WorldWideScience

Sample records for optical filters

  1. Magnetic-Optical Filter

    CERN Document Server

    Formicola, I; Pinto, C; Cerulo, P

    2007-01-01

    Magnetic-Optical Filter (MOF) is an instrument suited for high precision spectral measurements for its peculiar characteristics. It is employed in Astronomy and in the field of the telecommunications (it is called FADOF there). In this brief paper we summarize its fundamental structure and functioning.

  2. Enhanced Optical Filter Design

    CERN Document Server

    Cushing, David

    2011-01-01

    This book serves as a supplement to the classic texts by Angus Macleod and Philip Baumeister, taking an intuitive approach to the enhancement of optical coating (or filter) performance. Drawing from 40 years of experience in thin film design, Cushing introduces the basics of thin films, the commonly used materials and their deposition, the major coatings and their applications, and improvement methods for each.

  3. Nanoparticle optical notch filters

    Science.gov (United States)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  4. Wavelength Filters in Fibre Optics

    CERN Document Server

    Venghaus, Herbert

    2006-01-01

    Wavelength filters constitute an essential element of fibre-optic networks. This book gives a comprehensive account of the principles and applications of such filters, including their technological realisation. After an introductory chapter on wavelength division multiplexing in current and future fibre optic networks follows a detailed treatment of the phase characteristics of wavelength filters, a factor frequently neglected but of significant importance at high bit rates. Subsequent chapters cover three-dimensional reflection of gratings, arrayed waveguide gratings, fibre Bragg gratings, Fabry-Perot filters, dielectric multilayer filters, ring filters, and interleavers. The book explains the relevant performance parameters, the particular advantages and shortcomings of the various concepts and components, and the preferred applications. It also includes in-depth information on the characteristics of both commercially available devices and those still at the R&D stage. All chapters are authored by inter...

  5. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  6. Polarizing Filter for Integrated Optics

    Science.gov (United States)

    Ramer, O. G.; Goss, W. C.; Goldstein, R.

    1986-01-01

    Polarizing filter for titanium-doped lithium niobate light waveguide suppresses transverse magnetic (TM) mode of light propagation while allowing transverse electric (TE) mode to continue on its way. Filter - lithium niobate crystal - is expected to find many applications in integrated optical circuits.

  7. Actively Pumped Faraday Optical Filter

    Science.gov (United States)

    1996-04-30

    Richard I. Billmers Vincent M. Contarino David M. Allocca Martin F. Squicciarini William J. Scharpf 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...States Patent [i9] Billmers et al. iiiiiiifflimi iilliiiiiii US005513032A [ii] Patent Number: [45] Date of Patent: 5,513,032 Apr. 30, 1996...54] ACTIVELY PUMPED FARADAY OPTICAL FILTER [75] Inventors: Richard I. Billmers , Bensalem; Vincent M. Contarino, Warrington; David M

  8. Optically tunable plasmonic color filters

    Science.gov (United States)

    Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Wang, B.; Danner, A. J.; Yuan, X. C.; Teng, J. H.

    2012-04-01

    We fabricated sub-wavelength patterned gold plasmonic nanostructures on a quartz substrate through the focused ion beam (FIB) technique. The perforated gold film demonstrated optical transmission peaks in the visible range, which therefore can be used as a plasmonic color filter. Furthermore, by integrating a layer of photoresponsive liquid crystals (LCs) with the gold nanostructure to form a hybrid system, we observed a red-shift of transmission peak wavelength. More importantly, the peak intensity can be further enhanced more than 10% in transmittance due to the refractive index match of the media on both sides of it. By optically pumping the hybrid system using a UV light, nematic-isotropic phase transition of the LCs was achieved, thus changing the effective refractive index experienced by the impinging light. Due to the refractive index change, the transmission peak intensity was modulated accordingly. As a result, an optically tunable plasmonic color filter was achieved. This kind of color filters could be potentially applied to many applications, such as complementary metal-oxide-semiconductor (CMOS) image sensors, liquid crystal display devices, light emitting diodes, etc.

  9. Efficient, Narrow-Pass-Band Optical Filters

    Science.gov (United States)

    Sandford, Stephen P.

