite/tethered blimp platform and an aircraft, at the Edward Air Force Base in Mojave Desert, California. Additional optical measurements include near-ground scintillation observations over horizontal paths. Atmospheric turbidity were also calculated from direct beam solar radiation measurements using pyrheliometer. Comparisons were made of the observed profiles of refractive index structure parameters (C n2) with theoretical modeled profiles, and two derived quantities such as transverse coherence length (r 0) and isoplanatic angle (θ 0) for a slant path are discussed. All of these parameters are the major indicators of turbulence and are important to design an aircraft or space-craft-based free-space laser communication and high resolution optical synthetic-aperture imaging systems. Non-isotropic turbulence observations from some of the data will be pointed out. Probability density functions (PDF) of the distribution of C n2 will be described using histograms. Fundamental limits imposed by atmospheric effects in high data rate communication and optical synthetic-aperture imaging systems will be discussed.

  20. [Effects of aerosol optical thickness on the optical remote sensing imaging quality]. (United States)

    Hu, Xin-Li; Gu, Xing-Fa; Yu, Tao; Zhang, Zhou-Wei; Li, Juan; Luan, Hai-Jun


    In recent years, due to changes in atmospheric environment, atmospheric aerosol affection on optical sensor imaging quality is increasingly considered by the load developed departments. Space-based remote sensing system imaging process, atmospheric aerosol makes optical sensor imaging quality deterioration. Atmospheric medium causing image degradation is mainly forward light scattering effect caused by the aerosol turbid medium. Based on the turbid medium radiation transfer equation, the point spread function models were derived contained aerosol optical properties of atmosphere in order to analyze and evaluate the atmospheric blurring effect on optical sensor imaging system. It was found that atmospheric aerosol medium have effect on not only energy decay of atmospheric transmittance, but also the degradation of image quality due to the scattering effect. Increase of atmospheric aerosol optical thickness makes aerosol scattering intensity enhanced, variation of aerosol optical thickness is also strongly influences the point spread function of the spatial distribution. it is because the degradation of aerosol in spatial domain, which reduces the quality of remote sensing image, in particularly reduction of the sharpness of image. Meanwhile, it would provide a method to optimize and improve simulation of atmospheric chain.

  1. Space-based optical image encryption. (United States)

    Chen, Wen; Chen, Xudong


    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  2. Anterior Eye Imaging with Optical Coherence Tomography (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  3. Computational imaging through a fiber-optic bundle (United States)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.


    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  4. Adaptive optics imaging of the retina. (United States)

    Battu, Rajani; Dabir, Supriya; Khanna, Anjani; Kumar, Anupama Kiran; Roy, Abhijit Sinha


    Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO) and American Academy of Ophthalmology (AAO) meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  5. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu


    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  6. Medical diagnosis system and method with multispectral imaging. [depth of burns and optical density of the skin (United States)

    Anselmo, V. J.; Reilly, T. H. (Inventor)


    A skin diagnosis system includes a scanning and optical arrangement whereby light reflected from each incremental area (pixel) of the skin is directed simultaneously to three separate light filters, e.g., IR, red, and green. As a result, the three devices simultaneously produce three signals which are directly related to the reflectance of light of different wavelengths from the corresponding pixel. These three signals for each pixel after processing are used as inputs to one or more output devices to produce a visual color display and/or a hard copy color print, for one usable as a diagnostic aid by a physician.

  7. Adaptive optics technology for high-resolution retinal imaging. (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe


    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  8. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lombardo


    Full Text Available Adaptive optics (AO is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  9. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. (United States)

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P; Leitgeb, Rainer A; Kittler, Harald; Drexler, Wolfgang


    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo.

  10. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging (United States)

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang


    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106

  11. Optical image encryption using multilevel Arnold transform and noninterferometric imaging (United States)

    Chen, Wen; Chen, Xudong


    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  12. Habitable Exoplanet Imager Optical Telescope Concept Design (United States)

    Stahl, H Philip


    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  13. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment (United States)

    Alsaadi, Fuad E.


    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  14. Review on Matching Infrared Face Images to Optical Face Images using LBP

    Directory of Open Access Journals (Sweden)

    Kamakhaya Argulewar


    Full Text Available In biometric research and many security areas, it is very difficult task to match the images which is captured by different devices. Large gap exist between them because they relates with different classes. Matching optical face images to infrared face images is one of the difficult task in face biometric. Large difference exists between infrared and optical face images because they belong to multiple classes. Converting the samples of multimodality into common feature space is the main objective of this project. Different class of images is relating by coordinating separate feature for classes .It is mainly used in heterogeneous face recognition. The new method has been developing for identification of heterogeneous face identification. Training set contains the images from different modalities. Initially the infrared image is preprocessed by applying Gaussian filter, difference of Gaussian and CSDN filters are apply on infrared face image. After preprocessing next step to extracting the feature by using LBP(local binary pattern feature extraction then relevance machine classifier is used to identify the best matching optical image from the corresponding infrared images from the optical images dataset. By processing this technique our system efficiently match the infrared and optical face images.

  15. Simultaneous imaging and measurement of tensile stress on cornea by using a common-path optical coherence tomography system with an external contact reference

    Institute of Scientific and Technical Information of China (English)

    Utkarsh Sharma; Jin U. Kang


    The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with an external contact reference. The unique design of the common-path OCT is utilized to set up an imaging system in which a chicken eye is placed adjacent to a glass plate serving as the external reference plane for the imaging system. As the force is applied to the chicken eye, it presses against the reference glass plate. The modified OCT image obtained is used to calculate the size of contact area, which is then used to derive the tensile stress on the cornea. The drop in signal levels upon contact of reference glass plate with the tissue are extremely sharp because of the sharp decline in reference power levels itself, thus providing us with an accurate measurement of contact area. The experimental results were in good agreement with the numerical predictions. The results of this study might be useful in providing new insights and ideas to improve the precision and safety of currently used ophthalmic surgical techniques. This research outlines a method which could be used to provide high resolution OCT images and a precise feedback of the forces applied to the cornea simultaneously.

  16. Achievement report on research and development of medical and welfare equipment technology. Optical tomographic imaging method; Iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Hikari danso imaging system

    Energy Technology Data Exchange (ETDEWEB)



    The aim is to develop a method of processing oxygen concentration distribution in human organs into an image by computed tomography using near infrared rays capable of transmitting through living tissues. Since the photoabsorption spectra of hemoglobin etc. in blood vary according to the degree of their oxidation, an oxygen concentration level is determined by measuring the magnitude of the variation. In the imaging method named in the title, the object is irradiated with picosecond-level near infrared pulses from all directions successively, the pulses after transmission through the object are measured at all directions at a picosecond-level time resolution, and the distribution of pulse scattering and absorption characteristics are subjected to algorithmic calculation, the outcome is converted into oxygen concentration levels, and an image is obtained. A 64-channel time resolution measurement system is constructed, and is applied to living tissue models (phantoms) and animals, and an image is obtained and evaluated. On the basis of the result, a patient is examined for clinical evaluation, and an image reflecting the distribution of variations in hemoglobin oxygen concentration is obtained for the head of the adult patient. A spatial resolution of 1cm is achieved in case of a phantom 10cm in diameter. In the case of 64 channels, measurement takes approximately 20 minutes and mapping image data measurement takes approximately 7 minutes. (NEDO)

  17. Optically controlled welding system (United States)

    Gordon, Stephen S. (Inventor)


    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  18. Medical imaging systems (United States)

    Frangioni, John V


    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  19. Optical medical imaging: from glass to man (United States)

    Bradley, Mark


    A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.

  20. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    Energy Technology Data Exchange (ETDEWEB)

    Fiorito, R. B. [University of Maryland, College Park, MD (United States); Zhang, H. D. [University of Maryland, College Park, MD (United States); Corbett, W. J. [SLAC, Menlo Park, CA (United States); Fisher, A. S. [SLAC, Menlo Park, CA (United States); Mok, W. Y. [SLAC, Menlo Park, CA (United States); Tian, K. [SLAC, Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wilson, F. G. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Mitsuhashi, T. M. [KEK, Tsukuba (Japan); Shkvarunets, A. G. [University of Maryland, College Park, MD (United States)


    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  1. Fast and slow recovery phases of goldfish behavior after transection of the optic nerve revealed by a computer image processing system. (United States)

    Kato, S; Devadas, M; Okada, K; Shimada, Y; Ohkawa, M; Muramoto, K; Takizawa, N; Matsukawa, T


    As the goldfish is a common experimental animal for vision research, including psychophysical behavior, it is very important to quantitatively score fish behavior. We have previously developed a computer image processing system which can acquire the positional coordinates of goldfish moving freely in an aquarium and determine turning directions (go straight, right or left turn). In the present study, an algorithm to determine tilting angles of moving goldfish was constructed. We also made histograms for quantifying the interaction between pairs of goldfish (two-point distance). By using these histograms, we estimated the time-course of behavioral regeneration after optic nerve transection in goldfish. Control goldfish showed an equal percentage of right or left turns and maintained an upright position in a dorsoventral axis. When the optic nerve of a goldfish was unilaterally sectioned, the goldfish showed predominant turning and slight tilting toward the intact eye. The abnormal turning and tilting behaviors lasted for 10-14 days and then gradually decreased, returning to control behaviors by one month after the unilateral transection. When the optic nerve of a single goldfish was bilaterally sectioned, it did not show any preferential turning and tilting behavior, which is similar to what was observed in control goldfish. However, the trace maps showed that, after bilateral sectioning, fish preferred to cross the center of the tank, which was unlike control fish. In control pairs, one goldfish chased the other with a fixed small range of two-point distances. However, in pairs of goldfish with bilateral transection of the optic nerve, the blind goldfish behaved independently of each other, with a long two-point distance. The long two-point distance of the blind goldfish lasted for at least two months and then slowly returned to control two-point distance by four months after bilateral transection. Such fast and slow recovery in goldfish behaviors evoked after

  2. Optical encryption with selective computational ghost imaging (United States)

    Zafari, Mohammad; kheradmand, Reza; Ahmadi-Kandjani, Sohrab


    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods.

  3. Optical imaging of fast, dynamic neurophysiological function.

    Energy Technology Data Exchange (ETDEWEB)

    Rector, D. M. (David M.); Carter, K. M. (Kathleen M.); Yao, X. (Xincheng); George, J. S. (John S.)


    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  4. Combining calcium imaging with other optical techniques. (United States)

    Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel


    Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.

  5. Digital optical cellular image processor (DOCIP) - Experimental implementation (United States)

    Huang, K.-S.; Sawchuk, A. A.; Jenkins, B. K.; Chavel, P.; Wang, J.-M.; Weber, A. G.; Wang, C.-H.; Glaser, I.


    We demonstrate experimentally the concept of the digital optical cellular image processor architecture by implementing one processing element of a prototype optical computer that includes a 54-gate processor, an instruction decoder, and electronic input-output interfaces. The processor consists of a two-dimensional (2-D) array of 54 optical logic gates implemented by use of a liquid-crystal light valve and a 2-D array of 53 subholograms to provide interconnections between gates. The interconnection hologram is fabricated by a computer-controlled optical system.

  6. Image correction in magneto-optical microscopy

    DEFF Research Database (Denmark)

    Paturi, P.; Larsen, B.H.; Jacobsen, B.A.


    An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects in the indi......An image-processing procedure that assures correct determination of the magnetic field distribution of magneto-optical images is presented. The method remedies image faults resulting from sources that are proportional to the incident light intensity, such as different types of defects...... in the indicator film and unevenness of light, as well as additive signals from detector bias, external light sources, etc. When properly corrected a better measurement of the local magnetic field can be made, even in the case of heavily damaged films. For superconductors the magnetic field distributions may...

  7. NAOMI: nanoparticle assisted optical molecular imaging (United States)

    Faber, Dirk J.; van Velthoven, Mirjam E. J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; Graf, Christina; van Leeuwen, Ton G.


    Our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using OCT as the imaging modality are presented. We derive an expression to estimate the sensitivity of this technique. We propose to use nanoparticles based on biodegradable polymers, loaded with suitable dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. This report presents preliminary results of our investigation on the use of nanoshells to serve as contrast agents We injected nanoshells with specific contrast features in the 800 nm wavelength region in excised porcine eyes. The nanoshells showed up as bright reflecting structures in the OCT images, which confirm their potential as contrast agents.

  8. Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources (United States)

    Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin

    Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.

  9. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan


    High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without...... significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof...

  10. Integration of an optical coherence tomography (OCT) system into a new environmental chamber to facilitate long term in vivo imaging of cardiovascular development in higher vertebrate embryos

    DEFF Research Database (Denmark)

    Thrane, Lars; Happel, Christoph M.; Thommes, Jan;


    High-resolution 3-D in vivo imaging of embryonic development over long periods of time under constant physiological conditions (e.g. temperature, humidity) was a challenging task for researchers working on early cardiovascular development. Without appropriate maintenance of temperature, for example...... development. Here we demonstrate, to the best of our knowledge, the first realization of an optical coherence tomography (OCT) system integrated into a new environmental incubation chamber (EIC) to facilitate real-time in vivo imaging of cardiovascular development in chick embryos. The EIC provides stable...... conditions for embryonic development with respect to temperature, humidity, and oxygen levels. An OCT probe is integrated into the EIC and facilitates visualization of embryos at micrometer resolution, including the acquisition of M-mode, Doppler OCT, and Doppler M-mode data....

