WorldWideScience

Sample records for optical flow warping

  1. Adaptive guided image filter for warping in variational optical flow computation

    NARCIS (Netherlands)

    Tu, Z.; Poppe, R.W.; Veltkamp, R.C.

    2016-01-01

    The variational optical flow method is considered to be the standard method to calculate an accurate dense motion field between successive frames. It assumes that the energy function has spatiotemporal continuities and appearance motions are small. However, for real image sequences, the temporal con

  2. WARP

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-12

    WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currently not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.

  3. Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    CERN Document Server

    López-Corredoira, M; Beckman, J E

    2002-01-01

    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow...

  4. Ricci Flow of Warped Product Metrics with Positive Isotropic Curvature on $S^{p+1}× S^1$

    Indian Academy of Sciences (India)

    H A Gururaja

    2012-11-01

    We study the asymptotic behaviour of the ODE associated to the evolution of curvature operator in the Ricci flow of a doubly warped product metric on $S^{p+1}× S^1$ with positive isotropic curvature.

  5. G\\"odel, warped AdS$_3$ and flows from $\\mathcal{N} = (0,2)$ SCFTs

    CERN Document Server

    Colgáin, Eoin Ó

    2015-01-01

    We present all timelike supersymmetric solutions to 3D U(1)$^3$ gauged supergravity, a known consistent truncation of string theory. We uncover a rich vacuum structure, including an infinite class of new timelike (G\\"odel) and spacelike warped AdS$_3$ critical points. We outline the construction of holographic flows interpolating between AdS$_3$ and warped AdS$_3$ critical points.

  6. Galactic disc warps due to intergalactic accretion flows onto the disc

    CERN Document Server

    López-Corredoira, M; Beckman, J E

    2007-01-01

    The accretion of the intergalactic medium onto the gaseous disc is used to explain the generation of galactic warps. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small for most incident inflow angles and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shaped warp. The torque produced by a flow of velocity ~100 km/s and baryon density ~10^{-25} kg/m^3, which is within the possible values for the intergalactic medium, is enough to generate the observed warps and this mechanism offers quite a plausible explanation. The inferred rate of infall of matter, ~1 M_sun/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of chemical evolution resolving key issues, notably the G-dwarf problem. Sanchez-Salcedo (2006) suggests that this mechanism is not plausible because it would produce a dependence of the scaleheight of the disc with the Galactocentric azim...

  7. Groundwater similarity across a watershed derived from time-warped and flow-corrected time series

    Science.gov (United States)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.

    2017-05-01

    Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.

  8. Spatial warping by oriented line detectors can counteract neural delays

    Directory of Open Access Journals (Sweden)

    Don eVaughn

    2013-11-01

    Full Text Available The slow speed of neural transmission necessitates that cortical visual information from dynamic scenes will lag reality. The perceiving the present (PTP hypothesis suggests that the visual system can mitigate the effect of such delays by spatially warping scenes to look as they will in ~100 ms from now (Changizi, 2001. We here show that the Hering illusion, in which straight lines appear bowed, can be induced by a background of optic flow, consistent with the PTP hypothesis. However, importantly, the bowing direction is the same whether the flow is inward or outward. This suggests that if the warping is meant to counteract latencies, it is accomplished by a simple strategy that is insensitive to motion direction, and that works only under typical (forward-moving circumstances. We also find that the illusion strengthens with longer pulses of optic flow, demonstrating motion integration over ~80 ms. The illusion is identical whether optic flow precedes or follows the flashing of bars, exposing the spatial warping to be equally postdictive and predictive, i.e., peri-dictive. Additionally, the illusion is diminished by cues which suggest the bars are independent of the background movement. Collectively, our findings are consistent with a role for networks of visual orientation-tuned neurons (e.g., simple cells in primary visual cortex in spatial warping. We conclude that under the common condition of forward ego-motion, spatial warping counteracts the disadvantage of neural latencies. It is not possible to prove that this is the purpose of spatial warping, but our findings at minimum place constraints on the PTP hypothesis, demonstrating that any spatial warping for the purpose of counteracting neural delays is not a precise, on-the-fly computation, but instead a heuristic achieved by a simple mechanism that succeeds under normal circumstances.

  9. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez

    2013-10-01

    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  10. Optic flow and autonomous navigation.

    Science.gov (United States)

    Campani, M; Giachetti, A; Torre, V

    1995-01-01

    Many animals, especially insects, compute and use optic flow to control their motion direction and to avoid obstacles. Recent advances in computer vision have shown that an adequate optic flow can be computed from image sequences. Therefore studying whether artificial systems, such as robots, can use optic flow for similar purposes is of particular interest. Experiments are reviewed that suggest the possible use of optic flow for the navigation of a robot moving in indoor and outdoor environments. The optic flow is used to detect and localise obstacles in indoor scenes, such as corridors, offices, and laboratories. These routines are based on the computation of a reduced optic flow. The robot is usually able to avoid large obstacles such as a chair or a person. The avoidance performances of the proposed algorithm critically depend on the optomotor reaction of the robot. The optic flow can be used to understand the ego-motion in outdoor scenes, that is, to obtain information on the absolute velocity of the moving vehicle and to detect the presence of other moving objects. A critical step is the correction of the optic flow for shocks and vibrations present during image acquisition. The results obtained suggest that optic flow can be successfully used by biological and artificial systems to control their navigation. Moreover, both systems require fast and accurate optomotor reactions and need to compensate for the instability of the viewed world.

  11. Sirepo - Warp

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.

  12. Warp sculpting.

    Science.gov (United States)

    Gain, James; Marais, Patrick

    2005-01-01

    The task of computer-based free-form shape design is fraught with practical and conceptual difficulties. Incorporating elements of traditional clay sculpting has long been recognized as a means of shielding the user from these complexities. We present warp sculpting, a variant of spatial deformation, which allows deformations to be initiated by the rigid body transformation or uniform scaling of volumetric tools. This is reminiscent of a tool imprinting, flexing, and molding clay. Unlike previous approaches, the deformation is truly interactive. Tools, encoded in a distance field, can have arbitrarily complex shapes. Although individual tools have a static shape, several tools can be applied simultaneously. We enhance the basic formulation of warp sculpting in two ways. First, deformation is toggled to automatically overcome the problem of "sticky" tools, where the object's surface clings to parts of a tool that are moving away. Second, unlike many other spatial deformations, we ensure that warp sculpting remains foldover-free and, hence, prevent self-intersecting objects.

  13. Optical diagnostics of intermittent flows

    DEFF Research Database (Denmark)

    Okulov, V.L.; Naumov, I.V.; Sørensen, Jens Nørkær

    2007-01-01

    The efficiency of combined use of different optical techniques for flow diagnostics is demonstrated with the practically important case of intense swirling flows. It is shown that, when applied separately, commonly used optical measuring techniques, such as laser Doppler anemometry and particle...... image velocimetry, frequently give erroneous results, especially for the transition flow and developed nonstationary flow. However, their combined use in diagnostics of unsteady (intermittent) flows significantly improves both the temporal and spatial resolution of measurements. Such a complex approach...... is for the first time applied for diagnostics of the flow pattern in a closed cylinder with a rotating end face with the aim of studying the changeover from the steady axisymmetric to unsteady asymmetric flow over a wide range of flow parameters. It is found that such a transition is notable for azimuthal...

  14. Deferred Warping.

    Science.gov (United States)

    Knuth, Martin; Bender, Jan; Goesele, Michael; Kuijper, Arjan

    2016-03-18

    We introduce deferred warping, a novel approach for real-time deformation of 3D objects attached to an animated or manipulated surface. Our target application is virtual prototyping of garments where 2D pattern modeling is combined with 3D garment simulation which allows an immediate validation of the design. The technique works in two steps: First, the surface deformation of the target object is determined and the resulting transformation field is stored as a matrix texture. Then the matrix texture is used as look-up table to transform a given geometry onto a deformed surface. Splitting the process in two steps yields a large flexibility since different attachment types can be realized by simply defining specific mapping functions. Our technique can directly handle complex topology changes within the surface. We demonstrate a fast implementation in the vertex shading stage allowing the use of highly decorated surfaces with millions of triangles in real-time.

  15. A ROBUST OPTICAL FLOW COMPUTATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a new method for robust and accurate optical flow estimation. The significance of this work is twofold. Firstly, the idea of bi-directional scheme is adopted to reduce the model error of optical flow equation, which allows the second order Taylor's expansion of optical flow equation for accurate solution without much extra computational burden; Secondly, this paper establishs a new optical flow equation based on LSCM (Local Structure Constancy Model) instead of BCM (Brightness Constancy Model), namely the optical flow equation does not act on scalar but on tensor-valued (matrix-valued) field, due to the two reason: (1) structure tensor-value contains local spatial structure information, which provides us more useable cues for computation than scalar; (2) local image structure is less sensitive to illumination variation than intensity, which weakens the disturbance of non-uniform illumination in real sequences. Qualitative and quantitative results for synthetic and real-world scenes show that the new method can produce an accurate and robust results.

  16. Myocardial Motion Estimation: An Evaluation of Optical Flow Computation Techniques on Echocardiographic Images

    Directory of Open Access Journals (Sweden)

    Slamet Riyadi

    2011-01-01

    Full Text Available The use of image processing technique for cardiac motion analysis has been an active research in the past decade. The estimation of myocardial motion eases the cardiologist in diagnosing cardiac abnormalities. In term of movement analysis, optical flow is the most popular technique that has been used by researchers. This paper describes the implementation and evaluation of three optical flow computation techniques to estimate the myocardial motion using echocardiographic images. The three techniquesare the global smoothness method (GSM, the local smoothness method (LSM and warping technique (WT. Optical flow field is computed based on healthy cardiac video on parasternal short axes view. These techniques look promising since the optical flow fields can be utilized to estimate the myocardial movement and comply with its true movement. The performances of each technique in terms of the direction, homogeneity and computing time, are also discussed.

  17. Warped product rigidity

    CERN Document Server

    He, Chenxu; Wylie, William

    2011-01-01

    In this paper we study the space of solutions to an overdetermined linear system involving the Hessian of functions. We show that if the solution space has dimension greater than one, then the underlying manifold has a very rigid warped product structure. This warped product structure will be used to study warped product Einstein structures in our paper "The space of virtual solutions to the warped product Einstein equation".

  18. Insect vision: controlling actions through optic flow.

    Science.gov (United States)

    Collett, Thomas S

    2002-09-17

    Insects depend upon optic flow to supply much of their information about the three-dimensional structure of the world. Many insects use translational flow to measure the distance of objects from themselves. A recent study has provided new insights into the way Drosophila use optic flow to pick out a close target to approach.

  19. Putting the Warp into Warp Drive

    CERN Document Server

    Obousy, Richard K

    2008-01-01

    Over the last decade, there has been a respectable level of scientific interest regarding the concept of a warp drive. This is a hypothetical propulsion device that could theoretically circumvent the traditional limitations of special relativity which restricts spacecraft to sub-light velocities. Any breakthrough in this field would revolutionize space exploration and open the doorway to interstellar travel. This article discusses a novel approach to generating the warp bubble necessary for such propulsion; the mathematical details of this theory are discussed in an article published in the Journal of the British Interpanetary Society. The theory is based on some of the exciting predictions coming out of string theory and it is the aim of this article to introduce the warp drive idea from a non-mathematical perspective that should be accessible to a wide range of readers.

  20. Warps and Cosmic Infall

    CERN Document Server

    Jiang, I G; Jiang, Ing-Guey; Binney, James

    1998-01-01

    N-body simulations show that when infall reorientates the outer parts of a galactic halo by several degrees per Gyr, a self-gravitating disk that is embedded in the halo develops an integral-sign warp that is comparable in amplitude to observed warps. Studies of angular-momentum acquisition suggest that the required rate of halo reorientation is realistic for galaxies like the Milky Way.

  1. Finding Elephant Flows for Optical Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; Meent, van de Remco; Pras, Aiko

    2007-01-01

    Optical networks are fast and reliable networks that enable, amongst others, dedicated light paths to be established for elephant IP flows. Elephant IP flows are characterized by being small in number, but long in time and high in traffic volume. Moving these flows from the general IP network to ded

  2. On a Decomposition Model for Optical Flow

    Science.gov (United States)

    Abhau, Jochen; Belhachmi, Zakaria; Scherzer, Otmar

    In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.

  3. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  4. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  5. Warp Field Mechanics 101

    Science.gov (United States)

    White, Harold

    2011-01-01

    This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

  6. Accelerated Backward Warping

    Institute of Scientific and Technical Information of China (English)

    ZHANG YanCi(张严辞); LIU XueHui(刘学慧); WU EnHua(吴恩华)

    2003-01-01

    In this paper a plane-based backward warping algorithm is proposed to generate novel views from multiple reference images. First, depth information is employed to reconstruct space planes from individual reference images and calculate the potential occluding relationship between these planes. Then the planes which represent each identical space plane from different reference images are compared with each other to decide the one with the best sample rate to be preserved and used in the later warping period while the other samples are abandoned. While the image of a novel view is produced, traditional methods in computer graphics, such as visibility test and clipping, are used to process the planes reconstructed. Then the planes processed are projected onto the desired image from the knowledge on which plane the desired image pixels are warped from can be acquired. Finally, pixels' depth of the desired image is calculated and then a backward warping is performed from these pixels to the reference images to obtain their colors. The storage requirement in the algorithm is small and increases slowly with the number of reference images increases. By combining the strategy of only preserving the best sample parts and the backward warping algorithm, the sample problem could be well tackled.

  7. Flow line asymmetric nonimaging concentrating optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-09-01

    Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.

  8. WARP Weather Information Network Server

    Data.gov (United States)

    Department of Transportation — WINS is the dissemination module of the WARP system that provides an interface to various NAS Users/systems that require weather data/products/information from WARP...

  9. Geodesic congruences in warped spacetimes

    CERN Document Server

    Ghosh, Suman; Kar, Sayan

    2010-01-01

    In this article, we explore the kinematics of timelike geodesic congruences in warped five dimensional bulk spacetimes, with and without thick or thin branes. We begin our investigations with the simplest case, namely geodesic flows in the Randall--Sundrum AdS (Anti de Sitter) geometry without and with branes. Analytical expressions for the expansion scalar are obtained and the effect of including one or more thin branes (i.e. a background which is a slice of AdS spacetime) on its evolution, is pointed out. Subsequently, we move on to studying such congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using the analytical expressions for the velocity field components, we interpret the expansion, shear and rotation (ESR) along the flows. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer's point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in the ba...

  10. Galactic Disk Warps

    NARCIS (Netherlands)

    Kuijken, K.; García, I.

    2000-01-01

    Abstract: This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  11. Galactic Disk Warps

    CERN Document Server

    Kuijken, K; Kuijken, Konrad; Garcia, Inigo

    2000-01-01

    This review addresses recent developments in the field of disk galaxy warps. Both results from a new HI survey of edgeon disk galaxies, and of simulations of the interaction between a disk+halo and an orbiting satelite, will be discussed.

  12. Distributed flow sensing using optical hot -wire grid.

    Science.gov (United States)

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  13. Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics

    Science.gov (United States)

    Chidley, Matthew D.; Tkaczyk, Tomasz; Kester, Robert; Descour, Michael R.

    2006-02-01

    A 7-mm OD, NA = 1 water immersion injection-molded plastic endoscope objective has been fabricated for a laser scanning fiber confocal reflectance microscope (FCRM) system specifically designed for in vivo detection of cervical and oral pre-cancers. Injection-molded optics was selected for the ability to incorporate aspheric surfaces into the optical design and its high volume capabilities. Our goal is high performance disposable endoscope probes. This objective has been built and tested as a stand-alone optical system, a Strehl ratio greater than 0.6 has been obtained. One of the limiting factors of optical performance is believed to be flow-induced birefringence. We have investigated different configurations for birefringence visualization and believe the circular polariscope is most useful for inspection of injection-molded plastic optics. In an effort to decrease birefringence effects, two experiments were conducted. They included: (1) annealing of the optics after fabrication and (2) modifying the injection molding prameters (packing pressures, injection rates, and hold time). While the second technique showed improvement, the annealing process could not improve quality without physically warping the lenses. Therefore, to effectively reduce flow-induced birefringence, molding conditions have to be carefully selected. These parameters are strongly connected to the physical part geometry. Both optical design and fabrication technology have to be considered together to deliver low birefringence while maintaining the required manufacturing tolerances. In this paper we present some of our current results that illustrate how flow-induced birefringence can degrade high performance injection-molded plastic optical systems.

  14. Warping for trim statics

    KAUST Repository

    Zhang, Dongliang

    2014-08-05

    The quality of migration images depends on the accuracy of the velocity model. For large velocity errors, the migration image is strongly distorted, which unflattens events in the common image gathers and consequently leads to a blurring in the stacked migration image. To mitigate this problem, we propose dynamic image warping to flatten the common image gathers before stacking and to enhance the signal-to-noise ratio of the migration image. Numerical tests on the Marmousi model and GOM data show that image warping of the prestack images followed by stacking leads to much better resolved reflectors than the original migration image. The problem, however, is that the reflector locations have increased uncertainty because the wrong velocity model is still used.

  15. The warp drive and antigravity

    CERN Document Server

    Ellis, H G

    2004-01-01

    The warp drive envisioned by Alcubierre that can move a spaceship faster than light can, with modification, levitate it as if it were lighter than light, even allow it to go below a black hole's horizon and return unscathed. Wormhole-like versions of the author's `drainhole' (1973) might provide the drive, in the form of a by-pass of the spaceship composed of a multitude of tiny topological tunnels. The by-pass would divert the gravitational `ether' into a sink covering part of the spaceship's hull, connected by the tunnels to a source covering the remainder of the hull, to produce an ether flow like that of a river that disappears underground only to spring forth at a point downstream. This diversion would effectively shield the spaceship from external gravity.

  16. Radiation-Driven Warping. 2; Nonisothermal Disks

    Science.gov (United States)

    Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.

    1998-01-01

    Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge

  17. Optical Flow based Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Kahlouche Souhila

    2008-11-01

    Full Text Available In this paper we try to develop an algorithm for visual obstacle avoidance of autonomous mobile robot. The input of the algorithm is an image sequence grabbed by an embedded camera on the B21r robot in motion. Then, the optical flow information is extracted from the image sequence in order to be used in the navigation algorithm. The optical flow provides very important information about the robot environment, like: the obstacles disposition, the robot heading, the time to collision and the depth. The strategy consists in balancing the amount of left and right side flow to avoid obstacles, this technique allows robot navigation without any collision with obstacles. The robustness of the algorithm will be showed by some examples.

  18. Asymmetric warps in disk galaxies: dependence on dark matter halo

    CERN Document Server

    Jog, K S C J

    2006-01-01

    Recent observations have shown that most of the warps in the disk galaxies are asymmetric. However there exists no generic mechanism to generate these asymmetries in warps. We have shown that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a dynamical wave interference between the first two bending modes i.e. bowl-shaped mode(m=0) and S-shaped warping mode(m=1) in the galactic disk embedded in a dark matter halo. We show that the asymmetric warps are more pronounced when the dark matter content within the optical disk is lower as in early-type galaxies.

  19. Variational optical flow computation in real time.

    Science.gov (United States)

    Bruhn, Andrés; Weickert, Joachim; Feddern, Christian; Kohlberger, Timo; Schnörr, Christoph

    2005-05-01

    This paper investigates the usefulness of bidirectional multigrid methods for variational optical flow computations. Although these numerical schemes are among the fastest methods for solving equation systems, they are rarely applied in the field of computer vision. We demonstrate how to employ those numerical methods for the treatment of variational optical flow formulations and show that the efficiency of this approach even allows for real-time performance on standard PCs. As a representative for variational optic flow methods, we consider the recently introduced combined local-global method. It can be considered as a noise-robust generalization of the Horn and Schunck technique. We present a decoupled, as well as a coupled, version of the classical Gauss-Seidel solver, and we develop several multgrid implementations based on a discretization coarse grid approximation. In contrast, with standard bidirectional multigrid algorithms, we take advantage of intergrid transfer operators that allow for nondyadic grid hierarchies. As a consequence, no restrictions concerning the image size or the number of traversed levels have to be imposed. In the experimental section, we juxtapose the developed multigrid schemes and demonstrate their superior performance when compared to unidirectional multgrid methods and nonhierachical solvers. For the well-known 316 x 252 Yosemite sequence, we succeeded in computing the complete set of dense flow fields in three quarters of a second on a 3.06-GHz Pentium4 PC. This corresponds to a frame rate of 18 flow fields per second which outperforms the widely-used Gauss-Seidel method by almost three orders of magnitude.

  20. Fermions in a warped resolved conifold

    CERN Document Server

    Dantas, D M; Almeida, C A S

    2013-01-01

    We investigated the localization of the spinorial field in a braneworld built as a warped product between a 3-brane and a 2-cycle of the resolved conifold. This scenario provides a geometric flow that controls the singularity at the origin and changes the properties of the fermion in this background. Furthermore, due the cylindrical symmetry according to the 3-brane and a smoothed warp factor, this geometry can be regarded as a near brane correction of the string-like branes. This geometry allows a normalizable and well-defined massless mode whose decay and value on the brane depend on the resolution parameter. For the Kaluza-Klein modes, resolution parameter also controls the height of the barrier of the volcano potential.

  1. Statistical Inverse Formulation of Optical Flow with Uncertainty Quantification

    CERN Document Server

    Sun, Jie

    2016-01-01

    Optical flow refers to the visual motion observed between two consecutive images. Since the degree of freedom is typically much larger than the constraints imposed by the image observations, the straightforward formulation of optical flow inference is an ill-posed problem. By setting some type of additional "regularity" constraints, classical approaches formulate a well-posed optical flow inference problem in the form of a parameterized set of variational equations. In this work we build a mathematical connection, focused on optical flow methods, between classical variational optical flow approaches and Bayesian statistical inversion. A classical optical flow solution is in fact identical to a maximum a posteriori estimator under the assumptions of linear model with additive independent Gaussian noise and a Gaussian prior distribution. Unlike classical approaches, the statistical inversion approach to optical flow estimation not only allows for "point" estimates, but also provides a distribution of solutions ...

  2. DigiWarp: a method for deformable mouse atlas warping to surface topographic data

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Anand A; Shattuck, David W; Toga, Arthur W [Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095 (United States); Chaudhari, Abhijit J [Department of Radiology, UC Davis School of Medicine, Sacramento, CA 95817 (United States); Li Changqing; Cherry, Simon R [Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616 (United States); Dutta, Joyita; Leahy, Richard M, E-mail: anand.joshi@loni.ucla.ed, E-mail: leahy@sipi.usc.ed [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)

    2010-10-21

    For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L{sup 2} pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder.

  3. Optical flow based finger stroke detection

    Science.gov (United States)

    Zhu, Zhongdi; Li, Bin; Wang, Kongqiao

    2010-07-01

    Finger stroke detection is an important topic in hand based Human Computer Interaction (HCI) system. Few research studies have carried out effective solutions to this problem. In this paper, we present a novel approach for stroke detection based on mono vision. Via analyzing the optical flow field within the finger area, our method is able to detect finger stroke under various camera position and visual angles. We present a thorough evaluation for each component of the algorithm, and show its efficiency and effectiveness on solving difficult stroke detection problems.

  4. Quantum effects in warp drives

    Directory of Open Access Journals (Sweden)

    Finazzi Stefano

    2013-09-01

    Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  5. Time Warp Operating System (TWOS)

    Science.gov (United States)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  6. Warped branches of flux compactifications

    CERN Document Server

    Lim, Yen-Kheng

    2012-01-01

    We consider Freund-Rubin-type compactifications which are described by (p+q)-dimensional Einstein gravity with a positive cosmological constant and a q-form flux. Using perturbative expansions of Kinoshita's ansatz for warped dS_pxS^q and AdS_pxS^q spacetimes, we obtain analytical solutions describing the warped branches and their respective phase spaces. These equations are given by inhomogeneous Gegenbauer differential equations which can be solved by the Green's function method. The requirement that the Green's functions are regular provides constraints which determine the structure of the phase space of the warped branches. We apply the perturbation results to calculate the thermodynamic variables for the warped dS_pxS^q branch. In particular, the first law of thermodynamics can be reproduced using this method.

  7. Time Warp Operating System (TWOS)

    Science.gov (United States)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  8. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  9. Dynamics of warped accretion discs

    OpenAIRE

    Tremaine, Scott; Davis, Shane W.

    2013-01-01

    Accretion discs are present around both stellar-mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei. A wide variety of circumstantial evidence implies that many of these discs are warped. The standard Bardeen--Petterson model attributes the shape of the warp to the competition between Lense--Thirring torque from the central black hole and viscous angular-momentum transport within the disc. We show that this description is incomplete, and that torques from...

  10. Warped Geometry of Brane Worlds

    CERN Document Server

    Felder, G; Kofman, L A; Felder, Gary; Frolov, Andrei; Kofman, Lev

    2002-01-01

    We study the dynamical equations for a warp factor and a bulk scalar in 5d brane world scenarios. These equations are similar to those for the time dependence of the scale factor and a scalar field in 4d cosmology, but with the sign of the scalar field potential reversed. Based on this analogy, we introduce two novel methods for studying the warped geometry. First, we construct the full phase portraits of the warp factor/scalar system for several examples of the bulk potential. This allows us to view the global properties of the warped geometry. For flat branes, the phase portrait is two dimensional. Moving along typical phase trajectories, the warp factor is initially increasing and finally decreasing. All trajectories have timelike gradient-dominated singularities at one or both of their ends, which are reachable in a finite distance and must be screened by the branes. For curved branes, the phase portrait is three dimensional. However, as the warp factor increases the phase trajectories tend towards the tw...

  11. Influenza dell'optic flow sul controllo posturale

    OpenAIRE

    2015-01-01

    The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual fi...

  12. Warped Supersymmetric Grand Unification

    CERN Document Server

    Goldberger, W D; Smith, D R; Goldberger, Walter D.; Nomura, Yasunori; Smith, David R.

    2003-01-01

    We construct a realistic model of grand unification in AdS_5 truncated by branes, in which the unified gauge symmetry is broken by boundary conditions and the electroweak scale is generated by the AdS warp factor. We show that the model preserves the successful gauge coupling unification of the 4D MSSM at leading-logarithmic level. Kaluza-Klein towers, including those of XY gauge and colored Higgs multiplets, appear at the TeV scale, while the extra dimension provides natural mechanisms for doublet-triplet splitting and proton decay suppression. In one possible scenario supersymmetry is strongly broken on the TeV brane, in which case the lightest SU(3)_C x SU(2)_L x U(1)_Y gauginos are Dirac fermions, with universal masses at the weak scale, and the mass of the lightest XY gaugino is pushed well below that of the lowest gauge boson KK mode, improving the prospects for its production at the LHC. The bulk Lagrangian possesses a symmetry that we call GUT parity. If GUT parity is exact, the lightest GUT particle,...

  13. A catalog of warps in spiral and lenticular galaxies in the Southern hemisphere

    CERN Document Server

    Sánchez-Saavedra, M L; Guijarro, A; López-Corredoira, M; Castro-Rodriguez, N

    2003-01-01

    A catalog of optical warps of galaxies is presented. This can be considered complementary to that reported by Sanchez-Saavedra et al., with 42 galaxies in the northern hemisphere, and to that by Reshetnikov & Combes, with 60 optical warps. The limits of the present catalog are: logr25 > 0.60, B_{t} < 14.5, delta(2000) < 0, -2.5 < t < 7. Therefore, lenticular galaxies have also been considered. This catalog lists 150 warped galaxies out of a sample of 276 edge-on galaxies and covers the whole southern hemisphere, except the Avoidance Zone. It is therefore very suitable for statistical studies of warps. It also provides a source guide for detailed particular observations. We confirm the large frequency of warped spirals: nearly all galaxies are warped. The frequency and warp angle do not present important differences for the different types of spirals. However, no lenticular warped galaxy has been found within the specified limits. This finding constitutes an important restriction for theoretica...

  14. Using Optic Flow for the Estimation of Travel Distance

    Directory of Open Access Journals (Sweden)

    Markus Lappe

    2011-05-01

    Full Text Available Much research on optic flow has been concerned with the estimation of heading and the control of the direction of self-motion. In my presentation I will instead focus on a different use of optic flow, namely the estimation of the distance that one has traveled. Optic flow in itself does not provide travel distance, only the combination of distance and speed (time-to-contact is directly available. However, when scaling information from the environment is present, such as the distance to the ground when standing or walking on flat terrain, an integration of the optical velocity can yield ego-speed and travel distance. I will present experiments that show that humans can use optic flow for the estimation of travel distance, but that they often under- and, in some conditions, overestimate a movement's extent. I will then present a model of travel distance estimation from optic flow that is based on leaky path integration.

  15. Environmental Dependence of Warps in Spiral Galaxies

    Science.gov (United States)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} decisive role in the formation of weak warps.}

  16. Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  17. Micro fibre optic flow checker for the medical analysis application.

    Science.gov (United States)

    Wang, Danping

    2007-01-01

    Two micro fibre optic flow checkers are presented in this paper. They are used for a medical analysis to control a solvent flow up to 1microl/min resolution. A fibre optic sensor as well as a hydraulic system are the principle components of these flow checkers. This paper describes the principle and the experiment setup. It gives the linearity, the repeatability and the stability results.

  18. Warped Discs of External Galaxies and their Statistical Studies%星系翘曲盘及其统计研究

    Institute of Scientific and Technical Information of China (English)

    赵君亮

    2012-01-01

    河外旋涡星系外区普遍存在翘曲结构,其特征可用若干翘曲参数来描述,包括翘曲角、翘曲半径、不对称度等.一些翘曲星系表已相继发表,并用于相关的统计分析.关于翘曲盘的形成已提出多种理论机制,如星系间的潮汐相互作用、星系际介质的吸积、盘与暗晕的角动量错向以及星系际磁场的作用等.%It has been known from both radio and optical measurements that the disk warps in the outer regions of spiral galaxies are a very common phenomenon, the feature of which can be described by some parameters, such as warp radius, warp angle, warp amplitude, warp asymmetry etc. During the past two decades, various shapes of warped disks have been found, including S-shaped (or integral sign shaped) , U-shaped and L-shaped warps, among which U means that the two warps are not asymmetric with respect to the galactic center, and L means that only one of the two sides of the galaxy is warped.Since the end of the 20 century, catalogues of warps in spirals identified from edge-on galaxies have been published, some of which provide a lot of information on structureparameters of warped disks of more than 500 galaxies. On the basis of these data many statistical analysis and discussions on warped disks have been made in order to investigate the observational frequencies of warps with different types and different environment, and to find possible intrinsic relationships among the warp parameters, which could provide some useful diagnostic indicators of the origin of warps.Generally speaking, observational frequencies of warped galaxies found from both radio and optical measurements are up to 60%-70% or even higher for all the warp samples presently available. This observational fact shows that the warped disk is a permanentstructure, or a transient phenomenon but excited frequently. In a statistical study it was found that the relative fraction of warps among galaxies without nearby companions is

  19. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    Directory of Open Access Journals (Sweden)

    Remus Brad

    2012-09-01

    Full Text Available Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  20. Optical wavefront distortion due to supersonic flow fields

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiQiang; FU Song

    2009-01-01

    The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.

  1. Warped product submanifolds of Lorentzian paracosymplectic manifolds

    CERN Document Server

    Perkta\\cs, Selcen Yüksel; Kele\\cs, Sad\\ik

    2011-01-01

    In this paper we study the warped product submanifolds of a Lorentzian paracosymplectic manifold and obtain some nonexistence results. We show that a warped product semi-invariant submanifold in the form {$M=M_{T}\\times_{f}M_{\\bot}$} of Lorentzian paracosymplectic manifold such that the characteristic vector field is normal to $M$ is an usual Riemannian product manifold where totally geodesic and totally umbilical submanifolds of warped product are invariant and anti-invariant, respectively. We prove that the distributions involved in the definition of a warped product semi-invariant submanifold are always integrable. A necessary and sufficient condition for a semi-invariant submanifold of a Lorentzian paracosymplectic manifold to be warped product semi-invariant submanifold is obtained. We also investigate the existence and nonexistence of warped product semi-slant and warped product anti-slant submanifolds in a Lorentzian paracosymplectic manifold.

  2. Insect-Inspired Optical-Flow Navigation Sensors

    Science.gov (United States)

    Thakoor, Sarita; Morookian, John M.; Chahl, Javan; Soccol, Dean; Hines, Butler; Zornetzer, Steven

    2005-01-01

    Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers.

  3. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  4. Warping the Weak Gravity Conjecture

    Directory of Open Access Journals (Sweden)

    Karta Kooner

    2016-08-01

    Full Text Available The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.

  5. Flow diagnostics using fibre optics

    Indian Academy of Sciences (India)

    B Vasudevan; Srikanth Padbidri; M Chandra Kishore

    2007-02-01

    Research in the area of flow diagnostics using fibre-optics started in our laboratory in early 1998. The first-ever multi-component wind tunnel balance in the world, working with fibre-optic sensors was built and demonstrated in 1999. Since then, several new applications of the technique in the area of fluid dynamic load measurements have been tried successfully. Very recently, fibre-optic sensors have been effectively used for underwater applications, where conventional measurements are relatively very difficult. Since, different physical perturbations affect optical power flowing in a fibre in different ways, unique signatures can be obtained which allow absolute or relative measurement of the incident disturbances. Immunity to electromagnetic or radio frequency interference, high temperature capability, low fatigue, high sensitivity, small size, good corrosion resistance and the capability to embed sensors within the model surface are some of the very attractive features of fibre-optic based instrumentation systems. In this paper, we describe the results of experiments of aerodynamic load measurements at hypersonic speeds (Mach 8·35 and 7·0) and studies carried out recently in a water tunnel over a lifting hypersonic vehicle with a 2-component fibre-optic strain-gauge balance.

  6. Photoacoustic Doppler flow measurement in optically scattering media

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-12-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity.

  7. Optical flow based velocity estimation for mobile robots

    Science.gov (United States)

    Li, Xiuzhi; Zhao, Guanrong; Jia, Songmin; Qin, Baoling; Yang, Ailin

    2015-02-01

    This paper presents an optical flow based novel technique to perceive the instant motion velocity of mobile robots. The primary focus of this study is to determine the robot's ego-motion using displacement field in temporally consecutive image pairs. In contrast to most previous approaches for estimating velocity, we employ a polynomial expansion based dense optical flow approach and propose a quadratic model based RANSAC refinement of flow fields to render our method more robust with respect to noise and outliers. Accordingly, techniques for geometrical transformation and interpretation of the inter-frame motion are presented. Advantages of our proposal are validated by real experimental results conducted on Pioneer robot.

  8. The Warp computer: Architecture, implementation, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Annaratone, M.; Arnould, E.; Gross, T.; Kung, H.T.; Lam, M.; Menzilcioglu, O.; Webb, J.A.

    1987-12-01

    The Warp machine is a systolic array computer of linearly connected cells, each of which is a programmable processor capable of performing 10 million floating-point operations per second (10 MFLOPS). A typical Warp array includes ten cells, thus having a peak computation rate of 100 MFLOPS. The Warp array can be extended to include more cells to accommodate applications capable of using the increased computational bandwidth. Warp is integrated as an attached processor into a Unix host system. Programs for Warp are written in a high-level language supported by an optimizing complier. This paper describes the architecture, implementation, and performance of the Warp machine. Each major architectural decision is discussed and evaluated with system, software, and application considerations. The programming model and tools developed for the machine are also described. The paper concludes with performance data for a large number of applications.