    1996-01-01

    Optical filters with both narrow pass bands and high efficiencies fabricated to design specifications. Offer tremendous improvements in performance for number of optical (including infrared) systems. In fiber-optic and free-space communication systems, precise frequency discrimination afforded by narrow pass bands of filters provide higher channel capacities. In active and passive remote sensors like lidar and gas-filter-correlation radiometers, increased efficiencies afforded by filters enhance detection of small signals against large background noise. In addition, sizes, weights, and power requirements of many optical and infrared systems reduced by taking advantage of gains in signal-to-noise ratios delivered by filters.

  10. UV Bandpass Optical Filter for Microspectometers

    NARCIS (Netherlands)

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in t

  11. A potassium Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  12. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  13. Narrow optical filtering with plasmonic nanoshells

    CERN Document Server

    Martynov, Y B; Tanachev, I A; Gladyshev, P P

    2011-01-01

    Narrow optical band pass filters are widely used in systems with optical processing of information, color displays development and optical computers. We show that such ultra filters can be created by means of nanoparticles which consist of a dielectric sphere and a metallic shell. The components can be adjusted such that there is a remarkable transparency at the desired wavelength range, while a strong absorption takes place outside of this region.

  14. Optical results with Rayleigh quotient discrimination filters

    Science.gov (United States)

    Juday, Richard D.; Rollins, John M.; Monroe, Stanley E., Jr.; Morelli, Michael V.

    1999-03-01

    We report experimental laboratory results using filters that optimize the Rayleigh quotient [Richard D. Juday, 'Generalized Rayleigh quotient approach to filter optimization,' JOSA-A 15(4), 777-790 (April 1998)] for discriminating between two similar objects. That quotient is the ratio of the correlation responses to two differing objects. In distinction from previous optical processing methods it includes the phase of both objects -- not the phase of only the 'accept' object -- in the computation of the filter. In distinction from digital methods it is explicitly constrained to optically realizable filter values throughout the optimization process.

  15. Tunable phase-only optical filters with a uniaxial crystal.

    Science.gov (United States)

    Xiao, Fanrong; Yuan, Jinghe; Wang, Guiying; Xu, Zhizhan

    2004-06-10

    A novel method of fabricating phase-only optical filters that is based on the properties of a uniaxial crystal is proposed. With these optical filters, the phase differences are tunable among the different filter zones. Many focal patterns can be obtained if these optical filters are placed in front of a lens; furthermore, these optical filters can also be used to make up for the distortions in fabrications in which they were used only as untunable optical filters.

  16. PMD Monitoring using Optical Sideband Filtering

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Sambo, N; Andriolli, N

    2009-01-01

    This paper presents a simple PMD monitoring technique based on optical sideband filtering, which requires no change to the transmitter. The method is numerically and experimentally verified and tested in a real-time PMD monitoring experiment.......This paper presents a simple PMD monitoring technique based on optical sideband filtering, which requires no change to the transmitter. The method is numerically and experimentally verified and tested in a real-time PMD monitoring experiment....

  17. Self-assembly micro optical filter

    Science.gov (United States)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  18. Theoretical model for a Stark anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1993-01-01

    A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.

  19. A porous silicon thermally tunable optical filter

    Science.gov (United States)

    Song, Da; Tokranova, Natalya; Gracias, Alison; Castracane, James

    2008-02-01

    Porous silicon (PSi) is a promising material for the creation of optical components for chip-to-chip interconnects because of its unique optical properties, flexible fabrication methods and integration with conventional CMOS material sets. In this paper, we present a novel active optical filter made of PSi to select desired optical wavelengths. The tunable membrane type optical filter is based on a Fabry-Perot interferometer employing two Bragg reflectors separated by an adjustable air gap, which can be thermally controlled. The Bragg reflectors contain alternating layers of high and low porosities. These layers were created by electrochemical etching of p+ type silicon wafers by varying the applied current during etching process. Micro bimorph actuators are designed to control the movement of the top DBR mirror, which changes the cavity thickness. By varying the applied current, the proposed filter can tune the transmitted wavelength of the optical signal. Various geometrical shapes and sizes ranging from 100μm to 1mm of the active filtering region have been realized for specific applications. The MOEMS technology-based device fabrication is fully compatible with the existing IC mass fabrication processes, and can be integrated with a variety of active and passive optical components to realize inter-chip or intra-chip communication at the system level at a relatively low cost.