  11. Optical systems for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R.


    Various fundamental topics which underlie the design and use of optical systems for synchrotron radiation are considered from the viewpoint of linear system theory. These topics include the damped harmonic oscillator, free space propagation of an optical field, electromagnetic theory of optical properties of materials, theory of dispersion, and the Kramers-Kronig relations. 32 refs., 5 figs. (LEW)

  12. Alternative optical concept for electron cyclotron emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. X., E-mail: [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Milbourne, T. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Kubota, S. [Department of Physics, University of California Los Angeles, Los Angeles, California 90095 (United States); Kasparek, W. [Department of Electrical Engineering, University of Stuttgart, Stuttgart (Germany); Lu, J. [Department of Physics, Chongqing University, Chongqing 400044 (China); Park, H. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of)


    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  13. Optical imaging for breast cancer prescreening

    Directory of Open Access Journals (Sweden)

    Godavarty A


    Full Text Available Anuradha Godavarty,1 Suset Rodriguez,1 Young-Jin Jung,2 Stephanie Gonzalez1 1Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; 2Department of Radiological Science, Dongseo University, Busan, South Korea Abstract: Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE or self-breast examinations (SBEs. Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. Keywords: diffuse optical imaging, near-infrared, hand-held devices, breast cancer, prescreening, early detection 

  14. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging (United States)

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.


    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  15. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging. (United States)

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V


    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  16. Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouflage (United States)

    Haag, Justin Mathew

    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral

  17. Optical encryption for large-sized images (United States)

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi


    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  18. Multimodal optical imaging for detecting breast cancer (United States)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.


    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  19. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.


    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  20. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy (United States)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.


    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  1. Optical Imaging of Neuronal Activity and Visualization of Fine Neural Structures in Non-Desheathed Nervous Systems (United States)

    Stein, Wolfgang


    Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG) of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a good anatomical

  2. Optical imaging of neuronal activity and visualization of fine neural structures in non-desheathed nervous systems.

    Directory of Open Access Journals (Sweden)

    Christopher John Goldsmith

    Full Text Available Locating circuit neurons and recording from them with single-cell resolution is a prerequisite for studying neural circuits. Determining neuron location can be challenging even in small nervous systems because neurons are densely packed, found in different layers, and are often covered by ganglion and nerve sheaths that impede access for recording electrodes and neuronal markers. We revisited the voltage-sensitive dye RH795 for its ability to stain and record neurons through the ganglion sheath. Bath-application of RH795 stained neuronal membranes in cricket, earthworm and crab ganglia without removing the ganglion sheath, revealing neuron cell body locations in different ganglion layers. Using the pyloric and gastric mill central pattern generating neurons in the stomatogastric ganglion (STG of the crab, Cancer borealis, we found that RH795 permeated the ganglion without major residue in the sheath and brightly stained somatic, axonal and dendritic membranes. Visibility improved significantly in comparison to unstained ganglia, allowing the identification of somata location and number of most STG neurons. RH795 also stained axons and varicosities in non-desheathed nerves, and it revealed the location of sensory cell bodies in peripheral nerves. Importantly, the spike activity of the sensory neuron AGR, which influences the STG motor patterns, remained unaffected by RH795, while desheathing caused significant changes in AGR activity. With respect to recording neural activity, RH795 allowed us to optically record membrane potential changes of sub-sheath neuronal membranes without impairing sensory activity. The signal-to-noise ratio was comparable with that previously observed in desheathed preparations and sufficiently high to identify neurons in single-sweep recordings and synaptic events after spike-triggered averaging. In conclusion, RH795 enabled staining and optical recording of neurons through the ganglion sheath and is therefore both a

  3. Ultrathin Optics for Low-Profile Innocuous Imager

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Robert R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystems Technologies; Brady, Gregory Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystems Technologies; Nelson, Cynthia Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Systems Engineering I; Briggs, Ronald D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Integrated Microdevice Systems; Jared, Bradley Howell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Prototyping S& T; Warren, Mial E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Microsystems Partnerships


    This project demonstrates the feasibility of a novel imager with a thickness measured in microns rather than inches. Traditional imaging systems, i.e. cameras, cannot provide both the necessary resolution and innocuous form factor required in many data acquisition applications. Designing an imaging system with an extremely thin form factor (less than 1 mm) immediately presents several technical challenges. For instance, the thickness of the optical lens must be reduced drastically from currently available lenses. Additionally, the image circle is reduced by a factor equal to the reduction in focal length. This translates to fewer detector pixels across the image. To reduce the optical total track requires the use of specialized micro-optics and the required resolution necessitates the use of a new imaging modality. While a single thin imager will not produce the desired output, several thin imagers can be multiplexed and their low resolution (LR) outputs used together in post-processing to produce a high resolution (HR) image. The utility of an Iterative Back Projection (IBP) algorithm has been successfully demonstrated for performing the required post-processing. Advanced fabrication of a thin lens was also demonstrated and experimental results using this lens as well as commercially available lenses are presented.

  4. CT guided diffuse optical tomography for breast cancer imaging (United States)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing


    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  5. Intensity interferometry: Optical imaging with kilometer baselines

    CERN Document Server

    Dravins, Dainis


    Optical imaging with microarcsecond resolution will reveal details across and outside stellar surfaces but requires kilometer-scale interferometers, challenging to realize either on the ground or in space. Intensity interferometry, electronically connecting independent telescopes, has a noise budget that relates to the electronic time resolution, circumventing issues of atmospheric turbulence. Extents up to a few km are becoming realistic with arrays of optical air Cherenkov telescopes (primarily erected for gamma-ray studies), enabling an optical equivalent of radio interferometer arrays. Pioneered by Hanbury Brown and Twiss, digital versions of the technique have now been demonstrated, reconstructing diffraction-limited images from laboratory measurements over hundreds of optical baselines. This review outlines the method from its beginnings, describes current experiments, and sketches prospects for future observations.

  6. Mobile based optical form evaluation system

    Directory of Open Access Journals (Sweden)

    Asım Sinan YÜKSEL


    Full Text Available Optical forms that contain multiple-choice answers are widely used both for electing students and evaluating student achievements in education systems in our country and worldwide. Optical forms are evaluated by employing optical mark recognition techniques through optical readers. High cost of these machines, limited access to them, long waiting time for evaluation results make the process hard for educationists working in cities or countries. In this study, a mobile application was developed for the educationists who own mobile phones or tablets for the purpose of evaluating students' answer sheets quickly and independent of location and optical readers. Optical form recognition, reading and evaluation processes are done on the image of student's answer sheet that is taken with the mobile phone or tablet of educationist. The Android based mobile application that we developed has a user-friendly interface, high success rate and is the first of our knowledge application that operates on mobile platforms in this field.

  7. eXtreme Adaptive Optics Planet Imager: overview and status (United States)

    Macintosh, Bruce A.; Bauman, Brian; Wilhelmsen Evans, Julia; Graham, James R.; Lockwood, Christopher; Poyneer, Lisa; Dillon, Daren; Gavel, Don T.; Green, Joseph J.; Lloyd, James P.; Makidon, Russell B.; Olivier, Scot; Palmer, Dave; Perrin, Marshall D.; Severson, Scott; Sheinis, Andrew I.; Sivaramakrishnan, Anand; Sommargren, Gary; Soummer, Remi; Troy, Mitchell; Wallace, J. Kent; Wishnow, Edward


    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An "extreme" adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >107 at angular separations of 0.2-1". ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  8. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering. (United States)

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi


    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible.

  9. 面曝光快速成形系统的光学成像系统设计%The design of imaging optical system in mask projection stereolithography system

    Institute of Scientific and Technical Information of China (English)

    杨剑; 胥光申; 罗声; 金京


    In order to obtain uniform exposure work plane, to meet the mask projection stereolithography system requirements for optical imaging system, a transformation method of the projector optical path is presented, by adopting the design of twice imaging and using anti-distance optical structure. Then on this basis, non-custom lenses are used to design the imaging optical system used in mask projection stereolithography system, which consists of two components and one stop. After the design, ZEMAX software was used to analyze its aberration. The system's largest coma value is 0. 08mm, the maximum distortion in the image plane is 1.1%, and the resolution of system in the center of image plane is 0. 05mm. The design of imaging optical system provides the basis for the fundamental of low-cost mask projection stereolithography system.%为了得到曝光量均匀的工作面,满足面曝光快速成形技术的需要,提出1种对投影仪成像光路的改造方法.选择反远距光路,2次成像的光学成像系统设计方案,使用非定制镜片,设计用于面曝光快速成形系统的光学成像系统,该系统由2个组元和1个光阑构成.使用ZEMAX软件对像差进行分析,系统最大慧差值为0.08mm,最大像面畸变为1.1%,像面中心分辨率达0.05mm.该成像光学系统的设计,为低成本面曝光快速成形系统的构建提供了基础.

  10. LDA optical setup using holographic imaging configuration (United States)

    Ghosh, Abhijit; Nirala, A. K.


    This paper describes one of the possible ways for improving fringe quality at LDA measuring volume using a holographic imaging configuration consisting of a single hololens. For its comparative study with a conventional imaging configuration, a complete characterization of fringes formed at the measurement volume by both the configuration is presented. Results indicate the qualitative as well as quantitative improvement of the fringes formed at measurement volume by the holographic imaging configuration. Hence it is concluded that use of holographic imaging configuration for making LDA optical setup is a better choice than the conventional one.

  11. High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. (United States)

    Puvanathasan, Prabakar; Forbes, Peter; Ren, Zhao; Malchow, Doug; Boyd, Shelley; Bizheva, Kostadinka


    A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.

  12. Amplitude image processing by diffractive optics. (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F


    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  13. Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges. (United States)

    South, Fredrick A; Liu, Yuan-Zhi; Carney, P Scott; Boppart, Stephen A


    Three-dimensional high-resolution optical imaging systems are generally restricted by the trade-off between resolution and depth-of-field as well as imperfections in the imaging system or sample. Computed optical interferometric imaging is able to overcome these longstanding limitations using methods such as interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) which manipulate the complex interferometric data. These techniques correct for limited depth-of-field and optical aberrations without the need for additional hardware. This paper aims to outline these computational methods, making them readily available to the research community. Achievements of the techniques will be highlighted, along with past and present challenges in implementing the techniques. Challenges such as phase instability and determination of the appropriate aberration correction have been largely overcome so that imaging of living tissues using ISAM and CAO is now possible. Computed imaging in optics is becoming a mature technology poised to make a significant impact in medicine and biology.

  14. Image Control In Automatic Welding Vision System (United States)

    Richardson, Richard W.


    Orientation and brightness varied to suit welding conditions. Commands from vision-system computer drive servomotors on iris and Dove prism, providing proper light level and image orientation. Optical-fiber bundle carries view of weld area as viewed along axis of welding electrode. Image processing described in companion article, "Processing Welding Images for Robot Control" (MFS-26036).

  15. Image Control In Automatic Welding Vision System (United States)

    Richardson, Richard W.


    Orientation and brightness varied to suit welding conditions. Commands from vision-system computer drive servomotors on iris and Dove prism, providing proper light level and image orientation. Optical-fiber bundle carries view of weld area as viewed along axis of welding electrode. Image processing described in companion article, "Processing Welding Images for Robot Control" (MFS-26036).

  16. MR imaging of optic chiasmatic glioma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Sook; Lee, Ho Kyu; Kim, Hyun Jin; Ryu, Meung Sun; Goo, Hyun Woo; Yoon, Chong Hyun; Choi, Choong Gon; Suh, Dae Chul; Ra, Young Shin; Khang, Shin Kwang [University of Ulsan College of Medicine, Seoul (Korea, Republic of)


    To evaluate the MR findings of optic chiasmatic glioma (OCG). MR images were reviewed in 14 patients with histologically proven OCGs and one with neurofibromatosis type 1 (male: female=8:7, mean age=8.5 years.) Tumors were evaluated retrospectively with respect to their size, involvement of the optic pathway, transverse/vertical diameter ratio based on the coronal plane, signal intensities, enhancement pattern, and the presence of a cyst or calcification. Tumors was measured 1.7-5.5 (mean, 3.3) cm in maximum diameter. In ten patients, the optic tracts were involved, and in three, the optic nerves. In 12 patients, tumors had a transverse/vertical diameter ratio of over one, and showed iso (n=5) or low signal intensity (n=10) compared with gray matter at T1-weighted imaging and high signal intensity (n=15) at T2-weighted imaging. Cyst formations were ween in eight patients, and tumors were enhanced strongly and homogeneously in nine and peripherally in four. In seven three was associated hydrocephalus, and in one, calcification. OCG is a suprasellar tumor which can extend into the optic pathway, has a transverse/vertical diameter ratio of more than one, and shows strong and homogeneous enhancement. These MR imaging findings are useful for the differentiation of OCG from other suprasellar tumors.

  17. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6 (United States)

    Lee, George


    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  18. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation) (United States)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer


    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  19. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.


    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  20. Adapting smartphones for low-cost optical medical imaging (United States)

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina


    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  1. Optical asymmetric image encryption using gyrator wavelet transform (United States)

    Mehra, Isha; Nishchal, Naveen K.


    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  2. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C


    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  3. Optical security system using jigsaw transforms of the second random phase mask and the encrypted image in a double random phase encoding system (United States)

    Singh, Madan; Kumar, Arvind; Singh, Kehar


    In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.

  4. Design the algorithm compensation of vignetting error at optical-electronic autoreflection system by modelling vignetted image (United States)

    Konyakhin, Igor A.; Sakhariyanova, Aiganym M.; Li, Renpu


    Nowadays one of metrology problems is the measurement of angular values, in particular, angular deformations in the critical points of oversized objects. For the solution of this problem, effectively use optoelectronic autoreflection systems. The autoreflection systems allows measuring a mirror turning angle as sensitive element in a point of angular deformation with a potential accuracy up to 0.05". Actually the error can exceed considerably the specified value because of existence of systematic error, one of which main components is the error flowing to vignetting of a working beam. The component of systematic error due to vignetting of the beam can be eliminated in case of existence of the analytical description of changes in irradiance distribution of the analyzed image. Because of the complexity of the analytical description of the vignetting processes proposes the use of computer models. Based on the received dependence for compensation of systematic error due to vignetting is equal D=30 arcsecs. As this systematic measurement error unacceptably large, there is a need to compensate for this error. For the design of the algorithm compensate for systematic error were considered three cases of displacement vignetting field on a matrix analyzer due to the rotation of control element. Using the compensation algorithm, the error due to the vignetting amounts to a negligible value 0.4 arcsecs. The designed algorithm compensation systematic error due to vignetting allows to increase the working distance at the autoreflection measurements.