  9. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  10. Warp Drive - From Imagination to Reality

    Science.gov (United States)

    Gardiner, J.

    The realisation of warp drive is far beyond current science and technology; nevertheless, setting out a timetable for the realisation of warp drive is instructive as this will set expectations for the progress of future research. It is proposed that a time scale for the realisation of warp drive can be estimated by historical analogy with the development of manned space travel to the Moon, using conventional project estimation techniques. A timeline for space travel to the Moon begins with Cyrano de Bergerac's Voyage dans la Lune in 1657 and culminates with the Apollo 11 Moon landing in 1969, a little over 300 years later. A similar timeline for warp drive begins with John W. Campbell's novel Islands of Space in 1930. Fictional conjecture on the warp drive has given way to serious scientific speculation following publication of Alcubierre's seminal warp drive paper in 1994. It is concluded that the realisation of warp drive might be achieved around the year 2180. A projected timetable for the realisation of warp drive through phases of conjecture , speculation , science , technology and application suggests that the warp drive proposal should enter the science phase around the year 2030.

  11. Optical density measurements in a multiphase cryogenic fluid flow system

    Science.gov (United States)

    Korman, Valentin; Wiley, John; Gregory, Don A.

    2006-05-01

    An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.

  12. Black holes and warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.J. III

    1979-01-01

    Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime.

  13. Multicusp caustics formed from reflections of warped surfaces.

    Science.gov (United States)

    Theocaris, P S

    1988-02-15

    The optical method of caustics developed mainly for studying singularities in stress fields was extended to define quantitatively the slope variation of warped surfaces. The existing theory was concerned with the study of infinitesimal but abrupt variations of thickness in elastic and plastic stress fields containing stress singularities due to either loading or geometry. In this paper the theory of caustics was extended to study the warping of any surface due mainly to twisting loads- While the caustics developed in previous uses were generalized epicycloid surfaces with or without a single cusp line, in the cases studied in this paper multicusp surfaces were developed. The quantitative interrelationship between the shape and size of the caustic and the respective mode of twisting of the surface was established, and interesting properties of these surfaces were disclosed. Applications to twisted elliptic, triangular, and square elastic bars clearly illustrate the importance of the method.

  14. Smart warping harnesses for active mirrors and stress polishing

    Science.gov (United States)

    Lemared, Sabri; Hugot, Emmanuel; Challita, Zalpha; Schnetler, Hermine; Kroes, Gabby; Marcos, Michel; Costille, Anne; Dohlen, Kjetil; Beuzit, Jean-Luc; Cuby, Jean-Gabriel

    2016-07-01

    We present two ways to generate or compensate for first order optical aberrations using smart warping harnesses. In these cases, we used the same methodology leading to replace a previous actuation system currently on-sky and to get a freeform mirror intended to a demonstrator. Starting from specifications, a warping harness is designed, followed by a meshing model in the finite elements software. For the two projects, two different ways of astigmatism generation are presented. The first one, on the VLT-SPHERE instrument, with a single actuator, is able to generate a nearly pure astigmatism via a rotating motorization. Two actuators are sufficient to produce the same aberration for the active freeform mirror, main part of the OPTICON-FAME project, in order to use stress-polishing method.

  15. Parallel Processor for 3D Recovery from Optical Flow

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano

    2009-01-01

    Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.

  16. Response properties of cat AMLS neurons to optic flow stimuli

    Institute of Scientific and Technical Information of China (English)

    LI; Baowang(李宝旺); LI; Bing(李兵); CHEN; Hui(陈辉); XU; Ying(徐颖); DIAO; Yuncheng(刁云程)

    2002-01-01

    Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.

  17. Control grid motion estimation for efficient application of optical flow

    CERN Document Server

    Zwart, Christine M

    2012-01-01

    Motion estimation is a long-standing cornerstone of image and video processing. Most notably, motion estimation serves as the foundation for many of today's ubiquitous video coding standards including H.264. Motion estimators also play key roles in countless other applications that serve the consumer, industrial, biomedical, and military sectors. Of the many available motion estimation techniques, optical flow is widely regarded as most flexible. The flexibility offered by optical flow is particularly useful for complex registration and interpolation problems, but comes at a considerable compu

  18. Warped Circumbinary Disks in Active Galactic Nuclei

    CERN Document Server

    Hayasaki, Kimitake; Okazaki, Atsuo T; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-01-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order ...

  19. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi;

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create "seams" or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template...... space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation...

  20. The geometry of warped product singularities

    Science.gov (United States)

    Stoica, Ovidiu Cristinel

    In this article, the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.

  1. Design of Warped Stretch Transform

    Science.gov (United States)

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-11-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.

  2. The warped galaxy MKN 306 in the interacting system MKN 305/306

    Science.gov (United States)

    Kollatschny, W.; Dietrich, M.

    1990-07-01

    Optical images and spectra of the interacting galaxy system Mkn 305/306 are presented. Both galaxies have a disturbed morphology, and they show spectra with starburst or poststarburst characteristics as a result of mutual tidal interaction. Mkn 306 is shaped like an integral sign with two strong symmetrical central emission regions. The morphology, the velocity structure, and the optical spectra demonstrate that the galaxy Mkn 306 is seen nearly edge-on with a very strong warp of the stellar disk. The extreme degree of this optical distortion is comparable only with the strongest radio warps so far known; but these radio warps show only the H I gas distribution in the outer galactic regions and not the stellar distribution.

  3. Flow measurement using speckle in optical coherence tomography images

    Science.gov (United States)

    Barton, Jennifer K.; Stromski, Steven

    2005-04-01

    Doppler optical coherence tomography (DOCT) is a valuable tool for depth-resolved flow measurements in tissue. However, DOCT suffers from two disadvantages: it is insensitive to flow in the direction normal to the imaging beam, and it requires knowledge of the phase of the demodulated signal. We present an alternative method of extracting flow information, using speckle of conventional amplitude optical coherence tomography images. The two techniques can be shown to be essentially equivalent, with the distinction that speckle methods are sensitive to flow in all directions but do not provide information on the direction of flow. It is well known in other imaging modalities that moving scatterers cause a time-varying speckle pattern. Due to the pixel-by-pixel acquisition scheme of conventional OCT, time-varying speckle is manifested as a change of OCT image spatial speckle frequencies. We tested the ability of speckle to provide quantitative flow information using a flow phantom (a tube filled with Intralipid flowing at a constant volumetric flow rate). Initially, m-scans were taken at over the center of the tube. Images were averaged to reduce noise and the region corresponding to the center one-quarter of the tube lumen was selected. Sequential a-scans were concatenated, the Fourier transform performed, and a ratio of high to low spatial frequencies computed. We found that, over a range of velocities, this ratio bore a linear relation to flow velocity. For two-dimensional imaging, the program was modified to use a sliding window. Parabolic flow profile was visualized inside the tube. This study shows the feasibility of extracting quantitative flow data in all directions without phase information.

  4. Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations

    DEFF Research Database (Denmark)

    Willerslev, Anne; Li, Xiao Q; Munch, Inger C

    2014-01-01

    PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...... be determined using SD-OCT. This feature may assist the identification of flow reversal near sites of vascular occlusion, the analysis of blood flow near vascular malformations and the segmentation of retinal SD-OCT images....

  5. Discontinuity-preserving optical flow algorithm

    Institute of Scientific and Technical Information of China (English)

    Yuan Lei; Li Jinzong; Li Dongdong

    2007-01-01

    A modification of Horn and Schunk's approach is investigated, which leads to a better preservation of flow discontinuities.It improves Horn-Schunk model in three aspects: (1) It replaces the smooth weight coefficient in the energy equation by the variable weight coefficient.(2) It adopts a novel method to compute the mean velocity.The novel method also reflects the effect of the intensity difference on the image velocity diffusion.(3) It introduces a more efficient iterative method than the Gauss-Seidel method to solve the associated Euler-Lagrange equation.The experiment results validate the better effect of the improved method on preserving discontinuities.

  6. Multi-flux warped throats and cascading gauge theories

    CERN Document Server

    Franco, S; Uranga, Angel M; Franco, Sebastian; Hanany, Amihay; Uranga, Angel M.

    2005-01-01

    We describe duality cascades and their infrared behavior for systems of D3-branes at singularities given by complex cones over del Pezzo surfaces (and related examples), in the presence of fractional branes. From the gauge field theory viewpoint, we show that D3-branes probing the infrared theory have a quantum deformed moduli space, given by a complex deformation of the initial geometry to a simpler one. This implies that for the dual supergravity viewpoint, the gauge theory strong infrared dynamics smoothes out the naked singularities of the recently constructed warped throat solutions with 3-form fluxes, describing the cascading RG flow of the gauge theory. This behavior thus generalizes the Klebanov-Strassler deformation of the conifold. We describe several explicit examples, including models with several scales of strong gauge dynamics. In the regime of widely separated scales, the dual supergravity solutions should correspond to throats with several radial regions with different exponential warp factors...

  7. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

    Energy Technology Data Exchange (ETDEWEB)

    O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

    1997-01-01

    This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

  8. Fiber optic liquid mass flow sensor and method

    Science.gov (United States)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  9. Optical Flow Structure Effects in Children’s Postural Control

    Science.gov (United States)

    Barela, José A.

    2016-01-01

    The aim of this study was to investigate the effect of distance and optic flow structure on visual information and body sway coupling in children and young adults. Thirty children (from 4 to 12 years of age) and 10 young adults stood upright inside of a moving room oscillating at 0.2 Hz, at 0.25 and 1.5 m from the front wall, and under three optical flow conditions (global, central, and peripheral). Effect of distance and optic flow structure on the coupling of visual information and body sway is age-dependent, with 4-year-olds being more affected at 0.25 m distance than older children and adults are. No such difference was observed at 1.5 m from the front wall. Moreover, 4-year-olds’ sway was larger and displayed higher variability. These results suggest that despite being able to accommodate change resulting from varying optic flow conditions, young children have difficulty in dodging stronger visual stimuli. Lastly, difference in sway performance may be due to immature inter-modality sensory reweighting. PMID:27352305

  10. Crowd Analysis by Using Optical Flow and Density Based Clustering

    DEFF Research Database (Denmark)

    Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua

    2010-01-01

    In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...

  11. Self-motion Perception from Optic Flow and Rotation Signals

    NARCIS (Netherlands)

    J.A. Beintema (Jaap)

    2000-01-01

    textabstractThe value of optic flow for retrieving movement direction was recognised already two centuries ago by astronomers, searching the sky for meteorite showers. The point from which the shower appeared to emanate they termed the radiant, knowing it indicated the direction along which the mete

  12. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  13. Self-motion Perception from Optic Flow and Rotation Signals

    NARCIS (Netherlands)

    J.A. Beintema (Jaap)

    2000-01-01

    textabstractThe value of optic flow for retrieving movement direction was recognised already two centuries ago by astronomers, searching the sky for meteorite showers. The point from which the shower appeared to emanate they termed the radiant, knowing it indicated the direction along which the mete

  14. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

  15. Power flow from a dipole emitter near an optical antenna.

    Science.gov (United States)

    Huang, Kevin C Y; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L

    2011-09-26

    Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.

  16. RELIABLE VALIDATION BASED ON OPTICAL FLOW VISUALIZATION FOR CFD SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    姜宗林

    2003-01-01

    A reliable validation based on the optical flow visualization for numerical simulations of complex flowfields is addressed in this paper.Several test cases,including two-dimensional,axisymmetric and three-dimensional flowfields,were presented to demonstrate the effectiveness of the validation and gain credibility of numerical solutions of complex flowfields.In the validation,images of these flowfields were constructed from numerical results based on the principle of the optical flow visualization,and compared directly with experimental interferograms.Because both experimental and numerical results are of identical physical representation,the agreement between them can be evaluated effectively by examining flow structures as well as checking discrepancies in density.The study shows that the reliable validation can be achieved by using the direct comparison between numerical and experiment results without any loss of accuracy in either of them.

  17. Planetary plains: subsidence and warping

    Science.gov (United States)

    Kochemasov, G.

    A common feature of all celestial bodies is their tectonic dichotomy best studied, naturally, at Earth [1]. Here there is an opposition of the eastern continental hemisphere and the western oceanic one. The first one is uplifted and cracked, the second one subsided, squeezed and warped. The next excellent example of dichotomy is at Mars where the subsided northern hemisphere is opposed by the highly uplifted southern one. The enigmatic two-face Iapetus now with help of Cassini SC presents a more clear picture: the leading dark hemisphere is opposed by the trailing light one. The light hemisphere is built mainly of water ice, the dark one of some more dense material. Bean-shaped asteroids with one convex and another concave hemispheres are best exemplified by Ida. Examples of dichotomic asteroids, satellites, planets and stars could be extended. Ubiquity of this phenomenon was expressed as the 1st theorem of the planetary wave tectonics [2 & others]: "Celestial bodies are dichotomic". A reason of this phenomenon is in action of inertia-gravity waves occurring in any celestial body because of its movement in non-round but elliptical (parabolic) orbit with periodically changing accelerations. The inertia-gravity standing waves warp rotating bodies (but all bodies rotate !) in 4 ortho- and diagonal interfering directions and in several harmonic wave-lengths. The fundamental wave1 produces ubiquitous tectonic dichotomy (2πR-structure): an opposition of two hemispheres with different planetary radii. To keep angular momenta of two hemispheres equal (otherwise a body will fall apart) the lower subsiding one is constructed of denser material than the higher one. Normally in terrestrial planets lowlands are filled with dense basalts, highlands are built by lighter lithologies. A subsidence means diminishing radius, otherwise, the larger surface must be fit into a smaller space. It is possible only if an original infilling is warped. At Earth cosmic altimetry shows complex

  18. Warped functional analysis of variance.

    Science.gov (United States)

    Gervini, Daniel; Carter, Patrick A

    2014-09-01

    This article presents an Analysis of Variance model for functional data that explicitly incorporates phase variability through a time-warping component, allowing for a unified approach to estimation and inference in presence of amplitude and time variability. The focus is on single-random-factor models but the approach can be easily generalized to more complex ANOVA models. The behavior of the estimators is studied by simulation, and an application to the analysis of growth curves of flour beetles is presented. Although the model assumes a smooth latent process behind the observed trajectories, smootheness of the observed data is not required; the method can be applied to irregular time grids, which are common in longitudinal studies.

  19. Determination of Horizontal Motion through Optical Flow Computations

    Institute of Scientific and Technical Information of China (English)

    俞志和; FrankM.Caimi

    1997-01-01

    For intelligent/autonomous subsea vehicles,reliable short-range horizontal positioning is difficult to achieve,particularly over flat bottom topography.A potential solution proposed in this paper utilized a passive optical sensing method to estimate the vehicle displacement using the bottom surface texture.The suggested optical flow method does not require any feature correspondences in images and it is robust in allowing brightness changes between image frames.Fundamentally,this method is similar to correlation methods attempting to match images and compute the motion disparity.However,in correlation methods,searching a neighbor region blindly for best match is lengthy.Main contributions of this paper come from the analysis showing that optical flow computation based on the general model cannot avoid errors except for null motion although the sign of optical flow keeps correct,and from the development of an iterative shifting method based on the error characteristics to accurately determine motions.Advantages of the proposed method are verified by real image experiments.

  20. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...

  1. Hydrodynamics in Class B Warped Spacetimes

    CERN Document Server

    Carot, J

    2005-01-01

    We discuss certain general features of type B warped spacetimes which have important consequences on the material content they may admit and its associated dynamics. We show that, for Warped B spacetimes, if shear and anisotropy are nonvanishing, they have to be proportional. We also study some of the physics related to the warping factor and of the underlying decomposable metric. Finally we explore the only possible cases compatible with a type B Warped geometry which satisfy the dominant energy conditions. As an example of the above mentioned consequences we consider a radiating fluid and two non-spherically symmetric metrics which depend upon an arbitrary parameter, such that if the parameter vanishes the spherical symmetry is recovered.

  2. Galactic Warps Formed through Cosmic Infall

    Science.gov (United States)

    Shen, J.; Sellwood, J. A.

    2004-12-01

    The extended HI disks of many edge-on spiral galaxies appear noticeably warped away from the inner disk with an ``integral sign'' shape. At least half, perhaps all, of spiral galaxies are warped. The origin and maintenance of warps are still not well understood. We use fully self-consistent N-body simulations to study the effect of cosmic infall on an isolated disk galaxy, which we find to be a promising way of making warps. The amplitude and morphology of warps formed in an idealized experiment to test this scenario resemble observations closely. The agreement with Briggs (1990)'s rules is also very encouraging: the inner disk tilts remarkably rigidly, indicating the strong cohesion due to the self-gravity; the line of nodes (LON) inside R26.5 ˜ 4.5 Rd is straight; and the LON beyond R26.5 always forms a loosely-wound leading spiral. We show that the leading spiral arises from the torque from the misaligned inner disk. In this scenario the damping of a warp by the halo is weak, because the free precession rate of the inner disk is slow and the inner halo generally remains aligned with the inner disk. Thus warps formed this way can persist for a relatively long time (a few Gyrs), by which time another infall event can be expected. We also point out the spirality of the LON of warps in this idealized model should twist from leading to trailing at very large radii, such feature may be observable in future HI surveys.

  3. Broken discs: warp propagation in accretion discs

    OpenAIRE

    Nixon, Chris; King, Andrew

    2012-01-01

    We simulate the viscous evolution of an accretion disc around a spinning black hole. In general any such disc is misaligned, and warped by the Lense-Thirring effect. Unlike previous studies we use effective viscosities constrained to be consistent with the internal fluid dynamics of the disc. We find that nonlinear fluid effects, which reduce the effective viscosities in warped regions, can promote the breaking of the disc into two distinct planes. This occurs when the Shakura & Sunyaev dimen...

  4. RELIABLE VALIDATION BASED ON OPTICAL FLOW VISUALIZATION FOR CFD SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    姜宗林

    2003-01-01

    A reliable validation based on the optical flow visualization for numerical simula-tions of complex flowfields is addressed in this paper. Several test cases, including two-dimensional,axisymmetric and three-dimensional flowfields, were presented to demonstrate the effectiveness of the validation and gain credibility of numerical solutions of complex flowfields. In the validation, imagesof these flowfields were constructed from numerical results based on the principle of the optical flowvisualization, and compared directly with experimental interferograms. Because both experimental and numerical results axe of identical physical representation, the agreement between them can be evaluatedeffectively by examining flow structures as well as checking discrepancies in density. The study shows that the reliable validation can be achieved by using the direct comparison between numerical and experiment results without any loss of accuracy in either of them.

  5. Vision System for Relative Motion Estimation from Optical Flow

    Directory of Open Access Journals (Sweden)

    Sergey M. Sokolov

    2010-08-01

    Full Text Available For the recent years there was an increasing interest in different methods of motion analysis based on visual data acquisition. Vision systems, intended to obtain quantitative data regarding motion in real time are especially in demand. This paper talks about the vision systems that allow the receipt of information on relative object motion in real time. It is shown, that the algorithms solving a wide range of practical problems by definition of relative movement can be generated on the basis of the known algorithms of an optical flow calculation. One of the system's goals is the creation of economically efficient intellectual sensor prototype in order to estimate relative objects motion based on optic flow. The results of the experiments with a prototype system model are shown.

  6. Optic flow stabilizes flight in ruby-throated hummingbirds.

    Science.gov (United States)

    Ros, Ivo G; Biewener, Andrew A

    2016-08-15

    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs.

  7. Detection of Abnormal Events via Optical Flow Feature Analysis

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2015-03-01

    Full Text Available In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.

  8. Postural adaptations to repeated optic flow stimulation in older adults.

    Science.gov (United States)

    O'Connor, Kathryn W; Loughlin, Patrick J; Redfern, Mark S; Sparto, Patrick J

    2008-10-01

    The purpose of this study is to understand the processes of adaptation (changes in within-trial postural responses) and habituation (reductions in between-trial postural responses) to visual cues in older and young adults. Of particular interest were responses to sudden increases in optic flow magnitude. The postural sway of 25 healthy young adults and 24 healthy older adults was measured while subjects viewed anterior-posterior 0.4 Hz sinusoidal optic flow for 45 s. Three trials for each of three conditions were performed: (1) constant 12 cm optic flow amplitude (24 cm peak-to-peak), (2) constant 4 cm amplitude (8 cm p-t-p), and (3) a transition in amplitude from 4 to 12 cm. The average power of head sway velocity (P(vel)) was calculated for consecutive 5s intervals during the trial to examine the changes in sway within and between trials. A mixed factor repeated measures ANOVA was performed to examine the effects of subject Group, Trial, and Interval on the P(vel). P(vel) was greater in older adults in all conditions (phabituation. P(vel) of the older adults decreased significantly between all 3 trials, but decreased only between Trials 1 and 2 in young adults. While the responses of the young adults to the transition in optic flow from 4 to 12 cm did not significantly change, older adults had an increase in P(vel) following the transition, ranging from 6.5 dB for the first trial to 3.4 dB for the third trial. These results show that older adults can habituate to repeated visual perturbation exposures; however, this habituation requires a greater number of exposures than young adults. This suggests aging impacts the ability to quickly modify the relative weighting of the sensory feedback for postural stabilization.

  9. New Lower Bounds for Warp Drive Energy

    Science.gov (United States)

    Gauthier, C.; Gravel, P.; Melanson, J.

    The introduction of the warp drive metric by Alcubierre1 has aroused great interest over the past few years. Using an uncertainty-type principle, Ford and Pfenning2 proved that the warp drive transport of a spaceship in a regular bubble having a radius of 100 m is unrealistic. However, Van Den Broeck3 has shown that the situation largely improves when one uses a warp drive bubble with a small surface area and large spatial volume. Putting aside many physics problems related to the realization of the warp drive concept, we show in this paper4 how to modify Van Den Broeck's idea to improve his results. We find new lower bounds for the warp drive energy by working on parameters whose latitude has never been considered before. We also consider micro warp drive bubbles which can be treated as physical entities of their own and could possibly be used to transmit information faster than the speed of light. The conditions prevailing just after the Big Bang allow the spontaneous formation of such micro bubbles which could still be present in our period of time.

  10. Motion compensated frame interpolation with a symmetric optical flow constraint

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés;

    2012-01-01

    We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that ......We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... such that the interpolation assumption is directly modeled. This reparametrization is a powerful trick that results in a number of appealing properties, in particular the motion estimation becomes more robust to noise and large displacements, and the computational workload is more than halved compared to usual bidirectional...... methods. The proposed reparametrization is generic and can be applied to almost every existing algorithm. In this paper we illustrate its advantages by considering the classic TV-L1 optical flow algorithm as a prototype. We demonstrate that this widely used method can produce results that are competitive...

  11. Polar Ring Galaxies and Warps

    Science.gov (United States)

    Combes, F.

    Polar ring galaxies, where matter is in equilibrium in perpendicular orbits around spiral galaxies, are ideal objects to probe the 3D shapes of dark matter halos. The conditions to constrain the halos are that the perpendicular system does not strongly perturb the host galaxy, or that it is possible to derive back its initial shape, knowing the formation scenario of the polar ring. The formation mechanisms are reviewed: mergers, tidal accretion, or gas accretion from cosmic filaments. The Tully-Fisher diagram for polar rings reveals that the velocity in the polar plane is higher than in the host plane, which can only be explained if the dark matter is oblate and flattened along the polar plane. Only a few individual systems have been studied in details, and 3D shapes of their haloes determined by several methods. The high frequency of warps could be explained by spontaneous bending instability, if the disks are sufficiently self-gravitating, which can put constraints on the dark matter flattening.

  12. Polar ring galaxies and warps

    CERN Document Server

    Combes, F

    2005-01-01

    Polar ring galaxies, where matter is in equilibrium in perpendicular orbits around spiral galaxies, are ideal objects to probe the 3D shapes of dark matter halos. The conditions to constrain the halos are that the perpendicular system does not strongly perturb the host galaxy, or that it is possible to derive back its initial shape, knowing the formation scenario of the polar ring. The formation mechanisms are reviewed: mergers, tidal accretion, or gas accretion from cosmic filaments. The Tully-Fisher diagram for polar rings reveals that the velocity in the polar plane is higher than in the host plane, which can only be explained if the dark matter is oblate and flattened along the polar plane. Only a few individual systems have been studied in details, and 3D shapes of their haloes determined by several methods. The high frequency of warps could be explained by spontaneous bending instability, if the disks are sufficiently self-gravitating, which can put constraints on the dark matter flattening.

  13. Diphoton portal to warped gravity

    Science.gov (United States)

    Falkowski, Adam; Kamenik, Jernej F.

    2016-07-01

    The diphoton excess around mX=750 GeV observed by ATLAS and CMS can be interpreted as coming from a massive spin-2 excitation. We explore this possibility in the context of warped five-dimensional models with the Standard Model (SM) fields propagating in the bulk of the extra dimension. The 750 GeV resonance is identified with the first Kaluza-Klein (KK) excitation of the five-dimensional graviton that is parametrically lighter than KK resonances of SM fields. Our setup makes it possible to realize nonuniversal couplings of the spin-2 resonance to matter, and thus to explain nonobservation of the 750 GeV resonance in leptonic channels. Phenomenological predictions of the model depend on the localization of fields in the extra dimension. If, as required by naturalness arguments, the zero modes of the Higgs and top fields are localized near the IR brane, one expects large branching fractions to t t ¯, h h , W+W- and Z Z final states. Decays to Z γ can also be observable when the KK graviton couplings to the SM gauge fields are nonuniversal.

  14. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan

    2017-02-01

    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  15. Design of Optical Wireless Networks with Fair Traffic Flows

    Directory of Open Access Journals (Sweden)

    Artur Tomaszewski

    2014-01-01

    Full Text Available The paper presents a method for optimising the wireless optical network that carries elastic packet traffic. The particular focus is on modelling the effect of elastic traffic flows slowing down in response to the decrease of the optical transmission systems’ capacity at bad weather conditions. A mathematical programming model of the network design problem is presented that assumes that the packet rates of elastic traffic flows decrease fairly. While practically any subset of network links can be simultaneously affected by unfavourable transmission conditions, a particular challenge of solving the problem results from a huge number of network states considered in the model. Therefore, how the problem can be solved by generating the most unfavourable network states is presented. Moreover, it is proved that it is entirely sufficient to consider only the states that correspond to the decrease of capacity on a single link. Finally, as the general problem is nonlinear, it is shown that the problem can be transformed to a linear MIP problem and solved effectively when single-path routing of traffic flows is assumed.

  16. Semiclassical instability of dynamical warp drives

    CERN Document Server

    Finazzi, Stefano; Barceló, Carlos

    2009-01-01

    Warp drives are very interesting configurations in General Relativity: At least theoretically, they provide a way to travel at superluminal speeds, albeit at the cost of requiring exotic matter to exist as solutions of Einstein's equations. However, even if one succeeded in providing the necessary exotic matter to build them, it would still be necessary to check whether they would survive to the switching on of quantum effects. Semiclassical corrections to warp-drive geometries have been analyzed only for eternal warp-drive bubbles traveling at fixed superluminal speeds. Here, we investigate the more realistic case in which a superluminal warp drive is created out of an initially flat spacetime. First of all we analyze the causal structure of eternal and dynamical warp-drive spacetimes. Then we pass to the analysis of the renormalized stress-energy tensor (RSET) of a quantum field in these geometries. While the behavior of the RSET in these geometries has close similarities to that in the geometries associate...

  17. Density of States for Warped Energy Bands

    Science.gov (United States)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2016-02-01

    Warping of energy bands can affect the density of states (DOS) in ways that can be large or subtle. Despite their potential for significant practical impacts on materials properties, these effects have not been rigorously demonstrated previously. Here we rectify this using an angular effective mass formalism that we have developed. To clarify the often confusing terminology in this field, “band warping” is precisely defined as pertaining to any multivariate energy function E(k) that does not admit a second-order differential at an isolated critical point in k-space, which we clearly distinguish from band non-parabolicity. We further describe band “corrugation” as a qualitative form of band warping that increasingly deviates from being twice differentiable at an isolated critical point. These features affect the density-of-states and other parameters ascribed to band warping in various ways. We demonstrate these effects, providing explicit calculations of DOS and their effective masses for warped energy dispersions originally derived by Kittel and others. Other physical and mathematical examples are provided to demonstrate fundamental distinctions that must be drawn between DOS contributions that originate from band warping and contributions that derive from band non-parabolicity. For some non-degenerate bands in thermoelectric materials, this may have profound consequences of practical interest.

  18. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  19. Low Delay Wyner-Ziv Coding Using Optical Flow

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Forchhammer, Søren

    2014-01-01

    Distributed Video Coding (DVC) is a video coding paradigm that exploits the source statistics at the decoder based on the availability of the Side Information (SI). The SI can be seen as a noisy version of the source, and the lower the noise the higher the RD performance of the decoder. The SI...... on preceding frames for the generation of the SI by means of Optical Flow (OF), which is also used in the refinement step of the SI for enhanced RD performance. Compared with a state-of-the-art extrapolation-based decoder the proposed solution achieves RD Bjontegaard gains up to 1.3 dB....

  20. Optical flow with structure information for epithelial image mosaicing.

    Science.gov (United States)

    Ali, Sharib; Faraz, Khuram; Daul, Christian; Blondel, Walter

    2015-01-01

    Mosaicing of biological tissue surfaces is challenging due to the weak image textures. This contribution presents a mosaicing algorithm based on a robust and accurate variational optical flow scheme. A Riesz pyramid based multiscale approach aims at overcoming the "flattening-out" problem at coarser levels. Moreover, the structure information present in images of epithelial surfaces is incorporated into the data-term to improve the algorithm robustness. The algorithm accuracy is first assessed with simulated sequences and then used for mosaicing standard clinical endoscopic data.

  1. Evaluation of nozzle shapes for an optical flow meter

    Science.gov (United States)

    Sheikholeslami, M. Z.; Patel, B. R.

    1992-05-01

    Numerical modeling is performed for turbulent flow in axisymmetric nozzles using Creare's computer program FLUENT/BFC. The primary objective of the project was to assist Spectron Development Laboratories in selecting an optimum nozzle shape for an optical flowmeter. The nozzle performance is evaluated for various length to diameter ratios, area contraction ratios, and Reynolds numbers. The computations have demonstrated that a cubic profile nozzle with length to diameter ratio of 1.6 and area contraction ratio of 6.2 can decrease the velocity profile non-uniformity from 15 percent at the entrance to 1 percent at the exit. The configuration is recommended for further investigation.

  2. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    Science.gov (United States)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  3. Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU

    CERN Document Server

    Gautier, N

    2013-01-01

    This paper presents a high speed implementation of an optical flow algorithm which computes planar velocity fields in an experimental flow. Real-time computation of the flow velocity field allows the experimentalist to have instantaneous access to quantitative features of the flow. This can be very useful in many situations: fast evaluation of the performances and characteristics of a new setup, design optimization, easier and faster parametric studies, etc. It can also be a valuable measurement tool for closed-loop flow control experiments where fast estimation of the state of the flow is needed. The algorithm is implemented on a Graphics Processing Unit (GPU). The accuracy of the computation is shown. Computation speed and scalability are highlighted along with guidelines for further improvements. The system architecture is flexible, scalable and can be adapted on the fly in order to process higher resolutions or achieve higher precision. The set-up is applied on a Backward-Facing Step (BFS) flow in a hydro...

  4. Bouncing Brane Cosmologies from Warped String Compactifications

    CERN Document Server

    Kachru, S

    2003-01-01

    We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.

  5. Dark Energy Generated by Warped Cosmic Strings

    CERN Document Server

    Slagter, Reinoud Jan

    2014-01-01

    If we live on the weak brane in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider the U(1) self-gravitating scalar-gauge field on the warped spacetime without bulk matter. It turns out that "branons" can be formed dynamically, due to the modified energy-momentum tensor components of the cosmic string. It turns out that the parameter $\\alpha$, i.e., the gauge-to-scalar mass, changes from a value $>1$ to a value $<1$ and the solution approaches a static global string by shedding off wave energy. It is the time-dependent part of the warp factor which triggers this extraordinary behavior.

  6. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.;

    2016-01-01

    . Multiflow operation is realized by two polymer boards allowing optical carrier management and optional polarization multiplexing on chip. Optical carrier generation is performed also on chip using three tunable InP gain chips hybridly integrated on the input polyboard. Single and dual optical flow...

  7. Inflation on the resolved warped deformed conifold

    CERN Document Server

    Buchel, A

    2006-01-01

    Braneworld inflation on the resolved warped deformed conifold is represented by the dynamics of a D3-brane probe with the world volume of a brane spanning the large dimensions of the observable Universe. This model was recently proposed as a string theory candidate for slow-roll inflationary cosmology in hep-th/0511254. During inflation, the scalar curvature of the Universe is determined by the Hubble scale. We argue that taking into account the curvature of the inflationary Universe renders dynamics of the D3-brane fast-roll deep inside the warped throat.

  8. Origin of the warped heliospheric current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, J.M.; Hoeksema, J.T.; Scherrer, P.H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that ballerina skirt effects may add small-scale ripples.

  9. Origin of the warped heliospheric current sheet

    Science.gov (United States)

    Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.

  10. Warped K\\"ahler potentials and fluxes

    CERN Document Server

    Martucci, Luca

    2016-01-01

    The four-dimensional effective theory for type IIB warped flux compactifications proposed in [1] is completed by taking into account the backreaction of the K\\"ahler moduli on the three-form fluxes. The only required modification consists in a flux-dependent contribution to the chiral fields parametrising the K\\"ahler moduli. The resulting supersymmetric effective theory satisfies the no-scale condition and consistently combines previous partial results present in the literature. Similar results hold for M-theory warped compactifications on Calabi-Yau fourfolds, whose effective field theory and K\\"ahler potential are also discussed.

  11. Optic Flow Information Influencing Heading Perception during Rotation

    Directory of Open Access Journals (Sweden)

    Diederick C. Niehorster

    2011-05-01

    Full Text Available We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display (110°Hx94°V simulated walking on a straight path over a ground plane (depth range: 1.4–50 m at 2 m/s while fixating a target off to one side (mean R/T ratios: ±1, ±2, ±3 under six display conditions. Four displays consisted of nonexpanding dots that were distributed so as to manipulate the amount of foreground motion and the presence of surface structure. In one further display the ground was covered with disks that expanded during the trial and lastly a textured ground display was created with the same spatial frequency power spectrum as the disk ground. At the end of each 1s trial, observers indicated their perceived heading along a line at the display's center. Mean heading biases were smaller for the textured than for the disk ground, for the displays with more foreground motion and for the displays with surface structure defined by dot motion than without. We conclude that while spatial frequency content is not a crucial factor, dense motion parallax and surface structure in optic flow are important for accurate heading perception during rotation.

  12. Visual guidance based on optic flow: a biorobotic approach.

    Science.gov (United States)

    Franceschini, Nicolas

    2004-01-01

    This paper addresses some basic questions as to how vision links up with action and serves to guide locomotion in both biological and artificial creatures. The thorough knowledge gained during the past five decades on insects' sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some useful tricks for designing agile autonomous robots. Since constructing a "biorobot" first requires exactly formulating the biological principles presumably involved, it gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. "Biorobotics" therefore goes one step beyond computer simulation. It leads to experimenting with real physical robots which have to pass the stringent test of the real world. Biorobotics provide us with a new tool, which can help neurobiologists and neuroethologists to identify and investigate worthwhile issues in the field of sensory-motor control. Here we describe some of the visually guided terrestrial and aerial robots we have developed since 1985 on the basis of our biological findings. All these robots behave in response to the optic flow, i.e., they work by measuring the slip speed of the retinal image. Optic flow is sensed on-board by miniature electro-optical velocity sensors. The very principle of these sensors was based on studies in which we recorded the responses of single identified neurons to single photoreceptor stimulation in a model visual system: the fly's compound eye.