  20. Acousto-optic filtering of lidar signals

    Science.gov (United States)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  1. Acousto-optic filtering of lidar signals

    Science.gov (United States)

    Kolarov, G.; Deleva, A.; Mitsev, Ts.

    1992-07-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  2. Actively Pumped Optical Filters at 532 nm

    Science.gov (United States)

    Billmers, Richard I.; Gayen, S. K.; Contarino, Vincent M.; Scharpf, William J.; Squicciarini, Martin F.; Allocca, David A.

    1995-01-01

    The operation of two narrow-band optical filters at 532.33 nm is presented. Both of these filters operate on the 4P(sub 1/2) to 8S(sub 1/2) excited-state transition in potassium vapor. One of the filters is based on excited-state Faraday effect, and requires the application of an external axial magnetic field. The peak transmission of this filter is approximately 3.5% with a linewidth of less than 10 GHz. The second filter does not require a magnetic field for its operation, but readily attains peak transmissions of 25-30%. The 4P(sub 1/2) state is excited by a 769.9 nm light pulse which is linearly polarized for the first scheme and circularly polarized for the second.

  3. Optical image segmentation using wavelet filtering techniques

    Science.gov (United States)

    Veronin, Christopher P.

    1990-12-01

    This research effort successfully implemented an automatic, optically based image segmentation scheme for locating potential targets in a cluttered FLIR image. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used in this research was based on texture discrimination and employs orientation specific, bandpass spatial filters as its main component. The orientation specific, bandpass spatial filters designed during this research include symmetrically located circular apertures implemented on heavy, black aluminum foil; cosine and sine Gabor filters implemented with detour-phase computer generated holography photoreduced onto glass slides; and symmetrically located circular apertures implemented on a liquid crystal television (LCTV) for real-time filter selection. The most successful design was the circular aperture pairs implemented on the aluminum foil. Segmentation was illustrated for simple and complex texture slides, glass template slides, and static and real-time FLIR imagery displayed on an LCTV.

  4. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  5. Acousto-optic filter for electronic laser tuning

    Science.gov (United States)

    Harris, S. E.

    1972-01-01

    Electronically tunable lithium niobate filter utilizes acoustic-optic diffraction for tuning laser to desired frequencies. Filter placed inside laser cavity diffracts incident optical signal of one polarization into orthogonal polarization by collinearly propagating acoustic beam to desired wavelength.

  6. Single-periodic-film optical bandpass filter

    CERN Document Server

    Niraula, Manoj; Magnusson, Robert

    2015-01-01

    Resonant periodic surfaces and films enable new functionalities with wide applicability in practical optical systems. Their material sparsity, ease of fabrication, and minimal interface count provide environmental and thermal stability and robustness in applications. Here we report an experimental bandpass filter fashioned in a single patterned layer on a substrate. Its performance corresponds to bandpass filters requiring perhaps 30 traditional thin-film layers as shown by an example. We demonstrate an ultra-narrow, high-efficiency bandpass filter with extremely wide, flat, and low sidebands. This class of devices is designed with rigorous solutions of the Maxwell equations while engaging the physical principles of resonant waveguide gratings. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied.

  7. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    Science.gov (United States)

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  8. Nonlinear optical properties of induced transmission filters.

    Science.gov (United States)

    Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard

    2010-08-30

    The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.

  9. A Compact Narrow-Band Tunable Optical Transversal Filter

    Institute of Scientific and Technical Information of China (English)

    Zhigang Wu; Katsuyuki Utaka

    2003-01-01

    We present a compact narrow-band tunable optical transversal filter with phase-variable taps. A transmission bandwidth of the comb filter is less than 0.2nm and can be continuously tuned in the entire FSR.

  10. Optical Filters, Modulators and Interconnects for Optical Communication Systems

    Science.gov (United States)