  5. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1 (United States)

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E


    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  6. Optical image encryption using Kronecker product and hybrid phase masks (United States)

    Kumar, Ravi; Bhaduri, Basanta


    In this paper, we propose a new technique for security enhancement in optical image encryption system. In this technique we have used the Kronecker product of two random matrices along with the double random phase encoding (DRPE) scheme in the Fresnel domain for optical image encryption. The phase masks used here are different than the random masks used in conventional DRPE scheme. These hybrid phase masks are generated by using the combination of random phase masks and a secondary image. For encryption, the input image is first randomized and then the DRPE in the Fresnel domain is performed using the hybrid phase masks. Secondly, the Kronecker product of two random matrices is multiplied with the DRPE output to get the final encoded image for transmission. The proposed technique consists of more unknown keys for enhanced security and robust against various attacks. The simulation results along with effects under various attacks are presented in support of the proposed technique.

  7. Integration of optical imaging with a small animal irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Weersink, Robert A., E-mail: [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Ansell, Steve; Wang, An; Wilson, Graham [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Shah, Duoaud [Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Lindsay, Patricia E. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1 (Canada)


    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  8. Diffuse Optical Tomography for Brain Imaging: Theory (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  9. Real-time digital signal processing for live electro-optic imaging. (United States)

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro


    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  10. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel


    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  11. 基于图像的高精度实时光学稳像控制系统%Image-based High-precision and Real-time Optical Image Stabilization System

    Institute of Scientific and Technical Information of China (English)

    何林; 何海燕; 付智红; 林喆


    针对空间CCD相机由于平台振动造成的成像模糊问题,研制了一套光学稳像控制系统。利用高速CCD帧频高特点,结合基于图像的像移测量原理,设计了像移补偿闭环控制算法,实现了光轴的稳定控制,从而实现了相机稳定成像,提高图像清晰度。实验结果表明稳像控制系统动静态性能稳定,在一定带宽范围内有效减小甚至消除了平台振动对相机成像品质的影响。%An optical image stabilization control system is developed for the image degraded problem of the space CCD camera caused by platform vibration. With image motion measurement principle, a closed loop control algorithm is designed for image motion compensation by utilizing the high frequency characteristic of high-speed CCD. Thus the line-of-sight stability control is achieved and the more stably imaging is realized with image quality improved. The simulation result shows that the static and dynamic characteristics of the image stability control system are improved, and the image degradation caused by platform vibration is eliminated effectively in some frequency bandwidth.

  12. Information Optics and Photonics Algorithms, Systems, and Applications

    CERN Document Server

    Javidi, Bahram


    This book addresses applications, recent advances, and emerging areas in fields with applications in information optics and photonics systems. The objective of this book is to illustrate and discuss novel approaches, analytical techniques, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information using free space optics and photonics. The material in this book concentrates on integration of diverse fields for cross-disciplinary applications including bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on the nano-scale, quantum optics, super resolution imaging, photonics for biological applications, and holographic information systems. As a result, this book is a useful resource for researchers, engineers, and graduate students who work in the diverse fields comprising information optics and photonics.

  13. A compact THz imaging system (United States)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez


    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  14. Imaging patients with glaucoma using spectral-domain optical coherence tomography and optical microangiography (United States)

    Auyeung, Kris; Auyeung, Kelsey; Kono, Rei; Chen, Chieh-Li; Zhang, Qinqin; Wang, Ruikang K.


    In ophthalmology, a reliable means of diagnosing glaucoma in its early stages is still an open issue. Past efforts, including forays into fluorescent angiography (FA) and early optical coherence tomography (OCT) systems, to develop a potential biomarker for the disease have been explored. However, this development has been hindered by the inability of the current techniques to provide useful depth and microvasculature information of the optic nerve head (ONH), which have been debated as possible hallmarks of glaucoma progression. We reasoned that a system incorporating a spectral-domain OCT (SD-OCT) based Optical Microangiography (OMAG) system, could allow an effective, non-invasive methodology to evaluate effects on microvasculature by glaucoma. SD-OCT follows the principle of light reflection and interference to produce detailed cross-sectional and 3D images of the eye. OMAG produces imaging contrasts via endogenous light scattering from moving particles, allowing for 3D image productions of dynamic blood perfusion at capillary-level resolution. The purpose of this study was to investigate the optic cup perfusion (flow) differences in glaucomatous and normal eyes. Images from three normal and five glaucomatous subjects were analyzed our OCT based OMAG system for blood perfusion and structural images, allowing for comparisons. Preliminary results from blood flow analysis revealed reduced blood perfusion within the whole-depth region encompassing the Lamina Cribrosa in glaucomatous cases as compared to normal ones. We conclude that our OCT-OMAG system may provide promise and viability for glaucoma screening.

  15. Multi-channel medical imaging system (United States)

    Frangioni, John V


    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  16. Multi-channel medical imaging system (United States)

    Frangioni, John V.


    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  17. Multi-channel medical imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Frangioni, John V.


    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  18. Optical tomography system for laboratory turbulence measurements (United States)

    McMackin, Lenore J.; Pierson, Robert E.; Hugo, Ronald J.; Truman, C. Randall


    We describe the design and operation of a high speed optical tomography system for measuring 2D images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. Series of reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  19. Deformable image registration between pathological images and MR image via an optical macro image. (United States)

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T; Gerstner, Elizabeth R; Taylor, Jennie W; Snuderl, Matija; Yagi, Yukako


    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56±0.39mm and 0.87±0.42mm. We can analyze the relationship between tissue information and MR signals using the proposed method.

  20. Ocean Optics Instrumentation Systems (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  1. Adaptive optics imaging of the MBM 12 association. Seven binaries and an edge-on disk in a quadruple system (United States)

    Chauvin, G.; Ménard, F.; Fusco, T.; Lagrange, A.-M.; Beuzit, J.-L.; Mouillet, D.; Augereau, J.-C.


    We report adaptive optics (AO) observations of the young and nearby association MBM 12 obtained with the Canada-France-Hawaii Telescope. Our main observational result is the discovery of six new binary systems, LkHα 264, E 0255+2018, RX J0255.4+2005, S18, MBM 12-10, RX J0255.3+1915, and the confirmation of HD 17332, already known as a binary. We also detected a possible quadruple system. It is composed of the close binary LkHα 263 AB (separation of ~ 0.41''), of LkHα 262 located ~ 15.25'' from LkHα 263 A, and of LkHα 263 C, located ~ 4.1'' from LkHα 263 A. A preliminary study of the binary fraction suggests a binary excess in the MBM 12 association as compared to the field and IC 348. Because of the high binarity rate, previous estimations of spectral types and measurements of IR excesses for several candidate members of MBM 12 have to be revised. LkHα 263 C is a nebulous object that we interpret as a disk oriented almost perfectly edge-on and seen in scattered light. This object has already been reported by Jayawardhana et al. (\\cite{Jayawardhana2002}). Scattered light models allow us to estimate some of the structural parameters (i.e. inclination, diameter and to a lesser extent dust mass) of the circumstellar disk. We find an inclination of 89o and a outer radius for the disk, ~ 165 AU if the distance to MBM 12 is 275 pc. With the present data set, we do not attempt to re-assess the distance to MBM 12. We estimate however that the distance to the candidate member RX J0255.3+1915 is d > 175 pc. Based on data collected at the Canada-France-Hawaii Telescope. The CFHT corporation is funded by the Governments of Canada and France, and by the University of Hawaii.

  2. Satellite Imaging with Adaptive Optics on a 1 M Telescope (United States)

    Bennet, F.; Price, I.; Rigaut, F.; Copeland, M.


    The Research School of Astronomy and Astrophysics at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optic (AO) systems for space situational awareness applications. We report on the development and demonstration of an AO system for satellite imaging using a 1 m telescope. The system uses the orbiting object as a natural guide star to measure atmospheric turbulence, and a deformable mirror to provide an optical correction. The AO system utilised modern, high speed and low noise EMCCD technology on both the wavefront sensor and imaging camera to achieve high performance, achieving a Strehl ratio in excess of 30% at 870 nm. Images are post processed with lucky imaging algorithms to further improve the final image quality. We demonstrate the AO system on stellar targets and Iridium satellites, achieving a near diffraction limited full width at half maximum. A specialised realtime controller allows our system to achieve a bandwidth above 100 Hz, with the wavefront sensor and control loop running at 2 kHz. The AO systems we are developing show how ground-based optical sensors can be used to manage the space environment. AO imaging systems can be used for satellite surveillance, while laser ranging can be used to determine precise orbital data used in the critical conjunction analysis required to maintain a safe space environment. We have focused on making this system compact, expandable, and versatile. We are continuing to develop this platform for other space situational awareness applications such as geosynchronous satellite astrometry, space debris characterisation, satellite imaging, and ground-to-space laser communication.

  3. Multipurpose Hyperspectral Imaging System (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon


    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  4. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton


    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  5. Optical and opto-acoustic imaging. (United States)

    Ntziachristos, Vasilis; Razansky, Daniel


     Since the inception of the microscope, optical imaging is serving the biological discovery for more than four centuries. With the recent emergence of methods appropriate for in vivo staining, such as bioluminescence, fluorescent molecular probes, and proteins, as well as nanoparticle-based targeted agents, significant attention has been shifted toward in vivo interrogations of different dynamic biological processes at the molecular level. This progress has been largely supported by the development of advanced optical tomographic imaging technologies suitable for obtaining volumetric visualization of biomarker distributions in small animals at a whole-body or whole-organ scale, an imaging frontier that is not accessible by the existing tissue-sectioning microscopic techniques due to intensive light scattering beyond the depth of a few hundred microns. Biomedical optoacoustics has also emerged in the recent decade as a powerful tool for high-resolution visualization of optical contrast, overcoming a variety of longstanding limitations imposed by light scattering in deep tissues. By detecting tiny sound vibrations, resulting from selective absorption of light at multiple wavelengths, multispectral optoacoustic tomography methods can now "hear color" in three dimensions, i.e., deliver volumetric spectrally enriched (color) images from deep living tissues at high spatial resolution and in real time. These new-found imaging abilities directly relate to preclinical screening applications in animal models and are foreseen to significantly impact clinical decision making as well.

  6. Review of optical breast imaging and spectroscopy (United States)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola


    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  7. Tuneable planar integrated optical systems. (United States)

    Amberg, M; Oeder, A; Sinzinger, S; Hands, P J W; Love, G D


    Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate for the first time dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices.

  8. Cloned images and the optical unconscious

    DEFF Research Database (Denmark)

    Romic, Bojana

    , because this young woman had no political/activist record – it was her image that communicated with the world. References: Benjamin, W. (1999) Little History of Photography. in: Jennings, M.W., Eiland, H., Smith, G. (eds) Selected Writings: Volume 2 1927-1934. Cambridge, Massachusetts: The Belknap Press...... that her use of the term is at an angle to Benjamin's: speaking of the modernist optical logic, she retrieves the associationist theory and the notion of memory: 'the only point of recognition within associationist theory that consciousness might be shot through by unconscious conflict...... be stored in a memory of an observer – and later recognised as a pattern (structure) in the another image. The associative process that takes place is usually hidden from the observer, thus the use of the term optical unconscious. As the image gets disseminated via electronic media – 'cloned' is the term...

  9. Optical fiber based imaging of bioengineered tissue construct (United States)

    Sapoznik, Etai; Niu, Guoguang; Lu, Peng; Zhou, Yu; Xu, Yong; Soker, Shay


    Imaging cells and tissues through opaque and turbid media is challenging and presents a major barrier for monitoring maturation and remodeling of bioengineered tissues. The fiber optics based imaging system described here offers a new approach for fluorescent cell imaging. A micro imaging channel is embedded in a Polycaprolactone (PCL) electrospun scaffold designed for cell seeding, which allows us to use an optical fiber to locally deliver excitation laser close to the fluorescent cells. The emission is detected by an Electron Multiplying Charge Coupled Device (EMCCD) detector and image reconstruction of multiple excitation points is achieved with a working distance of several centimeters. The objective of this study is to assess the effects of system parameters on image reconstruction outcomes. Initial studies using fluorescent beads indicated that scaffold thickness had a small effect on image quality, whereas scaffold composition (collagen content), fluorophore spectra, and the reconstruction window size had a large effect. The results also suggest that a far-red fluorescent emission is preferential when using collagenous scaffolds with a thickness of up to 500 μm. Using these optimized parameters, we were able to image fluorescently labeled cells on a scaffold with a resolution of 15-20 μm, and have also measured muscle progenitor cell differentiation and scaffold surface coverage with endothelial cells. In the future, this imaging platform can be applied to other bioengineered tissues for non-invasive monitoring both in vitro and in vivo.

  10. First results from the MIT Optical Rapid Imaging System (MORIS) on the IRTF: a stellar occultation by Pluto and a transit by exoplanet XO-2b

    CERN Document Server

    Gulbis, A A S; Elliot, J L; Rayner, J T; Stahlberger, W E; Rojas, F E; Adams, E R; Person, M J; Chung, R; Tokunaga, A T; Zuluaga, C A


    We present a high-speed, visible-wavelength imaging instrument: MORIS (the MIT Optical Rapid Imaging System). MORIS is mounted on the 3-m Infrared Telescope Facility (IRTF) on Mauna Kea, HI. Its primary component is an Andor iXon camera, a nearly 60 arcsec square field of view with high quantum efficiency, low read noise, low dark current, and full-frame readout rates ranging from as slow as desired to a maximum of between 3.5 Hz and 35 Hz (depending on the mode; read noise of 6e-/pixel and 49 e-/pixel with electron-multiplying gain=1, respectively). User-selectable binning and subframing can increase the cadence to a few hundred Hz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to sub-electron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to several nanosecond accuracy using the Global Positioning System. MORIS is mounted on the side-facing exit window of SpeX (Rayner et al. 2003), allowing simultaneous near-...