  13. Effect of oxygen flow on the structure and optical properties of the Gd2O3 optical films

    Science.gov (United States)

    Wang, Siyu; Ma, Ping; Pu, Yunti; Qiao, Zhao; Zhang, Mingxiao; Lu, Zhongwen; Peng, Dongxu

    2016-10-01

    Gd2O3 thin films were deposited by Ion-beam sputtering (IBS) under the oxygen flow of 0 sccm~30 sccm. The structure and optical properties of the Gd2O3 optical films were investigated by Lambdar950 spectrophotometer, laser calorimetry and atomic force microscopy (AFM). When oxygen flow was less than 10 sccm, with the increase of oxygen flow, the transmittance of the films increased, at the same time absorptance and the surface roughness of the films decreased. While the flow was more than 10 sccm, with the increase of the flow rate, the surface roughness of the films increased, but the transmittance and absorptance did not show any apparent change. The results show that both the structure and optical properties are closely related to the flow of oxygen. XPS measurements demonstrated that when the oxygen flow increase from 0 sccm to 10 sccm, the defect oxygen decreases. But when the oxygen flow increase from 10 sccm to 30 sccm, the defect oxygen increase. The XPS spectra show that when the oxygen flow was 10 sccm, the defect oxygen was the least. Thus when the oxygen flow was 10 sccm, the structure and optical properties of the Gd2O3 optical films were the best.

  14. Tilt, Warp, and Simultaneous Precessions in Disks

    CERN Document Server

    Montgomery, M M

    2012-01-01

    Warps are suspected in disks around massive compact objects. However, the proposed warping source -- non-axisymmetric radiation pressure -- does not apply to white dwarfs. In this letter we report the first Smoothed Particle Hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After ~79 days in V344 Lyrae, the disk angular momentum L_d becomes misaligned to the orbital angular momentum L_o. As the gas stream remains normal to L_o, hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit ne...

  15. Entanglement Entropy in Warped Conformal Field Theories

    NARCIS (Netherlands)

    Castro, A.; Hofman, D.M.; Iqbal, N.

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation

  16. Brownian Warps for Non-Rigid Registration

    DEFF Research Database (Denmark)

    Nielsen, Mads; Johansen, Peter; Jackson, Andrew D.;

    2008-01-01

    prior, we formulate a Partial Differential Equation for obtaining the maximally likely warp given matching constraints derived from the images. We solve for the free boundary conditions, and the bias toward smaller areas in the finite domain setting. Furthermore, we demonstrate the technique on 2D...

  17. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm

    Science.gov (United States)

    Xue, Liang; Vargas, Javier; Wang, Shouyu; Li, Zhenhua; Liu, Fei

    2015-09-01

    Cell detections and analysis are important in various fields, such as medical observations and disease diagnoses. In order to analyze the cell parameters as well as observe the samples directly, in this paper, we present an improved quantitative interferometric microscopy cytometer, which can monitor the quantitative phase distributions of bio-samples and realize cellular parameter statistics. The proposed system is able to recover the phase imaging of biological samples in the expanded field of view via a regularized optical flow demodulation algorithm. This algorithm reconstructs the phase distribution with high accuracy with only two interferograms acquired at different time points simplifying the scanning system. Additionally, the method is totally automatic, and therefore it is convenient for establishing a quantitative phase cytometer. Moreover, the phase retrieval approach is robust against noise and background. Excitingly, red blood cells are readily investigated with the quantitative interferometric microscopy cytometer system.

  18. Crowd Analysis by Using Optical Flow and Density Based Clustering

    DEFF Research Database (Denmark)

    Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua;

    2010-01-01

    , it is applied a crowd tracker in every frame, allowing us to detect and track the crowds. Our system gives the output as a graphic overlay, i.e it adds arrows and colors to the original frame sequence, in order to identify crowds and their movements. For the evaluation, we check when our system detect certains......In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...... events on the crowds, such as merging, splitting and collision....

  19. Eigenanalysis of a neural network for optic flow processing

    Science.gov (United States)

    Weber, F.; Eichner, H.; Cuntz, H.; Borst, A.

    2008-01-01

    Flies gain information about self-motion during free flight by processing images of the environment moving across their retina. The visual course control center in the brain of the blowfly contains, among others, a population of ten neurons, the so-called vertical system (VS) cells that are mainly sensitive to downward motion. VS cells are assumed to encode information about rotational optic flow induced by self-motion (Krapp and Hengstenberg 1996 Nature 384 463-6). Recent evidence supports a connectivity scheme between the VS cells where neurons with neighboring receptive fields are connected to each other by electrical synapses at the axonal terminals, whereas the boundary neurons in the network are reciprocally coupled via inhibitory synapses (Haag and Borst 2004 Nat. Neurosci. 7 628-34 Farrow et al 2005 J. Neurosci. 25 3985-93 Cuntz et al 2007 Proc. Natl Acad. Sci. USA). Here, we investigate the functional properties of the VS network and its connectivity scheme by reducing a biophysically realistic network to a simplified model, where each cell is represented by a dendritic and axonal compartment only. Eigenanalysis of this model reveals that the whole population of VS cells projects the synaptic input provided from local motion detectors on to its behaviorally relevant components. The two major eigenvectors consist of a horizontal and a slanted line representing the distribution of vertical motion components across the fly's azimuth. They are, thus, ideally suited for reliably encoding translational and rotational whole-field optic flow induced by respective flight maneuvers. The dimensionality reduction compensates for the contrast and texture dependence of the local motion detectors of the correlation-type, which becomes particularly pronounced when confronted with natural images and their highly inhomogeneous contrast distribution.

  20. Peripheral processing facilitates optic flow-based depth perception

    Directory of Open Access Journals (Sweden)

    Jinglin Li

    2016-10-01

    Full Text Available Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (`optic flow' during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs. However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light

  1. Detection of linear ego-acceleration from optic flow.

    Science.gov (United States)

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  2. Reflection-less device allows electromagnetic warp drive

    CERN Document Server

    Ochiai, T

    2010-01-01

    One of the striking properties of artificially structured materials is the negative refraction, an optical feature that known natural materials do not exhibit. Here, we propose a simple design, composed of two parallel layers of materials with different refraction indices $n_1=-n_2$, that constructs perfect reflection-less devices. The electromagnetic waves can tunnel from one layer to the other, a feature that resembles a truncation of the physical space leading to an electromagnetic warp drive. Since the refractive indices do not require any large values, this method demonstrates for the first time the practical feasibility of guiding electromagnetic fields in complete absence of reflection phenomena and without degradation of transmission efficiency at all.

  3. Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing

    Science.gov (United States)

    Timoshina, Polina A.; Zinchenko, Ekaterina M.; Tuchina, Daria K.; Sagatova, Madina M.; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.

    2017-03-01

    In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning.

  4. Entanglement entropy in warped conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL Amsterdam (Netherlands)

    2016-02-04

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,ℝ)×U(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  5. Brane modeling in warped extra-dimension

    CERN Document Server

    Ahmed, Aqeel

    2012-01-01

    Five-dimensional scenarios with infinitesimally thin branes replaced by appropriate configurations of a scalar field were considered. A possibility of periodic extra dimension was discussed in the presence on non-minimal scalar-gravity coupling and a generalized Gibbons-Kallosh-Linde sum rule was found. In order to avoid constraints imposed by periodicity, a non-compact spacial extra dimension was introduced. A five dimensional model with warped geometry and two thin branes mimicked by a scalar profile was constructed and discussed. In the thin brane limit the model corresponds to a set-up with two positive-tension branes. The presence of two branes allows to address the issue of the hierarchy problem which could be solved by the standard warping of the four dimensional metric. Stability of the background solution was discussed and verified in the presence of the most general perturbations of the metric and the scalar field.

  6. Entanglement Entropy in Warped Conformal Field Theories

    CERN Document Server

    Castro, Alejandra; Iqbal, Nabil

    2015-01-01

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,R)xU(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  7. Wormholes, warp drives and energy conditions

    CERN Document Server

    2017-01-01

    Top researchers in the field of gravitation present the state-of-the-art topics outlined in this book, ranging from the stability of rotating wormholes solutions supported by ghost scalar fields, modified gravity applied to wormholes, the study of novel semi-classical and nonlinear energy conditions, to the applications of quantum effects and the superluminal version of the warp drive in modified spacetime. Based on Einstein's field equations, this cutting-edge research area explores the more far-fetched theoretical outcomes of General Relativity and relates them to quantum field theory. This includes quantum energy inequalities, flux energy conditions, and wormhole curvature, and sheds light on not just the theoretical physics but also on the possible applications to warp drives and time travel. This book extensively explores the physical properties and characteristics of these 'exotic spacetimes,' describing in detail the general relativistic geometries that generate closed timelike curves.

  8. An Object Detection Method Using Wavelet Optical Flow and Hybrid Linear-Nonlinear Classifier

    Directory of Open Access Journals (Sweden)

    Pengcheng Han

    2013-01-01

    Full Text Available We propose a new computational intelligence method using wavelet optical flow and hybrid linear-nonlinear classifier for object detection. With the existing optical flow methods, it is difficult to accurately estimate moving objects with diverse speeds. We propose a wavelet-based optical flow method, which uses wavelet decomposition in optical flow motion estimation. The algorithm can accurately detect moving objects with variable speeds in a scene. In addition, we use the hybrid linear-nonlinear classifier (HLNLC to classify moving objects and static background. HLNLC transforms a nonoptimal scalar variable into its likelihood ratio and uses a scalar quantity as the decision variable. This approach is appropriate for the classification of optical flow feature vectors with unequal variance matrices. The experimental results confirm that our proposed object detection method has an improved accuracy and computation efficiency over other state-of-the-art methods.

  9. Graviton modes in multiply warped geometry

    Energy Technology Data Exchange (ETDEWEB)

    Arun, Mathew Thomas, E-mail: thomas.mathewarun@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Choudhury, Debajyoti, E-mail: debajyoti.choudhury@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Das, Ashmita, E-mail: ashmita.phy@gmail.com [Department of Theoretical Physics, Indian Association for the Cultivation of Sciences, 2A& B R.S.C. Mullick Road, Kolkata 700 032 (India); SenGupta, Soumitra, E-mail: soumitraiacs@gmail.com [Department of Theoretical Physics, Indian Association for the Cultivation of Sciences, 2A& B R.S.C. Mullick Road, Kolkata 700 032 (India)

    2015-06-30

    The negative results in the search for Kaluza–Klein graviton modes at the LHC, when confronted with the discovery of the Higgs, have been construed to have severely limited the efficacy of the Randall–Sundrum model as an explanation of the hierarchy problem. We show, though, that the presence of multiple warping offers a natural resolution of this conundrum through modifications in both the graviton spectrum and their couplings to the Standard Model fields.

  10. Flavor universal resonances and warped gravity

    Science.gov (United States)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo; Sundrum, Raman

    2017-01-01

    Warped higher-dimensional compactifications with "bulk" standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem" remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement", with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at ˜ O(10) TeV, with subdominant resonance decays into Higgs/top-rich final states, giving the LHC an early "preview" of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  11. Design of flow chamber with electronic cell volume capability and light detection optics for multilaser flow cytometry.

    Science.gov (United States)

    Schuette, W H; Shackney, S E; Plowman, F A; Tipton, H W; Smith, C A; MacCollum, M A

    1984-11-01

    A multibeam optical detection system has been developed with a high optical efficiency, achieved through a reduction in the number of optical interfaces employed in the system. This reduction is made possible by a combination of employing simple lenses, gluing the objective lens directly upon the face of the flow cuvette and the extraction of only one fluorescence signal from each laser beam. A modified flow chamber is also described that includes fluidic resistance elements for the elimination of most of the electric shielding normally associated with electronic cell volume measurements.

  12. Kaluza-Klein relics from warped reheating

    CERN Document Server

    Berndsen, Aaron; Stoica, Horace

    2007-01-01

    It has been suggested that after brane-antibrane inflation in a Klebanov-Strassler (KS) warped throat, metastable Kaluza-Klein (KK) excitations can be formed due to nearly-conserved angular momenta along isometric directions in the throat. If sufficiently long-lived, these relics could conflict with big bang nucleosynthesis or baryogenesis by dominating the energy density of the universe. We make a detailed estimate of the decay rate of such relics using the low energy effective action of type IIB string theory compactified on the throat geometry, with attention to powers of the warp factor. We find that it is necessary to turn on SUSY-breaking deformations of the KS background in order to ensure that the most dangerous relics will decay. The decay rate is found to be much larger than the naive guess based on the dimension of the operators which break the angular isometries of the throat. For an inflationary warp factor of order w ~ 10^{-4}, we obtain the bound M_{3/2} > 10^8 GeV on the scale of SUSY breaking...

  13. Warped Brane Worlds in Six Dimensional Supergravity

    CERN Document Server

    Aghababaie, Y; Cline, J M; Firouzjahi, H; Parameswaran, S L; Quevedo, Fernando; Tasinato, G; Zavala, I

    2003-01-01

    We present warped compactification solutions of six-dimensional supergravity, which are generalizations of the Randall-Sundrum warped brane world to codimension two and to a supersymmetric context. In these solutions the dilaton varies over the extra dimensions, and this makes the electroweak hierarchy only power-law sensitive to the proper radius of the extra dimensions (as opposed to being exponentially sensitive as in the RS model). Warping changes the phenomenology of these models because the Kaluza-Klein gap can be much larger than the internal space's inverse proper radius. We provide examples both for Romans' nonchiral supergravity and Salam-Sezgin chiral supergravity, and in both cases the solutions break all of the supersymmetries of the models. We interpret the solution as describing the fields sourced by a 3-brane and a boundary 4-brane (Romans' supergravity) or by one or two 3-branes (Salam-Sezgin supergravity), and we identify the topological constraints which are required by this interpretation....

  14. Flavor Universal Resonances and Warped Gravity

    CERN Document Server

    Agashe, Kaustubh; Hong, Sungwoo; Sundrum, Raman

    2016-01-01

    Warped higher-dimensional compactifications with "bulk" standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem" remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement", with TeV-scale Kaluza-Klein excitations of the gauge and gravit...

  15. Realization of an Automated Vertical Warp Stop Motion Positioning

    Directory of Open Access Journals (Sweden)

    Frederik Cloppenburg

    2015-02-01

    Full Text Available The tension in the warp yarns is a critical variable in the weaving process. If the warp tension is too high or too low the weaving process will be interrupted. A parameter that directly affects the warp tension is the vertical warp stop motion position. The position of the warp stop motion must be set for every produced new article. The setting procedure is performed completely manual. In this paper we present a mechatronic modification of an air jet-weaving machine to adjust the vertical warp stop motion position with the help of actuators. The parameters for the automated movement are determined and an open loop control, which uses a PLC, is proposed.

  16. Automatic analysis of ciliary beat frequency using optical flow

    Science.gov (United States)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  17. Clinical use of optical coherence tomography and fractional flow reserve

    Directory of Open Access Journals (Sweden)

    Ivanović Vladimir

    2016-01-01

    Full Text Available Introduction. The aim of each diagnostic method is to serve as a guide in deciding about the right patient treatment. During myocardial revascularization the decision to perform revascularization is usually not easy to make, especially in case of borderline stenosis. It has been proven that it is not enough to base morphological evaluation of coronary artery vessel stenosis solely on angiography. It is necessary to include additional modern diagnostic methods for functional analysis and detailed morphological analysis using fractional flow reserve (FFR and optical coherence tomography (OCT, respectively. Case reports. In the first case report we showed the significance of morphological analysis using OCT and proved that it was not lumen stenosis. The second and the third case reports showed the complementarity between functional analysis (FFR and morphological analysis (OCT of stenosis in solving a complex coronary disease. The fourth case report showed the significance of OCT in dealing with the recurrent stent restenosis. Conclusion. By these short case reports we confirmed that percutaneous coronary intervention (PCI guided by angiography is definitely not enough in deciding about myocardial revascularization especially in patients with a complex coronary disease. In certain cases FFR and OCT procedures can be complementary methods and improve quality of revascularization, particularly in the case of recurrent in-stent restenosis.

  18. Real time mass flow rate measurement using multiple fan beam optical tomography.

    Science.gov (United States)

    Abdul Rahim, R; Leong, L C; Chan, K S; Rahiman, M H; Pang, J F

    2008-01-01

    This paper presents the implementing multiple fan beam projection technique using optical fibre sensors for a tomography system. From the dynamic experiment of solid/gas flow using plastic beads in a gravity flow rig, the designed optical fibre sensors are reliable in measuring the mass flow rate below 40% of flow. Another important matter that has been discussed is the image processing rate or IPR. Generally, the applied image reconstruction algorithms, the construction of the sensor and also the designed software are considered to be reliable and suitable to perform real-time image reconstruction and mass flow rate measurements.

  19. Interactions Between Massive Dark Halos And Warped Disks

    OpenAIRE

    Kuijken, Konrad

    1996-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong coupling leading to efficient damping (or in some circumstances excitation) of the misalignment, and hence the warp. We therefore discuss possible alternative explanations of the warp phenomenon, ...

  20. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.

    2013-01-01

    We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is

  1. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2016-10-01

    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  2. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  3. Horn-Schunck Optical Flow with a Multi-Scale Strategy

    Directory of Open Access Journals (Sweden)

    Enric Meinhardt-Llopis

    2013-07-01

    Full Text Available The seminal work of Horn and Schunck is the first variational method for optical flow estimation. It introduced a novel framework where the optical flow is computed as the solution of a minimization problem. From the assumption that pixel intensities do not change over time, the optical flow constraint equation is derived. This equation relates the optical flow with the derivatives of the image. There are infinitely many vector fields that satisfy the optical flow constraint, thus the problem is ill-posed. To overcome this problem, Horn and Schunck introduced an additional regularity condition that restricts the possible solutions. Their method minimizes both the optical flow constraint and the magnitude of the variations of the flow field, producing smooth vector fields. One of the limitations of this method is that, typically, it can only estimate small motions. In the presence of large displacements, this method fails when the gradient of the image is not smooth enough. In this work, we describe an implementation of the original Horn and Schunck method and also introduce a multi-scale strategy in order to deal with larger displacements. For this multi-scale strategy, we create a pyramidal structure of downsampled images and change the optical flow constraint equation with a nonlinear formulation. In order to tackle this nonlinear formula, we linearize it and solve the method iteratively in each scale. In this sense, there are two common approaches: one approach that computes the motion increment in the iterations; or the one we follow, that computes the full flow during the iterations. The solutions are incrementally refined over the scales. This pyramidal structure is a standard tool in many optical flow methods.

  4. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  5. Constraining the age of the NGC 4565 HI Disk Warp: Determining the Origin of Gas Warps

    CERN Document Server

    Radburn-Smith, David J; Streich, David; Bell, Eric F; Dalcanton, Julianne J; Dolphin, Andrew E; Stilp, Adrienne M; Monachesi, Antonela; Holwerda, Benne W; Bailin, Jeremy

    2013-01-01

    We have mapped the distribution of young and old stars in the gaseous HI warp of NGC 4565. We find a clear correlation of young stars (1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ~300 Myr ago relative to the surrounding regions, is (6.3 +2.5/-1.5) x 10^-5 M_sol/yr/kpc^2. This implies a ~60+/-20 Gyr depletion time of the HI warp, similar to the timescales calculated for the outer HI disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of HI warps, and the gas fueling of disk galaxies.

  6. Real-time optical flow estimation on a GPU for a skied-steered mobile robot

    Science.gov (United States)

    Kniaz, V. V.

    2016-04-01

    Accurate egomotion estimation is required for mobile robot navigation. Often the egomotion is estimated using optical flow algorithms. For an accurate estimation of optical flow most of modern algorithms require high memory resources and processor speed. However simple single-board computers that control the motion of the robot usually do not provide such resources. On the other hand, most of modern single-board computers are equipped with an embedded GPU that could be used in parallel with a CPU to improve the performance of the optical flow estimation algorithm. This paper presents a new Z-flow algorithm for efficient computation of an optical flow using an embedded GPU. The algorithm is based on the phase correlation optical flow estimation and provide a real-time performance on a low cost embedded GPU. The layered optical flow model is used. Layer segmentation is performed using graph-cut algorithm with a time derivative based energy function. Such approach makes the algorithm both fast and robust in low light and low texture conditions. The algorithm implementation for a Raspberry Pi Model B computer is discussed. For evaluation of the algorithm the computer was mounted on a Hercules mobile skied-steered robot equipped with a monocular camera. The evaluation was performed using a hardware-in-the-loop simulation and experiments with Hercules mobile robot. Also the algorithm was evaluated using KITTY Optical Flow 2015 dataset. The resulting endpoint error of the optical flow calculated with the developed algorithm was low enough for navigation of the robot along the desired trajectory.

  7. Focusing of branes in warped backgrounds

    CERN Document Server

    Kar, S

    2006-01-01

    Branes are embedded surfaces in a given background (bulk) spacetime. Assuming a warped bulk, we investigate, in analogy with the case for geodesics, the notion of {\\em focusing} of families of such embedded, extremal 3--branes in a five dimensional background . The essential tool behind our analysis, is the well-known generalised Raychaudhuri equations for surface congruences. In particular, we find explicit solutions of these equations, which seem to show that families of 3--branes can focus along lower dimensional submanifolds depending on where the initial expansions are specified. We conclude with comments on the results obtained and possibilities about future work along similar lines.

  8. Characterization of multiaxial warp knit composites

    Science.gov (United States)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  9. Variations on the Warped Deformed Conifold

    CERN Document Server

    Gubser, S S; Klebanov, I R; Gubser, Steven S.; Herzog, Christopher P.; Klebanov, Igor R.

    2004-01-01

    The warped deformed conifold background of type IIB theory is dual to the cascading $SU(M(p+1))\\times SU(Mp)$ gauge theory. We show that this background realizes the (super-)Goldstone mechanism where the U(1) baryon number symmetry is broken by expectation values of baryonic operators. The resulting massless pseudo-scalar and scalar glueballs are identified in the supergravity spectrum. A D-string is then dual to a global string in the gauge theory. Upon compactification, the Goldstone mechanism turns into the Higgs mechanism, and the global strings turn into ANO strings.

  10. Enhancing face recognition by image warping

    OpenAIRE

    García Bueno, Jorge

    2009-01-01

    This project has been developed as an improvement which could be added to the actual computer vision algorithms. It is based on the original idea proposed and published by Rob Jenkins and Mike Burton about the power of the face averages in arti cial recognition. The present project aims to create a new automated procedure applied for face recognition working with average images. Up to now, this algorithm has been used manually. With this study, the averaging and warping process will be done b...

  11. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Virgínia H.V. Baroncini

    2015-03-01

    Full Text Available Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  12. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  13. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements

    Science.gov (United States)

    Geoghegan, P. H.; Buchmann, N. A.; Spence, C. J. T.; Moore, S.; Jermy, M.

    2012-05-01

    A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young's modulus of the elastomer. Data for the dependence of Young's modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water-glycerol mixtures) are also presented.

  14. Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    CERN Document Server

    Buibas, Marius; Nizar, Krystal; Silva, Gabriel A

    2009-01-01

    An optical flow gradient algorithm was applied to spontaneously forming networks of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling patterns. We begin by briefly reviewing the mathematics of the optical flow algorithm, describe how to solve for the displacement vectors, and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the ...

  15. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  16. Relaxation of Warped Disks: the Case of Pure Hydrodynamics

    CERN Document Server

    Sorathia, Kareem A; Hawley, John F

    2013-01-01

    Orbiting disks may exhibit bends due to a misalignment between the angular momentum of the inner and outer regions of the disk. We begin a systematic simulational inquiry into the physics of warped disks with the simplest case: the relaxation of an unforced warp under pure fluid dynamics, i.e. with no internal stresses other than Reynolds stress. We focus on the nonlinear regime in which the bend rate is large compared to the disk aspect ratio. When warps are nonlinear, strong radial pressure gradients drive transonic radial motions along the disk's top and bottom surfaces that efficiently mix angular momentum. The resulting nonlinear decay rate of the warp increases with the warp rate and the warp width, but, at least in the parameter regime studied here, is independent of the sound speed. The characteristic magnitude of the associated angular momentum fluxes likewise increases with both the local warp rate and the radial range over which the warp extends; it also increases with increasing sound speed, but m...

  17. Estimation of Centers and Stagnation points in optical flow fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local...... distribution of spatio-temporal energy, which is sampled using a set of spatio-temporal quadrature filters. These observations of normal flows are then integrated into smooth flow fields by locally approximating first order polynomials in the spatial coordinates to the flow vectors. This technique furthermore...... allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points (e.g. nodes, saddles, and centers). We will apply the algorithm to two data sets. The first sequence consists of infrared images from the meteorological satellite Meteosat. Here...

  18. A Theory for Optical Flow-based Transport on Image Manifolds

    Science.gov (United States)

    2011-11-21

    I2(x, y) = I1(x+ vx(x, y), y + vy(x, y)). (2) A common assumption in computing the optical flow between images is bright- ness constancy [16], where...not be the transport operator of choice, since such manifolds do not in general obey the brightness constancy requirement needed in optical flow...on Comp. Vision, 2010. [15] M. I. Miller , L. Younes, Group actions, homeomorphisms, and matching: a general framework, Intl. J. of Comp. Vision 41 (1

  19. Optical contouring of an acrylic surface for non-intrusive diagnostics in pipe-flow investigations

    Science.gov (United States)

    de Witt, Benjamin J.; Coronado-Diaz, Haydee; Hugo, Ronald J.

    2008-07-01

    In this work, an acrylic surface was optically contoured to correct for the optical distortion caused by a transparent pipe wall. This method can be applied to non-invasive viewing/imaging techniques for fluid flow experiments. Software tools were developed to aid in the design of an optically contoured acrylic test section for pipe-flow experiments. Numerical models were computed for a standard acrylic pipe, inner diameter 57.15 mm, with water enclosed. An optical contour prototype was machined on a 5-axis CNC machine, and polished with 1-15 μm diamond paste, alleviating any surface imperfections without significantly altering the contoured surface. Experiments were then performed to measure the emerging optical wavefront and was found to emerge planar when utilizing the optical contour. It was determined that the wavefront was corrected to within ten wavelengths of a Helium-Neon (He-Ne) laser beam.

  20. Warped electroweak breaking without custodial symmetry

    Science.gov (United States)

    Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano

    2011-03-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for mKK≳1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  1. Warped Electroweak Breaking Without Custodial Symmetry

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2010-01-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for m > 1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  2. NASA's Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Agan, Martin; Voisinet, Leeann; Devereaux, Ann

    1998-01-01

    The objective of Wireless Augmented Reality Prototype (WARP) effort is to develop and integrate advanced technologies for real-time personal display of information relevant to the health and safety of space station/shuttle personnel. The WARP effort will develop and demonstrate technologies that will ultimately be incorporated into operational Space Station systems and that have potential earth applications such as aircraft pilot alertness monitoring and in various medical and consumer environments where augmented reality is required. To this end a two phase effort will be undertaken to rapidly develop a prototype (Phase I) and an advanced prototype (Phase II) to demonstrate the following key technology features that could be applied to astronaut internal vehicle activity (IVA) and potentially external vehicle activity (EVA) as well: 1) mobile visualization, and 2) distributed information system access. Specifically, Phase I will integrate a low power, miniature wireless communication link and a commercial biosensor with a head mounted display. The Phase I design will emphasize the development of a relatively small, lightweight, and unobtrusive body worn prototype system. Phase II will put increased effort on miniaturization, power consumption reduction, increased throughput, higher resolution, and ``wire removal'' of the subsystems developed in Phase I.

  3. Development of fiber optic sensor for fluid flow of astronauts’ life-support system

    Science.gov (United States)

    Shachneva, E. A.; Murashkina, T. I.

    2016-08-01

    This paper proposes a fiber optic sensor consumption (volume, speed) of liquids in life-support systems of astronauts, as well as offers a simple method and apparatus for reproducing the parameters of fluid flow needed in research, yustiovke and adjusting the optical sensor system.

  4. Application of Optical Flow Sensors for Dead Reckoning, Heading Reference, Obstacle Detection, and Obstacle Avoidance

    Science.gov (United States)

    2015-09-01

    OPTICAL FLOW SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE by Tarek M. Nejah September 2015... SENSORS FOR DEAD RECKONING, HEADING REFERENCE, OBSTACLE DETECTION, AND OBSTACLE AVOIDANCE 5. FUNDING NUMBERS 6. AUTHOR(S) Nejah, Tarek M. 7...avoidance using only one optical mouse sensor was presented in this thesis. Odometry, position tracking, and obstacle avoidance are important issues in

  5. Dynamics of Zonal Flows: Failure of Wave-Kinetic Theory, and New Geometrical Optics Approximations

    CERN Document Server

    Parker, Jeffrey B

    2016-01-01

    The self-organization of turbulence into regular zonal flows can be fruitfully investigated with quasilinear methods and statistical descriptions. A wave kinetic equation that assumes asymptotically large-scale zonal flows is pathological. From an exact description of quasilinear dynamics emerges two better geometrical optics approximations. These involve not only the mean flow shear but also the second and third derivative of the mean flow. One approximation takes the form of a new wave kinetic equation, but is only valid when the zonal flow is quasi-static and wave action is conserved.

  6. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  7. Radiation-Driven Warping of Circumbinary Disks Around Eccentric Young Star Binaries

    CERN Document Server

    Hayasaki, Kimitake; Okazaki, Atsuo T; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-01-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from the optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the bina...

  8. Stiffness matrix for beams with shear deformation and warping torsion

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.; Pilkey, W. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-12-31

    A beam model which considers the warping effect in beams with arbitrary cross sections is discussed. This model takes into account bending, shear, and warping torsion. The derivation builds on a result in beam theory that, if shear is considered, for arbitrary cross sections the deflections in the different coordinate directions are not uncoupled as has been widely assumed. This conclusion follows from the calculation of the shear coefficients from an elasticity solution using an energy formulation. The shear coefficients form a symmetric tensor. The principal axes for this tensor are called principal shear axes. In Reference 2 structural matrices for the shear problem are derived using these shear coefficients. This paper extends these matrices to warping torsion. St. Venant`s semi-inverse method is applied to calculate warping shear stresses. The usual assumptions of the beam theory are made. The material is linear elastic. The loads may consist of shear forces, axial loads and twisting moments. Small deformations are considered. The cross section of the beam can be of arbitrary shape, thin-walled or solid. A deformation coefficient matrix is calculated which describes the relations between the deformations and the different load cases such as shear, torsion, and warping torsion. Numerical results for warping shear stresses and deformations are given. Also, a method to derive a stiffness matrix for a beam of arbitrary cross section under combined loading including warping torsion is presented.

  9. Optic flow-based collision-free strategies: From insects to robots.

    Science.gov (United States)

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Current Status of the WARP Experiment

    Science.gov (United States)

    Szelc, A. M.; Benetti, P.; Calligarich, E.; Calaprice, F.; Cambiaghi, M.; Carbonara, F.; Cavanna, F.; Cocco, A. G.; Dipompeo, F.; Ferrari, N.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Mangano, G.; Montanari, C.; Palamara, O.; Pandola, L.; Rappoldi, A.; Raselli, G. L.; Roncadelli, M.; Rossella, M.; Rubbia, C.; Santorelli, R.; Vignoli, C.; Zhao, Y.

    2006-07-01

    The WARP detector is a new idea in Dark Matter detection using liquid noble gases, specifically argon. We believe that argon is the medium best suited to detect nuclear recoils coming from interactions with the so called WIMPs (Weakly Interacting Massive Particles). The detection technique, using two different discrimination methods, is capable of an identification power as high as one event in 108. During the second half of the year 2006 the next, 100 liter, detector will be constructed with an active veto shield to further suppress the background, while currently a 2.3 liter prototype, installed in the Gran Sasso Laboratory (Italy), has been taking data since May 2004. The small version of the detector is able to not only provide insight on the operation of a two-phase liquid argon chamber but is also able to provide physics results competitive with the current leading edge experiments.

  11. Language comprehension warps the mirror neuron system.

    Science.gov (United States)

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  12. Monte Carlo exploration of warped Higgsless models

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, JoAnne L.; Lillie, Benjamin; Rizzo, Thomas Gerard [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, CA, 94025 (United States)]. E-mail: rizzo@slac.stanford.edu

    2004-10-01

    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} gauge group in an AdS{sub 5} bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, {approx_equal} 10 TeV, in W{sub L}{sup +}W{sub L}{sup -} elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned. (author)

  13. Monte Carlo Exploration of Warped Higgsless Models

    CERN Document Server

    Hewett, J L; Rizzo, T G

    2004-01-01

    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ gauge group in an AdS$_5$ bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, $\\simeq 10$ TeV, in $W_L^+W_L^-$ elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.

  14. Five-Dimensional Warped Geometry with a Bulk Scalar Field

    CERN Document Server

    Ito, M

    2001-01-01

    We explore the diversity of warped metric function in five-dimensional gravity including a scalar field and a 3-brane. We point out that the form of the function is determined by a parameter introduced here. For a particular value of the parameter, the warped metric function is smooth without having a singularity, and we show that the bulk cosmological constant have a upper bound and must be positive and that the lower bound of five-dimensional fundamental scale is controlled by both the brane tension and four-dimensional effective Planck scale. The general warp factor obtained here may relate to models inspired by SUGRA or M-theory.

  15. Tensile Property of Bi-axial Warp Knitted Structure

    Institute of Scientific and Technical Information of China (English)

    沈为

    2003-01-01

    The tensile property of bi-axial warp knitted fabrics is tested and compared with that of the plain weave fabric. The results show that there are obvious differences between the tensile property of a bi-axial warp knitted fabric and that of a plain weave fabric.The former can give fuller play to the property of a high modulus yarn than the latter. The tensile strength of a bi-axial warp knitted fabric is linear with the number of yarns in the direction of force.

  16. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel...

  17. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  18. Flow measurements in micro holes with electrochemical and optical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zosel, J.; Guth, U.; Thies, A.; Reents, B

    2003-09-30

    The decreasing feature size of electronic compounds down to the micrometer range is paralleled by an increase in the aspect ratio, worsening all mass transport related processes. In this paper the conditions of liquid flow into micro holes and blind micro vias (BMV) with diameter of 100-300 {mu}m and depth between 100 {mu}m and 1.5 mm are investigated. The flow was induced by surface directed jet flows, visualised by microscopy aided particle image velocimetry ({mu}-PIV) and correlated with electrochemical mass transfer measurements using the ferro/ferri-hexacyanide redox couple. It was found that the mean flow velocity in the holes and the penetration depth in the blind holes are influenced especially by the roughness of the inner walls and, at a lower scale, by the velocity and the impinging angle of the jet. The results enable the estimation of the mean flow rate in through holes and the penetration depth in BMV at defined hydrodynamic conditions in the bath. This is one of the preconditions for the appropriate engineering of plating lines designed for micro structures.

  19. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    Science.gov (United States)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  20. Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow

    Science.gov (United States)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel

    2016-05-01

    Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.