    Han, Sang-Kook

    This dissertation describes the theoretical and experimental studies on the guided wave optical devices in the InGaAlAs/InP material system and the integration of the optical devices which utilize single quantum well (SQW) as well as multi-quantum well (MQW) structures. This study encompasses the fabrication and characterization of passive ridge waveguides, efficient phase modulators using the quadratic electro-optic effect, as well as efficient, narrow bandwidth wavelength filters. For the purpose of the monolithic integration of an SQW laser diode with an MQW modulator in GaAs/AlGaAs without a complex regrowth process, an impurity-induced layer disordering (IILD) technique is used to facilitate a novel tapered waveguide interconnect structure. The narrow bandwidth and widely tunable wavelength filters are essential for the implementation of highly dense wavelength-division-multiplexers/demultiplexers (WDM) in multi-wavelength optical networks and systems. The vertically stacked directional coupler structure wavelength filter device operating at 1.55 μm which permits the maximum asymmetry possible in directional coupler devices to achieve a narrow bandwidth is presented. The quaternary InGaAlAs layers grown on InP substrate are used and it facilitates larger tunability due to material dispersion. The spectral index method and coupled mode theory are used for theoretical calculations of the filter response. The characteristics of the filter are measured and the tunability of the device is discussed. An array of many filters with different center wavelength in a single chip is studied and a relatively broad range of center wavelength is easily obtained by a small variation in the design of the structure. To achieve an integration of a high gain SQW laser diode and an MQW electroabsorption intensity modulator with a high on/off ratio, we utilize a tapered waveguide interconnect using an IILD technique which permits transfer of the energy generated in an SQW laser

  11. Design and performance optimization of fiber optic adaptive filters.

    Science.gov (United States)

    Paparao, P; Ghosh, A; Allen, S D

    1991-05-10

    There is a great need for easy-to-fabricate and versatile fiber optic signal processing systems in which optical fibers are used for the delay and storage of wideband guided lightwave signals. We describe the design of the least-mean-square algorithm-based fiber optic adaptive filters for processing guided lightwave signals in real time. Fiber optic adaptive filters can learn to change their parameters or to process a set of characteristics of the input signal. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in the processing speed, parallelism, and interconnection. Many schemes for optical adaptive filtering of electronic signals are available in the literature. The new optical adaptive filters described in this paper are for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the adaptive filtering process as a function of the filter parameters and the fiber optic hardware errors. From this analysis we found that the effects of the optical round-off errors and noise can be reduced, and the learning speed can be comparatively increased in our design through an optimal selection of the filter parameters. A general knowledge of the fiber optic hardware, the statistics of the lightwave signal, and the desired goal of the adaptive processing are enough for this optimum selection of the parameters. Detailed computer simulations validate the theoretical results of performance optimization.

  12. Novel spatially distributed porous Si optical bandpass filters

    Science.gov (United States)

    Tokranova, N.; Levitsky, I.; Gracias, A.; Xu, B.; Castracane, J.

    2006-02-01

    To assist the growth of the telecommunication sector, new types of optical components such as those based on optical interference filter technology are critical. Existing technologies based on thin-film processing for production of optical communications filters have rapidly advanced. Although the Fabry-Perot bandpass filters made by deposition of alternate layers with high- and low- refractive index have a broad rejection band and a narrow passband, this technique does not allow for the control of filter parameters such as specification and adjustment of the transmitted wavelength at any place across the surface of the filter. The new approach discussed in the paper is directed toward the anodization of silicon to fabricate not only multilayer optical filters with a uniform passband across the field of view but also specially designed passbands at any single point in the field of view of the optical system. In particular, the realization and characterization of spatially distributed filters made of porous silicon are presented. These filters are able to select various passbands in the visible and IR regions. The filters were fabricated on p + and p - type doped substrates. By varying the electrode configuration on the backside of wafer and the applied potential during electrochemical etching, the desired spatially distributed filter can be formed. The impact of wafer resistivity on filter parameters is discussed.

  13. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.

    Science.gov (United States)

    Dini, Danilo; Calvete, Mário J F; Hanack, Michael

    2016-11-23

    The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.

  14. Optical calculation of correlation filters for a robotic vision system

    Science.gov (United States)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  15. Acousto-optic tuneable filters: advances and applications to microscopy

    Science.gov (United States)

    Pannell, C. N.; Wachman, E. S.; Farkas, D. L.; Ward, J.; Seale, W.

    2006-02-01

    The acousto-optic tunable filter (AOTF) is one example of a small number of commercially available optical filter technologies that lend themselves to imaging applications. In recent years the demand for high specification devices has increased significantly, and diffraction limited performance is being achieved.