  11. Fourier optics of image formation in LEEM

    Energy Technology Data Exchange (ETDEWEB)

    Pang, A B; Altman, M S [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mueller, Th; Bauer, Ernst [Physikalisches Institute, Technische Universitaet Clausthal, Leibnizstrasse 4, D-38678 Clausthal-Zellerfeld (Germany)


    A Fourier optics calculation of image formation in low energy electron microscopy (LEEM) is presented. The adaptation of the existing theory for transmission electron microscopy to the treatment of LEEM and other forms of cathode lens electron microscopy is explained. The calculation incorporates imaging errors that are caused by the objective lens (aberrations), contrast aperture (diffraction), imperfect source characteristics, and voltage and current instabilities. It is used to evaluate the appearance of image features that arise from phase objects such as surface steps and amplitude objects that produce what is alternatively called amplitude, reflectivity or diffraction contrast in LEEM. This formalism can be used after appropriate modification to treat image formation in other emission microscopies. Implications for image formation in the latest aberration-corrected instruments are also discussed.

  12. Fluorescence-enhanced imaging using a novel hand-held based optical imager: phantom studies (United States)

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha


    Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. The currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Hence, a novel hand-held probe based gain modulated intensified CCD camera imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of this hand-held probe based optical imaging system are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving overall signal strength; (ii) to adapt to the tissue contours, thus decreasing the light leakage at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. Phantom studies are performed to demonstrate the feasibility of performing fluorescence optical imaging under different target depths using cubical phantoms (10×6.5×10 cc). The effect of simultaneous multiple point illumination over sequential single point illumination is demonstrated from experimental phantom studies.

  13. Automated Localization of Optic Disc in Retinal Images

    Directory of Open Access Journals (Sweden)

    Deepali A.Godse


    Full Text Available An efficient detection of optic disc (OD in colour retinal images is a significant task in an automated retinal image analysis system. Most of the algorithms developed for OD detection are especially applicable to normal and healthy retinal images. It is a challenging task to detect OD in all types of retinal images, that is, normal, healthy images as well as abnormal, that is, images affected due to disease. This paper presents an automated system to locate an OD and its centre in all types of retinal images. The ensemble of steps based on different criteria produces more accurate results. The proposed algorithm gives excellent results and avoids false OD detection. The technique is developed and tested on standard databases provided for researchers on internet, Diaretdb0 (130 images, Diaretdb1 (89 images, Drive (40 images and local database (194 images. The local database images are collected from ophthalmic clinics. It is able to locate OD and its centre in 98.45% of all tested cases. The results achieved by different algorithms can be compared when algorithms are applied on same standard databases. This comparison is also discussed in this paper which shows that the proposed algorithm is more efficient.

  14. The importance of optical optimization in whole slide imaging (WSI) and digital pathology imaging. (United States)

    Yagi, Yukako; Gilbertson, John R


    In the last 10 years, whole slide imaging (WSI) has seen impressive progress not only in image quality and scanning speed but also in the variety of systems available to pathologists. However, we have noticed that most systems have relatively simple optics axes and rely on software to optimize image quality and colour balance. While much can be done in software, this study examines the importance of optics, in particular optical filters, in WSI.Optical resolution is a function of the wavelength of light used and the numerical aperture of the lens system (Resolution = (f) wavelength/2 NA). When illumining light is not conditioned correctly with filters, there is a tendency for the wavelength to shift to longer values (more red) because of the characteristics of the lamps in common use. Most microscopes (but remarkably few WSI devices) correct for this with ND filter for brightness and Blue filter (depends on the light source) for colour correction.Using H&E slides research microscopes (Axiophot, Carl Zeiss MicroImaging, Inc. NY. Eclipse 50i., Nikon Inc. NY) at 20x, an attached digital camera (SPOT RT741 Slider Color, Diagnosis Instruments., MI USA), and a filter set, we examined the effect of filters and software enhancement on digital image quality. The focus value (as evaluated by focus evaluation software developed in house and SPOT imaging Software v4.6) was used as a proxy for image quality. Resolution of tissue features was best with the use of both the Blue and ND filters (in addition to software enhancement). Images without filters but with software enhancement while superficially good, lacked some details of specimen morphology and were unclear compared with the images with filters.The results indicate that the appropriate use of optical filters could measurably improve the appearance and resolution of WSI images.

  15. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Young; Lee, In Ho; Song, Chang June [Chungnam National University Hospital, Daejeon (Korea, Republic of); Hwang, Hee Youn [Eulji University Hospital, Daejeon(Korea, Republic of)


    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  16. Image Retrieval Method for Multiscale Objects from Optical Colonoscopy Images

    Directory of Open Access Journals (Sweden)

    Hirokazu Nosato


    Full Text Available Optical colonoscopy is the most common approach to diagnosing bowel diseases through direct colon and rectum inspections. Periodic optical colonoscopy examinations are particularly important for detecting cancers at early stages while still treatable. However, diagnostic accuracy is highly dependent on both the experience and knowledge of the medical doctor. Moreover, it is extremely difficult, even for specialist doctors, to detect the early stages of cancer when obscured by inflammations of the colonic mucosa due to intractable inflammatory bowel diseases, such as ulcerative colitis. Thus, to assist the UC diagnosis, it is necessary to develop a new technology that can retrieve similar cases of diagnostic target image from cases in the past that stored the diagnosed images with various symptoms of colonic mucosa. In order to assist diagnoses with optical colonoscopy, this paper proposes a retrieval method for colonoscopy images that can cope with multiscale objects. The proposed method can retrieve similar colonoscopy images despite varying visible sizes of the target objects. Through three experiments conducted with real clinical colonoscopy images, we demonstrate that the method is able to retrieve objects of any visible size and any location at a high level of accuracy.

  17. Optical coherence tomography for endodontic imaging (United States)

    van Soest, G.; Shemesh, H.; Wu, M.-K.; van der Sluis, L. W. M.; Wesselink, P. R.


    In root canal therapy, complications frequently arise as a result of root fracture or imperfect cleaning of fins and invaginations. To date, there is no imaging method for nondestructive in vivo evaluation of the condition of the root canal, during or after treatment. There is a clinical need for a technique to detect defects before they give rise to complications. In this study we evaluate the ability of optical coherence tomography (OCT) to image root canal walls, and its capacity to identify complicating factors in root canal treatment. While the potential of OCT to identify caries has been explored before, endodontic imaging has not been reported. We imaged extracted lower front teeth after endodontic preparation and correlated these images to histological sections. A 3D OCT pullback scan was made with an endoscopic rotating optical fiber probe inside the root canal. All oval canals, uncleaned fins, risk zones, and one perforation that were detected by histology were also imaged by OCT. As an example of an area where OCT has clinical potential, we present a study of vertical root fracture identification with OCT.

  18. A novel optical scattering collection system for particulate monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, B.E.; Miller, A.C. Jr. [Oak Ridge National Lab., TN (United States); Nuspliger, R.J. [Environmental Systems Corp., Knoxville, TN (United States)


    Light collecting systems often require radically different optical surfaces than those commonly found in optical imaging systems. An optical particulate monitor must probe a volume in emission stacks to obtain a good statistical distribution of suspended particles. However, ideal imaging systems map object planes into conjugate image planes and can probe only small volumes. The authors describe the design, fabrication and performance of a novel optical scattering collection system that exploits precision-engineered reflective conical surfaces (axicons) in a telescopic arrangement that maps a line in object space onto the detector plane in image space. Such non-spherical surfaces are nearly impossible to fabricate using traditional methods, but can readily be made using the deterministic method of single-point diamond turning. In addition to complex optical surfaces, single-point diamond turning also makes possible the precision engineering of reference surfaces useful for built-in alignment of multiple surfaces and rapid assembly of the finished system.

  19. ERIS adaptive optics system design (United States)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert


    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  20. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring (United States)

    Zelepouga, Serguei A.; Rue, David M.; Saveliev, Alexei V.


    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  1. Optical prefiltering in subcarrier systems (United States)

    Greenhalgh, Philip A.; Abel, Robin D.; Davies, Phillip A.


    Subcarrier multiplexing (SCM) is a convenient method of implementing multi-access in a lightwave system. Conventionally SCM receivers detect all channels using high speed optoelectronic components, each channel then being selected using heterodyne techniques in the electrical domain. Optical prefiltering is a novel technique where channel selection is accomplished optically. This method has the primary advantage that only a low bandwidth optical detector and receiver is needed to recover the baseband information.

  2. Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. (United States)

    Jo, Javier A; Park, Jesung; Pande, Paritosh; Shrestha, Sebina; Serafino, Michael J; Rico Jimenez, J de Jesus; Clubb, Fred; Walton, Brian; Buja, L Maximilian; Phipps, Jennifer E; Feldman, Marc D; Adame, Jessie; Applegate, Brian E


    The aim of this study was to validate novel imaging technology for simultaneous morphological and biochemical endogenous optical imaging of coronary atherosclerotic plaque. Optical coherence tomography (OCT) generates high-resolution 3D images of plaque morphology and endogenous fluorescence lifetime imaging microscopy (FLIM) characterizes biochemical composition. Both imaging modalities rely on plaque's intrinsic optical characteristics, making contrast agents unnecessary. A multimodal OCT/FLIM system was utilized to generate luminal biochemical maps superimposed on high-resolution (7 µm axial and 13 µm lateral) structural volumetric images. Forty-seven fresh postmortem human coronary segments were imaged: pathological intimal thickening (PIT, n = 26), fibroatheroma (FA, n = 12), thin-cap FA (TCFA, n = 2), and fibrocalcific plaque (CA, n = 7), determined by histopathology. Multimodal images were evaluated, and each plaque identified as PIT, FA, TCFA, or CA based on expert OCT readers, and as having high-lipid (HL), high-collagen (HC), or low-collagen/low-lipid (LCL) luminal composition based on linear discriminant analysis of FLIM. Of 47 plaques, 89.4% (42/47) of the plaques were correctly identified based on OCT/FLIM evaluation using tissue histopathology and immunohistochemistry as the gold standard. Four of the misclassifications corresponded to confusing PIT with HL luminal composition for FA with HL cap. The other corresponded to confusing FA with a HC cap for FA with an LCL cap. We have demonstrated the feasibility of accurate simultaneous OCT/FLIM morphological and biochemical characterization of coronary plaques at spatial resolutions and acquisition speeds compatible with catheter-based intravascular imaging. The success of this pilot study sets up future development of a multimodal intravascular imaging system that will enable studies that could help improve our understanding of plaque pathogenesis. Published on behalf of the European Society of

  3. Optical microscopic imaging based on VRML language (United States)

    Zhang, Xuedian; Zhang, Zhenyi; Sun, Jun


    As so-called VRML (Virtual Reality Modeling Language), is a kind of language used to establish a model of the real world or a colorful world made by people. As in international standard, VRML is the main kind of program language based on the "www" net building, which is defined by ISO, the kind of MIME is x-world or x-VRML. The most important is that it has no relationship with the operating system. Otherwise, because of the birth of VRML 2.0, its ability of describing the dynamic condition gets better, and the interaction of the internet evolved too. The use of VRML will bring a revolutionary change of confocal microscope. For example, we could send different kinds of swatch in virtual 3D style to the net. On the other hand, scientists in different countries could use the same microscope in the same time to watch the same samples by the internet. The mode of sending original data in the model of text has many advantages, such as: the faster transporting, the fewer data, the more convenient updating and fewer errors. In the following words we shall discuss the basic elements of using VRML in the field of Optical Microscopic imaging.

  4. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)


    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  5. Adaptive optics with pupil tracking for high resolution retinal imaging. (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris


    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  6. Optical imaging for stem cell differentiation to neuronal lineage. (United States)

    Hwang, Do Won; Lee, Dong Soo


    In regenerative medicine, the prospect of stem cell therapy holds great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell- or tissue-specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating into a neuronal lineage. The detection limit of weak promoters or reporter genes can be greatly enhanced by adopting a yeast GAL4 amplification system or an engineering-enhanced luciferase reporter gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  7. Optical double-image encryption and authentication by sparse representation. (United States)

    Mohammed, Emad A; Saadon, H L


    An optical double-image encryption and authentication method by sparse representation is proposed. The information from double-image encryption can be integrated into a sparse representation. Unlike the traditional double-image encryption technique, only sparse (partial) data from the encrypted data is adopted for the authentication process. Simulation results demonstrate that the correct authentication results are achieved even with partial information from the encrypted data. The randomly selected sparse encrypted information will be used as an effective key for a security system. Therefore, the proposed method is feasible, effective, and can provide an additional security layer for optical security systems. In addition, the method also achieved the general requirements of storage and transmission due to a high reduction of the encrypted information.

  8. Change detection in very high resolution multisensor optical images (United States)

    Solano Correa, Yady T.; Bovolo, Francesca; Bruzzone, Lorenzo


    This work aims at developing an approach to the detection of changes in multisensor multitemporal VHR optical images. The main steps of the proposed method are: i) multisensor data homogenization; and ii) change detection in multisensor multitemporal VHR optical images. The proposed approach takes advantage of: the conversion to physical quantities suggested by Pacifici et. al.1 , the framework for the design of systems for change detection in VHR images presented by Bruzzone and Bovolo2 and the framework for unsupervised change detection presented by Bovolo and Bruzzone3. Multisensor data homogenization is achieved during pre-processing by taking into account differences in both radiometric and geometric dimensions. Whereas change detection was approached by extracting proper features from multisensor images such that they result to be comparable (at a given level of abstraction) even if extracted from images acquired by different sensors. In order to illustrate the results, a data set made up of a QuickBird and a WorldView-2 images - acquired in 2006 and 2010 respectively - over an area located in the Trentino region of Italy were used. However, the proposed approach is thought to be exportable to multitemporal images coming from passive sensors other than the two mentioned above. The experimental results obtained on the QuickBird and WorlView-2 image pair are accurate. Thus opening to further experiments on multitemporal images acquired by other sensors.