  1. Optical studies of shock generated transient supersonic base flows

    Science.gov (United States)

    Liang, P.-Y.; Bershader, D.; Wray, A.

    1982-01-01

    A shock tube employing interferometric and schlieren techniques is used to study transient base flow phenomena following shock wave passage over two plane bluff bodies: a hemicircular cylinder and a cylinder with the Galileo Jovian probe profile. An attempt is made to understand the physics of transition from transient to steady state flow, and to provide code verification for a study employing the Illiac IV computer. Transient base flow interactions include a series of shock diffraction, regular, and Mach reflections, coupled with boundary layer development, separation, and recompression. Vorticity generation and transport underlie these features. The quantitative verification of the computer code includes comparisons of transient pressure and density fields, near wake geometries, and bow shock standoff distances.

  2. Obstacle detection and terrain characterization using optical flow without 3-D reconstruction

    Science.gov (United States)

    Young, Gin-Shu; Hong, Tsai Hong; Herman, Martin; Yang, Jackson C. S.

    1992-11-01

    For many applications in computer vision, it is important to recover range, 3-D motion, and/or scene geometry from a sequence of images. However, there are many robot behaviors which can be achieved by extracting relevant 2-D information from the imagery and using this information directly, without recovery of such information. In this paper, we focus on two behaviors, obstacle avoidance and terrain navigation. A novel method of these two behaviors has been developed without 3-D reconstruction. This approach is often called purposive active vision. A linear relationship, plotted as a line and called a reference flow line, has been found. The difference between a plotted line and the reference flow line can be used to detect discrete obstacles above or below the reference terrain. For terrain characterization, slopes of surface regions can be calculated directly from optical flow. Some error analysis is also done. The main features of this approach are that (1) discrete obstacles are detected directly from 2-D optical flow, no 3-D reconstruction is performed; (2) terrain slopes are also calculated from 2- D optical flow; (3) knowledge about the terrain model, camera-to-ground coordinate transformation, or vehicle (or camera) motion is not required; (4) the error sources involved are reduced to a minimum, since the only information required is a component of optical flow. An initial experiment using noisy synthetic data is also included to demonstrate the applicability and robustness of the method.

  3. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  4. TV-L1 optical flow for vector valued images

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Nielsen, Mads

    2011-01-01

    a generalized algorithm that works on vector valued images, by means of a generalized projection step. We give examples of calculations of flows for a number of multi- dimensional constancy assumptions, e.g. gradient and RGB, and show how the developed methodology expands to any kind of vector valued images....... The resulting algorithms have the same degree of parallelism as the case of one-dimensional images, and we have produced an efficient GPU implementation, that can take vector valued images with vectors of any dimension. Finally we demonstrate how these algorithms generally produce better flows than the original...

  5. AN IMPROVED RADIAL BASIS FUNCTION BASED METHOD FOR IMAGE WARPING

    Institute of Scientific and Technical Information of China (English)

    Nie Xuan; Zhao Rongchun; Zhang Cheng; Zhang Xiaoyan

    2005-01-01

    A new image warping method is proposed in this letter, which can warp a given image by some manual defined features. Based on the radial basis interpolation function algorithm, the proposed method can transform the original optimized problem into nonsingular linear problem by adding one-order term and affine differentiable condition. This linear system can get the steady unique solution by choosing suitable kernel function. Furthermore, the proposed method demonstrates how to set up the radial basis function in the target image so as to achieve supports to adopt the backward re-sampling technology accordingly which could gain the very slippery warping image. Theexperimental result shows that the proposed method can implement smooth and gradual image warping with multi-anchor points' accurate interpolation.

  6. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, D.M.; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale r

  7. Optic flow based station-keeping and wind rejection for small flying vehicles

    Science.gov (United States)

    Patrick, Bryan

    Optic flow and Wide Field Integration (WFI) have shown potential for application to autonomous navigation of Unmanned Air Vehicles (UAVs). In this study the application of these same methods to other tasks, namely station-keeping and wind rejection, is examined. Theory surrounding optic flow, WFI and wind gust modeling is examined to provide a theoretical background. A controller based on a Hinfinity bounded formulation of the well known Linear Quadratic Regulator in designed to both mitigate wind disturbances and station-keep. The performance of this controller is assessed via simulation to determine both performance and trade-offs in implementation such as the method for optic flow calculation. Furthermore, flight tests are performed to examine the real world effectiveness of the controller. Finally, conclusions about potential improvement to implementation are drawn

  8. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    Science.gov (United States)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  9. On the stability of multicast flow aggregation in IP over optical network for IPTV delivery

    Institute of Scientific and Technical Information of China (English)

    Xuan Luo; Yaohui Jin; Qingji Zeng; Weiqiang Sun; Wei Guo; Weisheng Hu

    2008-01-01

    The stable multicast flow aggregation (MFA) problem in internet protocol (IP) over optical network under the dynamical scenario is studied. Given an optical network topology, there is a set of head ends and access routers attached to the optical network, in which each head end can provide a set of programs (IP multicasting flows) and each access router requests a set of programs, we find a set of stable light-trees to accommodate the optimally aggregated multicast IP flows if the requests of access routers changed dynamically. We introduce a program correlation matrix to describe the preference of end users' requests. As the original MFA problem is NP-complete, a heuristic approach, named most correlated program first (MCPF), is presented and compared with the extended least tree first (ELTF) algorithm which is topologyaware. Simulation results show that MCPF can achieve better performance than ELTF in terms of stability with negligible increment of network resource usage.

  10. Measuring In-Plane Micro-Motion of Micro-Structure Using Optical Flow

    Institute of Scientific and Technical Information of China (English)

    JIN Cuiyun; JIN Shijiu; LI Dachao; WANG Jianlin

    2009-01-01

    Optical flow method is one of the most important methods of analyzing motion images.Optical flow field is used to analyze characteristics of motion objects.According to motion features of micro-electronic mechanical system(MEMS)micro-structure,the optical algorithm based on label field and neighborhood optimization is presented to analyze the in-plane micro-motion of micro-structure.Firstly,high speed motion states for each frequency segment of micro-structure in cyclic motion are frozen based on stroboscopic principle.Thus a series of image sequences,and can obtain reliable and precise optical field and reduce computing time.As micro-resonator of urement precision of the presented algorithm is high,and measurement repeatability reaches 40 am under the same experiment condition.

  11. Time Warp Operating System, Version 2.5.1

    Science.gov (United States)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; hide

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  12. Optimization Design of Warping Dam in Wangjiagou, Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu; Cui Peng; Li Fa-bin; Wang Qing

    2003-01-01

    This paper introduces the simulating design of warping dam in the Loess Plateau, western Shanxi province.On the basis of collected data, the digital elevation model in the studied area has been created. Utilizing GIS (geographical information system) technology, this paper achieves some environmental based results with the simulation method. Also based on the parameter model of precipitation, the tendency of warping sand has been calculated, aiming at providing academic basis for optimization design in the small watershed.

  13. Optimization Design of Warping Dam in Wangjiagou, Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    ZhangYu; CuiPeng; LiFa-bin; WangQing

    2003-01-01

    This paper introduces the simulating design of warping dam in the Loess Plateau, western Shanxi province.On the basis of collected data, the digital elevation model in the studied area has been created. Utilizing GIS (geographical information system) technology, this paper achieves some environrnental based results with the simulation method. Also based on the parameter model of precipitation, the tendency of warping sand has been calculated, aiming at providing academic basis for optimization design in the small watershed.

  14. Time Warp Operating System, Version 2.5.1

    Science.gov (United States)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; Younger, Herbert C.

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  15. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  16. Optical flows method for lightweight agile remote sensor design and instrumentation

    Science.gov (United States)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to

  17. On the generation of asymmetric warps in disk galaxies

    CERN Document Server

    Saha, K; Saha, Kanak; Jog, Chanda J.

    2005-01-01

    The warps in many spiral galaxies are now known to asymmetric. Recent sensitive observations have revealed that asymmetry of warps may be the norm rather than exception. However there exists no generic mechanism to generate these asymmetries in warps. We have derived the dispersion relation in a compact form for the S-shaped warps(described by the m=1 mode) and the bowl-shaped distribution(described by the m=0 mode) in galactic disk embedded in a dark matter halo. We then performed the numerical modal analysis and used the linear and time-dependent superposition principle to generate asymmetric warps in the disk. On doing the modal analysis we find the frequency of the $m=0$ mode is much larger than that of the $m=1$ mode. The linear and time-dependent superposition of these modes with their unmodulated amplitudes(that is, the coefficients of superposition being unity) results in an asymmetry in warps of ~ 20 - 40 %, whereas a smaller coefficient for the m=0 mode results in a smaller asymmetry. The resulting ...

  18. Multichannel Dynamic-Range Compression Using Digital Frequency Warping

    Directory of Open Access Journals (Sweden)

    Kathryn Hoberg Arehart

    2005-11-01

    Full Text Available A multichannel dynamic-range compressor system using digital frequency warping is described. A frequency-warped filter is realized by replacing the filter unit delays with all-pass filters. The appropriate design of the frequency warping gives a nonuniform frequency representation very close to the auditory Bark scale. The warped compressor is shown to have substantially reduced group delay in comparison with a conventional design having comparable frequency resolution. The warped compressor, however, has more delay at low than at high frequencies, which can lead to perceptible changes in the signal. The detection threshold for the compressor group delay was determined as a function of the number of all-pass filter sections in cascade needed for a detectible change in signal quality. The test signals included clicks, vowels, and speech, and results are presented for both normal-hearing and hearing-impaired subjects. Thresholds for clicks are lower than thresholds for vowels, and hearing-impaired subjects have higher thresholds than normal-hearing listeners. A frequency-warped compressor using a cascade of 31 all-pass filter sections offers a combination of low overall delay, good frequency resolution, and imperceptible frequency-dependent delay effects for most listening conditions.

  19. Influence of Warp Yarn Tension on Cotton Woven Fabric Structures

    Directory of Open Access Journals (Sweden)

    Uzma Syed

    2013-01-01

    Full Text Available Control of the warp and weft yarn tension is an important factor. In this research, effect of warp yarn tension variations on the quality of greige and dyed woven fabrics was investigated. Six fabric samples (three Plain and three Twill weaves were woven on shuttle loom at varied warp yarn tension. The fabric samples were then pre-treated and dyed (Drimarene Red Cl 5B, 3% owf using laboratory singeing machine and HT dyeing machine. Greige fabric quality such as fabric inspection, fabric length, fabric width, GSM (Gram per Square Meter, EPI (Ends per Inch, PPI (Picks per Inch, and dyed fabric quality such as L*, a*, b*, C, h o , (K/S ?max and fastness properties were assessed according to the standard. It has been observed that fabric samples, both Plain and Twill weave; woven at improper warp yarns tension gives rejected greige fabric quality and 1-7% lower (K/S 550nm values as compared to the fabric weave at requisite warp yarn tension such as 38-39cN for Plain fabric and 78cN for Twill fabric for 42x38 and 64x36 tex construction. Hence, among other weave faults, warp yarn tension variation has influence on the greige fabric quality as well as caused improper and uneven dyeing behavior.

  20. Motion Detection for PC based on Security System by using Optical Flow

    Directory of Open Access Journals (Sweden)

    K. Hawari Ghazali

    2012-01-01

    Full Text Available This system is designed aims to detect and analyze the motion of people that have been recorded on PC, which response rapidly to the abnormal motion based on  optical flow method. Horn-Schunck technique  is one of optical flow method which has ability to detect the motion in image sequences by examining the velocities of the motion objects. It will response to abnormal motion and triggered the alarm in order to alert the people beware to their surroundings.

  1. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  2. Optical Measurements in Non-Equilibrium Plasmas and Flows

    Science.gov (United States)

    2009-09-01

    Communications, Vol. 35, p. 69 (1979). 12. D.A. McQuarrie and J.D Simon, “Physical Chemistry – A Molecular Approach,” University Science Books... chemistry , shock structure, and heat transfer in the complex flow field around hypervelocity vehicles. The acceleration of low temperature oxidation...equation (2), B12 is the Einstein B coefficient for stimulated absorption, N1 is the number density of absorbers in the lower quantum state (rotational

  3. Maximum Likelihood Estimation of Monocular Optical Flow Field for Mobile Robot Ego-motion

    Directory of Open Access Journals (Sweden)

    Huajun Liu

    2016-01-01

    Full Text Available This paper presents an optimized scheme of monocular ego-motion estimation to provide location and pose information for mobile robots with one fixed camera. First, a multi-scale hyper-complex wavelet phase-derived optical flow is applied to estimate micro motion of image blocks. Optical flow computation overcomes the difficulties of unreliable feature selection and feature matching of outdoor scenes; at the same time, the multi-scale strategy overcomes the problem of road surface self-similarity and local occlusions. Secondly, a support probability of flow vector is defined to evaluate the validity of the candidate image motions, and a Maximum Likelihood Estimation (MLE optical flow model is constructed based not only on image motion residuals but also their distribution of inliers and outliers, together with their support probabilities, to evaluate a given transform. This yields an optimized estimation of inlier parts of optical flow. Thirdly, a sampling and consensus strategy is designed to estimate the ego-motion parameters. Our model and algorithms are tested on real datasets collected from an intelligent vehicle. The experimental results demonstrate the estimated ego-motion parameters closely follow the GPS/INS ground truth in complex outdoor road scenarios.

  4. Steering behaviour can be modulated by different optic flows during walking.

    Science.gov (United States)

    Sarre, Guillaume; Berard, Jessica; Fung, Joyce; Lamontagne, Anouk

    2008-05-01

    Optic flow is a typical pattern of visual motion that can be used to control locomotion. While the ability to discriminate translational or rotational optic flows have been extensively studied, how these flows control steering during locomotion is not known. The goal of this study was to compare the steering behaviour of subjects subjected to rotational, translational, or combined (rotational added to translational) optic flows with a focus of expansion (FOE) located to the right, left, or straight ahead. Ten healthy young subjects were instructed to walk straight in a virtual room viewed through a helmet mounted display while the location of the FOE was randomly offset. Horizontal trajectory of the body's centre of mass (CoM), as well as rotations of the head, trunk and foot were recorded in coordinates of both the physical and virtual worlds. Results show that subjects experienced a mediolateral shift in CoM opposite to the FOE location, with larger corrections being observed at more eccentric FOE locations. Head and body segment reorientations were only observed for optic flows containing a rotational component. CoM trajectory corrections in the physical world were also of small magnitude, leading to deviation errors in the virtual world. Altogether, these results suggest a profound influence of vision, especially due to the pattern of visual motion, on steering behaviours during locomotion.

  5. Optical PIV and LDV Comparisons of Internal Flow Investigations in SHF Impeller

    Directory of Open Access Journals (Sweden)

    G. Wuibaut

    2006-01-01

    Full Text Available The paper presents a comparison between two sets of experimental results in a centrifugal flow pump. The tested impeller is the so-called SHF impeller for which many experimental data have been continuously produced to built databases for CFD code validations with various levels of approximation. Measurements have been performed using optical techniques: 2D particle image velocimetry (PIV technique on an air test model and 2D laser doppler velocimetry (LDV technique on a water model, both for different flow rates. For the present study, results obtained by these optical techniques are compared together in terms of phase averaged velocity and velocity fluctuations inside the impeller flow passage for design flow rate.

  6. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    Directory of Open Access Journals (Sweden)

    Evelio E. Ramírez-Miquet

    2016-08-01

    Full Text Available Optical feedback interferometry (OFI is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel.

  7. Wavefront sensors for optical diagnostics in fluid mechanics: Application to heated flow, turbulence and droplet evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Neal, D.R.; O`Hern, T.J.; Torczynski, J.R.; Warren, M.E.; Shul, R. [Sandia National Labs., Albuquerque, NM (United States); McKechnie, T.S. [POD Associates, Inc., Albuquerque, NM (United States)

    1993-09-01

    Optical measurement techniques are extremely useful in fluid mechanics because of their non-invasive nature. However, it is often difficult to separate measurement effects due to pressure, temperature and density in real flows. Using a variation of a Shack-Hartmann wavefront sensor, we have made density measurements that have extremely large dynamic range coupled with excellent sensitivity at high temporal and spatial resolution. We have examined several classes of flow including volumetrically heated gas, turbulence and droplet evaporation.

  8. Unified flavor symmetry from warped dimensions

    Directory of Open Access Journals (Sweden)

    Mariana Frank

    2015-03-01

    Full Text Available In a model of warped extra-dimensions with all matter fields in the bulk, we propose a scenario which explains all the masses and mixings of the SM fermions. In this scenario, the same flavor symmetric structure is imposed on all the fermions of the Standard Model (SM, including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of this symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons, thus washing out visible effects of the symmetry. If the Dirac neutrinos are sufficiently localized towards the UV boundary, and the Higgs field leaking into the bulk, the neutrino mass hierarchy and flavor structure will still be largely dominated and reflect the fundamental flavor structure, whereas localization of the quark sector would reflect the effects of the flavor symmetry breaking sector. We explore these features in an example based on which a family permutation symmetry is imposed in both quark and lepton sectors.

  9. The Curious Case of Null Warped Space

    CERN Document Server

    Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica

    2010-01-01

    We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second - a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for th...

  10. Diphoton Resonance from a Warped Extra Dimension

    CERN Document Server

    Bauer, Martin; Neubert, Matthias

    2016-01-01

    We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with O(1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the S->\\gamma\\gamma, WW, ZZ, Z\\gamma, t\\bar t and dijet decay rates. We find that the S->Z\\gamma decay mode is strongly suppressed, such that Br(S->Z\\gamma)Br(S->\\gamma\\gamma)S->\\gamma\\gamma signal requires Kaluza-Klein masses in the multi-TeV range, in perfect agreement with bounds from flavor physics and electroweak precision observables.

  11. Matching colonic polyps using correlation optimized warping

    Science.gov (United States)

    Wang, Shijun; Yao, Jianhua; Petrick, Nicholas; Summers, Ronald M.

    2010-03-01

    Computed tomographic colonography (CTC) combined with a computer aided detection system has the potential for improving colonic polyp detection and increasing the use of CTC for colon cancer screening. In the clinical use of CTC, a true colonic polyp will be confirmed with high confidence if a radiologist can find it on both the supine and prone scans. To assist radiologists in CTC reading, we propose a new method for matching polyp findings on the supine and prone scans. The method performs a colon registration using four automatically identified anatomical salient points and correlation optimized warping (COW) of colon centerline features. We first exclude false positive detections using prediction information from a support vector machine (SVM) classifier committee to reduce initial false positive pairs. Then each remaining CAD detection is mapped to the other scan using COW technique applied to the distance along the centerline in each colon. In the last step, a new SVM classifier is applied to the candidate pair dataset to find true polyp pairs between supine and prone scans. Experimental results show that our method can improve the sensitivity to 0.87 at 4 false positive pairs per patient compared with 0.72 for a competing method that uses the normalized distance along the colon centerline (p<0.01).

  12. Diphoton resonance from a warped extra dimension

    Science.gov (United States)

    Bauer, Martin; Hörner, Clara; Neubert, Matthias

    2016-07-01

    We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.

  13. LHC Signals from Warped Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, K.; Belyaev, A.; Krupovnickas, T.; Perez, G.; Virzi, J.

    2006-12-06

    We study production of Kaluza-Klein gluons (KKG) at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the Standard Model (SM) fields propagating in the bulk. We show that the detection of KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decaysmostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for MKKG<~;; 4 TeV, 100 fb-1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizeable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic"top-jets." We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays ("golden" modes) are suppressed. Our analysis suggests that other frameworks, for example little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely (1) Suppressed production rates for the new particles (such as Z'), due to their"lightfermion-phobic" nature, and (2) Difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  14. Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres

    Science.gov (United States)

    Zehtabi-Oskuie, Ana; Bergeron, Jarrah Gerald; Gordon, Reuven

    2012-01-01

    We study the influence of fluid flow on the ability to trap optically a 20 nm polystyrene particle from a stationary microfluidic environment and then hold it against flow. Increased laser power is required to hold nanoparticles as the flow rate is increased, with an empirical linear dependence of 1 μl/(min×mW). This is promising for the delivery of additional nanoparticles to interact with a trapped nanoparticle; for example, to study protein-protein interactions, and for the ability to move the trapped particle in solution from one location to another. PMID:23236587

  15. Experimental verification of the frozen flow atmospheric turbulence assumption with use of astronomical adaptive optics telemetry.

    Science.gov (United States)

    Poyneer, Lisa; van Dam, Marcos; Véran, Jean-Pierre

    2009-04-01

    We use closed-loop deformable mirror telemetry from Altair and Keck adaptive optics (AO) to determine whether atmospheric turbulence follows the frozen flow hypothesis. Using telemetry from AO systems, our algorithms (based on the predictive Fourier control framework) detect frozen flow >94% of the time. Usually one to three layers are detected. Between 20% and 40% of the total controllable phase power is due to frozen flow. Velocity vector RMS variability is less than 0.5 m/s (per axis) on 10-s intervals, indicating that the atmosphere is stable enough for predictive control to measure and adapt to prevailing atmospheric conditions before they change.

  16. Effective star tracking method based on optical flow analysis for star trackers.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  17. Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot

    Directory of Open Access Journals (Sweden)

    Erik Vanhoutte

    2017-03-01

    Full Text Available For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M 2 APix analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6 × 10 − 7 to 1 . 6 × 10 − 2 W·cm − 2 (i.e., from 0.2 to 12,000 lux for human vision. Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M 2 APix sensor. While both algorithms adequately measured optical flow between 25 ∘ /s and 1000 ∘ /s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively but required substantially more computational resources.

  18. Convergence of Object Focused Simultaneous Estimation of Optical Flow and State Dynamics

    Directory of Open Access Journals (Sweden)

    Nicholas Bauer

    2014-10-01

    Full Text Available The purpose of this study is to prove the convergence of the simultaneous estimation of the optical flow and object state (SEOS method. The SEOS method utilizes dynamic object parameter information when calculating optical flow in tracking a moving object within a video stream. Optical flow estimation for the SEOS method requires the minimization of an error function containing the object's physical parameter data. When this function is discretized, the Euler-Lagrange equations form a system of linear equations. The system is arranged such that its property matrix is positive definite symmetric, proving the convergence of the Gauss-Seidel iterative methods. The system of linear equations produced by SEOS can alternatively be resolved by Jacobi iterative schemes. The positive definite symmetric property is not sufficient for Jacobi convergence. The convergence of SEOS for a block diagonal Jacobi is proved by analysing the Euclidean norm of the Jacobi matrix. In this paper, we also investigate the use of SEOS for tracking individual objects within a video sequence. The illustrations provided show the effectiveness of SEOS for localizing objects within a video sequence and generating optical flow results.

  19. Moving object localization using optical flow for pedestrian detection from a moving vehicle.

    Science.gov (United States)

    Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun

    2014-01-01

    This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.

  20. Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.

    Science.gov (United States)

    Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno

    2016-11-01

    Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.

  1. Simplified Monolithic Flow Cytometer Chip With Three-Dimensional Hydrodyanmic Focusing And Integrated Fiber-Free Optics

    DEFF Research Database (Denmark)

    Motosuke, Masahiro; Jensen, Thomas Glasdam; Zhuang, Guisheng

    2011-01-01

    A miniaturized flow cytometry incorporating both fluidic and optical systems has a great possibility for portable biochemical sensing or point-of-care diagnostics. This paper presents a simple microfluidic flow cytometer combining reliable 3D hydrodynamic focusing and optical detection without op...... to be applied as a portable platform of cytometer chip....

  2. A semitransparency-based optical-flow method with a point trajectory model for particle-like video.

    Science.gov (United States)

    Sakaino, Hidetomo

    2012-02-01

    This paper proposes a new semitransparency-based optical-flow model with a point trajectory (PT) model for particle-like video. Previous optical-flow models have used ranging from image brightness constancy to image brightness change models as constraints. However, two important issues remain unsolved. The first is how to track/match a semitransparent object with a very large displacement between frames. Such moving objects with different shapes and sizes in an outdoor scene move against a complicated background. Second, due to semitransparency, the image intensity between frames can also violate a previous image brightness-based optical-flow model. Thus, we propose a two-step optimization for the optical-flow estimation model for a moving semitransparent object, i.e., particle. In the first step, a rough optical flow between particles is estimated by a new alpha constancy constraint that is based on an image generation model of semitransparency. In the second step, the optical flow of a particle with a continuous trajectory in a definite temporal interval based on a PT model can be refined. Many experiments using various falling-snow and foggy scenes with multiple moving vehicles show the significant improvement of the optical flow compared with a previous optical-flow model.

  3. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  4. Simultaneous measurement of localized diffusion and flow using optical coherence tomography

    CERN Document Server

    Weiss, Nicolás; Kalkman, Jeroen

    2014-01-01

    We report on the simultaneous and localized measurements of the diffusion coefficient and flow velocity based on the normalized autocorrelation function using optical coherence tomography (OCT). Our results on a flowing solution of polystyrene spheres show that the flow velocity and the diffusion coefficient can be reliably estimated in a regime determined by the sample diffusivity, the local flow velocity, and the Gaussian beam waist. We experimentally show that a smaller beam waist results in an improvement of the velocity sensitivity at cost of the precision and accuracy of the estimation of the diffusion coefficient. Further, we show that the decay of the OCT autocorrelation due to flow depends only on the Gaussian beam waist irrespective of the sample position with respect to the focus position.

  5. Bayesian modeling of perceived surface slant from actively-generated and passively-observed optic flow.

    Directory of Open Access Journals (Sweden)

    Corrado Caudek

    Full Text Available We measured perceived depth from the optic flow (a when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an "inverse optics" model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the bayesian theory. The "inverse optics" bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a "prior" for flatness, the slant estimates become systematically biased as the measurement errors increase. The bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b extra-retinal signals may be mainly used for a better measurement of retinal information.

  6. Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data

    Science.gov (United States)

    Duan, Qi; Angelini, Elsa D.; Herz, Susan L.; Ingrassia, Christopher M.; Gerard, Olivier; Costa, Kevin D.; Holmes, Jeffrey W.; Laine, Andrew F.

    2005-04-01

    With relatively high frame rates and the ability to acquire volume data sets with a stationary transducer, 3D ultrasound systems, based on matrix phased array transducers, provide valuable three-dimensional information, from which quantitative measures of cardiac function can be extracted. Such analyses require segmentation and visual tracking of the left ventricular endocardial border. Due to the large size of the volumetric data sets, manual tracing of the endocardial border is tedious and impractical for clinical applications. Therefore the development of automatic methods for tracking three-dimensional endocardial motion is essential. In this study, we evaluate a four-dimensional optical flow motion tracking algorithm to determine its capability to follow the endocardial border in three dimensional ultrasound data through time. The four-dimensional optical flow method was implemented using three-dimensional correlation. We tested the algorithm on an experimental open-chest dog data set and a clinical data set acquired with a Philips' iE33 three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points obtained from manual tracing at end-diastole, the algorithm automatically tracked these points frame by frame through the whole cardiac cycle. A finite element surface was fitted through the data points obtained by both optical flow tracking and manual tracing by an experienced observer for quantitative comparison of the results. Parameterization of the finite element surfaces was performed and maps displaying relative differences between the manual and semi-automatic methods were compared. The results showed good consistency between manual tracing and optical flow estimation on 73% of the entire surface with fewer than 10% difference. In addition, the optical flow motion tracking algorithm greatly reduced processing time (about 94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function in three

  7. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  8. Effect of the modulation of optic flow speed on gait parameters in children with hemiplegic cerebral palsy.

    Science.gov (United States)

    Lim, Hyungwon

    2014-01-01

    [Purpose] We investigated the effects of modulation of the optic flow speed on gait parameters in children with hemiplegic cerebral palsy. [Methods] We examined 10 children with hemiplegic cerebral palsy. The children underwent gait analysis under 3 different conditions of optic flow speed: slow, normal, and fast optic flow speed. The children walked across the walkway of a GAITRite system, while watching a virtual reality screen, and walking velocity, cadence, stride length, step length, single support time, and double support time were recorded. [Results] Compared with the other applied flow speed conditions, the fast optic flow speed (2 times the normal speed) significantly increased walking velocity, cadence, normalized step length, base of support, and single support cycle of both the paretic and non-paretic lower limbs. Moreover, compared with the other applied flow speed conditions, the slow optic flow speed (0.25 times the normal speed) yielded a significantly decreased walking velocity, cadence, normalized step length, base of support, and single support cycle for both the paretic and non-paretic lower limbs. [Conclusion] The gait parameters of children with hemiplegic cerebral palsy are altered by modulation of the optic flow speed. Thus, we believe that gait training involving modulation of the optic flow speed is feasible and suitable for resolving abnormal gait patterns in children with hemiplegic cerebral palsy.

  9. Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet

    Science.gov (United States)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-01-01

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750

  10. Flow rate estimation by optical coherence tomography using contrast dilution approach

    Science.gov (United States)

    Štohanzlová, Petra; Kolář, Radim

    2015-07-01

    This paper describes experiments and methodology for flow rate estimation using optical coherence tomography and dilution method in single fiber setup. The single fiber is created from custom made glass capillary and polypropylene hollow fiber. As a data source, measurements on single fiber phantom with continuous flow of carrier medium and bolus of Intralipid solution as a contrast agent were used using Thorlabs OCT OCS1300SS. The measured data were processed by methods of image processing, in order to precisely align the individual images in the sequence and extract dilution curves from the area inside the fiber. An experiment proved that optical coherence tomography can be used for flow rate estimation by the dilution method with precision around 7%.

  11. Influence of prolonged optic flow stimuli on spontaneous activities of cat PMLS neurons

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Changes in neuronal spontaneous activities after prolonged optic flow stimulation (using the three basic flow modes: translation, radiation and rotation) were investigated by extracellular single-unit recording in cortical area PMLS of the cat. The results showed that the evoked responses decreased with the prolongation of visual stimuli, and the spontaneous activities usually dropped to a lower level after the stimuli were withdrawn. Generally, the reduction in spontaneous activities was larger after adaptation in the preferred direction than in the non-preferred direction. This difference was much pronounced to translation stimuli, but relatively insignificant to radiation and rotation. These points suggest that non-specific fatigue may act as the key factor in adaptation to simple translation, while some kinds of more complicated, direction-specific mechanism may be involved in adaptation to the complex optic flow patterns. In addition, PMLS may play an important role in perception and adaptation to complex motion and the relevant motion after-effects.

  12. Optical Measurement of Mass Flow of a Two-Phase Fluid

    Science.gov (United States)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical

  13. Warp diffusion in accretion discs: a numerical investigation

    CERN Document Server

    Lodato, Giuseppe

    2007-01-01

    In this paper we explore numerically the evolution of a warped accretion disc. Here, we focus here on the regime where the warp evolves diffusively. By comparing the numerical results to a simple diffusion model, we are able to determine the diffusion coefficient of the warp, $\\alpha_2$, as a function of the relevant disc parameters. We find that while in general the disc behaviour is well reproduced by the diffusion model and for relatively large viscosities the warp diffusion is well described by the linear theory (in particular confirming that the warp diffusion coefficient is inversely proportional to viscosity), significant non-linear effects are present as the viscosity becomes smaller, but still dominates over wave-propagation effects. In particular, we find that the inverse dependence of the diffusion coefficient on viscosity breaks down at low viscosities, so that $\\alpha_2$ never becomes larger than a saturation value $\\alpha_{\\rm max}$ of order unity. This can have major consequences in the evoluti...

  14. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Science.gov (United States)

    Wilson, Trevor S.; Xu, Hongming; Richardson, Steve; Wyszynski, Miroslaw L.; Megaritis, Thanos

    2006-07-01

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  15. Processing of Egomotion-Consistent Optic Flow in the Rhesus Macaque Cortex.

    Science.gov (United States)

    Cottereau, Benoit R; Smith, Andrew T; Rima, Samy; Fize, Denis; Héjja-Brichard, Yseult; Renaud, Luc; Lejards, Camille; Vayssière, Nathalie; Trotter, Yves; Durand, Jean-Baptiste

    2017-01-01

    The cortical network that processes visual cues to self-motion was characterized with functional magnetic resonance imaging in 3 awake behaving macaques. The experimental protocol was similar to previous human studies in which the responses to a single large optic flow patch were contrasted with responses to an array of 9 similar flow patches. This distinguishes cortical regions where neurons respond to flow in their receptive fields regardless of surrounding motion from those that are sensitive to whether the overall image arises from self-motion. In all 3 animals, significant selectivity for egomotion-consistent flow was found in several areas previously associated with optic flow processing, and notably dorsal middle superior temporal area, ventral intra-parietal area, and VPS. It was also seen in areas 7a (Opt), STPm, FEFsem, FEFsac and in a region of the cingulate sulcus that may be homologous with human area CSv. Selectivity for egomotion-compatible flow was never total but was particularly strong in VPS and putative macaque CSv. Direct comparison of results with the equivalent human studies reveals several commonalities but also some differences.

  16. A planet on an inclined orbit as an explanation of the warp in the $\\beta$ Pictoris disk

    CERN Document Server

    Mouillet, D; Papaloizou, J C B; Lagrange, A M

    1997-01-01

    We consider the deformation that has recently been observed in the inner part of the circumstellar disk around Beta Pictoris with the HST. Our recent ground based adaptive optics coronographic observations confirm that the inner disk is warped. We investigate the hypothesis that a yet undetected planet is responsible for the observed warp, through simulations of the effect of the gravitational perturbation due to a massive companion on the disk. The physical processes assumed in the simulations are discussed: since the observed particles do not survive collisions, the apparent disk shape is driven by the underlying collisionless parent population. The resulting possible parameters for the planet that are consistent with the observed disk deformation are reviewed.

  17. Constraining the age of the NGC 4565 H I disk WARP: Determining the origin of gas WARPS

    Energy Technology Data Exchange (ETDEWEB)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Stilp, Adrienne M. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); De Jong, Roelof S.; Streich, David [Leibniz-Institut für Astrophysik Potsdam, D-14482 Potsdam (Germany); Bell, Eric F.; Monachesi, Antonela [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Holwerda, Benne W. [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-01-01

    We have mapped the distribution of young and old stars in the gaseous H I warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ∼300 Myr ago relative to the surrounding regions, is (6.3{sub −1.5}{sup +2.5})×10{sup −5} M {sub ☉} yr{sup –1} kpc{sup –2}. This implies a ∼60 ± 20 Gyr depletion time of the H I warp, similar to the timescales calculated for the outer H I disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color-magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of H I warps and the gas fueling of disk galaxies.

  18. Time-Dependent Warping and Non-Singular Bouncing Cosmologies

    CERN Document Server

    Balasubramanian, Koushik

    2014-01-01

    In this note, we construct a family of non-singular time-dependent solutions of a six-dimensional gravitational theory that are warped products of a four dimensional bouncing cosmological solution and a two dimensional internal manifold. The warp factor is time-dependent and breaks translation invariance along one of the internal directions. When the warp factor is periodic in time, the non-compact part of the geometry bounces periodically. The six dimensional geometry is supported by matter that does not violate the null energy condition. We show that this 6D geometry does not admit a closed trapped surface and hence the Hawking-Penrose singularity theorems do not apply to these solutions. We also present examples of singular solutions where the topology of the internal manifold changes dynamically.

  19. Modulus stabilization in a non-flat warped braneworld scenario

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani [S.N. Bose National Centre for Basic Sciences, Department of Astrophysics and Cosmology, Kolkata (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-05-15

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant. (orig.)