  16. Optical correlation filters for large-class OCR applications

    Science.gov (United States)

    Casasent, David P.; Iyer, Anand K.; Gopalaswamy, Srinivasan

    1991-08-01

    The performance of two new optical correlation filters (G-MACE and MINACE) for large class (many fonts and true class words) OCR (optical character recognition) applications is considered. We consider filters that can recognize many key words in upper case (UC) and mixed case (MC) and various point sizes in the presence of OCR scanner sampling errors. New results are presented and guidelines for large class filters are advanced.

  17. Optical filters for wavelength selection in fluorescence instrumentation.

    Science.gov (United States)

    Erdogan, Turan

    2011-04-01

    Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.

  18. An Optical Additive Solc Filter for Deep Ultraviolet Applications

    Science.gov (United States)

    Manka, Charles; Nikitin, Sergei

    2008-10-01

    A number of optical applications in the deep ultra violet (DUV) range have limitations due to the absence of simple and reliable optical notch filters. This is important for resonant Raman applications that employ frequency agile laser illumination at many sequential DUV wavelengths. Our filter is based on widely known birefringent filter design originally proposed by Solc [I. Solc ``Birefringent chain filters'' JOSA 55, p.621 (1965)]. Rather than the transmission filter design of Solc, the additive Solc filter (ASF) described here is suitable for narrow-line rejection (< 1 nm), as dictated by the requirements of UVRR and other applications. We have designed and constructed such a filter and present test results. Finally, we present a design which allows fiber delivery of DUV illumination wavelengths, rejects the quartz Raman lines generated in the fiber, but then rejects the backscattered unshifted light from a target and passes the Raman lines generated by the target material.

  19. Mechanically and optically controlled graphene valley filter

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2014-05-07

    We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

  20. Semiconductor laser with filtered optical feedback: bridge between conventional feedback and optical injection.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2005-01-01

    We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations redu

  1. Semiconductor laser with filtered optical feedback: from optical injection to conventional feedback.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2007-01-01

    Abstract We study a model for a semiconductor laser subject to filtered optical feedback, that is a system of delay differential equations (DDEs). In this model the filter is characterised by a mean frequency Ωm and a filter width λ. In the limit of a narrow filter (λ → 0) the laser equations reduce

  2. Semiconductor laser with filtered optical feedback: bridge between conventional feedback and optical injection.

    NARCIS (Netherlands)

    Hek, G.M.; Rottschäfer, V.

    2005-01-01

    We study a model for a semiconductor laser subject to filtered optical feedback, i.e. a system of delay differential equations (DDEs). In this model, the filter is characterized by a mean frequency Omega(m) and a filter width A. In the limit of a narrow filter (lambda -> 0), the laser equations

  3. Optical antialiasing filters based on complementary Golay codes.

    Science.gov (United States)

    Leger, J R; Schuler, J; Morphis, N; Knowlden, R

    1997-07-10

    An optical filter that has an ideal response for removing aliasing noise from a sampled imaging system is described. The all-phase filter uses complementary Golay codes to achieve an optimum low-pass transfer function with no sidelobes. A computer model shows that the optical system has the expected performance in the ideal case, but degrades somewhat with wavelength variations and image aberrations. An experimental demonstration of the filter shows the optical transfer function performance and the response to imagery with a sampled detector.

  4. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  5. Design, optimization and fabrication of an optical mode filter for integrated optics.

    Science.gov (United States)

    Magnin, Vincent; Zegaoui, Malek; Harari, Joseph; François, Marc; Decoster, Didier

    2009-04-27

    We present the design, optimization, fabrication and characterization of an optical mode filter, which attenuates the snaking behavior of light caused by a lateral misalignment of the input optical fiber relative to an optical circuit. The mode filter is realized as a bottleneck section inserted in an optical waveguide in front of a branching element. It is designed with Bézier curves. Its effect, which depends on the optical state of polarization, is experimentally demonstrated by investigating the equilibrium of an optical splitter, which is greatly improved however only in TM mode. The measured optical losses induced by the filter are 0.28 dB.

  6. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    Directory of Open Access Journals (Sweden)

    Remus Brad

    2012-09-01

    Full Text Available Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  7. Novel optical filters based on curved grating structure

    Science.gov (United States)

    Wang, Jia-Xian; Zhao, Jing; Qiu, Weibin; Lin, Zhili; Huang, Yixin; Chen, Houbo; Qiu, Pingping

    2017-03-01

    A novel modified Rowland grating structure is proposed in this paper. Optical filters with the proposed structure are designed and fabricated with both high input and output angles. The passband width, coupling loss of the filters are investigated as a function of the output waveguide width. Nearly aberration free diffraction filters with an ultracompact footprint less than 0.5 mm2 were obtained with the proposed structure.