  9. Study of image motion compensation in spectral imaging system (United States)

    Li, Zhijun; Chen, Xing Long


    In the spectral imaging system, random jitter and posture change of the aircraft generated random image motion, and flight of aircraft caused forward image motion. Both of image motion can cause image blur in a longer exposure time, which need for image motion compensation. Due to limited field of view of the optical system, limited size and weight, a stable FSM (Fast Steering Mirror) was used for random image motion compensation and a compensation FSM was used for forward image motion compensation. In the random image motion compensation, inertial sensors were used for measuring the random jitter and the posture change of the aircraft. As the advantages and disadvantages for the gyroscope and inclinometer, we used data fusion of the two sensors to complementary advantages with closed-loop mode filter data based on the frequency domain. In this way, we got high linearity, little drift, high bandwidth and little electrical noise inertial measurement sensors. On the other hand, the motion of the compensation mirror was broken down to the amount of displacement within the time required for each interrupt movement. Under strict timing control, macro forward image motion compensation was realized in the exposure time. The above image motion compensation methods were applied to actual spectral imaging systems, aerial experiment results show that image motion compensation obtained good results and met the remaining image motion compensation image error was not more than 1/3 pixel.

  10. Image Distortion of Optical Coherence Tomography

    Institute of Scientific and Technical Information of China (English)

    安源; 姚建铨


    A kind of image distortion in Optical Coherence Tomography (OCT) resulted from average refractive index changes between structures of bio-tissue is discussed for the first time.Analysis is given on following situations:1) Exact refraction index changes between microstructures;2)The gradient of average refractive index change between different tissue layers is parallel to the probe beam;3) The gradient of average refractive index change is vertical to the probe beam.The results show that the image distortion of situation 1) is usually negligible;in situation 2) there is a spread or shrink effect without relative location error; however,in situation 3) there is a significant image error inducing relative location displacement between different structures.Preliminary design to eliminate the distortion is presented,the method of which mainly based on the image classification and pixel array re-arrangement.

  11. Building 3D aerial image in photoresist with reconstructed mask image acquired with optical microscope (United States)

    Chou, C. S.; Tang, Y. P.; Chu, F. S.; Huang, W. C.; Liu, R. G.; Gau, T. S.


    Calibration of mask images on wafer becomes more important as features shrink. Two major types of metrology have been commonly adopted. One is to measure the mask image with scanning electron microscope (SEM) to obtain the contours on mask and then simulate the wafer image with optical simulator. The other is to use an optical imaging tool Aerial Image Measurement System (AIMSTM) to emulate the image on wafer. However, the SEM method is indirect. It just gathers planar contours on a mask with no consideration of optical characteristics such as 3D topography structures. Hence, the image on wafer is not predicted precisely. Though the AIMSTM method can be used to directly measure the intensity at the near field of a mask but the image measured this way is not quite the same as that on the wafer due to reflections and refractions in the films on wafer. Here, a new approach is proposed to emulate the image on wafer more precisely. The behavior of plane waves with different oblique angles is well known inside and between planar film stacks. In an optical microscope imaging system, plane waves can be extracted from the pupil plane with a coherent point source of illumination. Once plane waves with a specific coherent illumination are analyzed, the partially coherent component of waves could be reconstructed with a proper transfer function, which includes lens aberration, polarization, reflection and refraction in films. It is a new method that we can transfer near light field of a mask into an image on wafer without the disadvantages of indirect SEM measurement such as neglecting effects of mask topography, reflections and refractions in the wafer film stacks. Furthermore, with this precise latent image, a separated resist model also becomes more achievable.

  12. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors (United States)

    Yan, Wei; Peng, Xiao; Qi, Jing; Gao, Jian; Fan, Shunping; Wang, Qi; Qu, Junle; Niu, Hanben


    We report a dynamic fluorescence lifetime imaging (D-FLIM) system that is based on a pair of acousto-optic deflectors for the random regions of interest (ROI) study in the sample. The two-dimensional acousto-optic deflector devices are used to rapidly scan the femtosecond excitation laser beam across the sample, providing specific random access to the ROI. Our experimental results using standard fluorescent dyes in live cancer cells demonstrate that the D-FLIM system can dynamically monitor the changing process of the microenvironment in the ROI in live biological samples.

  13. 7th International Workshop on Advanced Optical Imaging and Metrology

    CERN Document Server


    In continuation of the FRINGE Workshop Series this Proceeding contains all contributions presented at the 7. International Workshop on Advanced Optical Imaging and Metrology. The FRINGE Workshop Series is dedicated to the presentation, discussion and dissemination of recent results in Optical Imaging and Metrology. Topics of particular interest for the 7. Workshop are: - New methods and tools for the generation, acquisition, processing, and evaluation of data in Optical Imaging and Metrology (digital wavefront engineering, computational imaging, model-based reconstruction, compressed sensing, inverse problems solution) - Application-driven technologies in Optical Imaging and Metrology (high-resolution, adaptive, active, robust, reliable, flexible, in-line, real-time) - High-dynamic range solutions in Optical Imaging and Metrology (from macro to nano) - Hybrid technologies in Optical Imaging and Metrology (hybrid optics, sensor and data fusion, model-based solutions, multimodality) - New optical sensors, imagi...

  14. Nonlinear optical imaging characteristics in rat tail tendon (United States)

    Liu, N. R.; Zhang, X. Z.; Qiu, Y. S.; Chen, R.


    The aim of this study was to examine the characteristics of skeletal muscle fibers in tail tendons, explore the content of intrinsic components at different depths and ascertain the optimum excitation wavelength, which will help to establish a relationship between diagnosis and therapy and the tendon injury. A multiphoton microscopic imaging system was used to achieve the images and spectra via an imaging mode and a Lambda mode, respectively. This work demonstrates that the skeletal muscle fibers of the tail tendon are in good order. Second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals originating from certain intrinsic components are varied with depth, and the SHG/TPEF intensity ratios are varied at different excitation wavelengths. Below 800 nm is the optimum for cell TPEF, while above 800 nm is the optimum for SHG. With the development of imaging techniques, a nonlinear optical imaging system will be helpful to represent the functional behaviors of tissue related to tendon injury.

  15. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin


    techniques. Scattering forces from beams actuated via efficient phase-only efficient modulation has been adopted. This has lowered the required power for sorting cells to a tenth of our previous approach, and also makes the cell sorter safer for use in clinical settings. With the versatility of dynamically...... programmable phase spatial light modulators, a plurality of light shaping techniques, including hybrid approaches, can be utilized in cell sorting....... healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...

  16. Electro-optic imaging Fourier transform spectrometer (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)


    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  17. Magneto-optical imaging of exotic superconductors (United States)

    van der Beek, C. J.; Losco, J.; Konczykowski, M.; Pari, P.; Shibauchi, T.; Shishido, H.; Matsuda, Y.


    We have constructed a novel compact cryostat for optical measurements at temperatures below 2 K. The desktop cryostat, small enough to be placed under the objective of a standard commercial polarized light microscope, functions in a single shot mode, with a five hour autonomy at 1.5 K. Central to its conception are four charcoal pumps for adsorption and desorption of He contained in a closed circuit, and novel thermal switches allowing for thermalization of the pumps and of the two 1 K pots. The latter are connected to the 1" diameter sample holder through braids. Sample access is immediate, through the simple removal of the optical windows. In this contribution, we shall present first results on magneto-optical imaging of flux penetration in the heavy-fermion superconductor CeCoIn5.

  18. Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology (United States)

    Lee, Hsiang-Chieh; Zhou, Chao; Wang, Yihong; Aquirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.


    Excisional biopsy is the current gold standard for disease diagnosis; however, it requires a relatively long processing time and it may also suffer from unacceptable false negative rates due to sampling errors. Optical coherence tomography (OCT) is a promising imaging technique that provide real-time, high resolution and three-dimensional (3D) images of tissue morphology. Optical coherence microscopy (OCM) is an extension of OCT, combining both the coherence gating and the confocal gating techniques. OCM imaging achieves cellular resolution with deeper imaging depth compared to confocal microscopy. An integrated OCT/OCM imaging system can provide co-registered multiscale imaging of tissue morphology. 3D-OCT provides architectural information with a large field of view and can be used to find regions of interest; while OCM provides high magnification to enable cellular imaging. The integrated OCT/OCM system has an axial resolution of kidney (19), were imaged with OCT and OCM within 2 to 6 hours after excision. The images were compared with H & E histology to identify characteristic features useful for disease diagnosis. The feasibility of visualizing human pathology using integrated OCT/OCM was demonstrated in the pathology laboratory settings.

  19. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system.

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    Full Text Available A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI system and a Doppler optical microangiography (DOMAG system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO, deoxyhemoglobin (Hb and total hemoglobin (HbT in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.

  20. IOT Overview: Optical Spectro-Imagers (United States)

    Patat, F.

    Taking the FORS instruments as a representative case, I review the Calibration Plan for optical spectro-imagers currently offered at ESO, discussing various aspects related both to the scientific outcome and the instrument/site monitoring. I also describe ongoing and future calibration projects planned by the Instrument Operations Teams, trying to give an objective view on the limitations of the Calibration Plans currently implemented at ESO for this class of instruments.

  1. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar (United States)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei


    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  2. Non-conductive and miniature fiber-optic imaging system for real-time detection of neuronal activity in time-varying electromagnetic fields. (United States)

    Saito, Atsushi; Takahashi, Masayuki; Jimbo, Yasuhiko; Nakasono, Satoshi


    Establishing an appropriate threshold value for neuronal modulation by time-varying electromagnetic field (EMF) exposure is important for developing international guidelines to protect against the potential health effects, and to design a variety of medical devices. However, it is technically difficult to achieve real-time detection of neuronal activity under repetitive and long-term exposure to EMF. For this purpose, we developed a non-conductive, miniature, and flexible fiber-optic imaging system that does not affect the electromagnetic noise, induction heating, or vibration in a high-intensity and repetitive time-varying EMF exposure. Using the proposed system, we succeeded at real-time detection of spontaneous Ca(2+) oscillations in single neuronal and glial cells, as well as synchronized bursting activities of multiple neuronal networks at a micrometer-scale and millisecond-order spatiotemporal resolution during long-term EMF exposure (sinusoidal wave, 20kHz, 8.6mT, >30min). The results indicated that short-term (exposure-related neuronal modulation was not detectable; however, long-term (15-30min) exposure was observed to depress neuronal activities. In addition, the simultaneous and real-time recording of neuronal activity and the environmental temperature revealed that the neuronal modulation was accompanied by a 0.5-1°C rise in the temperature of the culture medium induced by the heat generation of exposure coils. These findings suggest that our real-time imaging system can be used for precise evaluation of the threshold values and clarification of the mechanisms of neuronal modulation induced by time-varying EMF exposure.

  3. Acoustic-optical imaging without immersion (United States)

    Liu, H.


    System using membraneous end wall of Bragg cell to separate test specimen from acoustic transmission medium, operates in real time and uses readily available optical components. System can be easily set up and maintained by people with little or no training in holography.

  4. Complete Two-dimensional Muellermetric Imaging of Biological Tissue Using Heterodyned Optical Coherence Tomography

    CERN Document Server

    Liu, Xue; Shahriar, M S


    A polarization-sensitive optical coherence tomography system based on heterodyning and filtering techniques is built to perform Stokesmetric imaging of different layers of depths in a porcine tendon sample. The complete 4\\times4 backscattering Muellermetric images of one layer are acquired using such a system. The images reveal information indiscernible from a conventional OCT system.

  5. Intrinsic optical signal imaging of retinal physiology: a review (United States)

    Yao, Xincheng; Wang, Benquan


    Intrinsic optical signal (IOS) imaging promises to be a noninvasive method for high-resolution examination of retinal physiology, which can advance the study and diagnosis of eye diseases. While specialized optical instruments are desirable for functional IOS imaging of retinal physiology, in depth understanding of multiple IOS sources in the complex retinal neural network is essential for optimizing instrument designs. We provide a brief overview of IOS studies and relationships in rod outer segment suspensions, isolated retinas, and intact eyes. Recent developments of line-scan confocal and functional optical coherence tomography (OCT) instruments have allowed in vivo IOS mapping of photoreceptor physiology. Further improvements of the line-scan confocal and functional OCT systems may provide a feasible solution to pursue functional IOS mapping of human photoreceptors. Some interesting IOSs have already been detected in inner retinal layers, but better development of the IOS instruments and software algorithms is required to achieve optimal physiological assessment of inner retinal neurons.

  6. Advanced hyperspectral imaging system with edge enhancement (United States)

    Yushkov, K. B.; Molchanov, V. Y.


    We developed an acousto-optic hyperspectral imaging system with edge enhancement capability. The system is an add-on to a standard light microscope. Edge enhancement operation mode is aimed for analysis of low-contrast microscopic samples, e.g. unstained cytological smears and histological samples, live cells. Edge-enhancement imaging mode is based on a feature of acousto-optic tunable filters to perform band-pass spatial filtering when unturned from noncritical phase matching geometry is diffraction. Switching between standard hyperspectral imaging and edge-enhancement modes is performed by means of a telecentric amplitude mask.

  7. Advanced capabilities of the multimodal adaptive optics imager (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Mujat, Mircea; Biss, David P.; Iftimia, Nicusor V.; Patel, Ankit H.; Plumb, Emily; Campbell, Melanie; Norris, Jennifer L.; Dubra, Alfredo; Chui, Toco Y. P.; Akula, James D.; Fulton, Anne B.