  20. I-WARP: Individual Water mAin Renewal Planner

    Directory of Open Access Journals (Sweden)

    Y. Kleiner

    2010-05-01

    Full Text Available I-WARP is based upon a nonhomogeneous Poisson approach to model breakage rates in individual water mains. The structural deterioration of water mains and their subsequent failure are affected by many factors, both static (e.g., pipe material, pipe size, age (vintage, soil type and dynamic (e.g., climate, cathodic protection, pressure zone changes. I-WARP allows for the consideration of both static and dynamic factors in the statistical analysis of historical breakage patterns. This paper describes the mathematical approach and demonstrates its application with the help of a case study. The research project within which I-WARP was developed, was jointly funded by the National Research Council of Canada (NRC, and the Water Research foundation (formerly known as the American Water Works Association Research Foundation – AwwaRF and supported by water utilities from USA and Canada.

  1. On higher dimensional Einstein spacetimes with a warped extra dimension

    CERN Document Server

    Ortaggio, Marcello; Pravdova, Alena

    2010-01-01

    We study higher dimensional Einstein spacetimes that can be mapped conformally on other Einstein spacetimes. These admit a simple warped line element (with one extra dimension) that was originally introduced by Brinkmann and that has subsequently appeared in various contexts to describe, e.g., different braneworld models or warped black strings. After clarifying the relation between the general Brinkmann metric and other more specific coordinate systems, we analyze the algebraic type of the Weyl tensor of the solutions. In particular, we describe the relation between Weyl aligned null directions (WANDs) of the lower dimensional Einstein slices and of the full spacetime, which in some cases can be algebraically more special. Possible spacetime singularities introduced by the warp factor are determined via a study of scalar curvature invariants and of Weyl components measured by geodetic observers. Finally, we illustrate how Brinkmann's metric can be employed to generate new solutions by presenting the metric o...

  2. Holographic entropy of Warped-AdS$_3$ black holes

    CERN Document Server

    Donnay, Laura

    2015-01-01

    We study the asymptotic symmetries of three-dimensional Warped Anti-de Sitter (WAdS) spaces in three-dimensional New Massive Gravity (NMG). For a specific choice of asymptotic boundary conditions, we find that the algebra of charges is infinite-dimensional and coincides with the semidirect sum of Virasoro algebra with non-vanishing central charge and an affine $\\hat{u}(1)_k$ Ka\\v{c}-Moody algebra. We show that the WAdS black hole configurations organize in terms of two commuting Virasoro algebras. We identify the Virasoro generators that expand the associated representations in the dual Warped Conformal Field Theory (WCFT) and, by applying the Warped version of the Cardy formula, we prove that the microscopic WCFT computation exactly reproduces the entropy of black holes in WAdS space.

  3. Warped-AdS3 black holes with scalar halo

    CERN Document Server

    Giribet, Gaston

    2015-01-01

    We construct a stretched (aka Warped) Anti-de Sitter black hole in 3 dimensions supported by a real scalar field configuration. The latter is regular everywhere outside and on the horizon. No hair theorems in 3 dimensions demand the matter to be coupled to the curvature in a non-minimal way; however, this coupling can still be of the Horndeski type, i.e. yielding second order field equations similar to those appearing in the context of Galileon theories. These Warped-Anti-de Sitter black holes exhibit interesting thermodynamical properties, such as finite Hawking temperature and entropy. We compute the black hole entropy in the gravity theory and speculate with the possibility of this to admit a microscopic description in terms of a dual (Warped) Conformal Field Theory. We also discuss the inner and outer black hole mechanics.

  4. Cotton/polyester and cotton/nylon warp knitted terry cloth: Why ...

    African Journals Online (AJOL)

    Administrator

    warp knitting machine, using three sets of warp yarns. (Hatch, 1993:358; Kadolph ..... facturing and Materials Technology Centre for Fibres,. Textiles and Clothing ... interpreted if the interaction effects were not signifi- cant; otherwise various ...

  5. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    Science.gov (United States)

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  6. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    Science.gov (United States)

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  7. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Science.gov (United States)

    Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui

    2017-01-01

    This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed. PMID:28212268

  8. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  9. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    Science.gov (United States)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  10. Arbitrary Phase Vocoders by means of Warping

    Directory of Open Access Journals (Sweden)

    Gianpaolo Evangelista

    2013-08-01

    Full Text Available The Phase Vocoder plays a central role in sound analysis and synthesis, allowing us to represent a sound signal in both time and frequency, similar to a music score – but possibly at much finer time and frequency scales – describing the evolution of sound events. According to the uncertainty principle, time and frequency are not independent variables so that any time-frequency representation is the result of a compromise between time and frequency resolutions, the product of which cannot be smaller than a given constant. Therefore, finer frequency resolution can only be achieved with coarser time resolution and, similarly, finer time resolution results in coarser frequency resolution.While most of the conventional methods for time-frequency representations are based on uniform time and uniform frequency resolutions, perception and physical characteristics of sound signals suggest the need for nonuniform analysis and synthesis. As the results of psycho-acoustic research show, human hearing is naturally organized in nonuniform frequency bands. On the physical side, the sounds of percussive instruments as well as piano in the low register, show partials whose frequencies are not uniformly spaced, as opposed to the uniformly spaced partial frequencies found in harmonic sounds. Moreover, the different characteristics of sound signals at the onset transients with respect to stationary segments suggest the need for nonuniform time resolution. In the effort to exploit the time-frequency resolution compromise at its best, a tight time-frequency suit should be tailored to snuggly fit the sound body.In this paper we overview flexible design methods for phase vocoders with nonuniform resolutions. The methods are based on remapping the time or the frequency axis, or both, by employing suitable functions acting as warping maps, which locally change the characteristics of the time-frequency plane. As a result, the sliding windows may have time dependent

  11. Development of Warp Knitted Products on RSJ Machine

    Institute of Scientific and Technical Information of China (English)

    XU Dong-ping; LI Wei; FENG Xun-wei

    2007-01-01

    Products made by Raschel Jacquard(RSJ) high-speed jacquard warp knitting machine are used in ornamentand apparel fabrics. However, most products are producedaccording to the existing samples. The capability of creativedesign is not enough at home. In this paper, based on thebasic features, the knitting methods and the workingprinciples of warp knitting jacquard machines, the rules formanufacturing jacquard products are summarized. Thearticle provides the new thoughts for the development offabrics, such as the pattern design, changing the cams,power-net and a special technology of without pillar, whichwere obtained from the practices in a factory.

  12. Positions of Guide Eyes in Circular Warp Knitting Machines

    Institute of Scientific and Technical Information of China (English)

    GU Zhao-wen

    2002-01-01

    The special lapping requirements were pointed out and the safe range to fix the guide eyes on the circular guide unit was determined by means of Locus Formulas of Warp sections in lapping movement, which were carried out on installing prototype machine. Based on the calculations of the force components acting on lapping points, the positions of the guide eyes in chain overlapping could be used to determine the safe range that could meet the requirements for tricot overlapping.The safe range can ensure the successful lapping and the multi-guide unit designing in circular warp-knitting machines.

  13. The origin of the warped heliospheric current sheet

    Science.gov (United States)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  14. A review of recent developments in warp sizing

    CSIR Research Space (South Africa)

    McMahon, JF

    1985-08-01

    Full Text Available .................................................. REFERENCES 30 A REVIEW OF RECENT DEVELOPMENTS IN WARP S r n G by J FMeMahon and G H J van der Walt cnAPrER1 INTRODUCIlON The function of sizing is to improve weavabiity by protecting the warp yarns from abrasion in the healds and reed and against each... shuttle looms and eventually the modem shuttleless weaving machine, improved sizing materials were required. This led to the development of chemically modified starches and new synthetic polymers. The introduction of these materials resulted...

  15. Living on the edge in a spacetime with multiple warping

    CERN Document Server

    Choudhury, D; Choudhury, Debajyoti; Gupta, Soumitra Sen

    2006-01-01

    The Randall-Sundrum warped braneworld model is generalised to six and higher dimensions such that the warping has a non-trivial dependence on more than one dimension. This naturally leads to a brane-box like configuration alongwith scalar fields with possibly interesting cosmological roles. Also obtained naturally are two towers of 3 branes with mass scales clustered around either of Planck scale and TeV scale. Such a scenario has interesting phenomenological consequences including an explanation for the observed hierarchy in the masses of standard model fermions.

  16. Warped Angle-deficit of a 5 Dimensional Cosmic String

    OpenAIRE

    Slagter, Reinoud Jan; Masselink, Derk

    2011-01-01

    We present a cosmic string on a warped five dimensional space time in Einstein-Yang-Mills theory. Four-dimensional cosmic strings show some serious problems concerning the mechanism of string smoothing related to the string mass per unit length, $G\\mu \\approx 10^{-6}$. A warped cosmic string could overcome this problem and also the superstring requirement that $G\\mu$ must be of order 1, which is far above observational bounds. Also the absence of observational evidence of axially symmetric le...

  17. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously

    Science.gov (United States)

    Guo, Li; Shi, Rui; Zhang, Chao; Zhu, Dan; Ding, Zhihua; Li, Peng

    2016-08-01

    Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ˜40.5%) and refractive-index mismatching (more than ˜25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ˜90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ˜5.83×10-5 cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.

  18. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  19. Total retinal blood flow and reproducibility evaluation by three beam optical Doppler tomography

    Science.gov (United States)

    Haindl, Richard; Trasischker, Wolfgang; Wartak, Andreas; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    We present a three beam optical Doppler tomography (ODT) technique suitable for 3-D velocity and flow measurements to evaluate total retinal blood circulation from and to the optic nerve head (ONH). The system consists of three independent ODT channels. Superluminescent diodes with a central wavelength of 840 nm and a spectral bandwidth of 50 nm were used. The sources are coupled to collimators resting in a specially designed mount to ensure a well-defined beam geometry, necessary for the full reconstruction of the three dimensional velocity vector. The reconstruction works without prior knowledge on the vessel geometry, which is normally required for ODT systems with less than three beams. The beams share a common bulk optics Michelson interferometer, while the detection comprises three identical spectrometers with a line scan rate of 50 kHz. 20 eyes of healthy volunteers were imaged with the 3 beam ODT, employing a circular scan pattern around the ONH. The mean total blood flow was calculated for arteries (47.1 +/- 2.4 μl/min (mean +/- SD)) and veins (47.1 +/- 2.7 μl/min μl/min) independently. The two results showed no significant difference (paired t-test, p < 0.96), rendering both equally reliable for total flow measurements. Furthermore the reproducibility of the method was evaluated for the total flow and flow, velocities within each individual vessel of 6 eyes. The average variation for total flow measurements is sufficiently low to detect deviations of ~ 6% indicating high precision of the proposed method.

  20. Fiber optic flow velocity sensor based on an in-fiber integrated Michelson interferometer

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai

    2008-04-01

    A novel fiber optic flow velocity sensor based on a twin-core fiber Michelson interferometer has been proposed and demonstrated. The sensor only is a segment of twin-core fiber acting as cylinder cantilever beam. The force exerted on the cylinder by the flow of a fluid with unknown velocity bends the fiber, which corresponding to the shift of the phase of the twin-core in-fiber integrated Michelson interferometer. This twin-core fiber sensing technique could automatically compensate the variation of environmental temperature and pressure due to both arms of the interferometer would be affected equally by such changes.

  1. Analysis of spectrum characteristics of optical scintillation in stack gas flow

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Qing; Liu He-Lai; Zeng Zong-Yong; Jiang Yu

    2006-01-01

    Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.

  2. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  3. A spectral optical flow method for determining velocities from digital imagery

    CERN Document Server

    Hurlburt, Neal

    2015-01-01

    We present a method for determining surface flows from solar images based upon optical flow techniques. We apply the method to sets of images obtained by a variety of solar imagers to assess its performance. The {\\tt opflow3d} procedure is shown to extract accurate velocity estimates when provided perfect test data and quickly generates results consistent with completely distinct methods when applied on global scales. We also validate it in detail by comparing it to an established method when applied to high-resolution datasets and find that it provides comparable results without the need to tune, filter or otherwise preprocess the images before its application.

  4. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    Science.gov (United States)

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min

    2015-12-01

    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  5. Side Information and Noise Learning for Distributed Video Coding using Optical Flow and Clustering

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Rakêt, Lars Lau; Huang, Xin

    2012-01-01

    Transform Domain Wyner-Ziv (TDWZ) coding and proposes using optical flow to improve side information generation and clustering to improve noise modeling. The optical flow technique is exploited at the decoder side to compensate weaknesses of block based methods, when using motion-compensation to generate......Distributed video coding (DVC) is a coding paradigm which exploits the source statistics at the decoder side to reduce the complexity at the encoder. The coding efficiency of DVC critically depends on the quality of side information generation and accuracy of noise modeling. This paper considers...... side information frames. Clustering is introduced to capture cross band correlation and increase local adaptivity in the noise modeling. This paper also proposes techniques to learn from previously decoded (WZ) frames. Different techniques are combined by calculating a number of candidate soft side...

  6. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    . A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able......High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters....

  7. Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis

    Science.gov (United States)

    Teo, P. T.; Pistorius, S.

    2014-03-01

    This paper investigates the feasibility and accuracy of tracking the motion of an intruding organ-at-risk (OAR) at the edges of a treatment field using a local optical flow analysis of electronic portal images. An intruding OAR was simulated by modifying the portal images obtained by irradiating a programmable phantom's lung tumour. A rectangular treatment aperture was assumed and the edges of the beam's eye view (BEV) were partitioned into clusters/grids according to the width of the multi-leaf collimators (MLC). The optical flow velocities were calculated and the motion accuracy in these clusters was analysed. A velocity error of 0.4 ± 1.4 mm/s with a linearity of 1.04 for tracking an object intruding at 10mm/s (max) was obtained.

  8. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences......Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...

  9. REAL-TIME FACE RECOGNITION BASED ON OPTICAL FLOW AND HISTOGRAM EQUALIZATION

    Directory of Open Access Journals (Sweden)

    D. Sathish Kumar

    2013-05-01

    Full Text Available Face recognition is one of the intensive areas of research in computer vision and pattern recognition but many of which are focused on recognition of faces under varying facial expressions and pose variation. A constrained optical flow algorithm discussed in this paper, recognizes facial images involving various expressions based on motion vector computation. In this paper, an optical flow computation algorithm which computes the frames of varying facial gestures, and integrating with synthesized image in a probabilistic environment has been proposed. Also Histogram Equalization technique has been used to overcome the effect of illuminations while capturing the input data using camera devices. It also enhances the contrast of the image for better processing. The experimental results confirm that the proposed face recognition system is more robust and recognizes the facial images under varying expressions and pose variations more accurately.

  10. Evaluation of advanced Lukas-Kanade optical flow on thoracic 4D-CT.

    Science.gov (United States)

    Hoog Antink, Christoph Bernhard; Singh, Tarunraj; Singla, Puneet; Podgorsak, Matthew

    2013-08-01

    Extensive use of high frequency imaging in medical applications permit the estimation of velocity fields which corresponds to motion of landmarks in the imaging field. The focus of this work is on the development of a robust local optical flow algorithm for velocity field estimation in medical applications. Local polynomial fits to the medical image intensity-maps are used to generate convolution operators to estimate the spatial gradients. A novel polynomial window function with a compact support is used to differentially weight the optical flow gradient constraints in the region of interest. Tikhonov regularization is exploited to synthesize a well posed optimization problem and to penalize large displacements. The proposed algorithm is tested and validated on benchmark datasets for deformable image registration. The ten datasets include large and small deformations, and illustrate that the proposed algorithm outperforms or is competitive with other algorithms tested on this dataset, when using mean and variance of the displacement error as performance metrics.

  11. On convergence of the Horn and Schunck optical-flow estimation method.

    Science.gov (United States)

    Mitiche, Amar; Mansouri, Abdol-Reza

    2004-06-01

    The purpose of this study is to prove convergence results for the Horn and Schunck optical-flow estimation method. Horn and Schunck stated optical-flow estimation as the minimization of a functional. When discretized, the corresponding Euler-Lagrange equations form a linear system of equations We write explicitly this system and order the equations in such a way that its matrix is symmetric positive definite. This property implies the convergence Gauss-Seidel iterative resolution method, but does not afford a conclusion on the convergence of the Jacobi method. However, we prove directly that this method also converges. We also show that the matrix of the linear system is block tridiagonal. The blockwise iterations corresponding to this block tridiagonal structure converge for both the Jacobi and the Gauss-Seidel methods, and the Gauss-Seidel method is faster than the (sequential) Jacobi method.

  12. Simultaneous PIV and pulsed shadow technique in slug flow: a solution for optical problems

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, S. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium); Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Sousa, R.G.; Pinto, A.M.F.R.; Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto (Portugal); Riethmuller, M.L. [Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640, Rhode Saint Genese (Belgium)

    2003-12-01

    A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113 x 10{sup -3} Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data. (orig.)

  13. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  14. B-spline image model for energy minimization-based optical flow estimation.

    Science.gov (United States)

    Le Besnerais, Guy; Champagnat, Frédéric

    2006-10-01

    Robust estimation of the optical flow is addressed through a multiresolution energy minimization. It involves repeated evaluation of spatial and temporal gradients of image intensity which rely usually on bilinear interpolation and image filtering. We propose to base both computations on a single pyramidal cubic B-spline model of image intensity. We show empirically improvements in convergence speed and estimation error and validate the resulting algorithm on real test sequences.

  15. Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow

    Directory of Open Access Journals (Sweden)

    Diana eRien

    2013-10-01

    Full Text Available In a variety of species locomotor activity, like walking or flying, has been demonstrated to alter visual information processing. The neuromodulator octopamine was shown to change the response characteristics of optic-flow processing neurons in the fly’s visual system in a similar way as locomotor activity. This modulation resulted in enhanced neuronal responses, in particular during sustained stimulation with high temporal frequencies, and in shorter latencies of responses to abrupt onsets of pattern motion. These state-dependent changes were interpreted to adjust neuronal tuning to the range of high velocities encountered during locomotion. Here we assess the significance of these changes for the processing of optic flow as experienced during flight. Naturalistic image sequences were reconstructed based on measurements of the head position and gaze direction of Calliphora vicina flying in an arena. We recorded the responses of the V1 neuron during presentation of these image sequences on a panoramic stimulus device (FliMax. Consistent with previous accounts, we found that spontaneous as well as stimulus-induced spike rates were increased by an octopamine agonist and decreased by an antagonist. Moreover, a small but consistent decrease in response latency upon octopaminergic activation was present, which might support fast responses to optic flow cues and limit instabilities during closed-loop optomotor regulation. However, apart from these effects the similarities between the dynamic response properties in the different pharmacologically induced states were surprisingly high, indicating that the processing of naturalistic optic flow is not fundamentally altered by octopaminergic modulation.

  16. Toward optic flow regulation for wall-following and centring behaviours

    OpenAIRE

    Franck Ruffier; Julien Serres; Nicolas Franceschini; Stephane Viollet

    2006-01-01

    In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs) in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (~2mm) and senses the environment by ...

  17. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  18. Optical flow in a smart sensor based on hybrid analog-digital architecture.

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system's performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  19. Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy.

    Science.gov (United States)

    de Croon, Guido C H E

    2016-01-07

    The visual cue of optical flow plays an important role in the navigation of flying insects, and is increasingly studied for use by small flying robots as well. A major problem is that successful optical flow control seems to require distance estimates, while optical flow is known to provide only the ratio of velocity to distance. In this article, a novel, stability-based strategy is proposed for monocular distance estimation, relying on optical flow maneuvers and knowledge of the control inputs (efference copies). It is shown analytically that given a fixed control gain, the stability of a constant divergence control loop only depends on the distance to the approached surface. At close distances, the control loop starts to exhibit self-induced oscillations. The robot can detect these oscillations and hence be aware of the distance to the surface. The proposed stability-based strategy for estimating distances has two main attractive characteristics. First, self-induced oscillations can be detected robustly by the robot and are hardly influenced by wind. Second, the distance can be estimated during a zero divergence maneuver, i.e., around hover. The stability-based strategy is implemented and tested both in simulation and on board a Parrot AR drone 2.0. It is shown that the strategy can be used to: (1) trigger a final approach response during a constant divergence landing with fixed gain, (2) estimate the distance in hover, and (3) estimate distances during an entire landing if the robot uses adaptive gain control to continuously stay on the 'edge of oscillation.'

  20. Remo Dance Motion Estimation with Markerless Motion Capture Using The Optical Flow Method

    Directory of Open Access Journals (Sweden)

    Neny Kurniati

    2016-03-01

    Full Text Available Motion capture has been developed and applied in various fields, one of them is dancing. Remo dance is a dance from East Java that tells the struggle of a prince who fought on the battlefield. Remo dancer does not use body-tight costume. He wears a few costume pieces and accessories, so required a motion detection method that can detect limb motion which does not damage the beauty of the costumes and does not interfere motion of the dancer. The method is Markerless Motion Capture. Limbs motions are partial behavior. This means that all limbs do not move simultaneously, but alternately. It required motion tracking to detect parts of the body moving and where the direction of motion. Optical flow is a method that is suitable for the above conditions. Moving body parts will be detected by the bounding box. A bounding box differential value between frames can determine the direction of the motion and how far the object is moving. The optical flow method is simple and does not require a monochrome background. This method does not use complex feature extraction process so it can be applied to real-time motion capture. Performance of motion detection with optical flow method is determined by the value of the ratio between the area of the blob and the area of the bounding box. Estimate coordinates are not necessarily like original coordinates, but if the chart of estimate motion similar to the chart of the original motion, it means motion estimation it can be said to have the same motion with the original. Keywords: Motion Capture, Markerless, Remo Dance, Optical Flow

  1. Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model.

    Science.gov (United States)

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Townsend, Kelly A; Schuman, Joel S

    2009-02-01

    To validate velocity measurements produced by spectral domain optical coherence tomography (SD-OCT) in an in vitro laminar flow model. A 30-mL syringe filled with skim milk was inserted into a syringe pump. Intravenous (i.v.) tubing connected the syringe within the pump to a glass capillary tube (internal diameter, 0.579 mm) shallowly embedded in agarose gel, then to a collection reservoir. SD-OCT imaging was performed with an anterior segment eye scanner and optics engine coupled with a 100-nm bandwidth broadband superluminescent diode. Scan density of 128 x 128 A-scans was spread over a 4 x 4 mm area, and each A-scan was 2 mm in length. Fifteen sequential stationary A-scans were obtained at each 128 x 128 position, and Doppler shifts were calculated from temporal changes in phase. The beam-to-flow vector Doppler angle was determined from three-dimensional scans. In all reflectance and Doppler images, a clear laminar flow pattern was observed, with v(max) appearing in the center of the flow column. Phase wrapping was observed at all measured flow velocities, and fringe washout progressively shattered reflectance and phase signals beyond the Nyquist limit. The observed percentages of the velocity profile at or below Nyquist frequency was highly correlated with the predicted percentages (R(2)=0.934; P=0.007). SD-OCT provides objective Doppler measurements of laminar fluid flow in an in vitro flow system in a range up to the Nyquist limit.

  2. AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2016-06-01

    Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.

  3. Translational Optic Flow Induces Shifts in Direction of Active Forward and Backward Self-Motion

    Directory of Open Access Journals (Sweden)

    Kenzo Sakurai

    2011-05-01

    Full Text Available Previously, we reported that when observers passively experience real linear oscillatory somatic motion while viewing orthogonal visual optic flow patterns, their perceived motion direction is intermediate to those specified by visual and vestibular information individually (Sakurai et al., 2002, ACV; 2003, ECVP; 2010, VSS; Kubodera et al., 2010, APCV. Here, we extend those studies to active somatic motion, measuring the angular shift in body direction after active body motion while viewing synchronized orthogonal optic flow. Experimental visual stimuli consisted of 1 second of translating leftward (rightward random-dots and 1 second of random noise. Control stimuli consisted of two 1-second intervals of random noise separated by a static interval. Observers viewed the stimulus for 30 seconds through a face-mounted display while actively stepping forward and backward such that their forward body movement was synchronized with the random-dot translational motion. Observers' body direction was measured before and after each trial. Translational optic flow induced shifts in body direction that were opposite to shifts in perceived direction with passive viewing in our previous reports. Observers may have compensated their body motion in response to perceived direction shifts similar to those we reported for passive viewing.

  4. Noninvasive optical measurement of cerebral blood flow in mice using molecular dynamics analysis of indocyanine green.

    Directory of Open Access Journals (Sweden)

    Taeyun Ku

    Full Text Available In preclinical studies of ischemic brain disorders, it is crucial to measure cerebral blood flow (CBF; however, this requires radiological techniques with heavy instrumentation or invasive procedures. Here, we propose a noninvasive and easy-to-use optical imaging technique for measuring CBF in experimental small animals. Mice were injected with indocyanine green (ICG via tail-vein catheterization. Time-series near-infrared fluorescence signals excited by 760 nm light-emitting diodes were imaged overhead by a charge-coupled device coupled with an 830 nm bandpass-filter. We calculated four CBF parameters including arrival time, rising time and mean transit time of a bolus and blood flow index based on time and intensity information of ICG fluorescence dynamics. CBF maps were generated using the parameters to estimate the status of CBF, and they dominantly represented intracerebral blood flows in mice even in the presence of an intact skull and scalp. We demonstrated that this noninvasive optical imaging technique successfully detected reduced local CBF during middle cerebral artery occlusion. We further showed that the proposed method is sufficiently sensitive to detect the differences between CBF status in mice anesthetized with either isoflurane or ketamine-xylazine, and monitor the dynamic changes in CBF after reperfusion during transient middle cerebral artery occlusion. The near-infrared optical imaging of ICG fluorescence combined with a time-series analysis of the molecular dynamics can be a useful noninvasive tool for preclinical studies of brain ischemia.

  5. Accurate optical flow field estimation using mechanical properties of soft tissues

    Science.gov (United States)

    Mehrabian, Hatef; Karimi, Hirad; Samani, Abbas

    2009-02-01

    A novel optical flow based technique is presented in this paper to measure the nodal displacements of soft tissue undergoing large deformations. In hyperelasticity imaging, soft tissues maybe compressed extensively [1] and the deformation may exceed the number of pixels ordinary optical flow approaches can detect. Furthermore in most biomedical applications there is a large amount of image information that represent the geometry of the tissue and the number of tissue types present in the organ of interest. Such information is often ignored in applications such as image registration. In this work we incorporate the information pertaining to soft tissue mechanical behavior (Neo-Hookean hyperelastic model is used here) in addition to the tissue geometry before compression into a hierarchical Horn-Schunck optical flow method to overcome this large deformation detection weakness. Applying the proposed method to a phantom using several compression levels proved that it yields reasonably accurate displacement fields. Estimated displacement results of this phantom study obtained for displacement fields of 85 pixels/frame and 127 pixels/frame are reported and discussed in this paper.

  6. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    Science.gov (United States)

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  7. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  8. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    Science.gov (United States)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  9. Influence of Optic-Flow Information Beyond the Velocity Field on the Active Control of Heading

    Directory of Open Access Journals (Sweden)

    Li Li

    2011-05-01

    Full Text Available We examined both the sufficiency of the optic-flow velocity field and the influence of optic-flow information beyond the velocity field on the active control of heading. The display simulated a vehicle traveling on a circular path through a random-dot 3D cloud under a static or a dynamic scene in which dots were periodically redrawn to remove information beyond a velocity field. Participants used a joystick, under either velocity and acceleration control dynamics, to steer and align the vehicle orientation with their perceived heading while experiencing random perturbations to the vehicle orientation. Frequency response (Bode plots show reasonably good performance under both display conditions with a decrease in gain and an increase in phase lag for the dynamic scene for both control dynamics. The performance data were then fit by a Crossover Model to identify reaction time and lead time constant to determine how much participants anticipated future heading to generate lead control. Reaction time was longer and lead time constant was smaller for the dynamic than the static scene for both control dynamics. We conclude that the velocity field alone is sufficient to support closed-loop heading control, but optic-flow information beyond the velocity field improves visuomotor performance in self-motion control.

  10. Toward Optic Flow Regulation for Wall-Following and Centring Behaviours

    Directory of Open Access Journals (Sweden)

    Julien Serres

    2006-06-01

    Full Text Available In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (∼2mm and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs. The visuomotor feedback loop, which is called LORA(1 (Lateral Optic flow Regulation Autopilot, Mark 1, consists of a lateral OF regulator that adjusts the hovercraft's yaw velocity and keeps the lateral OF constant on one wall equal to an OF set-point. Simulations have shown that the hovercraft manages to navigate in a corridor at a “preset” groundspeed (1m/s without requiring a supervisor to make it switch abruptly between the control-laws corresponding to behaviours such as automatic wall-following, automatic centring, and automatically reacting to an opening encountered on a wall. The passive visual sensors and the simple control system used here are suitable for use on MAVs with an avionic payload of only a few grams.

  11. Toward optic flow regulation for wall-following and centring behaviours

    Directory of Open Access Journals (Sweden)

    Franck Ruffier

    2008-11-01

    Full Text Available In our ongoing project on the autonomous guidance of Micro-Air Vehicles (MAVs in confined indoor and outdoor environments, we have developed a bio-inspired optic flow based autopilot enabling a hovercraft to travel safely, and avoid the walls of a corridor. The hovercraft is an air vehicle endowed with natural roll and pitch stabilization characteristics, in which planar flight control can be developed conveniently. It travels at a constant ground height (~2mm and senses the environment by means of two lateral eyes that measure the right and left optic flows (OFs. The visuomotor feedback loop, which is called LORA(1 (Lateral Optic flow Regulation Autopilot, Mark 1, consists of a lateral OF regulator that adjusts the hovercraft's yaw velocity and keeps the lateral OF constant on one wall equal to an OF set-point. Simulations have shown that the hovercraft manages to navigate in a corridor at a "pre-set" groundspeed (1m/s without requiring a supervisor to make it switch abruptly between the control-laws corresponding to behaviours such as automatic wall-following, automatic centring, and automatically reacting to an opening encountered on a wall. The passive visual sensors and the simple control system used here are suitable for use on MAVs with an avionic payload of only a few grams.

  12. Multiplexed fibre optic sensors for monitoring resin infusion, flow, and cure in composite material processing

    Science.gov (United States)

    Chehura, Edmon; Jarzebinska, Renata; Da Costa, Elisabete F. R.; Skordos, Alexandros A.; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.

    2013-04-01

    The infusion, flow and cure of RTM6 resin in a carbon fibre reinforced composite preform have been monitored using a variety of multiplexed fibre optic sensors. Optical fibre Fresnel sensors and tilted fibre Bragg grating (TFBG) sensors were configured to monitor resin infusion/flow in-plane of the component. The results obtained from the different sensors were in good agreement with visual observations. The degree of cure was monitored by Fresnel sensors via a measurement of the refractive index of the resin which was converted to degree of cure using a calibration determined from Differential Scanning Calorimetry. Fibre Bragg grating sensors fabricated in highly linearly birefringent fibre were used to monitor the development of transverse strain during the cure process, revealing through-thickness material shrinkage of about 712 μɛ and residual strain of 223 μɛ. An alternative approach to infusion monitoring, based on an array of multiplexed tapered optical fibre sensors interrogated using optical frequency domain reflectometry, was also investigated in a separate carbon fibre preform that was infused with RTM6 resin.

  13. A rapid and reversible skull optical clearing method for monitoring cortical blood flow

    Science.gov (United States)

    Zhang, Chao; Zhao, Yanjie; Shi, Rui; Zhu, Dan

    2016-03-01

    In vivo cortex optical imaging is of great important for revealing both structural and functional architecture of brain with high temporal-spatial resolution. To reduce the limitation of turbid skull, researchers had to establish various skull windows or directly expose cortex through craniotomy. Here we developed a skull optical clearing method to make skull transparent. Laser speckle contrast imaging technique was used to monitor the cortical blood flow after topical treatment with the optical clearing agents. The results indicated that the image contrast increased gradually, and then maintained at a high level after 15 min for adult mice, which made the image quality and resolution of micro-vessels nearly approximate to those of exposed cortex. Both the cortical blood flow velocity almost kept constant after skull became transparent. Besides, the treatment of physiological saline on the skull could make skull return to the initial state again and the skull could become transparent again when SOCS retreated it. Thus, we could conclude that the skull optical clearing method was rapid, valid, reversible and safe, which provided us available approach for performing the cortical structural and functional imaging at high temporal-spatial resolution.

  14. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation.

    Science.gov (United States)

    Payette, Jeri R; Kohlenberg, Elicia; Leonardi, Lorenzo; Pabbies, Arone; Kerr, Paul; Liu, Kan-Zhi; Sowa, Michael G

    2005-02-01

    The objective of this study was to compare two noninvasive techniques, laser Doppler and optical spectroscopy, for monitoring hemodynamic changes in skin flaps. Animal models for assessing these changes in microvascular free flaps and pedicle flaps were investigated. A 2 x 3-cm free flap model based on the epigastric vein-artery pair and a reversed MacFarlane 3 x 10-cm pedicle flap model were used in this study. Animals were divided into four groups, with groups 1 (n = 6) and 2 (n = 4) undergoing epigastric free flap surgery and groups 3 (n = 3) and 4 (n = 10) undergoing pedicle flap surgery. Groups 1 and 4 served as controls for each of the flap models. Groups 2 and 3 served as ischemia-reperfusion models. Optical spectroscopy provides a measure of hemoglobin oxygen saturation and blood volume, and the laser Doppler method measures blood flow. Optical spectroscopy proved to be consistently more reliable in detecting problems with arterial in flow compared with laser Doppler assessments. When spectroscopy was used in an imaging configuration, oxygen saturation images of the entire flap were generated, thus creating a visual picture of global flap health. In both single-point and imaging modes the technique was sensitive to vessel manipulation, with the immediate post operative images providing an accurate prediction of eventual outcome. This series of skin flap studies suggests a potential role for optical spectroscopy and spectroscopic imaging in the clinical assessment of skin flaps.

  15. Radiative transfer modelling of parsec-scale dusty warped discs

    CERN Document Server

    Jud, H; Mould, J; Burtscher, L; Tristram, K R W

    2016-01-01

    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching ...

  16. Wing Warping and Its Impact on Aerodynamic Efficiency

    Science.gov (United States)

    Loh, Ben; Jacob, Jamey

    2007-11-01

    Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.

  17. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  18. SUSY properties of warped AdS3

    Science.gov (United States)

    Jeong, Jaehoon; Colgáin, Eoin Ó.; Yoshida, Kentaroh

    2014-06-01

    We examine supersymmetric properties of null-warped AdS3, or alternatively Schrödinger geometries, dual to putative warped CFTs in two dimensions. We classify super Schrödinger subalgebras of the superalgebra psu(1, 1|2) ⊕ psu(1, 1|2), corresponding to the superconformal algebra of the AdS3 × S3 geometry. We comment on geometric realisations and provide a string theory description with enhanced supersymmetry in terms of intersecting D3-branes. For type IIB supergravity solutions based on T 1,1, we consider the relationship between five-dimensional Schrödinger solutions and their three-dimensional null-warped counterparts, corresponding to R symmetry twists. Finally, we study a family of null-warped AdS3 solutions in a setting where there is an ambiguity over the R symmetry and confirm that, for examples admitting a Kaluza-Klein (KK) reduction to three dimensions, the minimisation of a real superpotential of the three-dimensional gauged supergravity captures the central charge and R symmetry.

  19. Induced dark energy in a warped braneworld and accelerating universe

    Science.gov (United States)

    Lee, Tae Hoon

    2016-10-01

    In the six-dimensional (6D) Einstein gravity with a negative cosmological constant, we determine the structure of warped spacetimes bounded by 4-branes. We find an accelerating Universe solution with the induced dark energy, from the 4-brane obtained by orbifolding an external space, and suggest a possibility of addressing problems related to the cosmological constant.

  20. Audio Effects Based on Biorthogonal Time-Varying Frequency Warping

    Directory of Open Access Journals (Sweden)

    Cavaliere Sergio

    2001-01-01

    Full Text Available We illustrate the mathematical background and musical use of a class of audio effects based on frequency warping. These effects alter the frequency content of a signal via spectral mapping. They can be implemented in dispersive tapped delay lines based on a chain of all-pass filters. In a homogeneous line with first-order all-pass sections, the signal formed by the output samples at a given time is related to the input via the Laguerre transform. However, most musical signals require a time-varying frequency modification in order to be properly processed. Vibrato in musical instruments or voice intonation in the case of vocal sounds may be modeled as small and slow pitch variations. Simulation of these effects requires techniques for time-varying pitch and/or brightness modification that are very useful for sound processing. The basis for time-varying frequency warping is a time-varying version of the Laguerre transformation. The corresponding implementation structure is obtained as a dispersive tapped delay line, where each of the frequency dependent delay element has its own phase response. Thus, time-varying warping results in a space-varying, inhomogeneous, propagation structure. We show that time-varying frequency warping is associated to an expansion over biorthogonal sets generalizing the discrete Laguerre basis. Slow time-varying characteristics lead to slowly varying parameter sequences. The corresponding sound transformation does not suffer from discontinuities typical of delay lines based on unit delays.

  1. Warped products and conformal boundaries of CAT(0)-Spaces

    DEFF Research Database (Denmark)

    Buckley, S.M.; Kokkendorff, Simon Lyngby

    2008-01-01

    We discuss the conformal boundary of a warped product of two length spaces and provide a method to calculate this in terms of the individual conformal boundaries. This technique is then applied to produce CAT(0)-spaces with complicated conformal boundaries. Finally, we prove that the conformal...

  2. Hopfing and Puffing Warped Anti-de Sitter Space

    CERN Document Server

    Anninos, Dionysios

    2009-01-01

    Three dimensional spacelike warped anti-de Sitter space is studied in the context of Einstein theories of gravity and string theory, where there is no gravitational Chern-Simons term in the action. We propose that it is holographically dual to a two-dimensional conformal field theory with equal left and right moving central charges. Various checks of the central charges are offered, based on the Bekenstein-Hawking entropy of the stretched warped black holes and warped self-dual solutions. The proposed central charges are applied to compute the Bekenstein-Hawking entropy of the Hopf T-dual of six-dimensional dyonic black strings which have a near horizon consisting of three dimensional warped anti-de Sitter space times a three-sphere. We find that the Hopf T-duality is a map between thermal states with equal entropy of the CFTs dual to the dyonic black string and the Hopf T-dualized black string.

  3. Effective action for a quantum scalar field in warped spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2015-11-15

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)

  4. [Peculiarities of ocular blood flow in ischemic optic neuropathy and normal tension glaucoma].

    Science.gov (United States)

    Mamikonian, V R; Galoian, N S; Sheremet, N L; Kazarian, E E; Kharlap, S I; Shmeleva-Demir, O A; Andzhelova, D V; Tatevosian, A A

    2013-01-01

    Characteristics of ocular hemodynamics in ischemic optic neuropathy (ION) outcome and normal tension glaucoma (NTG), the conditions that are difficult to be differentially diagnosed, have been investigated. The study enrolled 32 patients (40 eyes) with ION outcome, 26 patients (46 eyes) with NTG, and 20 patients (32 eyes) with no ocular pathology. Besides the standard ophthalmological examination, color Doppler imaging of ocular vessels, evaluation of ocular blood flow volume and individual normal range of intraocular pressure (flowmetry) were performed in all cases. The results showed that an excess of the actual intraocular pressure (IOP) over the individual normal range was much higher in patients with NTG than in patients with ION (39% and 14.5% correspondingly). It was also found that NTG is associated with a more significant decrease of ocular blood flow volume (30.1% in average) in comparison to ION outcome (11%). In both conditions a decrease in velocity parameters of the blood flow in main ocular vessels was registered, however, ocular hemodynamics changes appeared to be more severe in patients with glaucomatous optic neuropathy. A statistically reliable correlation between volumetric and velocity parameters of ocular blood flow has been discovered.

  5. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    Science.gov (United States)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  6. New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography

    Science.gov (United States)

    Haavisto, Sanna; Koponen, Antti I.; Salmela, Juha

    2014-01-01

    Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT) is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field. PMID:24904920

  7. New Insight into Rheology and Flow Properties of Complex Fluids with Doppler Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Juha eSalmela

    2014-05-01

    Full Text Available Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field.

  8. Single-step stereolithography of complex anatomical models for optical flow measurements.

    Science.gov (United States)

    de Zélicourt, Diane; Pekkan, Kerem; Kitajima, Hiroumi; Frakes, David; Yoganathan, Ajit P

    2005-02-01

    Transparent stereolithographic rapid prototyping (RP) technology has already demonstrated in literature to be a practical model construction tool for optical flow measurements such as digital particle image velocimetry (DPIV), laser doppler velocimetry (LDV), and flow visualization. Here, we employ recently available transparent RP resins and eliminate time-consuming casting and chemical curing steps from the traditional approach. This note details our methodology with relevant material properties and highlights its advantages. Stereolithographic model printing with our procedure is now a direct single-step process, enabling faster geometric replication of complex computational fluid dynamics (CFD) models for exact experimental validation studies. This methodology is specifically applied to the in vitro flow modeling of patient-specific total cavopulmonary connection (TCPC) morphologies. The effect of RP machining grooves, surface quality, and hydrodynamic performance measurements as compared with the smooth glass models are also quantified.

  9. Reciprocal inhibitory connections within a neural network for rotational optic-flow processing

    Directory of Open Access Journals (Sweden)

    Juergen Haag

    2007-10-01

    Full Text Available Neurons in the visual system of the blowfly have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow-field selectivity in proximal Vertical System (VS-cells, a particular subset of tangential cells in the fly. These cells have local preferred directions that are distributed such as to match the flow field occurring during a rotation of the fly. However, the neural circuitry leading to this selectivity is not fully understood. Through dual intracellular recordings from proximal VS cells and other tangential cells, we characterized the specific wiring between VS cells themselves and between proximal VS cells and horizontal sensitive tangential cells. We discovered a spiking neuron (Vi involved in this circuitry that has not been described before. This neuron turned out to be connected to proximal VS cells via gap junctions and, in addition, it was found to be inhibitory onto VS1.

  10. New Insight into Rheology and Flow Properties of Complex Fluids with Doppler Optical Coherence Tomography

    Science.gov (United States)

    Salmela, Juha; Haavisto, Sanna; Koponen, Antti

    2014-05-01

    Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT) is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field.

  11. Ultrafast all-optical switching using signal flow graph for PANDA resonator.

    Science.gov (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P

    2013-04-20

    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  12. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    Directory of Open Access Journals (Sweden)

    Edward Davies

    2014-11-01

    Full Text Available A finite element analysis (FEA model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel.

  13. Gauge vector field localization on 3-brane placed in a warped transverse resolved conifold

    CERN Document Server

    Costa, F W V; Almeida, C A S

    2013-01-01

    We have investigated the features of the gauge vector field in a braneworld scenario built as a warped product between a 3-brane and a 2-cycle of the resolved conifold. This scenario allowed us to study how the gauge field behaves when the transverse manifold evolves upon a geometric flow that controls the singularity at the origin. Besides, since the transverse manifold has a cylindrical symmetry according to the 3-brane, this geometry can be regarded as a near brane correction of the string-like branes. Indeed, by means of a new warp function and the angular metric component of the resolved conifold, the braneworld can exhibit a conical form near the origin as well as a regular behavior in that region. The analysis of the gauge field in this background has been carried out for the s-wave state and a normalizable massless mode was found. For the massive modes, the resolution parameter avoids an infinite well on the brane and controls the depth of the well and the high of the barrier around the brane. The mas...

  14. OPTICAL FLOW APPLIED TO TIME-LAPSE IMAGE SERIES TO ESTIMATE GLACIER MOTION IN THE SOUTHERN PATAGONIA ICE FIELD

    OpenAIRE

    E. Lannutti; Lenzano, M. G.; Toth, C; L. Lenzano; Rivera, A.

    2016-01-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and te...

  15. Perceiving collision impacts in Alzheimer’s disease: The effect of retinal eccentricity on optic flow deficits

    Directory of Open Access Journals (Sweden)

    Nam-Gyoon eKim

    2015-11-01

    Full Text Available The present study explored whether the optic flow deficit in Alzheimer’s disease (AD reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer’s path. Optical expansion was modulated by varying tau-dot. The visual field was masked either centrally (peripheral vision or peripherally (central vision using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in collision or no collision with the obstacles. Results showed that AD patients’ sensitivity to tau-dot was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients’ optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by tau-dot. Further deterioration in the capacity to extract tau-dot to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients’ difficulties in navigation and visuospatial orientation.

  16. APPLICATION OF CHEMOMETRICS FOR ANALYSIS OF BIOAEROSOLS BY FLOW-OPTICAL METHOD

    Directory of Open Access Journals (Sweden)

    E. S. Khudyakov

    2016-01-01

    Full Text Available Subject of Research. The informativity of detection channels for bioaerosol analyzer is investigated. Analyzer operation is based on flow-optical method. Method. Measurements of fluorescence and the light scattering of separate bioaerosol particles were performed in five and two spectral ranges, correspondingly. The signals of soil dust particles were registered and used as an imitation of background atmospheric particles. For fluorescenceinduction of bioaerosol particles we used light sources: a laser one with a wavelength equal to 266 nm and 365 nm LED source.Main Results. Using chemometric data processing the classification of informative parameters has been performed and three most significant parameters have been chosen which account for 72% of total data variance. Testing has been done using SIMCA and k-NN methods. It has been proved that the use of the original and the reduced sets of three parameters produces comparable accuracy for classification of bioaerosols. Practical Relevance. The possibility of rapid detection and identification of bioaerosol particles of 1-10 microns respirable fraction (hindering in the human respiratory system by flow-optical method on a background of non-biological particles is demonstrated. The most informative optical spectral ranges for development of compact and inexpensive analyzer are chosen.

  17. Optical studies of the flow start-up processes in four convergent-divergent nozzles

    Science.gov (United States)

    Opalka, Klaus O.

    1991-03-01

    In the context of design studies for the U.S. Large Blast/Thermal Simulator, BRL has sponsored optical studies of the flow start-up in convergent-divergent nozzles which have the flow-initiating diaphragm located in the nozzle throat. The experiments were performed in the 200 mm shock tube at the Ernst-Mach Institute in Freiburg (Breisgau), West-Germany. The scope of the studies included divergent nozzles with half cone angles of 6, 16, 45 and 90 deg tested at seven diaphragm pressure ratios ranging from 4 to 188 and resulting in shock strengths ranging from 1.4 to 4.4. Results were summarized in graphs of significant parameters, e.g., shock formation time, flow start-up period, flow expansion angle, and shock strength versus the driver pressure ratio and further compared with numerical results obtained with the BRL-Q1D hydrocode. The numerical-experimental comparison shows qualitative agreement. The flow phenomena are generally reproduced by the computations as long as they are not strongly dependent on viscous effects. The study shows that a pressure loss of 10 percent is connected to the presence of a large area discontinuity at the exit plane of the nozzle throat when no divergent nozzle is attached. Results suggest that a 45 deg divergent nozzle may present an acceptable compromise for minimizing these pressure losses by reducing the associated area discontinuities.

  18. Spectrum of Optically Thin Advection Dominated Accretion Flow around a Black Hole Application to Sgr A*

    CERN Document Server

    Manmoto, T; Kusunose, M

    1997-01-01

    The global structure of optically thin advection dominated accretion flows which are composed of two-temperature plasma around black holes is calculated. We adopt the full set of basic equations including the advective energy transport in the energy equation for the electrons. The spectra emitted by the optically thin accretion flows are also investigated. The radiation mechanisms which are taken into accout are bremsstrahlung, synchrotron emission, and Comptonization. The calculation of the spectra and that of the structure of the accretion flows are made to be completely consistent by calculating the radiative cooling rate at each radius. As a result of the advection domination for the ions, the heat transport from the ions to the electrons becomes practically zero and the radiative cooling balances with the advective heating in the energy equation of the electrons. Following up on the successful work of Narayan et al. (1995), we applied our model to the spectrum of Sgr A*. We find that the spectrum of Sgr ...

  19. Vision Module for Mini-robots Providing Optical Flow Processing for Obstacle Avoidance

    Science.gov (United States)

    Chinapirom, Teerapat; Witkowski, Ulf; Rueckert, Ulrich

    This paper presents a flexible prototyping platform that can be efficiently used for vision systems of small mobile robots. The vision module has been integrated into the mini-robot “Khepera”. The module is utilized to realize optical flow algorithm for obstacle avoidance. The obstacles are detected from abrupt change of the normal flow vectors during operation. This technique is also inspired by visual perception of insects, which alert when an object suddenly appears nearby them. The optical flow algorithm implemented for this approach is Sum of Absolute Differences (SAD) algorithm. The SAD is programmed using the hardware description language (VHDL) efficiently utilizing the FPGA device that is the central processing device of the module. The 30x16 pixels used in SAD for block matching are computed in parallel by 16 pairs of pixels in each operation, which allows in real-time operation. Therefore, the mini-robot being equipped with our 2D vision module for the real-time image processing is able to drive autonomously without collision with obstacles, called ego-motion. The result also shows that the implementation can reduce the execution time compared to serial implementation and helps to reduce energy consumption.

  20. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    Science.gov (United States)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  1. Vascular flow density in pathological myopia: an optical coherence tomography angiography study.

    Science.gov (United States)

    Mo, Jing; Duan, Anli; Chan, Szyyann; Wang, Xuefei; Wei, Wenbin

    2017-02-03

    To investigate vascular flow density in pathological myopia with optical coherence tomography (OCT) angiography. A prospective comparative study was conducted from December 2015 to March 2016. Participants were recruited in Beijing Tongren Hospital. A total of 131 eyes were enrolled, which were divided into three groups: 45 eyes with emmetropia (EM; mean spherical equivalent (MSE) 0.50D to -0.50D), 41 eyes with high myopia (HM; MSE ≤-6.00D, without pathological changes), and 45 eyes with pathological myopia (PM; MSE ≤-6.00D and axial length (AL) ≥26.5 mm, and with pathological changes). Macular, choriocapillaris and radial peripapillary capillary (RPC) flow densities were measured and compared between groups, and their relationships with AL and best corrected visual acuity (BCVA) were analysed. Significant differences were found in macular, choriocapillaris and RPC flow densities among the three groups (pdensities of the PM group were significantly decreased (pdensity was found between the PM and HM groups (p=0.731). Compared with the EM group, retinal flow density in the macular and arcuate fibre region was not decreased in the HM group. In addition, there was a negative correlation between AL and superficial macular flow density (β=-0.542, pdensity (β=-0.282, p=0.002) and RPC flow density (β=-0.522, pdensity (β=0.194, p=0.021), deep macular flow density (β=0.373, pdensity (β=0.291, p=0.001). Macular and RPC flow densities decreased in pathological myopia compared with high myopia and emmetropia. No significant decrease of retinal flow density in the macular and arcuate fibre region was found in high myopic eyes compared with emmetropic eyes. Moreover, macular and RPC flow densities were negatively related to AL, and macular flow density was positively related to BCVA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Dual-beam optical coherence tomography system for quantification of flow velocity in capillary phantoms

    Science.gov (United States)

    Daly, S. M.; Silien, C.; Leahy, M. J.

    2012-03-01

    The quantification of (blood) flow velocity within the vasculature has potent diagnostic and prognostic potential. Assessment of flow irregularities in the form of increased permeability (micro haemorrhaging), the presence of avascular areas, or conversely the presence of vessels with enlarged or increased tortuosity in the acral regions of the body may provide a means of non-invasive in vivo assessment. If assessment of dermal flow dynamics were performed in a routine manner, the existence and prevalence of ailments such as diabetes mellitus, psoriatic arthritis and Raynaud's condition may be confirmed prior to clinical suspicion. This may prove advantageous in cases wherein the efficacy of a prescribed treatment is dictated by a prompt diagnosis and to alleviate patient discomfort through early detection. Optical Coherence Tomography (OCT) is an imaging modality which utilises the principle of optical interferometry to distinguish between spatial changes in refractive index within the vasculature and thus formulate a multi-dimensional representation of the structure of the epi- and dermal skin layers. The use of the Doppler functionality has been the predominant force for the quantification of moving particles within media, elucidated via estimation of the phase shift in OCT A-scans. However, the theoretical formulation for the assessment of these phase shifts dictates that the angle between the incident light source and the vessel under question be known a priori; this may be achieved via excisional biopsy of the tissue segment in question, but is counter to the non-invasive premise of the OCT technique. To address the issue of angular dependence, an alternate means of estimating absolute flow velocity is presented. The design and development of a dual-beam (db) system incorporating an optical switch mechanism for signal discrimination of two spatially disparate points enabling quasi-simultaneous multiple specimen scanning is described. A crosscorrelation (c

  3. [Flow density measurements using optical coherence tomography angiography : Impact of age and gender].

    Science.gov (United States)

    Alnawaiseh, M; Brand, C; Lauermann, J L; Eter, N

    2017-07-19

    This article presents the normative data for flow density measured using optical coherence tomography (OCT) angiography and the impact of age and gender is evaluated. In this study 58 eyes from 58 healthy volunteers with no history of any ocular disease or ocular surgery were included. The OCT angiography imaging was performed using the RTVue XR Avanti with the AngioVue (Optovue, Fremont, CA). The macula was imaged using a 3 × 3 mm scan, and the flow density data in the superficial retinal OCT angiogram and deep retinal OCT angiogram were extracted and analyzed. The groups were compared using the Mann-Whitney U‑test and the degree of correlation between two variables was expressed as the Spearman's correlation coefficient (rSp.) RESULTS: The mean subject age was 38.3 ± 14.6 years. The flow density (whole en face) in the deep retinal OCT angiogram was significantly higher compared to the flow density in the superficial retinal OCT angiogram (p density in superficial and deep OCT angiograms of the macula between males (n = 27) and females (n = 31). There was a significant correlation between the flow density in the deep retinal OCT angiogram and age (rSp. = -0.41, p = 0.001). Whereas gender has no impact on the flow density measured using OCT angiography, there was a significant correlation between the flow density in the deep retinal OCT angiogram and age.

  4. Design of a Sensor Based on Plastic Optical Fibre (POF) to Measure Fluid Flow and Turbidity.

    Science.gov (United States)

    Aiestaran, Pedro; Arrue, Jon; Zubia, Joseba

    2009-01-01

    Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.

  5. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.

    Science.gov (United States)

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T; Kornbluth, Joshua

    2016-07-01

    Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.

  6. Design of a Sensor Based on Plastic Optical Fibre (POF to Measure Fluid Flow and Turbidity

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2009-05-01

    Full Text Available Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.

  7. Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3

    Science.gov (United States)

    Golias, E.; Sánchez-Barriga, J.

    2016-10-01

    In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .

  8. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    CERN Document Server

    Stancari, Giulio; Redaelli, Stefano

    2014-01-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  9. Optic flow odometry operates independently of stride integration in carried ants.

    Science.gov (United States)

    Pfeffer, Sarah E; Wittlinger, Matthias

    2016-09-09

    Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner. Copyright © 2016, American Association for the Advancement of Science.

  10. Digital in-line holography for the characterization of flowing particles in astigmatic optical systems

    Science.gov (United States)

    Sentis, Matthias P. L.; Bruel, Laurent; Charton, Sophie; Onofri, Fabrice R. A.; Lamadie, Fabrice

    2017-01-01

    An extended Generalized Fresnel Transform (GFT) is proposed to account for the astigmatism introduced by optical elements described, in the paraxial approximation, with a ray transfer matrix analysis. Generalized impulse response and generalized Fresnel transfer function propagators as well as sampling conditions are derived to properly implement this transformation. As a test case, the near-field diffraction patterns and in-line holograms produced by droplets flowing in a tube with cylindrical interfaces have been simulated. A best fitting approach is introduced to retrieve, from the propagated holograms, the 3D position and size of the droplets. Several hologram focusing indicators based on the analysis of droplets focus region are also proposed to further improve the estimation of the droplets position along the optical axis. Numerical simulations and experimental results confirm the applicability and accuracy of the proposed methods.

  11. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    Science.gov (United States)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  12. Distributed multi-hypothesis coding of depth maps using texture motion information and optical flow

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Zamarin, Marco; Rakêt, Lars Lau

    2013-01-01

    Distributed Video Coding (DVC) is a video coding paradigm allowing a shift of complexity from the encoder to the decoder. Depth maps are images enabling the calculation of the distance of an object from the camera, which can be used in multiview coding in order to generate virtual views, but also...... information, a block-based and an optical flow-based methods are employed. Finally we fuse the proposed Side Informations using a multi-hypothesis DVC decoder, which allows us to exploit the strengths of all the proposed methods at the same time....

  13. Micro Flow Cytometry Miniaturisation - Towards in-situ Optical Phytoplankton Analysis

    Science.gov (United States)

    Zmijan, R.; Abi Kaed Bey, S.; Mowlem, M. C.; Morgan, H.

    2012-04-01

    The use of flow cytometry for studies of temporal and spatial variability of phytoplankton populations is a valuable tool contributing to research relating carbon biogeochemistry and climate change. Early designs and marine deployments of such devices started over two decades ago [1-3]. Miniaturisation and cost reduction without sacrificing performance remains a major challenge but would enable mass production and deployment. Large numbers of measurement nodes (e.g. as part of a global ocean observation system) would be possible which would increase data available over both spatial and temporal scales. This research presents two different design approaches for miniaturisation and integration of optics into a microfluidic cytometer chip. The proposed solutions are suitable for micro cytometers with external components coupled with optical fibres and were simulated and optimised using ray tracing software (Zemax). The two designs address light delivery for excitation of particles within the measurement region of the cytometer. One uses an integrated micro lens (fabricated in the chip) and the other a ball shaped micro lens manufactured separately and then inserted into the chip. Both approaches collimate the excitation light beam (from an off chip diode laser coupled with an optical fibre) into the fluidic channel. The predicted (by ray tracing) excitation beam widths are 70 and 80 µm for the integrated and the ball lens respectively, and are in agreement with experimental data presented. The proposed cytometer chip design is compatible with low cost materials (acrylic glass, cyclo-olefines) and manufacturing methods (micro milling, hot embossing, injection moulding). 1. Dubelaar, G.B.J. and P.L. Gerritzen, CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Scientia Marina, 2000. 64(2): p. 255-265. 2. Peeters, J.C.H., et al., Optical Plankton Analyzer - a Flow Cytometer for Plankton Analysis .1. Design Considerations. Cytometry, 1989

  14. Multi-hypothesis Transform Domain Wyner-Ziv Video Coding including Optical Flow

    DEFF Research Database (Denmark)

    Huang, Xin; Rakêt, Lars Lau; Luong, Huynh Van

    2011-01-01

    Transform Domain Wyner-Ziv (TDWZ) video coding is an efficient Distributed Video coding solution providing new features such as low complexity encoding, by mainly exploiting the source statistics at the decoder based on the availability of decoder side information. The accuracy of the decoder side...... information has a major impact on the performance of TDWZ. In this paper, a novel multi-hypothesis based TDWZ video coding is presented to exploit the redundancy between multiple side information and the source information. The decoder used optical flow for side information calculation. Compared with the best...

  15. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)

    2008-08-15

    During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)

  16. Detecting moving objects in an optic flow field using direction- and speed-tuned operators.

    Science.gov (United States)

    Royden, Constance S; Holloway, Michael A

    2014-05-01

    An observer moving through a scene must be able to identify moving objects. Psychophysical results have shown that people can identify moving objects based on the speed or direction of their movement relative to the optic flow field generated by the observer's motion. Here we show that a model that uses speed- and direction-tuned units, whose responses are based on the response properties of cells in the primate visual cortex, can successfully identify the borders of moving objects in a scene through which an observer is moving.

  17. Application of bilateral filtration with weight coefficients for similarity metric calculation in optical flow computation algorithm

    Science.gov (United States)

    Panin, S. V.; Titkov, V. V.; Lyubutin, P. S.; Chemezov, V. O.; Eremin, A. V.

    2016-11-01

    Application of weight coefficients of the bilateral filter used to determine weighted similarity metrics of image ranges in optical flow computation algorithm that employs 3-dimension recursive search (3DRS) was investigated. By testing the algorithm applying images taken from the public test database Middlebury benchmark, the effectiveness of this weighted similarity metrics for solving the image processing problem was demonstrated. The necessity of matching the equation parameter values when calculating the weight coefficients aimed at taking into account image texture features was proved for reaching the higher noise resistance under the vector field construction. The adaptation technique which allows excluding manual determination of parameter values was proposed and its efficiency was demonstrated.

  18. Research on target tracking in coal mine based on optical flow method

    Science.gov (United States)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  19. Multi-hypothesis Transform Domain Wyner-Ziv Video Coding including Optical Flow

    DEFF Research Database (Denmark)

    Huang, Xin; Rakêt, Lars Lau; Luong, Huynh Van;

    2011-01-01

    information has a major impact on the performance of TDWZ. In this paper, a novel multi-hypothesis based TDWZ video coding is presented to exploit the redundancy between multiple side information and the source information. The decoder used optical flow for side information calculation. Compared with the best...... available single estimation mode TDWZ, the proposed multi-hypothesis based TDWZ achieves robustly better Rate-Distortion (RD) performance and the overall improvement is up to 0.6 dB at high bitrate and up to 2 dB compared with the DISCOVER TDWZ video codec....

  20. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  1. Congestion analysis of pilgrims in Hajj and Umrah congregation using block matching and optical flow

    Science.gov (United States)

    Farooq, Sumaiyya; Khan, Shoab A.; Usman Akram, M.

    2017-01-01

    A novel method has been proposed to classify the motion of pilgrims with respect to congestion level in the holy mosque of Makkah. Millions of Muslims visit this mosque during Hajj and Umrah every year. A large number of security personnel is required to maintain the smooth flow of pilgrims in order to avert any catastrophe. Therefore, it is inevitable to design a computer aided system to reduce human effort. The proposed system pre-processes input images to segregate the moving shadows and pilgrims in order to nullify the false motion due to moving shadows. A hybrid method consisting of block matching and optical flow techniques has been used for the computation of motion vectors. Decision tree classifier is used on the number of motion vectors having non-zero magnitude. Experiments show that the proposed system has promising results yielding an accuracy of 90.58% for the congestion classification of pilgrims.

  2. Conformal Gravity and the Alcubierre Warp Drive Metric

    CERN Document Server

    Varieschi, Gabriele U

    2012-01-01

    We present an analysis of the classic Alcubierre metric based on conformal gravity, rather than standard general relativity. The main characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, namely that effective super-luminal motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular, the resulting warp drive does not require the use of exotic matter. Therefore, if conformal gravity is a correct extension of general relativity, super-luminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar travel.

  3. Warped Geometry in Higher Dimensions with an Orbifold Extra Dimension

    CERN Document Server

    Ito, M

    2001-01-01

    We solve the Einstein equations in higher dimensions with warped geometry where an extra dimension is assumed to have orbifold symmetry, $S^{1}/Z_{2}$. The setup we consider here is an extension to (5+D)-dimensions of the 5-dimensional Randall-Sundrum model, and two hidden brane and observable brane are fixed on orbifold. Anisotropic cosmological constant on each brane with (4+D)-dimensional spacetime is assumed, and the warped metric of 4-dimensions is generally different from one of extra D-dimensions. It is pointed out that the form of metric depends on both the sign of bulk cosmological constant and initial condition of brane world. Furthermore, anisotropic cosmological constant on each brane can be realized due to the presence of brane.

  4. Wing Warping, Roll Control and Aerodynamic Optimization of Inflatable Wings

    Science.gov (United States)

    Simpson, Andrew

    2005-11-01

    The research presents work on aerodynamic control by warping inflatable wings. Inflatable wings are deformable by their nature. Mechanical manipulation of the wing's shape has been demonstrated to alter the performance and control the vehicle in flight by deforming the trailing edge of the wing near the wing tip. Predicting and correlating the forces required in deforming the wings to a particular shape and the deformation generated for a given internal pressure were conducted through the use of photogrammetry. This research focuses on optimizing the roll moments and aerodynamic performance of the vehicle, given the current level of wing warping ability. Predictions from lifting line theory applied to wing shape changes are presented. Comparisons from the experimental results are made with lifting line analysis for wings with arbitrary twist and the solutions are used to determine rolling moment and optimum L/D. Results from flight tests will also be presented.

  5. A method and apparatus for sizing and separating warp yarns

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1997-12-01

    A slashing process for preparing warp yarns for weaving operations includes the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  6. On the impossibility of superluminal travel: the warp drive lesson

    CERN Document Server

    Barceló, Carlos; Liberati, Stefano

    2010-01-01

    The question of whether it is possible or not to surpass the speed of light is already centennial. The special theory of relativity took the existence of a speed limit as a principle, the light postulate, which has proven to be enormously predictive. Here we discuss some of its twists and turns when general relativity and quantum mechanics come into play. In particular, we discuss one of the most interesting proposals for faster than light travel: warp drives. Even if one succeeded in creating such spacetime structures, it would be still necessary to check whether they would survive to the switching on of quantum matter effects. Here, we show that the quantum back-reaction to warp-drive geometries, created out of an initially flat spacetime, inevitably lead to their destabilization whenever superluminal speeds are attained. We close this investigation speculating the possible significance of this further success of the speed of light postulate.

  7. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  8. WARPING AND PRECESSION IN EXTRAGALACTIC MASER ACCRETION DISCS

    Directory of Open Access Journals (Sweden)

    A. Caproni

    2009-01-01

    Full Text Available Interferometric maser observations have been used to probe the physical conditions of extragalactic accretion discs at sub-parsec scales. The inferred kinematic of the water maser spots presents small deviations from Keplerian motions, which have been attributed to the warping and twisting of the parsec-scale disc. However, their physical origin is still a matter of debate in the literature. Motivated by this, we analyzed the general relativistic Bardeen-Petterson e ect, driven by a Kerr black hole, as the potential physical mechanism responsible for the disc warping and precession in the nearby Seyfert 2 galaxies NGC 1068 and NGC 4258. Assuming a power-law accretion disc, whose parameters were constrained by the observational data, we derived the basic quantities concerning the Bardeen-Petterson e ect for both sources. Some consequences from this peculiar relativistic mechanism are also presented in this work.

  9. Scales and hierarchies in warped compactifications and brane worlds

    CERN Document Server

    De Wolfe, O; Wolfe, Oliver De; Giddings, Steven B.

    2003-01-01

    Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined soley by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kahler potential, including the effects of warping. We identify matter living on certain branes to be effectivel...

  10. LHC Signatures of Warped-space Vectorlike Quarks

    CERN Document Server

    Gopalakrishna, Shrihari; Mitra, Subhadip; Moreau, Gregory

    2014-01-01

    We study the LHC signatures of TeV scale vectorlike quarks $b'$, $t'$ and $\\chi$ with electromagnetic charges -1/3, 2/3 and 5/3 that appear in many beyond the standard model (BSM) extensions. We consider warped extradimensional models and analyze the phenomenology of such vectorlike quarks that are the custodial partners of third generation quarks. In addition to the usually studied pair-production channels which depend on the strong coupling, we put equal emphasis on single production channels that depend on electroweak couplings and on electroweak symmetry breaking induced mixing effects between the heavy vectorlike quarks and standard model quarks. Although the motivation is from warped models, we present many of our results model-independently.

  11. Multiply-warped product metrics and reduction of Einstein equations

    CERN Document Server

    Gholami, F; Haji-Badali, A

    2016-01-01

    It is shown that for every multidimensional metric in the multiply warped product form $\\bar{M} = K\\times_{f_1} M_1\\times_{f_2}M_2$ with warp functions $f_1$, $f_2$, associated to the submanifolds $M_1$, $M_2$ of dimensions $n_1$, $n_2$ respectively, one can find the corresponding Einstein equations $\\bar{G}_{AB}=-\\bar{\\Lambda}\\bar{g}_{AB}$, with cosmological constant $\\bar{\\Lambda}$, which are reducible to the Einstein equations $G_{\\alpha\\beta} = -\\Lambda_1 g_{\\alpha\\beta}$ and $G_{ij} =-\\Lambda_2 h_{ij}$ on the submanifolds $M_1$, $M_2$, with cosmological constants ${\\Lambda_1}$ and ${\\Lambda_2}$, respectively, where $\\bar{\\Lambda}$, ${\\Lambda_1}$ and ${\\Lambda_2}$ are functions of ${f_1}$, ${f_2}$ and $n_1$, $n_2$.

  12. Sensory prediction on a whiskered robot: A tactile analogy to "optic flow"

    Directory of Open Access Journals (Sweden)

    Christopher L Schroeder

    2012-10-01

    Full Text Available When an animal moves an array of sensors (e.g., the hand, the eye through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the optical flow equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker array, in which the perceptual intensity that flows over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1x5 array (row of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object’s spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

  13. Sensory prediction on a whiskered robot: a tactile analogy to "optical flow".

    Science.gov (United States)

    Schroeder, Christopher L; Hartmann, Mitra J Z

    2012-01-01

    When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the "optical flow" equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that "flows" over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

  14. Detection of three-dimensional surfaces from optic flow: the effects of noise.

    Science.gov (United States)

    Andersen, G J; Wuestefeld, A P

    1993-09-01

    Previous research (Andersen, 1989) has suggested that the recovery of 3-D shape from nonsmooth optic flow (motion transparency) can be performed by segregating surfaces according to the distributions of velocities present in the flow field. Five experiments were conducted to examine this hypothesis in a surface detection paradigm and to determine the limitations of human observers to detect 3-D surfaces in the presence of noise. Two display types were examined: a flow field that simulated a surface corrugated in depth and a flow field that simulated a random volume. In addition, two types of noise were examined: a distribution of noise velocities that overlapped or did not overlap the velocity distribution that defined the surface. Corrugation frequency and surface density were also examined. Detection performance increased with decreasing corrugation frequency, decreasing noise density, and decreasing surface density. Overall, the subjects demonstrated remarkable tolerance to the presence of noise and, for some conditions, could discriminate surface from random conditions when noise density was twice the surface density. Discrimination accuracy was greater for the nonoverlapping than for the overlapping noise, providing support for an analysis based on the distribution of velocities.

  15. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  16. Damping of Torsional Beam Vibrations by Control of Warping Displacement

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian

    2016-01-01

    Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...... as viscous boundary conditions. It is demonstrated that properly calibrated viscous bimoments introduce a significant level of supplemental damping to the targeted vibration mode and that the attainable damping can be accurately estimated from the two undamped problems associated with vanishing and infinite...

  17. From Bayes to PDEs in image warping

    DEFF Research Database (Denmark)

    Nielsen, Mads; Markussen, Bo

    2006-01-01

    In many disciplines of computer vision, such as stereo vision, flow computation, medical image registration, the essential computational problem is the geometrical alignment of images. In this chapter we describe how such an alignment may be obtained as statistical optimal through solving a partial...... differential equation (PDE) in the matching function. We treat different choices of matching criteria such as minimal square difference, maximal correlation, maximal mutual information, and several smoothness criteria. All are treated from a Bayes point of view leading to a functional minimization problem...