    We recently developed several versions of a multimodal adaptive optics (AO) retinal imager, which includes highresolution scanning laser ophthalmoscopy (SLO) and Fourier domain optical coherence tomography (FDOCT) imaging channels as well as an auxiliary wide-field line scanning ophthalmoscope (LSO). Some versions have also been equipped with a fluorescence channel and a retinal tracker. We describe the performance of three key features of the multimodal AO system including: simultaneous SLO/OCT imaging, which allows SLO/OCT co-registration; a small animal imaging port, which adjusts the beam diameter at the pupil from 7.5 to 2.5 mm for use with small animals ubiquitous in biological research or for extended depth-of-focus imaging in humans; and slow scan Doppler flowmetry imaging using the wide field auxiliary LSO imaging channel. The systems are currently deployed in several ophthalmology clinics and research laboratories and several investigations have commenced on patients with a variety of retinal diseases and animals in vision research.

  8. Transfer function characterization of grazing incidence optical systems. (United States)

    Harvey, J E; Moran, E C; Zmek, W P


    By using Fourier techniques and linear systems theory we have derived an analytic expression for a generalized transfer function for grazing incidence optical systems operating at ultraviolet and x-ray wavelengths that includes the effects of optical fabrication errors over the entire range of relevant spatial frequencies. The Fourier transform of this transfer function yields the image distribution (or point spread function) from which encircled energy characteristics or other image quality criteria can be obtained. This transfer function characterization of grazing incidence optical systems allows parametric trade studies and sensitivity analyses to be performed as well as the derivation of fabrication tolerances necessary to satisfy a given image quality requirement.


    Regatieri, Caio V.; Branchini, Lauren; Fujimoto, James G.; Duker, Jay S.


    Background A structurally and functionally normal choroidal vasculature is essential for retinal function. Therefore, a precise clinical understanding of choroidal morphology should be important for understanding many retinal and choroidal diseases. Methods PUBMED ( was used for most of the literature search for this article. The criterion for inclusion of an article in the references for this review was that it included materials about both the clinical and the basic properties of choroidal imaging using spectral-domain optical coherence tomography. Results Recent reports show successful examination and accurate measurement of choroidal thickness in normal and pathologic states using spectral-domain optical coherence tomography systems. This review focuses on the principles of the new technology that make choroidal imaging using optical coherence tomography possible and on the changes that subsequently have been documented to occur in the choroid in various diseases. Additionally, it outlines future directions in choroidal imaging. Conclusion Optical coherence tomography is now proven to be an effective noninvasive tool to evaluate the choroid and to detect choroidal changes in pathologic states. Additionally, choroidal evaluation using optical coherence tomography can be used as a parameter for diagnosis and follow-up. PMID:22487582

  10. Optical synchrotron radiation beam imaging with a digital mask

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Univ. of Maryland, College Park, MD (United States); Fiorito, Ralph [Univ. of Maryland, College Park, MD (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shkvarunets, Anatoly [Univ. of Maryland, College Park, MD (United States); Tian, Kai [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, Alan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Douglas, D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mok, W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitsuhashi, T. [KEK, Tsukuba (Japan)


    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  11. Design of Optical System for Solar Extreme-Ultraviolet Imaging Spectrometer%太阳极紫外成像光谱仪光学系统设计

    Institute of Scientific and Technical Information of China (English)

    刘壮; 巩岩


    Hyper-spectral imaging observation of the sun in the EUV region is an important method of research for solar's upper transition region, corona and plasma's physical property. Based on the application objective of solar extreme ultraviolet imaging spectrometer(SEUlS), combined with the current states of domestic and foreign extreme ultraviolet imaging spectrometer, a few of parameters for SEUIS design were drew up in the present paper. The advantages and disadvantages of all kinds of optical configurations were discussed,and the configuration of combination of telescope and spectrometer was chosen. The available main components were also described, off-axis parabolic mirror was chosen for telescope, and a high density uniform-line-space toroidal grating for dispersion device. The optical system which satisfies the performance parameters was designed The design process, detailed parameters and results were presented in the end. The working wavelength of the optics system is 17. 0~21. 0 nm, the field of view is 1 228"×1 024", the spatial resolution is 0. 8 arc sec ? Pixel-1, the spectral resolution is about 0. 00198 nm ? Pixel-1, and the total length of system is about 2.8m.%在极紫外波段对太阳进行超光谱成像观测是研究太阳上层大气,日冕中等离子物理特性的重要手段.依据太阳极紫外成像光谱仪的应用,结合国内外极紫外成像光谱仪发展现状,制定了太阳极紫外成像光谱仪的性能指标.通过比较各种光学结构的优缺点,选择望远镜与光谱仪组合的结构.讨论并选择了可用的基本元器件,望远系统采用离轴抛物面反射镜,分光器件为高密度超环面等间距光栅.设计出符合指标的光学系统.最后给出了太阳极紫外成像光谱仪的设计过程、详细参数与结果.光学系统的工作波段为17.0~21.0nm,视场是1228″×1024″,空间分辨率达到0.8 arcsec·pixel-1,光谱分辨率约为0.001 98 nm·pixel-1,系统总长度约为2.8m.

  12. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric


    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  13. Study of Coding Image Acquisition System of Precise Absolute Optical Encoder%精密绝对光栅尺的编码采集系统研究

    Institute of Scientific and Technical Information of China (English)

    范朝龙; 王晗; 刘强; 陈新度


    通过对绝对光栅尺图像编码及解码原理的研究,完成了基于FPGA对绝对光栅尺编码图像软硬件采集系统的设计。在FPGA中实现基于SDRAM的控制模块,设计了CMOS摄像头的I2 C控制模块,建立了VGA输出显示模块,新增了 CMOS摄像头开窗扫瞄模块及灰度处理模块。整个模块的设计基于 Quartus II 9.0软件开发平台,使用 Verilog HDL 语言进行编程,在主控核心芯片EP2 C8 Q208 C8 N硬件平台上实现编码图像的采集,采集到的绝对编码数据传送给后端DSP解码得出绝对光栅尺的位移绝对位置。该系统实现了绝对位置的采码功能,同时保持了采码的可靠性,为绝对式光栅尺的开发研究提供了一条新的途径。%With studying of theory which is cording and decoding of image of absoluteoptical encoder, It have been designed that soft and hardware of Coding image acquisition system of absolute linear optical en-coder based on FPGA. It is have been completed on FPGA that controlling module based on SDRAM, and founded that I2 C controlling module of CMOS camera and designed that video display module of VGA out-put and newly increased that controlling module of window scanning of CMOS camera, and gray-scale pro-cessing module. All module have been designed onQuartus II 9. 0 that is software development platform, and have been assembled with Verilog HDL and have accomplished absolute coding image acquisition on hardware platform whose modle is EP2C8Q208C8N and that is main control chip. Images of the absolute encoding which is acquired is sent to DSP to decode and work out absolute position of moving of absoluteop-tical encoder. The system can accomplish acquisitionof absolute position and keep reliability of encoding ac-quisition, It provide a new approach to developing and studying of absoluteoptical encoder.

  14. Imaging Granulomatous Lesions with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Christina Banzhaf


    Full Text Available Aim: To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT images and compare this to previous studies of nonmelanoma skin tumors. Methods: Two patients with granulomas, tophi and granuloma annulare (GA, respectively, were photographed digitally, OCT-scanned and biopsied in the said order. Normal skin was OCT-scanned for comparison, but not biopsied. The OCT images from each lesion were compared with their histologic images as well as with OCT images with similar characteristics obtained from nonmelanoma skin tumors. Results: The OCT images of the tophi showed hyperreflective, rounded cloud-like structures in dermis, their upper part sharply delineated by a hyporeflective fringe. The deeper areas appeared blurred. The crystalline structures were delineated by a hyporeflective fringe. OCT images of GA showed two different structures in dermis: a hyporeflective rounded one, and one that was lobulated and wing-like. Conclusion: Granulomatous tissue surrounding urate deposits appeared as a clear hyporeflective fringe surrounding a light, hyperreflective area. The urate crystals appeared as hyperreflective areas, shielding the deeper part of dermis, meaning OCT could only visualize the upper part of the lesions. The lobulated, wing-like structure in GA may resemble diffuse GA or a dense lymphocytic infiltrate as seen on histology. The rounded structure in GA may represent an actual granuloma or either diffuse GA or a dense lymphocytic infiltrate as described above. This case suggests that OCT images granulomatous tissue as absorbent, hyporeflective areas, and urate crystals appear as reflective areas, obscuring the underlying tissue. In GA a new image shape looking like a wing has been found. The frequency, specificity and sensitivity of this new pattern in OCT imaging will require further studies.

  15. Luminescent probes for optical in vivo imaging (United States)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc


    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  16. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.


    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  17. Optical image hiding based on computational ghost imaging (United States)

    Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu


    Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.

  18. Display System Image Quality (United States)


    windecreen movement table and an optical angular deviation measurement device (Task, Genco , Smith, and Dabbs, 1983). For most HUDs, the spectral...ASD(ENA)-TR-83-5019, Dec 1983, pp 11-19. Task, H.L., Genco , L.V., Smith, K., and Dabbs, G., "System for measuring angular deviation in a tranparency

  19. Compressive optical image watermarking using joint Fresnel transform correlator architecture (United States)

    Li, Jun; Zhong, Ting; Dai, Xiaofang; Yang, Chanxia; Li, Rong; Tang, Zhilie


    A new optical image watermarking technique based on compressive sensing using joint Fresnel transform correlator architecture has been presented. A secret scene or image is first embedded into a host image to perform optical image watermarking by use of joint Fresnel transform correlator architecture. Then, the watermarked image is compressed to much smaller signal data using single-pixel compressive holographic imaging in optical domain. At the received terminal, the watermarked image is reconstructed well via compressive sensing theory and a specified holographic reconstruction algorithm. The preliminary numerical simulations show that it is effective and suitable for optical image security transmission in the coming absolutely optical network for the reason of the completely optical implementation and largely decreased holograms data volume.

  20. Optical passive athermalization for infrared zoom system (United States)

    Li, Shenghui; Yang, Changcheng; Zheng, Jia; Lan, Ning; Xiong, Tao; Li, Yong


    In an infrared zoom system, it is difficult to obtain the best thermal compensation for all effective focal length (EFL) simultaneously by moving a single lens group. According to the principle of optical passive athermalization, the equations of focal length, achromatization and athermalization of both long and short EFL are established respectively. By analyzing the thermal aberration value relations between long EFL and short EFL, the thermal aberration values of the switching groups for short EFL athermalization are calculated. Firstly, the athermalization of long EFL is designed. Then through reasonable optical materials matching of the switching groups, the short EFL achieves athermalization as well. In this paper, a re-imaging switching zoom system is designed. It has a relative aperture of f/4.0, 100% cold shield efficiency, the EFL of 180mm/30mm at 3.7-4.8μm. The long EFL includes four refractive elements and one hybrid refractive/diffractive element. The switching groups of short EFL have two types, one is composed of four refractive elements, and the other is composed of two refractive elements and one hybrid refractive/diffractive element. Both of the short EFL achieve athermalization. With the aluminum materials of system structures, the zoom system achieves optical passive athermalization. It has the diffraction limited image quality and stable image plane from -30°C to 70°C.

  1. Optical coherence tomography for retinal imaging in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Zimmermann H


    Full Text Available Hanna Zimmermann,1 Timm Oberwahrenbrock,1 Alexander U Brandt,1 Friedemann Paul,1–3 Jan Dörr1,2 1NeuroCure Clinical Research Center, 2Clinical and Experimental Multiple Sclerosis Research Center, 3Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany Abstract: Visual disturbances caused by inflammatory and demyelinating processes of the visual system, mainly in the optic nerve, are a common symptom in multiple sclerosis (MS. Optical coherence tomography (OCT is a tool that is increasingly used for quantifying retinal damage in MS and other neurologic diseases. Based on spectral interferometry, it uses low-coherent infrared light to generate high-resolution spatial images of the retina. The retinal nerve fiber layer (RNFL consists of unmyelinated axons that form the optic nerve, and thus represents a part of the central nervous system. OCT allows for noninvasive measurements of RNFL thickness in micrometer resolution. With the help of OCT, researchers have managed to demonstrate that eyes of MS patients show distinct RNFL thinning after an event of acute optic neuritis in MS, and even subclinical damage in eyes with no previous optic neuritis. OCT is also a useful tool in terms of providing a differential diagnosis of MS toward, for example, neuromyelitis optica, a disease that usually shows stronger retinal thinning, or Susac syndrome, which is characterized by distinct patchy thinning of the inner retinal layers. RNFL thinning is associated with magnetic resonance imaging-derived measurements of the brain, such as whole-brain atrophy, gray and white matter atrophy, and optic radiation damage. These features suggest that OCT-derived retinal measurements are a complement for measuring central nervous system neurodegeneration in the context of clinical trials – for example, with neuroprotective substances. Keywords: visual function, multiple sclerosis, optic neuritis, retinal nerve fiber layer, neuromyelitis optica

  2. Wideband Optical Detector of Ultrasound for Medical Imaging Applications (United States)

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis


    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions. PMID:24895083

  3. Nanoscale optical imaging of semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boehmler, Miriam; Hartschuh, Achim [Department Chemie, CeNS, Ludwig-Maximilians-Universitaet Muenchen (Germany); Myalitsin, Anton; Mews, Alf [Department Chemie, Universitaet Hamburg (Germany)


    Inorganic semiconducting nanowires (NWs) feature size-related optical properties which make them interesting for a wide range of applications, e.g. nanoscale optoelectronics, sensors, and photovoltaics. Their relevant length scales that are determined by nanowire diameter and exciton Bohr radius, however, can not be resolved by conventional diffraction limited methods. We illustrate the prospects of tip-enhanced near-field optical microscopy (TENOM) as a method to investigate single nanowires. In TENOM a sharp metallic tip acts as optical antenna thereby enhancing the detected signal and increasing the optical resolution to about 15 nm. We present our investigations of CdSe NWs which have been grown by the wet chemical solution liquid solid technique. Here, TENOM provides the possibility to simultaneously image photoluminescence (PL) as well as Raman scattering of individual NWs with nanoscale resolution. We observe spatial variations of the PL intensity and energy on a length scale of about 15 nm indicating crystal phase transitions and diameter fluctuations.