  18. Fermion Masses and Mixing in General Warped Extra Dimensional Models

    CERN Document Server

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2015-01-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave-functions to small flavor breaking effects yield naturally hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor-blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the 5D neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is naturally more successful in generalized warped scenarios where the metric bac...

  19. Fermion masses and mixing in general warped extra dimensional models

    Science.gov (United States)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  20. Effect of Firing on Cracking and Warping of Clay Beams

    Directory of Open Access Journals (Sweden)

    Nawab Ali Lakho

    2016-04-01

    Full Text Available Reinforced baked clay beams may be considered to be a substitute of reinforced cement concrete beams in order to build low cost houses. The baking of these clay beams can pose problems such as cracking and warping. This paper presents the effect of different treatments applied to clay beams during baking to reduce cracking and warping. These clay beams were baked in pottery kiln in which the temperature could not be raised to the extent of fusing of clay beams placed at bottom of firing chamber. As expected, the beams were not baked properly and a number of them got cracked. Then these beams were baked in a commercial Hoffman?s kiln. The beams, in preheating stage, were moistened to full depth due to humidity and moisture of flue gases. As a result, the beams cracked and warped at the time of firing. In order to avoid the beams from being moistened by the moisture of the flue gases, different treatments were opted. Firstly, these beams were covered with plastic sheet, the cracks were reduced to some extent. Secondly, double layer of mud, with a layer of gunny bags between them, was applied. Consequently, a few cracks occurred in the beams. The treatments suggested in this paper can be used for baking of clay beams in Hoffman?s kiln at commercial level

  1. Efficient Foreground Extraction Based on Optical Flow and SMED for Road Traffic Analysis

    Directory of Open Access Journals (Sweden)

    K SuganyaDevi

    2015-05-01

    Full Text Available Foreground detection is a key procedure in video analysis such as object detection and tracking. Several foreground detection techniques and edge detectors have been developed until now but the problem is, usually it is difficult to obtain an optimal foreground due to weather, light, shadow and clutter interference. Background subtract is a common method in foreground detection. In background subtract noise appears at fixed place, when it is used to deal with long image sequence there may be much accumulate error in the foreground. In OF (Optical Flow noise appears randomly and this covers long distance over long period of time. Optical flow cannot get rid of the light influences which result in background noises. To overcome this SMED (Separable Morphological Edge Detector is used. SMED has robustness to light changing and even slight movement in the video sequence. This paper proposes a new foreground detection approach called OF and SMED which is more accurate in foreground detection and elimination of noises is very high. This approach is useful for efficient crowd and traffic monitoring, user friendly, highly automatic intelligent, computationally efficient system.

  2. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  3. Flow injection analysis with bioluminescence-based fiber-optic biosensors

    Science.gov (United States)

    Blum, Loic J.; Gautier, Sabine; Coulet, Pierre R.

    1991-09-01

    Fiber optic biosensors based on the firefly and the bacterial bioluminescence reactions have been constructed and incorporated in a specially designed flow-cell for the sensitive determination of ATP and NADH, respectively. The bioluminescence enzymes were immobilized on preactivated polyamide membranes which were placed in close contact with the surface on one end of a glass-fiber bundle, the other end being connected to the photomultiplier tube of a luminometer. When using the continuous-flow device with the firefly luciferase or the bacterial system immobilized separately on different membranes, the detection limit for ATP and NADH were 0.25 and 2 pmol, respectively. The versatility of the fiber optic probe has been improved by co-immobilizing the bacterial bioluminescent system and the firefly luciferase on the same support enabling the use of a single sensor for the selective, specific, and alternate determination of these two analytes. Compatible reaction conditions preserving the activity of each co-immobilized enzyme without impairing its stability were found. The selection of the appropriate reaction medium was done using a four port valve. Alternate quantification of ATP and NADH could then be performed in the linear ranges 0.25 pmol - 3 nmol and 5 pmol - 1 nmol, respectively with a RSD of 4.0 - 4.5%.

  4. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  5. Automatic Speech Segmentation Based On Audio and Optical Flow Visual Classification

    Directory of Open Access Journals (Sweden)

    Behnam Torabi

    2014-10-01

    Full Text Available Automatic speech segmentation as an important part of speech recognition system (ASR is highly noise dependent. Noise is made by changes in the communication channel, background, level of speaking etc. In recent years, many researchers have proposed noise cancelation techniques and have added visual features from speaker’s face to reduce the effect of noise on ASR systems. Removing noise from audio signals depends on the type of the noise; so it cannot be used as a general solution. Adding visual features improve this lack of efficiency, but advanced methods of this type need manual extraction of visual features. In this paper we propose a completely automatic system which uses optical flow vectors from speaker’s image sequence to obtain visual features. Then, Hidden Markov Models are trained to segment audio signals from image sequences and audio features based on extracted optical flow. The developed segmentation system based on such method acts totally automatic and become more robust to noise.

  6. Combination of principal component analysis and optical-flow motion compensation for improved cardiac MR thermometry

    Science.gov (United States)

    Toupin, S.; de Senneville, B. Denis; Ozenne, V.; Bour, P.; Lepetit-Coiffe, M.; Boissenin, M.; Jais, P.; Quesson, B.

    2017-02-01

    The use of magnetic resonance (MR) thermometry for the monitoring of thermal ablation is rapidly expanding. However, this technique remains challenging for the monitoring of the treatment of cardiac arrhythmia by radiofrequency ablation due to the heart displacement with respiration and contraction. Recent studies have addressed this problem by compensating in-plane motion in real-time with optical-flow based tracking technique. However, these algorithms are sensitive to local variation of signal intensity on magnitude images associated with tissue heating. In this study, an optical-flow algorithm was combined with a principal component analysis method to reduce the impact of such effects. The proposed method was integrated to a fully automatic cardiac MR thermometry pipeline, compatible with a future clinical workflow. It was evaluated on nine healthy volunteers under free breathing conditions, on a phantom and in vivo on the left ventricle of a sheep. The results showed that local intensity changes in magnitude images had lower impact on motion estimation with the proposed method. Using this strategy, the temperature mapping accuracy was significantly improved.

  7. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian

    2013-01-01

    Technical developments in neurobiology have reached a point where the acquisition of high resolution images representing individual neurons and synapses becomes possible. For this, the brain tissue samples are sliced using a diamond knife and imaged with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume by adding new image slices interpolated from the existing ones, without requiring modifications to the EM image-capturing method. As classical interpolation methods do not provide satisfactory results on this type of data, the current paper proposes a re-framing of the problem in terms of motion volumes, considering the depth axis as a temporal axis. An optical flow method is adapted to estimate the motion vectors of pixels in the EM images, and this information is used to compute and insert multiple new images at certain depths in the volume. We evaluate the visualization results in comparison with interpolation methods currently used on EM data, transforming the highly anisotropic original dataset into a dataset with a larger depth resolution. The interpolation based on optical flow better reveals neurite structures with realistic undistorted shapes, and helps to easier map neuronal connections. © 2011 ACM.

  8. An Autonomous UAV with an Optical Flow Sensor for Positioning and Navigation

    Directory of Open Access Journals (Sweden)

    Nils Gageik

    2013-10-01

    Full Text Available A procedure to control all six DOF (degrees of freedom of a UAV (unmanned aerial vehicle without an external reference system and to enable fully autonomous flight is presented here. For 2D positioning the principle of optical flow is used. Together with the output of height estimation, fusing ultrasonic, infrared and inertial and pressure sensor data, the 3D position of the UAV can be computed, controlled and steered. All data processing is done on the UAV. An external computer with a pathway planning interface is for commanding purposes only. The presented system is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application. The focus of this paper is 2D positioning using an optical flow sensor. As a result of the performed evaluation, it can be concluded that for position hold, the standard deviation of the position error is 10cm and after landing the position error is about 30cm.

  9. Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division

    Directory of Open Access Journals (Sweden)

    Bardia Yousefi

    2014-01-01

    Full Text Available Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003. Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human. Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach.

  10. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  11. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    Science.gov (United States)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  12. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  13. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  14. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  15. WarpIV: In Situ Visualization and Analysis of Ion Accelerator Simulations.

    Science.gov (United States)

    Rubel, Oliver; Loring, Burlen; Vay, Jean-Luc; Grote, David P; Lehe, Remi; Bulanov, Stepan; Vincenti, Henri; Bethel, E Wes

    2016-01-01

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. This supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

  16. Flow, heat transfer, and free surface shape during the optical fiber drawing process

    Science.gov (United States)

    Xiao, Zhihui

    1997-12-01

    A two-dimensional finite element model is introduced for analyzing glass and gas flows, heat transfer, and fiber formation during the optical fiber drawing process. This study consists of simulations in three different areas: the upper region, the tip region, and the whole furnace region. Conjugating the glass and gas flows and heat transfer, the shapes of an optical fiber as free surfaces in the upper neck-down and the tip regions are separately obtained by solving the coupled continuity, momentum, and energy equations. In the upper region simulation, a surface-to-surface radiation model is used for the enclosure which consists of the wall and the glass surface, and the Rosseland approximation radiation model is employed to account for the radiation effect in the glass region. In the tip region simulation, only the glass fiber region is considered and a convective heat transfer model on the fiber surface is employed to account for the energy exchange between the fiber surface and the purge gas. In the fiber, radiation in the axial direction is included. The whole furnace simulation uses a calculated fiber neck-down shape and an assumed fiber tip shape as a fixed interface and computes the convective heat transfer coefficient profile in the tip region which was used in the tip region simulation. The glass viscosity is temperature-dependent and significantly affects the fiber shape. The finite element code FIDAP is used in the study. The effects of various operating conditions such as draw speed, wall temperature distribution, and gas flow rate are studied.

  17. Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic neuropathy

    Institute of Scientific and Technical Information of China (English)

    SHI Wei; WANG Huai-zhou; SONG Wei-xian; YANG Wen-li; LI Wei-ye; WANG Ning-li

    2013-01-01

    Background Indirect traumatic optic neuropathy (TON) is an acute injury of the optic nerve associated with severe visual dysfunction,which may be a result of secondary mechanical injury and vascular disorder of the optic nerve due to trauma.We analyzed the natural course of axonal loss and blood flow disturbances in patients with indirect TON to find a possible therapeutic window.Methods A cohort of 54 patients with indirect TON recruited between October 2008 and October 2010 at Beijing Tongren Hospital was retrospectively analyzed.The patients were divided into no light perception group (NLP) and better than NLP (btNLP) group.Specifically,the thickness of the retinal nerve fiber layer (RNFL) measured by spectral domain optical coherence tomography (SD-OCT),and hemodynamic parameters of the ophthalmic artery (OA),central retinal artery (CRA) and posterior ciliary artery (PCA) were determined.Results Two weeks after injury,there was a statistically significant decrease in the thickness of RNFL in the btNLP group as compared with the fellow control eyes (P <0.05).In contrast,in the NLP group,RNFL thickness slightly increased for 2 weeks following injury,then overtly reduced after 4 weeks (P <0.05).Peak systolic velocity (PSV) of CRA was significantly decreased 4 weeks after injury (P <0.05) in both the NLP group and btNLP group (P <0.05).The thickness of RNFL in the NLP group was negatively correlated with PSV of CRA after 1 week of injury (P <0.05,r=-0.962).Conclusions SD-OCT is a useful supplement in detecting the axonal loss in TON.The dynamic change of the thickness of RNFL appears to correlate with the hemodynamic disturbances in the natural course of TON.The first 2 weeks following an injury is critical and should be considered as the therapeutic window for TON patients.

  18. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope.

    Science.gov (United States)

    Tam, Johnny; Tiruveedhula, Pavan; Roorda, Austin

    2011-03-02

    Adaptive Optics Scanning Laser Ophthalmoscopy was used to noninvasively acquire videos of single-file flow through live human retinal parafoveal capillaries. Videos were analyzed offline to investigate capillary flow dynamics. Certain capillaries accounted for a clear majority of leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a protective mechanism to prevent inactivated leukocytes from entering exchange capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the presence of a leukocyte in a neighboring LPP.

  19. ROBUST (Rotorcraft Blade Universal Shape Transformation) System for Controlled Aerodynamic Warping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In rotorcraft flight dynamics, optimized warping camber/twist change is a potentially enabling technology for improved overall rotorcraft performance. Recent...

  20. Surface states in a 3D topological insulator: The role of hexagonal warping and curvature

    Energy Technology Data Exchange (ETDEWEB)

    Repin, E. V.; Burmistrov, I. S., E-mail: burmi@itp.ac.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2015-09-15

    We explore a combined effect of hexagonal warping and a finite effective mass on both the tunneling density of electronic surface states and the structure of Landau levels of 3D topological insulators. We find the increasing warping to transform the square-root van Hove singularity into a logarithmic one. For moderate warping, an additional logarithmic singularity and a jump in the tunneling density of surface states appear. By combining the perturbation theory and the WKB approximation, we calculate the Landau levels in the presence of hexagonal warping. We predict that due to the degeneracy removal, the evolution of Landau levels in the magnetic field is drastically modified.

  1. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  2. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station.

    Science.gov (United States)

    Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y

    2014-04-01

    A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance.

  3. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Science.gov (United States)

    Yang, Deshan; Li, Hua; Low, Daniel A.; Deasy, Joseph O.; El Naqa, Issam

    2008-11-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  4. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El [Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, LL, St. Louis, MO 63110 (United States)

    2008-11-07

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  5. Design & development of a galvanometer inspired dual beam optical coherence tomography system for flow velocity quantification of the microvasculature

    OpenAIRE

    McElligott-Daly, Susan; Jonathan, E.; Martin J. Leahy

    2011-01-01

    peer-reviewed This paper reports initial experimentation of a dual beam flow velocity estimation setup based on optical coherence tomography (OCT) for biomedical applications. The proposed work incorporates a low cost switching mechanism (rotating galvanometer mirror) for optical signal discrimination between adjacent fiber channels enabling quasisimultaneous multiple specimen scanning. A cascaded interferometric design is used with two sample output arms orientated in parallel to eacho...

  6. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  7. Production of Hyperpolarized 129Xe Gas Without Nitrogen by Optical Pumping at 133Cs D2 line in Flow System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin; SUN Xian-Ping; LUO Jun; ZENG Xi-Zhi; LIU Mai-Li; ZHAN Ming-Sheng

    2004-01-01

    @@ We report production of hyperpolarized 129Xe gas via spin-exchange with optically pumped Cs atoms at the D2 line, achieved at low magnetic field in a flow system and in the absence of nitrogen gas. The nuclear spin polarization of hyperpolarized 129Xe gas is enhanced by a factor of 10000 compared to that without optical pumping under the same condition, which corresponds to polarization of about 2.66%. Due to the high spin polarization, the radiation damping of hyperpolarized 129Xe gas has also been observed in the flow system.

  8. Application of the optical flow method for the experimental analysis of turbulent flame propagation in a transparent engine

    Science.gov (United States)

    Barone, Mario; Lombardi, Simone; Continillo, Gaetano; Sementa, Paolo; Vaglieco, Bianca Maria

    2016-12-01

    This paper illustrates the analysis conducted on high-definition, high sampling rate image sequences collected in experiments with a single spark ignition optically accessible engine. Images are first processed to identify the reaction front, and then analyzed by an optical flow estimation technique. The results show that each velocity component of the estimated flow field has an ECDF very similar to the CDF of a Gaussian distribution, whereas the velocity magnitude has an ECDF well fitted by a Rayleigh probability distribution. The proposed non-intrusive method provides a fast statistical characterization of the flame propagation phenomenon in the engine combustion chamber.

  9. Imaging internal flows in a drying sessile polymer dispersion drop using Spectral Radar Optical Coherence Tomography (SR-OCT).

    Science.gov (United States)

    Manukyan, Selin; Sauer, Hans M; Roisman, Ilia V; Baldwin, Kyle A; Fairhurst, David J; Liang, Haida; Venzmer, Joachim; Tropea, Cameron

    2013-04-01

    In this work, we present the visualization of the internal flows in a drying sessile polymer dispersion drop on hydrophilic and hydrophobic surfaces with Spectral Radar Optical Coherence Tomography (SR-OCT). We have found that surface features such as the initial contact angle and pinning of the contact line, play a crucial role on the flow direction and final shape of the dried drop. Moreover, imaging through selection of vertical slices using optical coherence tomography offers a feasible alternative compared to imaging through selection of narrow horizontal slices using confocal microscopy for turbid, barely transparent fluids.

  10. Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles

    OpenAIRE

    Kendoul, Farid; Fantoni, Isabelle; Nonami, Kenzo

    2009-01-01

    International audience; The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for estimating optic flow, aircraft self-motion and depth map, using a low-resolu...

  11. Fiber-optic flow sensors for high-temperature environment operation up to 800°C.

    Science.gov (United States)

    Chen, Rongzhang; Yan, Aidong; Wang, Qingqing; Chen, Kevin P

    2014-07-01

    This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066  m/s and 0.66  m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

  12. Modeling of skin cooling, blood flow, and optical properties in wounds created by electrical shock

    Science.gov (United States)

    Nguyen, Thu T. A.; Shupp, Jeffrey W.; Moffatt, Lauren T.; Jordan, Marion H.; Jeng, James C.; Ramella-Roman, Jessica C.

    2012-02-01

    High voltage electrical injuries may lead to irreversible tissue damage or even death. Research on tissue injury following high voltage shock is needed and may yield stage-appropriate therapy to reduce amputation rate. One of the mechanisms by which electricity damages tissue is through Joule heating, with subsequent protein denaturation. Previous studies have shown that blood flow had a significant effect on the cooling rate of heated subcutaneous tissue. To assess the thermal damage in tissue, this study focused on monitoring changes of temperature and optical properties of skin next to high voltage wounds. The burns were created between left fore limb and right hind limb extremities of adult male Sprague-Dawley rats by a 1000VDC delivery shock system. A thermal camera was utilized to record temperature variation during the exposure. The experimental results were then validated using a thermal-electric finite element model (FEM).

  13. Optical flow based deformable volume registration using a novel second-order regularization prior

    Science.gov (United States)

    Grbić, Saša; Urschler, Martin; Pock, Thomas; Bischof, Horst

    2010-03-01

    Nonlinear image registration is an initial step for a large number of medical image analysis applications. Optical flow based intensity registration is often used for dealing with intra-modality applications involving motion differences. In this work we present an energy functional which uses a novel, second-order regularization prior of the displacement field. Compared to other methods our scheme is robust to non-Gaussian noise and does not penalize locally affine deformation fields in homogeneous areas. We propose an efficient and stable numerical scheme to find the minimizer of the presented energy. We implemented our algorithm using modern consumer graphics processing units and thereby increased the execution performance dramatically. We further show experimental evaluations on clinical CT thorax data sets at different breathing states and on dynamic 4D CT cardiac data sets.

  14. Robust Face Location and Tracking Using Optical Flow and Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    WANG Yanjiang; YUAN Baozong

    2001-01-01

    This paper presents a new and robustapproach to the detection, localization and tracking ofa human face in image sequences. First, a fast algo-rithm based on the neighbor-point-reliability is pro-posed to calculate the optical flow, which is used toextract the motion region. Then the hair and thehead knowledges are used to locate the face area. Forface tracking, a new genetic algorithms-based dynamictemplate-matching method is applied to search thenew position of the face in each new video frame. Ex-perimental results show that the proposed face track-ing method is fast and robust to illumination, faceposes, facial expressions and image distractors suchas facial occlusion by hands.

  15. Optical flow based Kalman filter for body joint prediction and tracking using HOG-LBP matching

    Science.gov (United States)

    Nair, Binu M.; Kendricks, Kimberley D.; Asari, Vijayan K.; Tuttle, Ronald F.

    2014-03-01

    We propose a real-time novel framework for tracking specific joints in the human body on low resolution imagery using optical flow based Kalman tracker without the need of a depth sensor. Body joint tracking is necessary for a variety of surveillance based applications such as recognizing gait signatures of individuals, identifying the motion patterns associated with a particular action and the corresponding interactions with objects in the scene to classify a certain activity. The proposed framework consists of two stages; the initialization stage and the tracking stage. In the initialization stage, the joints to be tracked are either manually marked or automatically obtained from other joint detection algorithms in the first few frames within a window of interest and appropriate image descriptions of each joint are computed. We employ the use of a well-known image coding scheme known as the Local Binary Patterns (LBP) to represent the joint local region where this image coding removes the variance to non-uniform lighting conditions as well as enhances the underlying edges and corner. The image descriptions of the joint region would then include a histogram computed from the LBP-coded ROI and a HOG (Histogram of Oriented Gradients) descriptor to represent the edge information. Next the tracking stage can be divided into two phases: Optical flow based detection of joints in corresponding frames of the sequence and prediction /correction phases of Kalman tracker with respect to the joint coordinates. Lucas Kanade optical flow is used to locate the individual joints in consecutive frames of the video based on their location in the previous frame. But more often, mismatches can occur due to the rotation of the joint region and the rotation variance of the optical flow matching technique. The mismatch is then determined by comparing the joint region descriptors using Chi-squared metric between a pair of frames and depending on this statistic, either the prediction

  16. Optical principle of pH measurement for detection of auxin flow through cellular membrane

    Science.gov (United States)

    Podrazky, Ondrej; Mrazek, Jan; Seidl, Miroslav; Kasik, Ivan; Tobiska, Petr; Matejec, Vlastimil; Martan, Tomas; Aubrecht, Jan

    2007-05-01

    The paper shows an approach to the determination of pH changes of solutions with a fine spatial resolution by means of fiber-optic tapers and fluorescence detection. This approach can be adopted for the determination of auxin flow through celluar membranes. Spectral absorption and fluorescence of pH transducers, namely of fluorescein, carboxyfluorescein, 6,8-dihydroxy-1,3-pyrenedisulfonic acid disodium salt and 2',7'-bis(2-carbonylethyl)-5(6)-carboxyfluorescein, were tested. The approach, based on the determination of a shift of the maxima of their fluorescence peaks, was employed for processing the measured fluorescence data in bulk solutions. Suitable tapered fiber probes were prepared and in vitro demonstrated for pH monitoring in a pH range from 6 to 7.

  17. Initial assessment of facial nerve paralysis based on motion analysis using an optical flow method.

    Science.gov (United States)

    Samsudin, Wan Syahirah W; Sundaraj, Kenneth; Ahmad, Amirozi; Salleh, Hasriah

    2016-01-01

    An initial assessment method that can classify as well as categorize the severity of paralysis into one of six levels according to the House-Brackmann (HB) system based on facial landmarks motion using an Optical Flow (OF) algorithm is proposed. The desired landmarks were obtained from the video recordings of 5 normal and 3 Bell's Palsy subjects and tracked using the Kanade-Lucas-Tomasi (KLT) method. A new scoring system based on the motion analysis using area measurement is proposed. This scoring system uses the individual scores from the facial exercises and grades the paralysis based on the HB system. The proposed method has obtained promising results and may play a pivotal role towards improved rehabilitation programs for patients.

  18. On how the optical depth tunes the effects of ISM neutral atom flow on debris disks

    CERN Document Server

    Marzari, Francesco

    2011-01-01

    The flux of ISM neutral atoms surrounding stars and their environment affects the motion of dust particles in debris disks, causing a significant dynamical evolution. Large values of eccentricity and inclination can be excited and strong correlations settle in among the orbital angles. This dynamical behaviour, in particular for bound dust grains, can potentially cause significant asymmetries in dusty disks around solar type stars which might be detected by observations. However, the amount of orbital changes due to this non--gravitational perturbation is strongly limited by the collisional lifetime of dust particles. We show that for large values of the disk's optical depth the influence of ISM flow on the disk shape is almost negligible because the grains are collisionally destroyed before they can accumulate enough orbital changes due to the ISM perturbations. On the other hand, for values smaller than $10^{-3}$, peculiar asymmetric patterns appear in the density profile of the disk when we consider 1-10 m...

  19. Motion states extraction with optical flow for rat-robot automatic navigation.

    Science.gov (United States)

    Zhang, Xinlu; Sun, Chao; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    The real-time acquisition of precise motion states is significant and difficult for bio-robot automatic navigation. In this paper, we propose a real-time video-tracking algorithm to extract motion states of rat-robots in complex environment using optical flow. The rat-robot's motion states, including location, speed and motion trend, are acquired accurately in real time. Compared with the traditional methods based on single frame image, our algorithm using consecutive frames provides more exact and rich motion information for the automatic navigation of bio-robots. The video of the manual navigation experiments on rat-robots in eight-arm maze is applied to test this algorithm. The average computation time is 25.76 ms which is less than the speed of image acquisition. The results show that our method could extract the motion states with good performance of accuracy and time consumption.

  20. Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation

    Science.gov (United States)

    Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe

    2015-05-01

    Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.

  1. Optical measurements of gas bubbles in oil behind a cavitating micro-orifice flow

    Science.gov (United States)

    Iben, Uwe; Wolf, Fabian; Freudigmann, Hans-Arndt; Fröhlich, Jochen; Heller, Winfried

    2015-06-01

    In hydraulic systems, it is common for air release to occur behind valves or throttles in the form of bubbles. These air bubbles can affect the behavior and the performance of these systems to a substantial extent. In the paper, gas release in a liquid flow behind an orifice is analyzed by optical methods for various operation points. The bubbles are observed with a digital camera, and a detection algorithm based on the Hough transformation is used to determine their number and size. The appearance of gas bubbles is very sensitive to the inlet and outlet pressure of the orifice. Gas bubbles are only observed if choking cavitation occurs. An empirical relationship between an adjusted cavitation number and the appearance of gas release is presented. It is assumed that the observed bubbles contain mostly air. With the applied pressure differences, up to 30 % of the dissolved air was degassed in the form of bubbles.

  2. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    Science.gov (United States)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  3. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    Science.gov (United States)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  4. Performance of resin transfer molded multiaxial warp knit composites

    Science.gov (United States)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor

  5. Simultaneous optical/X-ray study of GS 1354-64 (=BW Cir) during hard outburst: evidence for optical cyclo-synchrotron emission from the hot accretion flow

    Science.gov (United States)

    Pahari, Mayukh; Gandhi, Poshak; Charles, Philip A.; Kotze, Marissa M.; Altamirano, Diego; Misra, Ranjeev

    2017-07-01

    We present results from simultaneous optical [South African Large Telescope (SALT)] and X-ray (Swift and INTEGRAL) observations of GS 1354-64/BW Cir during the 2015 hard state outburst. During the rising phase, optical/X-ray time series shows a strong anti-correlation with X-ray photons lagging optical. Optical and X-ray power spectra show quasi-periodic oscillations (QPOs) at a frequency of ˜18 mHz with a confidence level of at least 99 per cent. Simultaneous fitting of Swift/XRT and INTEGRAL spectra in the range 0.5-1000.0 keV shows non-thermal, power-law-dominated (>90 per cent) spectra with a hard power-law index of 1.48 ± 0.03, inner disc temperature of 0.12 ± 0.01 keV and an inner disc radius of ˜3000 km. All evidence is consistent with cyclo-synchrotron radiation in a non-thermal, hot electron cloud extending to ˜100 Schwarzschild radii being a major physical process for the origin of optical photons. At outburst peak about one month later, when the X-ray flux rises and the optical drops, the apparent features in the optical/X-ray correlation vanish and the optical auto correlation widens. Although ˜0.19 Hz QPO is observed from the X-ray power spectra, the optical variability is dominated by the broad-band noise, and the inner disc temperature increases. These results support a change in the dominant optical emission source between outburst rise and peak, consistent with a weakening of hot flow as the disc moves in.

  6. Performances of Three Miniature Bio-inspired Optic Flow Sensors under Natural Conditions

    Directory of Open Access Journals (Sweden)

    Stéphane Viollet

    2011-02-01

    Full Text Available Considerable attention has been paid during the last decade to vision-based navigation systems based on optic flow (OF cues. OF-based systems have been implemented on an increasingly large number of sighted autonomous robotic platforms. Nowadays, the OF is measured using conventional cameras, custom-made sensors and even optical mouse chips. However, very few studies have dealt so far with the reliability of these OF sensors in terms of their precision, range and sensitivity to illuminance variations. Three miniature custom-made OF sensors developed at our laboratory, which were composed of photosensors connected to an OF processing unit were tested and compared in this study, focusing on their responses and characteristics in real indoor and outdoor environments in a large range of illuminance. It was concluded that by combining a custom-made aVLSI retina equipped with Adaptive Pixels for Insect-based Sensor (APIS with a bio-inspired visual processing system, it is possible to obtain highly effective miniature sensors for measuring the OF under real environmental conditions.

  7. Afocal Optical Flow Sensor for Reducing Vertical Height Sensitivity in Indoor Robot Localization and Navigation

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Yi

    2015-05-01

    Full Text Available This paper introduces a novel afocal optical flow sensor (OFS system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  8. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  9. Afocal optical flow sensor for reducing vertical height sensitivity in indoor robot localization and navigation.

    Science.gov (United States)

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2015-05-13

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  10. Pre filtered Dynamic Time Warping for Posteriorgram Based Keyword Search

    Science.gov (United States)

    2017-02-09

    retrieval,” IEEE/ACM Transactions on Audio, Speech, and Language Process- ing, vol. 23, no. 9, pp. 1389–1420, 2015. [2] Ciprian Chelba, Timothy J...curate dynamic time warping in linear time and space,” in Proceedings of Mining Temporal and Sequential Data, 2004. [12] Eamonn Keogh and Chotirat Ann...Saraclar, “Lattice indexing for spoken term detection,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 8, pp. 2338–2347, 2011

  11. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  12. Stabilization of moduli in spacetime with nested warping

    CERN Document Server

    Arun, Mathew Thomas

    2016-01-01

    The absence, so far, of any graviton signatures at the LHC imposes severe constraints on the Randall-Sundrum scenario. Although a generalization to higher dimensions with nested warpings has been shown to avoid these constraints, apart from incorporating several other phenomenologically interesting features, moduli stabilization in such models has been an open question. We demonstrate here how both the moduli involved can be stabilized, employing slightly different mechanisms for the two branches of the theory. This also offers a dynamical mechanism to generate and stabilize the UED scale.

  13. Cosmological evolution in a two-brane warped geometry model

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2015-07-01

    Full Text Available We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  14. Cosmological evolution in a two-brane warped geometry model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumit, E-mail: sumit@ctp-jamia.res.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); Sen, Anjan A., E-mail: aasen@jmi.ac.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); SenGupta, Soumitra, E-mail: tpssg@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-30

    We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  15. Light dilatons in warped space: Higgs boson and LHCb anomalies

    CERN Document Server

    Megias, Eugenio; Pujolas, Oriol; Quiros, Mariano

    2016-01-01

    We study the extension of the Standard Model (SM) with a light dilaton in a five dimensional warped model. In particular, we analyze the coupling of the dilaton with the SM matter fields, compare the model predictions with Electroweak Precisions Tests and find the corresponding bounds on the mass of the lightest Kaluza-Klein modes. We also investigate the possibility that the Higgs-like resonance found at the LHC can be a dilaton. Finally, we show that our set-up can also provide an explanation of the anomalies recently observed in $B$-meson decays.

  16. Cosmological evolution in a two-brane warped geometry model

    CERN Document Server

    Kumar, Sumit; SenGupta, Soumitra

    2014-01-01

    We study an effective 4-dimensional scalar-tensor field theory, originated from an underlying brane-bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy-momentum tensor which in turn results into an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.

  17. Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes

    Science.gov (United States)

    Dirnaichner, A.; del Valle, M.; Götz, K. J. G.; Schupp, F. J.; Paradiso, N.; Grifoni, M.; Strunk, Ch.; Hüttel, A. K.

    2016-10-01

    We investigate Fabry-Perot interference in an ultraclean carbon nanotube resonator. The conductance shows a clear superstructure superimposed onto conventional Fabry-Perot oscillations. A sliding average over the fast oscillations reveals a characteristic slow modulation of the conductance as a function of the gate voltage. We identify the origin of this secondary interference in intervalley and intravalley backscattering processes which involve wave vectors of different magnitude, reflecting the trigonal warping of the Dirac cones. As a consequence, the analysis of the secondary interference pattern allows us to estimate the chiral angle of the carbon nanotube.

  18. 750 GeV Diphoton Resonance in Warped Geometries

    CERN Document Server

    Hewett, JoAnne L

    2016-01-01

    We examine the scenario of a warped extra dimension containing bulk SM fields in light of the observed diphoton excess at 750 GeV. We demonstrate that a bulk spin-2 graviton whose action contains localized kinetic brane terms is compatible with the excess, while being consistent with all other constraints. This model contains a single free parameter, the mass of the first gauge Kaluza-Klein excitation. The scale of physics on the IR-brane is found to lie in the range of a ~ few TeV, relevant to the gauge hierarchy.

  19. Generalized virial theorem in warped DGP brane-world

    CERN Document Server

    Heydari-Fard, Malihe

    2012-01-01

    We generalize the virial theorem to the warped DGP brane world scenario and consider its implications on the virail mass. In this theory the four dimensional scalar curvature term is included in the bulk action and the resulting four dimensional effective Einstein equation is augmented with extra terms which can be interpreted as geometrical mass, contributing to the gravitational energy. Estimating the geometrical mass using the observational data, we show that these geometric terms may account for the virial mass discrepancy in clusters of galaxies. Finally, we obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profle of such clusters.

  20. Multifunction myoelectric control using multi-dimensional dynamic time warping.

    Science.gov (United States)

    AbdelMaseeh, Meena; Tsu-Wei Chen; Stashuk, Daniel

    2014-01-01

    Myoelectric control can be used for a variety of applications including powered protheses and different human computer interface systems. The aim of this study is to investigate the formulation of myoelectric control as a multi-class distance-based classification of multidimensional sequences. More specifically, we investigate (1) estimation of multi-muscle activation sequences from multi-channel electromyographic signals in an online manner, and (2) classification using a distance metric based on multi-dimensional dynamic time warping. Subject-specific results across 5 subjects executing 10 different hand movements showed an accuracy of 95% using offline extracted trajectories and an accuracy of 84% using online extracted trajectories.

  1. Orientifolds of Warped Throats from Toric Calabi-Yau Singularities

    CERN Document Server

    Retolaza, Ander

    2016-01-01

    We study the complex deformations of orientifolds of D3-branes at toric CY singularities, using their description in terms of dimer diagrams. We describe orientifold quotients that have fixed lines or fixed points in the dimer, and characterize the possibilities to deform them in terms of the behaviour of zig-zag paths under the orientifold symmetry. The resulting models are holographic duals to warped throats with orientifold planes. Our systematic construction provides a general class of configurations which includes models recently appeared in the context of de Sitter uplift by nilpotent goldstino or dynamical supersymmetry breaking.

  2. LHC Signals of Non-Custodial Warped 5D Models

    CERN Document Server

    de Blas, Jorge; Ostdiek, Bryan; de la Puente, Alejandro

    2012-01-01

    We study the implications at the LHC for a recent class of non-custodial warped extra-dimensional models where the AdS_5 metric is modified near the infrared brane. Such models allow for TeV Kaluza-Klein excitations without conflict with electroweak precision tests. We discuss both the production of electroweak and strong Kaluza-Klein gauge bosons. As we will show, only signals involving the third generation of quarks seem to be feasible in order to probe this scenario.