  4. Snapshot spectral imaging system (United States)

    Arnold, Thomas; De Biasio, Martin; McGunnigle, Gerald; Leitner, Raimund


    Spectral imaging is the combination of spectroscopy and imaging. These fields are well developed and are used intensively in many application fields including industry and the life sciences. The classical approach to acquire hyper-spectral data is to sequentially scan a sample in space or wavelength. These acquisition methods are time consuming because only two spatial dimensions, or one spatial and the spectral dimension, can be acquired simultaneously. With a computed tomography imaging spectrometer (CTIS) it is possible to acquire two spatial dimensions and a spectral dimension during a single integration time, without scanning either spatial or spectral dimensions. This makes it possible to acquire dynamic image scenes without spatial registration of the hyperspectral data. This is advantageous compared to tunable filter based systems which need sophisticated image registration techniques. While tunable filters provide full spatial and spectral resolution, for CTIS systems there is always a tradeoff between spatial and spectral resolution as the spatial and spectral information corresponding to an image cube is squeezed onto a 2D image. The presented CTIS system uses a spectral-dispersion element to project the spectral and spatial image information onto a 2D CCD camera array. The system presented in this paper is designed for a microscopy application for the analysis of fixed specimens in pathology and cytogenetics, cell imaging and material analysis. However, the CTIS approach is not limited to microscopy applications, thus it would be possible to implement it in a hand-held device for e.g. real-time, intra-surgery tissue classification.

  5. Label-free volumetric optical imaging of intact murine brains (United States)

    Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.


    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).

  6. Space imaging infrared optical guidance for autonomous ground vehicle (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu


    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  7. Cardiac Imaging System (United States)


    Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.

  8. Tangible imaging systems (United States)

    Ferwerda, James A.


    We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.

  9. Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems (United States)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.; Krasilenko, Oksana V.; Krasilenko, Irina A.


    The paper considers results of design and modeling of continuously logical analog-to-digital converters (ADC) based on current mirrors for image processor and multichannel optical sensor systems with parallel inputs-outputs. For such multichannel serial-parallel analog-to-digital converters (SP ADC) it is needed base photoelectron cells, which are considered in paper. Its have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the continuously logical ADC of photocurrents and its base digit cells (ABC) and its simulations. We consider CL ADC for Gray and binary codes. Each channel of the structure consists of several base digit cells (ABC) on 20-30 CMOS FETs and one photodiode. The supply voltage of the ABC is 1-3.3V, the range of an input photocurrent is 0.1 - 10μA, the transformation time is 30ns at 5-8 bit binary or Gray codes, power consumption is about 1mW. One channel of ADC with iteration is based on one ABC-3(G) and SHD, and it has only 40 CMOS transistors. The general power consumption of the ADC, in this case, is only 50-100μW, if the maximum input current is 1μA. The CL ADC opens new prospects for realization of linear and matrix image processor and photo-electronic structures with picture operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers, and so forth.

  10. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter


    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  11. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server


    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  12. Blurred and noisy image pairs in parallel optics. (United States)

    Klapp, Iftach; Sochen, Nir; Mendlovic, David


    In previous works we have shown that parallel optics (PO) architecture can be used to improve the system matrix condition, which results in improving its immunity to additive noise in the image restoration process. PO is composed of a "main" system and an "auxiliary" system. Previously, we suggested the "trajectories" method to realize PO. In that method, a required auxiliary system is composed from auxiliary optics with a pixel confined response, followed by signal processing. In this paper, we emphasize the important secondary effects of the trajectories method. We show that in such a system, where the postprocessing comes after the detection, the postprocessing acts as a noise filter, hence allowing us to work with noisy data in the auxiliary channel. Roughly speaking, the SNR of an imaging system depends on the numerical aperture (NA). It follows that the main system, which typically has a higher NA, also has a higher SNR. Hence in the PO system, the ratio between the NA values of the main and auxiliary systems is expected to dictate the gap between their SNR values. In this paper, we show that when the system is implemented by the trajectories method, this expectation is too conservative. It is shown that due to the noise filtering, the auxiliary system can be noisier than expected. This claim is proved analytically and verified and exemplified by using experimental measurements.

  13. Scorpion image segmentation system (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.


    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  14. Precision optical navigation guidance system (United States)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.


    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  15. Fiber-optic communication systems

    CERN Document Server

    Agrawal, Govind P


    This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All othe

  16. Optical and opto-acoustic interventional imaging. (United States)

    Sarantopoulos, Athanasios; Beziere, Nicolas; Ntziachristos, Vasilis


    Many clinical interventional procedures, such as surgery or endoscopy, are today still guided by human vision and perception. Human vision however is not sensitive or accurate in detecting a large range of disease biomarkers, for example cellular or molecular processes characteristic of disease. For this reason advanced optical and opto-acoustic (photo-acoustic) methods are considered for enabling a more versatile, sensitive and accurate detection of disease biomarkers and complement human vision in clinical decision making during interventions. Herein, we outline developments in emerging fluorescence and opto-acoustic sensing and imaging techniques that can lead to practical implementations toward improving interventional vision.

  17. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity

    Directory of Open Access Journals (Sweden)

    Kun Wang


    Full Text Available Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI, and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.

  18. Imaging port wine stains by fiber optical coherence tomography (United States)

    Zhao, Shiyong; Gu, Ying; Xue, Ping; Guo, Jin; Shen, Tingmei; Wang, Tianshi; Huang, Naiyan; Zhang, Li; Qiu, Haixia; Yu, Xin; Wei, Xunbin


    We develop a fiber optical coherence tomography (OCT) system in the clinical utility of imaging port wine stains (PWS). We use our OCT system on 41 patients with PWS to document the difference between PWS skin and contralateral normal skin. The system, which operates at 4 frames/s with axial and transverse resolutions of 10 and 9 μm, respectively, in the skin tissue, can clearly distinguish the dilated dermal blood vessels from normal tissue. We present OCT images of patients with PWS and normal human skin. We obtain the structural parameters, including epidermal thickness and diameter and depth of dilated blood vessels. We demonstrate that OCT may be a useful tool for the noninvasive imaging of PWS. It may help determine the photosensitizer dose and laser parameters in photodynamic therapy for treating port wine stains.

  19. Imaged document information location and extraction using an optical correlator (United States)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.


    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). Many of these organizations are converting their paper archives to electronic images, which are then stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources and provide for rapid access to the information contained within these imaged documents. To meet this need, Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provide a means for the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and has the potential to determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.

  20. Adaptive Optics imaging of VHS 1256-1257: A Low Mass Companion to a Brown Dwarf Binary System

    CERN Document Server

    Stone, Jordan M; Kratter, Kaitlin M; Dupuy, Trent J; Close, Laird M; Eisner, Josh A; Fortney, Jonathan J; Hinz, Philip M; Males, Jared R; Morley, Caroline V; Morzinski, Katie M; Ward-Duong, Kimberly


    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age $\\sim300$ Myr the A and B components each have a mass of $64.6^{+0.8}_{-2.0}~M_{\\mathrm{Jup}}$, and the b component has a mass of $11.2^{+9.7}_{-1.8}$, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of $17.2\\pm2.6$ pc and the parallax distance of $12.7\\pm1.0$ pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particul...

  1. Optical image segmentation using wavelet filtering techniques (United States)

    Veronin, Christopher P.


    This research effort successfully implemented an automatic, optically based image segmentation scheme for locating potential targets in a cluttered FLIR image. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used in this research was based on texture discrimination and employs orientation specific, bandpass spatial filters as its main component. The orientation specific, bandpass spatial filters designed during this research include symmetrically located circular apertures implemented on heavy, black aluminum foil; cosine and sine Gabor filters implemented with detour-phase computer generated holography photoreduced onto glass slides; and symmetrically located circular apertures implemented on a liquid crystal television (LCTV) for real-time filter selection. The most successful design was the circular aperture pairs implemented on the aluminum foil. Segmentation was illustrated for simple and complex texture slides, glass template slides, and static and real-time FLIR imagery displayed on an LCTV.

  2. Optical metabolic imaging for monitoring tracheal health (United States)

    Sharick, Joe T.; Gil, Daniel A.; Choma, Michael A.; Skala, Melissa C.


    The health of the tracheal mucosa and submucosa is a vital yet poorly understood component of critical care medicine, and a minimally-invasive method is needed to monitor tracheal health in patients. Of particular interest are the ciliated cells of the tracheal epithelium that move mucus away from the lungs and prevent respiratory infection. Optical metabolic imaging (OMI) allows cellular-level measurement of metabolism, and is a compelling method for assessing tracheal health because ciliary motor proteins require ATP to function. In this pilot study, we apply multiphoton imaging of the fluorescence intensities and lifetimes of metabolic co-enzymes NAD(P)H and FAD to the mucosa and submucosa of ex vivo mouse trachea. We demonstrate the feasibility and potential diagnostic utility of these measurements for assessing tracheal health and pathophysiology at the single-cell level.

  3. Progress with the lick adaptive optics system

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B


    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  4. Optical Image Encryption with Simplified Fractional Hartley Transform

    Institute of Scientific and Technical Information of China (English)

    LI Xin-Xin; ZHAO Dao-Mu


    We present a new method for image encryption on the basis of simplified fractional Hartley transform (SFRHT). SFRHT is a real transform as Hartley transform (HT) and furthermore, superior to HT in virtue of the advantage that it can also append fractional orders as additional keys for the purpose of improving the system security to some extent. With this method, one can encrypt an image with an intensity-only medium such as a photographic film or a CCD camera by spatially incoherent or coherent illumination. The optical realization is then proposed and computer simulations are also performed to verify the feasibility of this method.

  5. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J


    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  6. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖


    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  7. Imaging System and Plasma Imaging on HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    郑银甲; 冯震; 罗萃文; 刘莉; 李伟; 严龙文; 杨青巍; 刘永


    As a new diagnostic means, plasma-imaging system has been developed on the HL2A tokamak, with a basic understanding of plasma discharge scenario of the entire torus, checking the plasma position and the clearance between the plasma and the first wall during discharge. The plasma imaging system consists of (1) color video camera, (2) observation window and turn mirror,(3) viewing & collecting optics, (4) video cable, (5) Video capture card as well as PC. This paper mainly describes the experimental arrangement, plasma imaging system and detailed part in the system, along with the experimental results. Real-time monitoring of plasma discharge process,particularly distinguishing limitor and divertor configuration, the imaging system has become key diagnostic means and laid the foundation for further physical experiment on the HL-2A tokamak.

  8. Active imaging system with Faraday filter (United States)

    Snyder, James J.


    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  9. EDITORIAL: Imaging systems and techniques Imaging systems and techniques (United States)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios


    and nano-clinics for optical diagnostics and targeted therapy, can play an important role in the diagnosis and treatment of cancer. These techniques can also be used to provide efficient drug delivery for treatment of other diseases, with increased sensitivity and specificity. Similarly, enhanced stand-off detection, classification, identification and surveillance techniques, for comprehensive civilian and military target protection and enhanced space situational awareness can open new frontiers of research and applications in the defence arena and homeland security. For instance, the development of potential imaging sensor architectures, enhanced remote sensing systems, ladars, lidars and radars can provide data capable of ensuring continuous monitoring of various imaging/physical/chemical parameters under different operating conditions, using both active and passive detection principles, reconfigurable and scalable focal plane array architectures, reliable systems for stand-off detection of explosives, and enhanced airport security. The above areas pose challenging problems to the technical community and indicate an ever-growing need for innovative and auspicious solutions. We would like to thank all authors for their valuable contributions, without which this special issue would not have become reality.

  10. Absolute instruments and perfect imaging in geometrical optics

    CERN Document Server

    Tyc, Tomas; Sarbort, Martin; Bering, Klaus


    We investigate imaging by spherically symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive a number of properties of such devices, present a general method for designing them and use this method to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically homogeneous region and having a moderate refractive index range.

  11. Habitable Exoplanet Imager Optical Telescope Concept Design (United States)

    Stahl, H. Philip


    Habitable Exoplanet Imaging Mission (HabEx) is a concept for a mission to directly image and characterize planetary systems around Sun-like stars. In addition to the search for life on Earth-like exoplanets, HabEx will enable a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. HabEx is one of four mission concepts currently being studied for the 2020 Astrophysics Decadal Survey.

  12. OSA Imaging and Applied Optics Congress Support (United States)


    contact our Grants Manager, Ewelina Osinska, at (202) 416-1934 or Sincerely, Marcia Lesky Deputy Senior Director Phone: 1-202-416...reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188) , 1215...applications from internationally recognized academic and industry leaders in the field. 1S. SUBJECT TERMS imaging, imaging systems, computational

  13. Modulation of retinal image vasculature analysis to extend utility and provide secondary value from optical coherence tomography imaging. (United States)

    Cameron, James R; Ballerini, Lucia; Langan, Clare; Warren, Claire; Denholm, Nicholas; Smart, Katie; MacGillivray, Thomas J


    Retinal image analysis is emerging as a key source of biomarkers of chronic systemic conditions affecting the cardiovascular system and brain. The rapid development and increasing diversity of commercial retinal imaging systems present a challenge to image analysis software providers. In addition, clinicians are looking to extract maximum value from the clinical imaging taking place. We describe how existing and well-established retinal vasculature segmentation and measurement software for fundus camera images has been modulated to analyze scanning laser ophthalmoscope retinal images generated by the dual-modality Heidelberg SPECTRALIS(®) instrument, which also features optical coherence tomography.

  14. Optical Coherence Tomography for Brain Imaging (United States)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  15. Label-free nonlinear optical imaging of mouse retina. (United States)

    He, Sicong; Ye, Cong; Sun, Qiqi; Leung, Christopher K S; Qu, Jianan Y


    A nonlinear optical (NLO) microscopy system integrating stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was developed to image fresh mouse retinas. The morphological and functional details of various retinal layers were revealed by the endogenous NLO signals. Particularly, high resolution label-free imaging of retinal neurons and nerve fibers in the ganglion cell and nerve fiber layers was achieved by capturing endogenous SRS and TPEF signals. In addition, the spectral and temporal analysis of TPEF images allowed visualization of different fluorescent components in the retinal pigment epithelium (RPE). Fluorophores with short TPEF lifetime, such as A2E, can be differentiated from other long-lifetime components in the RPE. The NLO imaging method would provide important information for investigation of retinal ganglion cell degeneration and holds the potential to study the biochemical processes of visual cycle in the RPE.