  3. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C.

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  4. TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1

    Science.gov (United States)

    Bellenot, S. F.

    1994-01-01

    The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed

  5. Quantization of charges and fluxes in warped Stenzel geometry

    CERN Document Server

    Hashimoto, Akikazu

    2011-01-01

    We examine the quantization of fluxes for the warped Stiefel cone and Stenzel geometries and their orbifolds, and distinguish the roles of three related notions of charge: Page, Maxwell, and brane. The orbifolds admit discrete torsion, and we describe the associated quantum numbers which are consistent with the geometry in its large radius and small radius limits from both the type IIA and the M-theory perspectives. The discrete torsion, measured by a Page charge, is related to the number of fractional branes. We relate the shifts in the Page charges under large gauge transformations to the Hanany-Witten brane creation effect.

  6. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work introduces three rectangular quasi-flat-top spots, which are provided by binary optical elements (BOEs) and utilized for the illumination in a microflow cytometer. The three spots contain, respectively, one, two, and three rectangles (R1, R2, and R3). To test the performance of this mechanism, a microflow cytometer is established by integrating the BOEs and a three-dimensional hydrodynamic focusing chip. Through the experiments of detecting fluorescence microbeads, the three spots present good fluorescence coefficients of variation in comparison with those derived from commercial instruments. Benefiting from a high spatial resolution, when using R1 spot, the micro flow cytometer can perform a throughput as high as 20 000 events per second (eps). Illuminated by R2 or R3 spot, one bead emits fluorescence twice or thrice, thus the velocity can be measured in real time. Besides, the R3 spot provides a long-time exposure, which is conducive to improving fluorescence intensity and the measurement stability. In brief, using the spots shaped and homogenized by BOEs for illumination can increase the performance and the functionality of a micro flow cytometer. PMID:27733892

  7. HEADING RECOVERY FROM OPTIC FLOW: COMPARING PERFORMANCE OF HUMANS AND COMPUTATIONAL MODELS

    Directory of Open Access Journals (Sweden)

    Andrew John Foulkes

    2013-06-01

    Full Text Available Human observers can perceive their direction of heading with a precision of about a degree. Several computational models of the processes underpinning the perception of heading have been proposed. In the present study we set out to assess which of four candidate models best captured human performance; the four models we selected reflected key differences in terms of approach and methods to modelling optic flow processing to recover movement parameters. We first generated a performance profile for human observers by measuring how performance changed as we systematically manipulated both the quantity (number of dots in the stimulus per frame and quality (amount of 2D directional noise of the flow field information. We then generated comparable performance profiles for the four candidate models. Models varied markedly in terms of both their performance and similarity to human data. To formally assess the match between the models and human performance we regressed the output of each of the four models against human performance data. We were able to rule out two models that produced very different performance profiles to human observers. The remaining two shared some similarities with human performance profiles in terms of the magnitude and pattern of thresholds. However none of the models tested could capture all aspect of the human data.

  8. Development of threedimensional optical correction method for reconstruction of flow field in droplet

    Science.gov (United States)

    Ko, Han Seo; Gim, Yeonghyeon; Kang, Seung-Hwan

    2015-11-01

    A three-dimensional optical correction method was developed to reconstruct droplet-based flow fields. For a numerical simulation, synthetic phantoms were reconstructed by a simultaneous multiplicative algebraic reconstruction technique using three projection images which were positioned at an offset angle of 45°. If the synthetic phantom in a conical object with refraction index which differs from atmosphere, the image can be distorted because a light is refracted on the surface of the conical object. Thus, the direction of the projection ray was replaced by the refracted ray which occurred on the surface of the conical object. In order to prove the method considering the distorted effect, reconstruction results of the developed method were compared with the original phantom. As a result, the reconstruction result of the method showed smaller error than that without the method. The method was applied for a Taylor cone which was caused by high voltage between a droplet and a substrate to reconstruct the three-dimensional flow fields for analysis of the characteristics of the droplet. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  9. Warping and Precession of Accretion Disks in X-Ray Binaries

    Science.gov (United States)

    Begelman, Mitchell C.; Maloney, Philip R.

    2001-01-01

    This proposal covers research on the radiation-driven warping instability discovered by Pringle. In the first two years of funding under this proposal we concentrated on and essentially completed study of the eigenmodes of the radiation-driven warping instability in the linear regime.

  10. Optical analysis of nanomaterial-cell interactions: flow cytometry and digital holographic microscopy

    Science.gov (United States)

    Mues, Sarah; Antunovic, Jan; Ossig, Rainer; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    The in vitro cytotoxicity assessment of engineered nanoparticles commonly involves the measurement of different endpoints like the formation of reactive oxygen species, cell viability or cell death. Usually these parameters are determined by optical readouts of enzymatically converted substrates that often interfere with the tested nanomaterials. Using cell viability (WST-8) and cell death (LDH) as parameter we have initially investigated the toxic effects of spherical (NM 300) and rod shaped (NM 302) silver nanomaterials with a matrix of four cell lines representing different functions: lung and kidney epithelial cells, macrophages and fibroblasts. In addition, we have used a label-free flow cytometer configuration to investigate interactions of particles and macrophages by side scatter signal analysis. Finally, we explored digital holographic microscopy (DHM) for multimodal label-free analysis of nanomaterial toxicity. Quantitative DHM phase images were analyzed for cell thickness, volume, density, dry mass and refractive index. We could demonstrate that silver spheres lead to more cytotoxic effects than rods in all four examined cell lines and both assay. Exemplarily a dose dependent interaction increase of cells with NM 300 and NM 302 analyzed by flow cytometry is shown. Furthermore, we found that the refractive index of cells is influenced by incubation with NM 300 in a decreasing manner. A 24 hours time-lapse measurement revealed a dose dependent decrease of dry mass and surface area development indicating reduced cell viability and cell death. Our results demonstrate digital holographic microscopy and flow cytometry as valuable label-free tools for nanomaterial toxicity and cell interaction studies.

  11. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    Science.gov (United States)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  12. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    -state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...

  13. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    Science.gov (United States)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  14. Combined application of ultrasonic waves, magnetic fields and optical flow in the rehabilitation of patients and disabled people

    OpenAIRE

    Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.

    2016-01-01

    SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES»       Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L.             COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF P...

  15. Effect of varying nitrogen flow rates on the optical properties of amorphous-SiCN thin films

    Science.gov (United States)

    Rahman, Mohd Azam Abdul; Tong, Goh Boon; Mahmood, Mohamad Rusop; Siong, Chiu Wee; Yian, Haw Choon; Rahman, Saadah Abdul

    2016-11-01

    Series of amorphous silicon carbon nitride (a-SiCN) films are synthesized using RF-PECVD technique on glass and silicon substrates from precursor gas of silane, methane and nitrogen. In this work, the change in nitrogen flow rate from 0 sccm to 50 sccm is a mean used to vary the elemental composition and bonding properties which lead to change in optical properties. The films thickness varies between 327 nm to 944 nm. The changes for the stated properties are discussed against the change in the stated nitrogen flow rate. The optical properties are investigated by means of UV-VIS spectroscopy in the wavelength range of 190 nm to 2500 nm. The transmittance of the films at ultra-violet wavelength is found to increases with increase in nitrogen flow rate. The index of refraction, n obtained for SiCN films from transmittance and reflectance measurements is lower compared to SiC films. The films optical band gap increases from 1.74 eV to 2.08 eV before it decreases to 1.89 eV as nitrogen flow rate increases from 0 to 50 sccm. The optical dispersion parameters were determined according to Wemple and Didomenico method.

  16. Combined application of ultrasonic waves, magnetic fields and optical flow in the rehabilitation of patients and disabled people

    OpenAIRE

    Chukhraiev, N.; Vladimirov, A.; Vilcahuaman, L.; Zukow, W.; Samosyuk, N.; Chukhraieva, E.; Butskaya, L.

    2016-01-01

    SHUPYK NATIONAL MEDICAL ACADEMY OF POSTGRADUATE EDUCATION PONTIFICAL CATHOLIC UNIVERSITY OF PERU RADOM UNIVERSITY SCM «MEDICAL INNOVATIVE TECHNOLOGIES»       Chukhraiev N., Vladimirov А., Vilcahuamаn L., Zukow W., Samosyuk N., Chukhraieva E., Butskaya L.             COMBINED APPLICATION OF ULTRASONIC WAVES, MAGNETIC FIELDS AND OPTICAL FLOW IN THE REHABILITATION OF P...

  17. The space of virtual solutions to the warped product Einstein equation

    CERN Document Server

    He, Chenxu; Wylie, William

    2011-01-01

    In this paper we introduce a vector space of virtual warping functions that yield Einstein metrics over a fixed base. There is a natural quadratic form on this space and we study how this form interacts with the geometry. We use this structure along with the results in our earlier paper "Warped product rigidity" to show that essentially every warped product Einstein manifold admits a particularly nice warped product structure that we call basic. As applications we give a sharp characterization of when a homogeneous Einstein metric can be a warped product and also generalize a construction of Lauret showing that any algebraic soliton on a general Lie group can be extended to a left invariant Einstein metric.

  18. Coupled flexural-torsional vibration band gap in periodic beam including warping effect

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Yu; Yu Dian-Long; Han Xiao-Yun; Cai Li

    2009-01-01

    The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory.The band structures of the periodic beam,both including warping effect and ignoring warping effect,are obtained.The frequency response function of the finite periodic beams is simulated with finite element method,which shows large vibration attenuation in the frequency range of the gap as expected.The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored.The result including warping effect agrees quite well with the simulated result.

  19. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, can be improved for application to the U.S. Corn Belt region by developing region-specific models that include important watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for predicting annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. All streams used in development of WARP-CB models drain watersheds with atrazine use intensity greater than 17 kilograms per square kilometer (kg/km2). The WARP-CB models accounted for 53 to 62 percent of the variability in the various concentration statistics among the model-development sites.

  20. Effective fermion couplings in warped 5D Higgsless theories

    CERN Document Server

    Bechi, J; De Curtis, S; Dominici, Daniele

    2006-01-01

    We consider a five dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way Standard Model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the epsilon_3 parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However we can require a global cancellation of the new physics contributions to the epsilon_3 parameter. This fixes relations among the warp factor and t...

  1. Suppressing Electroweak Precision Observables in 5D Warped Models

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2011-01-01

    We elaborate on a recently proposed mechanism to suppress large contributions to the electroweak precision observables in five dimensional (5D) warped models, without the need for an extended 5D gauge sector. The main ingredient is a modification of the AdS metric in the vicinity of the infrared (IR) brane corresponding to a strong deviation from conformality in the IR of the 4D holographic dual. We compute the general low energy effective theory of the 5D warped Standard Model, emphasizing additional IR contributions to the wave function renormalization of the light Higgs mode. We also derive expressions for the S and T parameters as a function of a generic 5D metric and zero-mode wave functions. We give an approximate formula for the mass of the radion that works even for strong deviation from the AdS background. We proceed to work out the details of an explicit model and derive bounds for the first KK masses of the various bulk fields. The radion is the lightest new particle although its mass is already at...

  2. Oblique corrections from less-Higgsless models in warped space

    CERN Document Server

    Hatanaka, Hisaki

    2015-01-01

    The Higgsless model in warped extra dimension is reexamined. Dirichlet boundary conditions on the TeV brane are replaced with Robin boundary conditions which are parameterized by a mass parameter $M$. We calculate the Peskin-Takeuchi precision parameters $S$, $T$ and $U$ at tree level. We find that to satisfy the constraints on the precision parameters at $99 \\%$ [$95 \\%$] confidence level (CL) the first Kaluza-Klein excited $Z$ boson, $Z'$, should be heavier than 5 TeV [8 TeV]. The Magnitude of $M$, which is infinitely large in the original model, should be smaller than 200 GeV (70 GeV) for the curvature of the warped space $R^{-1}=10^{16}$ GeV ($10^{8}$ GeV) at $95\\%$ CL. If the Robin boundary conditions are induced by the mass terms localized on the TeV brane, from the $99\\%$ [$95\\%$] bound we find that the brane mass interactions account for more than $97\\%$ [$99\\%$] of the masses of $Z$ and $W$ bosons. Such a brane mass term is naturally interpreted as a vacuum expectation value of the Higgs scalar field...

  3. Merge-Weighted Dynamic Time Warping for Speech Recognition

    Institute of Scientific and Technical Information of China (English)

    张湘莉兰; 骆志刚; 李明

    2014-01-01

    Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy, language-independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a convenient option to solve the problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small-footprint SD ASR for real-time applications with limited storage and small vocabularies. These applications include voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. However, traditional DTW has several limitations, such as high computational complexity, constraint induced coarse approximation, and inaccuracy problems. In this paper, we introduce the merge-weighted dynamic time warping (MWDTW) algorithm. This method defines a template confidence index for measuring the similarity between merged training data and testing data, while following the core DTW process. MWDTW is simple, efficient, and easy to implement. With extensive experiments on three representative SD speech recognition datasets, we demonstrate that our method outperforms DTW, DTW on merged speech data, the hidden Markov model (HMM) significantly, and is also six times faster than DTW overall.

  4. Gravitational quantum corrections in warped supersymmetric brane worlds

    CERN Document Server

    Gregoire, T; Scrucca, C A; Strumia, A; Trincherini, E

    2005-01-01

    We study gravitational quantum corrections in supersymmetric theories with warped extra dimensions. We develop for this a superfield formalism for linearized gauged supergravity. We show that the 1-loop effective Kahler potential is a simple functional of the KK spectrum in the presence of generic localized kinetic terms at the two branes. We also present a simple understanding of our results by showing that the leading matter effects are equivalent to suitable displacements of the branes. We then apply this general result to compute the gravity-mediated universal soft mass $m_0^2$ in models where the visible and the hidden sectors are sequestered at the two branes. We find that the contributions coming from radion mediation and brane-to-brane mediation are both negative in the minimal set-up, but the former can become positive if the gravitational kinetic term localized at the hidden brane has a sizeable coefficient. We then compare the features of the two extreme cases of flat and very warped geometry, and ...

  5. Automatic view synthesis by image-domain-warping.

    Science.gov (United States)

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  6. On the Formation of Warped Gas Disks in Galaxies

    CERN Document Server

    Haan, Sebastian

    2014-01-01

    We consider the most commonly occurring circumstances which apply to galaxies, namely membership in galaxy groups of about $10^{13}h^{-1} M_\\odot$ total mass, and estimate the accompanying physical conditions of intergalactic medium (IGM) density and the relative galaxy-IGM space velocity. We then investigate the dynamical consequences of such a typical galaxy-IGM interaction on a rotating gaseous disk within the galaxy potential. We find that the rotating outer disk is systematically distorted into a characteristic "warp" morphology, of the type that has been well-documented in the majority of well-studied nearby systems. The distortion is established rapidly, within two rotation periods, and is long-lived, surviving for at least ten. A second consequence of the interaction is the formation of a one arm retrograde spiral wave pattern that propagates in the disk. We suggest that the ubiquity of the warp phenomenon might be used to reconstruct both the IGM density profile and individual member orbits within ga...

  7. Modifications to Holographic entanglement entropy in Warped CFT

    CERN Document Server

    Song, Wei; Xu, Jianfei

    2016-01-01

    In arXiv:1601.02634 it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for Warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are Warped Conformal Field Theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Renyi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with arXiv:1601.02634, we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differs from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  8. Time warp operating system version 2.7 internals manual

    Science.gov (United States)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  9. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mapping and optical flow visualization.

    Science.gov (United States)

    Krabill, K A; Sung, H W; Tamura, T; Chung, K J; Yoganathan, A P; Sahn, D J

    1989-06-01

    To evaluate factors influencing the structure and shape of stenotic and regurgitant jets, Doppler color flow mapping and optical flow visualization studies were performed with use of a syringe model with a constant rate of ejection to simulate jets of valvular regurgitation and a pulsatile flow model of the right heart chambers to simulate jets of mild, moderate and severe valvular pulmonary stenosis. Ink-(0 to 40%) glycerol-water jets (viscosity 1 to 3.5 centiPoise) were produced by injecting the fluid at a constant rate into a 10 gallon rectangular reservoir of the same still fluid through 1.4 and 3.4 mm needles. The Doppler color flow scanners imaged the laminar jet length within 3 mm of actual jet length (2 to 6 cm) and the jet width within 2 to 3 mm of the actual jet width. Jet flows with Reynolds numbers ranging from 230 to 1,200 injected into still fluid yielded jet length/width ratios that decreased with increasing Reynolds numbers and leveled off to a length/width ratio of 5-6:1 at a Reynolds number near 600. When the fluid reservoir was swirled to better mimic the effect of flow entering the same cardiac chamber from a second source, the jets showed diminution of the jet length/width ratio and a clearly defined zone of turbulence. Studies of the pulsatile flow model were performed at cardiac outputs of 1 to 6 liters/min for the normal and each stenotic valve. Mild stenosis had an orifice area of 2.8 cm2, moderate stenosis an area of 1.0 cm2 and severe stenosis an area of 0.5 cm2. Laminar jet length represented the length of the total jet, which had a symmetric width and was measured from the valve opening to a region where the jet exhibited a spray effect. Laminar jet lengths (0.2 to 1.1 cm) were imaged by Doppler color flow mapping and optical visualization only in the moderate and severely stenotic valves and only at flows less than or equal to 3 liters/min (mean Reynolds numbers less than or equal to 3,470). Beyond this flow rate the jets exhibited a

  10. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    Science.gov (United States)

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  11. Experimental Evaluation of the Applicability of Capacitive and Optical Measurement Methods for the Determination of Liquid Hydrogen Volume Flow

    Directory of Open Access Journals (Sweden)

    Gert HOLLER

    2009-08-01

    Full Text Available This paper presents a capacitive and a vision-based method for measuring the velocity of cryogenic hydrogen flows. The capacitive sensing principle exploits the spatial frequency signature of perturbations moving through a multi-electrode structure. This setup increases the sensitivity to dielectric permittivity variations compared to a simple two-electrode structure while preserving the ability to detect small perturbations. The vision-based method relies on a high-speed camera system that monitors the liquid hydrogen flow through an optical window yielding the flow velocity by cross-correlating subsequent images of the flow. Although a comprehensive analysis of the obtainable measurement uncertainty was not performed yet, current measurement results show the applicability of both principles for the non-invasive measurement of the volume flow of cryogenic fuels inside conveyor pipes.

  12. Development of a fiber-optic laser velocimeter for the study of unsteady rotating flows in spinning rocket motors

    Science.gov (United States)

    Chen, K.; Shorthill, R. W.; Flandro, G. A.

    1986-08-01

    The development of a Laser Doppler Velocimeter (LDV) designed to measure two orthogonal velocity components in a complex rotating flow is described; this flow simulates the unsteady flows encountered in spinning rocket motor operations as well as such time-dependent phenomena as low frequency acoustic oscillations. The LDV is a three watt, two color, three beam system with a velocity measurement device that follows the flow continuously without any disturbance. The focusing optics, photo multipliers, amplifiers and test chamber are mounted on a precision Genisco C-181 rate-of-return table and spun to about 60 RPM. The silicon carbide particles used for seeding follow velocity fluctuations up to several hundred KHz. Two-dimensional unsteady velocity measurement systems for water flow rotating in the horizontal direction and tilting in the vertical direction are presented and discussed.

  13. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  14. Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain optical coherence tomography with fundus imaging

    Science.gov (United States)

    Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold

    2014-10-01

    A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.

  15. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor

    Directory of Open Access Journals (Sweden)

    Bodo eRückauer

    2016-04-01

    Full Text Available In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS. For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240x180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS. This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  16. Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor.

    Science.gov (United States)

    Rueckauer, Bodo; Delbruck, Tobi

    2016-01-01

    In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS). For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240 × 180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS). This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  17. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    Science.gov (United States)

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research.

    Directory of Open Access Journals (Sweden)

    Sophie Deckx

    Full Text Available Von Willebrand A domain Related Protein (WARP, is a recently identified extracellular matrix protein. Based upon its involvement in matrix biology and its expression in the heart, we hypothesized that WARP regulates cardiac remodeling processes in the post-infarct healing process.In the mouse model of myocardial infarction (MI, WARP expression increased in the infarcted area 3-days post-MI. In the healthy myocardium WARP localized with perlecan in the basement membrane, which was disrupted upon injury. In vitro studies showed high expression of WARP by cardiac fibroblasts, which further increases upon TGFβ stimulation. Furthermore, WARP expression correlated with aSMA and COL1 expression, markers of fibroblast to myofibroblast transition, in vivo and in vitro. Finally, WARP knockdown in vitro affected extra- and intracellular basic fibroblast growth factor production in myofibroblasts. To investigate the function for WARP in infarction healing, we performed an MI study in WARP knockout (KO mice backcrossed more than 10 times on an Australian C57Bl/6-J background and bred in-house, and compared to wild type (WT mice of the same C57Bl/6-J strain but of commercial European origin. WARP KO mice showed no mortality after MI, whereas 40% of the WT mice died due to cardiac rupture. However, when WARP KO mice were backcrossed on the European C57Bl/6-J background and bred heterozygous in-house, the previously seen protective effect in the WARP KO mice after MI was lost. Importantly, comparison of the cardiac response post-MI in WT mice bred heterozygous in-house versus commercially purchased WT mice revealed differences in cardiac rupture.These data demonstrate a redundant role for WARP in the wound healing process after MI but demonstrate that the continental/breeding/housing origin of mice of the same C57Bl6-J strain is critical in determining the susceptibility to cardiac rupture and stress the importance of using the correct littermate controls.

  19. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  20. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  1. Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes

    Directory of Open Access Journals (Sweden)

    Reinoud Jan Slagter

    2017-02-01

    Full Text Available We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1 scalar gauge field (cosmic string on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers of the subsequent orders of the scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution due to the suppression of the n-dependency in the energy momentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This contribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2 breaking of the axially symmetric configuration into a discrete subgroup of rotations of about 180 ∘ . The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2 symmetry, triggers the pressure T z z for discrete values of the azimuthal-angle. There could be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and this could be evidence for the existence of cosmic strings. Careful comparison of this spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available. It turns out that, for late time, the vacuum 5D spacetime is conformally invariant if the warp factor fulfils the equation of a vibrating

  2. Applications of warped geometries: From cosmology to cold atoms

    Science.gov (United States)

    Brown, C. M.

    This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We

  3. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    CERN Document Server

    Wong, Terence T W; Ho, Kenneth K Y; Tang, Matthew Y H; Robles, Joseph D F; Wei, Xiaoming; Chan, Antony C S; Tang, Anson H L; Lam, Edmund Y; Wong, Kenneth K Y; Chan, Godfrey C F; Shum, Ho Cheung; Tsia, Kevin K

    2013-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity- a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry- permitting high-throughput access to the morphological information of the individu...

  4. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  5. Pico-force optical exchange (pico-FOX): utilizing optical forces applied to an orthogonal electroosmotic flow for particulate enrichment from mixed sample streams.

    Science.gov (United States)

    Staton, Sarah J R; Kim, Soo Y; Hart, Sean J; Collins, Greg E; Terray, Alex

    2013-09-17

    Results are reported from a combined optical force and electrokinetic microfluidic device that separates individual particulates from molecular components in a mixed sample stream. A pico-Newton optical force was applied to an orthogonal electroosmotic flow carrying a hydrodynamically pinched, mixed sample, resulting in the separation of the various particles from the sample stream. Different combinations of polystyrene, PMMA, and silica particles with a commercially available dye were utilized to test the different separation modes available, from purely optical force to combined optical and electrophoretic forces. The impact of various particle properties on particle separation and separation efficiency were explored, including size (2, 6, 10 μm), refractive index, and electrophoretic mobility. Particle addressability was achieved by moving particles to different outlets on the basis of particle size, refractive index, and electrophoretic differences. Separations of 6 and 10 μm polystyrene particles led to only 3% particle contamination in the original sample stream and interparticle type enrichment levels >80%. The unique addressability of three different particle materials (polystyrene, PMMA, and silica) of the same size (2 μm) led to each being separated into a unique outlet without measurable contamination of the other particle types using optical force and electrophoretic mobility. In addition to particle separation, the device was able to minimize dye diffusion, leading to >95% dye recovery. This combined platform would have applications for noninvasive sample preparation of mixed molecular/particulate systems for mating with traditional analytics as well as efficient removal of harmful, degrading components from complex mixtures.

  6. Optical Flow Applied to Time-Lapse Image Series to Estimate Glacier Motion in the Southern Patagonia Ice Field

    Science.gov (United States)

    Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.

    2016-06-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  7. Optical flow and inertial navigation system fusion in the UAV navigation

    Science.gov (United States)

    Popov, A.; Miller, A.; Miller, B.; Stepanyan, K.

    2016-10-01

    In recent years navigation on the basis of computation of the camera path and the distance to obstacles with the aid of field of image motion velocities (i.e. optical flow, OF) became highly demanded particularly in the area of relatively small and even micro unmanned aerial vehicles (UAV). Video sequences captured by onboard camera gives the possibility of the OF calculation with the aid of relatively simple algorithms like Lucas-Kanade. The complete OF is the linear function of linear and angular velocities of the UAV which provides an additional means for the navigation parameters estimation. Such UAV navigation approach presumes that on-board camera gives the video sequence of the underlying surface images providing the information about the UAV evolutions. Navigation parameters are extracted on the basis of exact OF formulas which gives the observation process description for estimation based on Kalman filtering. One can expect the high accuracy of the estimated parameters (linear and angular velocities) because their number is substantially less than the number of measurements (practically the number of the camera pixels).

  8. Design of jitter compensation algorithm for robot vision based on optical flow and Kalman filter.

    Science.gov (United States)

    Wang, B R; Jin, Y L; Shao, D L; Xu, Y

    2014-01-01

    Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation.

  9. Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Fantini, Sergio

    2016-10-01

    We present a quantitative analysis of dynamic diffuse optical measurements to obtain oxygen saturation of hemoglobin in volume oscillating compartments. We used a phasor representation of oscillatory hemodynamics at the heart rate and respiration frequency to separate the oscillations of tissue concentrations of oxyhemoglobin (O) and deoxyhemoglobin (D) into components due to blood volume (subscript V) and blood flow (subscript F): O=OV+OF, D=DV+DF. This is achieved by setting the phase angle Arg(OF)-Arg(O), which can be estimated by a hemodynamic model that we recently developed. We found this angle to be -72 deg for the cardiac pulsation at 1 Hz, and -7 deg for paced breathing at 0.1 Hz. Setting this angle, we can obtain the oxygen saturation of hemoglobin of the volume-oscillating vascular compartment, SV=|OV|/(|OV|+|DV|). We demonstrate this approach with cerebral near-infrared spectroscopy measurements on healthy volunteers at rest (n=4) and during 0.1 Hz paced breathing (n=3) with a 24-channel system. Rest data at the cardiac frequency were used to calculate the arterial saturation, S(a); over all subjects and channels, we found ==0.96±0.02. In the case of paced breathing, we found =0.66±0.14, which reflects venous-dominated hemodynamics at the respiratory frequency.

  10. Merging Static and Dynamic Depth Cues with Optical-Flow Recovery for Creating Stereo Videos

    Directory of Open Access Journals (Sweden)

    Fang-Hsuan Cheng

    2013-01-01

    Full Text Available A method for estimating the depth information of a general monocular image sequence and then creating a 3D stereo video is proposed. Distinguishing between foreground and background is possible without additional information, and then foreground pixels are moved to create the binocular image. The proposed depth estimation method is based on coarse-to-fine strategy. By applying the CID method in the spatial domain, the sharpness and the contrast of an image can be improved by the distance of the region based on its color. Then a coarse depth map of the image can be generated. An optical-flow method based on temporal information is then used to search and compare the block motion status between previous and current frames, and then the distance of the block can be estimated according to the amount of block motion. Finally, the static and motion depth information is integrated to create the fine depth map. By shifting foreground pixels based on the depth information, a binocular image pair can be created. A sense of 3D stereo can be obtained without glasses by an autostereoscopic 3D display.

  11. Unmanned Aerial Vehicle Navigation Using Wide-Field Optical Flow and Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Matthew B. Rhudy

    2015-01-01

    Full Text Available This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information. The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF and are evaluated with respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV. Two different formulations are proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image distance which can be measured using a laser rangefinder. The results demonstrate that the full state formulation is able to estimate the aircraft ground velocity to within 1.3 m/s of a GPS receiver solution used as reference “truth” and regulate attitude angles within 1.4 degrees standard deviation of error for both sets of flight data.

  12. Primate-inspired vehicle navigation using optic flow and mental rotations

    Science.gov (United States)

    Arkin, Ronald C.; Dellaert, Frank; Srinivasan, Natesh; Kerwin, Ryan

    2013-05-01

    Robot navigation already has many relatively efficient solutions: reactive control, simultaneous localization and mapping (SLAM), Rapidly-Exploring Random Trees (RRTs), etc. But many primates possess an additional inherent spatial reasoning capability: mental rotation. Our research addresses the question of what role, if any, mental rotations can play in enhancing existing robot navigational capabilities. To answer this question we explore the use of optical flow as a basis for extracting abstract representations of the world, comparing these representations with a goal state of similar format and then iteratively providing a control signal to a robot to allow it to move in a direction consistent with achieving that goal state. We study a range of transformation methods to implement the mental rotation component of the architecture, including correlation and matching based on cognitive studies. We also include a discussion of how mental rotations may play a key role in understanding spatial advice giving, particularly from other members of the species, whether in map-based format, gestures, or other means of communication. Results to date are presented on our robotic platform.

  13. Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography

    Science.gov (United States)

    Pekkan, Kerem; Chang, Brian; Uslu, Fazil; Mani, Karthick; Chen, Chia-Yuan; Holzman, Roi

    2016-07-01

    The hydrodynamics of suction feeding is critical for the survival of fish larvae; failure to capture food during the onset of autonomous feeding can rapidly lead to starvation and mortality. Fluid mechanics experiments that investigate the suction feeding of suspended particles are limited to adult fishes, which operate at large Reynolds numbers. This manuscript presents the first literature results in which the external velocity fields generated during suction feeding of early zebrafish larvae (2500-20,000 μm total length) are reported using time-resolved microscopic particle image velocimetry. For the larval stages studied, the maximum peak suction velocity of the inflow bolus is measured at a finite distance from the mouth tip and ranges from 1 to 8 mm/s. The average pressure gradient and the velocity profile proximal to the buccal (mouth) cavity are calculated, and two distinct trends are identified. External recirculation regions and reverse flow feeding cycles are also observed and quantified. One of the unresolved questions in fish suction feeding is the shape and dynamics of the buccal cavity during suction feeding; optical coherence tomography imaging is found to be useful for reconstructing the mouth kinematics. The projected area of the mouth cavity during the feeding cycle varies up to 160 and 22 % for the transverse and mid-sagittal planes, respectively. These findings can inspire novel hydrodynamically efficient biomedical and microfluidic devices.

  14. Design of Jitter Compensation Algorithm for Robot Vision Based on Optical Flow and Kalman Filter

    Directory of Open Access Journals (Sweden)

    B. R. Wang

    2014-01-01

    Full Text Available Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation.

  15. Spatial attention is attracted in a sustained fashion toward singular points in the optic flow.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots, the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion.

  16. An optical flow-based integrated navigation system inspired by insect vision.

    Science.gov (United States)

    Pan, Chao; Deng, He; Yin, Xiao Fang; Liu, Jian Guo

    2011-10-01

    Some insects use optic flow (OF) to perform their navigational tasks perfectly. Learning from insects' OF navigation strategies, this article proposes a bio-inspired integrated navigation system based on OF. The integrated navigation system is composed of an OF navigation system (OFNS) and an OF aided navigation system (OFAN). The OFNS uses a simple OF method to measure motion at each step along a path. The position information is then obtained by path integration. However, path integration leads to cumulative position errors which increase rapidly with time. To overcome this problem, the OFAN is employed to assist the OFNS in estimating and correcting these cumulative errors. The OFAN adopts an OF-based Kalman filter (KF) to continuously estimate the position errors. Moreover, based on the OF technique used in the OFNS, we develop a new OF method employed by the OFAN to generate the measurement input of the OF-based KF. As a result, both the OFNS and the OFAN in our integrated navigation system are derived from the same OF method so that they share input signals and some operations. The proposed integrated navigation system can provide accurate position information without interference from cumulative errors yet doing so with low computational effort. Simulations and comparisons have demonstrated its efficiency.

  17. PRESENTATION OF AN ARCHITECTURAL OBJECT DESIGNED BY WARPED SURFACES

    Directory of Open Access Journals (Sweden)

    VELJKOVIĆ Milica

    2015-06-01

    Full Text Available Due to the importance of good functional solutions and aesthetic appearance of an object, modeling in architecture is the subject of this study. Application of more modern materials in architecture allows us to perform various geometric surfaces in the production of facade and roof structures. With such complex objects, it is necessary to create detailed three-dimensional models, using some of the modern software package for modeling. This paper provides an example of creating a 3D model of a modern building in whose exterior we can recognize nondevelopmental (becoming warped line-generated surfaces, primarily cylindroids and conoids. The entire process of modeling and presenting an object using augmented reality was carried out using the modern software package for visualization in architecture.

  18. Signals of Warped Extra Dimensions at the LHC

    CERN Document Server

    Osland, P; Tsytrinov, A V; Paver, N

    2010-01-01

    We discuss the signatures of the spin-2 graviton excitations predicted by the Randall-Sundrum model with one warped extra dimension, in dilepton and diphoton production at LHC. By using a specific angular analysis, we assess the ranges in mass and coupling constant where such gravitons can be discriminated against competitor spin-1 and spin-0 objects, that potentially could manifest themselves in these processes with the same mass and rate of events. Depending on the value of the coupling constant to quarks and leptons, the numerical results indicate graviton identification mass ranges up to 1.1-2.4 TeV and 1.6-3.2 TeV for LHC nominal energy of 14 TeV and time-integrated luminosity of 10 and 100~${\\rm fb}^{-1}$, respectively.

  19. Stress-warping relation in thin film coated wafers

    Science.gov (United States)

    Schicker, J.; Khan, W. A.; Arnold, T.; Hirschl, C.

    2017-02-01

    A misfit strain or stress in a thin layer on the surface of a wafer lets the composite disk warp. When the wafer is thin and large, the Stoney estimation of the film stress as function of the curvature yields large errors. We present a nonlinear analytical model that describes the relationship between warpage and film stress on an anisotropic wafer, and give evidence for its suitability for large thin wafers by a comparison to finite element results. Finally, we show the confidence limit of the Stoney estimation and the benefit by the nonlinear model. For thin coatings, it can be succesfully used even without knowledge of the film properties, which was the main advantage of the Stoney estimation.

  20. Warped 5D Standard Model Consistent with EWPT

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2011-01-01

    For a 5D Standard Model propagating in an AdS background with an IR localized Higgs, compatibility of bulk KK gauge modes with EWPT yields a phenomenologically unappealing KK spectrum (m > 12.5 TeV) and leads to a "little hierarchy problem". For a bulk Higgs the solution to the hierarchy problem reduces the previous bound only by sqrt(3). As a way out, models with an enhanced bulk gauge symmetry SU(2)_R x U(1)_(B-L) were proposed. In this note we describe a much simpler (5D Standard) Model, where introduction of an enlarged gauge symmetry is no longer required. It is based on a warped gravitational background which departs from AdS at the IR brane and a bulk propagating Higgs. The model is consistent with EWPT for a range of KK masses within the LHC reach.