  16. Picosecond optical MCPI-based imagers (United States)

    Buckles, Robert A.; Guyton, Robert L.; Ross, Patrick W.


    We present the desired performance specifications for an advanced optical imager, which borrows practical concepts in high-speed microchannel plate (MCP) intensified x-ray stripline imagers and time-dilation techniques. With a four-fold speed improvement in state-of-the-art high-voltage impulse drivers, and novel atomic-layer deposition MCPs, we tender a design capable of 5 ps optical gating without the use of magnetic field confinement of the photoelectrons. We analyze the electron dispersion effects in the MCP and their implications for gating pulses shorter than the MCP transit time. We present a wideband design printed-circuit version of the Series Transmission Line Transformer (STLT) that makes use of 50-ohm coaxial 1.0 mm (110 GHz) and 1.85 mm (65 GHz) hermetically sealed vacuum feedthroughs and low-dispersion Teflon/Kapton circuit materials without the use of any vias. The STLT matches impedance at all interfaces with a 16:1 impedance (4:1 voltage) reduction, and delivers a dispersion-limited sharp impulse to the MCP strip. A comparison of microstrip design calculations is given, showing variances between method of moments, empirical codes, and finite element methods for broad, low-impedance traces. Prototype performance measurements are forthcoming.

  17. Image Resolution of a Holographic System (United States)


    transfer function and linear systems theory to optical systems. This has also been applied to holographic image analysis (Refs. l I and 12). The...view point, the linear systems theory is applied in correlating the intensity distribution of a known point or line radiation source with the intensity...function of a holographic system, (2) a discussion of linear systems theory to allow a thorough description of a method for obtaining the line

  18. Optical-parametric-amplification applications to complex images (United States)

    Vaughan, Peter M.


    single-shot geometry, capable of true single-shot OPA imaging. To our knowledge, this is the first Fourier-plane OPA imaging of more than a single spatial-frequency component of an image. We observe more than 30 distinct spatial frequency components in both our amplified image and our wavelength shifted image. The two-dimensional SBP for our Fourier-plane OPA imaging system was ˜46,000. We have demonstrated all-optical spatial filtering for these complex images[4]. We have demonstrated that direct Fourier filtering of spatial features is possible by using a shaped pump beam. We have simply used a line shaped pump beam generated by a use of cylindrical lens. Further, the phase matching leads to interesting image-processing results, which are controlled by rotation of the crystal angle. The phase matching condition acts like a ring-shaped physical aperture on the image. We can isolate certain portions of the image simply by rotating the crystal. The Fourier plane of interaction allows for both spatial-frequency and spatial-feature filtering, with wide latitude available in the spatial-frequency transfer function through the use of exotic shaped pump beams.

  19. Optical Navigation System Project (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  20. Optical Navigation System Project (United States)

    National Aeronautics and Space Administration — This proposal is for a flexible navigation system for deep space operations that does not require GPS measurements. The navigation solution is computed using an...

  1. 温度和气压对车载光学系统成像质量的影响研究%Influence of temperature and air pressure on imaging quality of vehicle-mounted optical system

    Institute of Scientific and Technical Information of China (English)

    李国璋; 姜文韬; 任国全; 李冬伟; 陈诚


    In order to study the influence of temperature and air pressure on imaging quality of vehicle -mounted opti-cal system,the influence of temperature variation and air pressure variation on structure parameters of optical system was analyzed.Taking CCD camera of a tracked armoured reconnaissance vehicle as an example,optical system model was established,and the system model was simulated and analyzed by setting different temperatures and air pressures. The imaging quality of optical system was characterized by the optical -modulation transfer function,and the change laws of imaging quality under different temperatures and air pressures were obtained.The simulation results show that the imaging quality of optical system becomes worse when the changes of temperature and air pressure are bigger,and the influence of air pressure changes is bigger than that of the temperature changes.The study has a great reference value for environmental adaptability design of new type vehicle -mounted optical system.%为了研究温度和气压对车载光学系统成像质量的影响,在分析温度和气压变化对光学系统结构参数影响的基础上,以某型履带式装甲侦察车 CCD 摄像机为研究对象,建立其光学系统模型,通过设置不同的温度和气压对系统模型进行了仿真分析。利用光学调制传递函数来表征系统的成像质量,得到了不同温度和气压下系统成像质量的变化规律。仿真结果表明:温度和气压的变化幅度越大,光学系统的成像质量越差,并且气压变化对光学系统成像质量的影响程度大于温度变化。此研究对新型车载光学系统的环境适应性设计提供了重要的参考。

  2. Optical encryption using photon-counting polarimetric imaging. (United States)

    Maluenda, David; Carnicer, Artur; Martínez-Herrero, Rosario; Juvells, Ignasi; Javidi, Bahram


    We present a polarimetric-based optical encoder for image encryption and verification. A system for generating random polarized vector keys based on a Mach-Zehnder configuration combined with translucent liquid crystal displays in each path of the interferometer is developed. Polarization information of the encrypted signal is retrieved by taking advantage of the information provided by the Stokes parameters. Moreover, photon-counting model is used in the encryption process which provides data sparseness and nonlinear transformation to enhance security. An authorized user with access to the polarization keys and the optical design variables can retrieve and validate the photon-counting plain-text. Optical experimental results demonstrate the feasibility of the encryption method.

  3. Wave optics approach for incoherent imaging simulation through distributed turbulence (United States)

    Underwood, Thomas A.; Voelz, David G.


    An approach is presented for numerically simulating incoherent imaging using coherent wave optics propagation methods. The approach employs averaging of irradiance from uncorrelated coherent waves to produce incoherent results. Novel aspects of the method include 1) the exploitation of a spatial windowing feature in the wave optics numerical propagator to limit the angular spread of the light and 2) a simple propagation scaling concept to avoid aliased field components after the focusing element. Classical linear systems theory is commonly used to simulate incoherent imaging when it is possible to incorporate aberrations and/or propagation medium characteristics into an optical transfer function (OTF). However, the technique presented here is useful for investigating situations such as "instantaneous" short-exposure imaging through distributed turbulence and phenomena like anisoplanatism that are not easily modeled with the typical linear systems theory. The relationships between simulation variables such as spatial sampling, source and aperture support, and intermediate focal plane are discussed and the requirement or benefits of choosing these in certain ways are demonstrated.

  4. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology (United States)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.


    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  5. Three-dimensional integral imaging display system via off-axially distributed image sensing (United States)

    Piao, Yongri; Qu, Hongjia; Zhang, Miao; Cho, Myungjin


    In this paper, we propose a three-dimensional integral imaging display system with a multiple recorded images using off-axially distributed image sensing. First, the depth map of the 3D objects is extracted from the off-axially recorded multi-perspective 2D images by using profilometry technique. Then, the elemental image array is computationally synthesized using the extracted depth map based on ray mapping model. Finally, the 3D images are optically displayed in integral imaging system. To show the feasibility of the proposed method, the optical experiments for 3D objects are carried out and presented in this paper.

  6. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging (United States)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong


    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  7. Tunable Optical Polymer Systems (United States)


    outperforms almost all other organic polymer systems reported thus far, the introduction of the first multiple color LBL electrochrome , and development...thin films outperform previously reported LBL assembled films and approach integration capability for a number of electrochromic , sensing and...Zacharia, N; Hammond, P. T. “ Electrochromism of LBL assembled thin polymer films containing metal oxide nanoparticles,” American Chemical Society

  8. Neural imaging in songbirds using fiber optic fluorescence microscopy (United States)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.


    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  9. Atmospheric Optical Communication Systems. (United States)


    Tnteral system noise due to dark current id is Oven by . 1d = 2qGrB"" (2-9) Dark current is due to detecor biasing in some instances, and in somue...8217 without extansive pro- gr-=:ing exer’ence. Although. the znodel is designed to be Lteracdve, slight mod-.- i~cadons winl ezw :&31 r~ing of the progrsm

  10. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail:; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)


    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  11. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication. (United States)

    Jian, Huang; Ke, Deng; Chao, Liu; Peng, Zhang; Dagang, Jiang; Zhoushi, Yao


    Adaptive optics (AO) systems can suppress the signal fade induced by atmospheric turbulence in satellite-to-ground coherent optical communication. The lower bound of the signal fade under AO compensation was investigated by analyzing the pattern of aberration modes for a one-stage imaging AO system. The distribution of the root mean square of the residual aberration is discussed on the basis of the spatial and temporal characteristics of the residual aberration of the AO system. The effectiveness of the AO system for improving the performance of coherent optical communication is presented in terms of the bit error rate and system availability.

  12. [Effect of spectrum distortion on modulation transfer function in imaging fiber-optic spectrometer]. (United States)

    Cheng, Xin; Wang, Jing; Zhang, Bao; Hong, Yong-Feng


    Imaging fiber bundles were introduced to dispersion imaging spectrometer and substituted for slit, connecting the telescope and spectrometer to yield the imaging fiber-optic spectrometer. It is a double sampling system, the misalignment between image of optical fiber and detector pixel has arisen because of the spectrum distortion of spectrometer, which affected the second sampling process, and the modulation transfer function (MTF) therefore degraded. Optical transfer function of sampling process was derived from line spread function. The effect of spectrum distortion on system MTF was analyzed, and a model evaluating the MTF of imaging fiber-optic spectrometer was developed. Compared to the computation model of MTF of slit imaging spectrometer, a MTF item of sampling by optical fiber and a MTF item of misalignment arising from spectrum distortion were added in this model. Employing this, the MTF of an airborne imaging fiber-optic spectrometer for visible near infrared band was evaluated. The approach ro deriving and developing the MTF model has a reference signification for the computation of MTF of double sampling system, which can direct the design of imaging fiber-optic spectrometer also.

  13. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D


    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  14. Chaotic systems in optical communications (United States)

    Siuzdak, J.


    Communications application of chaotic oscillations of lasers with optoelectronic feedback was discussed. The possibility of eavesdropping of the transmission was analyzed. It was proved that if the rogue party precisely knows parameters of the chaotic system it may recreate the entire signals solely by observation of the optical signal power causing security breach.

  15. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams


    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  16. Tactical Imaging System (United States)

    Mocenter, Michael M.


    The ability to send photographic information to command centers is a vital element in performing effective near real-time reconnaissance and surveillance operations. This imagery, in conjunction with other battlefield data, provides the battlefield commander with up-to-date intelligence for making decisions. Until recently, the ability to provide this real-time information was severely restricted by the logistics of physically moving, developing, and then disseminating the film. This time delay resulted in out-of-date, stale intelligence. This problem situation has eased recently due to technological developments that have been instrumental in facilitating the dissemination of near real-time information to forward operating areas and behind enemy lines. The Naval Air Development Center (NAVAIRDEVCEN) has capitalized on these developments and established the Tactical Imaging System (TIS). This miniaturized, man-pack, SATCOM/HF transmitting system provides near real-time tactical imagery. It consists of an image sensor, image intensifier, zoom lens, and image transmission processor. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications. The TIS will have potential application in areas such as identification (friend or foe), reconnaissance, surveillance, and battlefield assessment. Under the TIS program, NAVAIRDEVCEN has developed hands-on experience in still video images and related technologies, including fleet satellite communications, HF transmission, image compression algorithms, VSLI integrated circuitry design, and day/night imagery techniques. NAVAIRDEVCEN has developed a complete, miniaturized system to conduct operational demonstrations, and to demonstrate operational tactics and utilization concepts. This paper provides an overview of the TIS components, specifications, operations, and future developments and applications.

  17. LSST active optics system software architecture (United States)

    Thomas, Sandrine J.; Chandrasekharan, Srinivasan; Lotz, Paul; Xin, Bo; Claver, Charles; Angeli, George; Sebag, Jacques; Dubois-Felsmann, Gregory P.


    The Large Synoptic Survey Telescope (LSST) is an 8-meter class wide-field telescope now under construction on Cerro Pachon, near La Serena, Chile. This ground-based telescope is designed to conduct a decade-long time domain survey of the optical sky. In order to achieve the LSST scientific goals, the telescope requires delivering seeing limited image quality over the 3.5 degree field-of-view. Like many telescopes, LSST will use an Active Optics System (AOS) to correct in near real-time the system aberrations primarily introduced by gravity and temperature gradients. The LSST AOS uses a combination of 4 curvature wavefront sensors (CWS) located on the outside of the LSST field-of-view. The information coming from the 4 CWS is combined to calculate the appropriate corrections to be sent to the 3 different mirrors composing LSST. The AOS software incorporates a wavefront sensor estimation pipeline (WEP) and an active optics control system (AOCS). The WEP estimates the wavefront residual error from the CWS images. The AOCS determines the correction to be sent to the different degrees of freedom every 30 seconds. In this paper, we describe the design and implementation of the AOS. More particularly, we will focus on the software architecture as well as the AOS interactions with the various subsystems within LSST.

  18. Automated imaging system for single molecules (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel


    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  19. Table-top diffuse optical imaging

    NARCIS (Netherlands)

    Sturgeon, K.A.; Bakker, L.P.


    This report describes the work done during a six months internshipat Philips Research for a Masters in Electronic and Electrical Engineering. An existing table-top tomography system for measuring lightin phantom breasts was restored. Updated software control and image reconstruction software was cr

  20. Table-top diffuse optical imaging

    NARCIS (Netherlands)

    Sturgeon, K.A.; Bakker, L.P.


    This report describes the work done during a six months internshipat Philips Research for a Masters in Electronic and Electrical Engineering. An existing table-top tomography system for measuring lightin phantom breasts was restored. Updated software control and image reconstruction software was cr