  8. Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip;

    2008-01-01

    A theoretical analysis of slow and fast light effects in semiconductor optical amplifiers based on coherent population oscillations and including the influence of optical filtering is presented. Optical filtering is shown to enable a significant increase of the controllable phase shift experienced...

  9. Optical scatter of quantum noise filter cavity optics

    CERN Document Server

    Vander-Hyde, Daniel; Smith, Joshua R

    2014-01-01

    We report on measurements of light scattering from two two-inch super-polished fused silica substrates before and after applying (ATFilms) ion-beam sputtered highly-reflective dielectric coatings. We used an imaging scatterometer, that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam, to measure the Bidirectional Reflectance Distribution Function (BRDF) and estimate the total integrated scatter for both samples, before and after coating. We find application of these highly reflective coatings leads to an increase of the integrated scatter of the primary surface by more than 50 %. In addition, the BRDF function of the coated optics takes on a pattern of maxima and zeroes versus azimuthal angle that is qualitatively consistent with bulk scattering from the coating layers. These results are part of a broader study to understand optical loss in quantum noise filter cavities...

  10. Optical filters inhibiting television-induced photosensitive seizures.

    Science.gov (United States)

    Takahashi, Y; Sato, T; Goto, K; Fujino, M; Fujiwara, T; Yamaga, M; Ito, T; Isono, H; Kondo, N

    2001-11-27

    Televised images are the most common stimulus for provoking photosensitive seizures in photosensitive persons. To inhibit photosensitive seizures in photosensitive persons who do or do not have epilepsy, the authors sought nonpharmacologic methods for reducing the levels of photic stimulation of televised images. The authors found two types of pathophysiologic mechanisms (wavelength-dependent and quantity of light-dependent mechanisms) for photoparoxysmal responses (PPR). The authors tested two different types of optical filters, one reflecting long-wavelength red light selectively, which stimulates a wavelength-dependent mechanism, and the other absorbing light in the visible spectrum evenly (neutral density filters). Inhibiting effects of optical filters were studied by conventional intermittent photic stimulation (IPS) using strobe light and novel photic stimulation using flashing cathode ray tubes (CRT). Both filters individually inhibited PPR insufficiently (less than 50%). Compound optical filters, composed of both types of filters, can inhibit the PPR, approximately 90% for IPS and 95% for photic stimulation with CRT. These compound optical filters do not destroy chromaticity of emissions from the television's CRT. These compound filters may be useful to prevent seizures induced by television in photosensitive persons.

  11. Theoretical model for a Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1991-01-01

    A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.

  12. Quantum filtering of optical coherent states

    DEFF Research Database (Denmark)

    Wittmann, C.; Elser, D.; Andersen, Ulrik Lund

    2008-01-01

    We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis......, probabilistically filtered out. We consider three different filters based on on-off detection, phase stabilized, and phase randomized homodyne detection. We find that on-off detection, optimal in the ideal theoretical setting, is superior to the homodyne strategy also in a practical setting....

  13. Si-based infrared optical filters

    Science.gov (United States)

    Balčytis, Armandas; Ryu, Meguya; Seniutinas, Gediminas; Nishijima, Yoshiaki; Hikima, Yuta; Zamengo, Massimiliano; Petruškevičius, Raimondas; Morikawa, Junko; Juodkazis, Saulius

    2015-12-01

    Pyramidal silicon nanospikes, termed black-Si (b-Si), with controlled height of 0.2 to 1 μm, were fabricated by plasma etching over 3-in wafers and were shown to act as variable density filters in a wide range of the IR spectrum 2.5 to 20 μm, with transmission and its spectral gradient dependent on the height of the spikes. Such variable density IR filters can be utilized for imaging and monitoring applications. Narrow IR notch filters were realized with gold mesh arrays on Si wafers prospective for applications in surface-enhanced IR absorption sensing and "cold materials" for heat radiation into atmospheric IR transmission window. Both types of filters for IR: spectrally variable and notch are made by simple fabrication methods.

  14. Optical notch filter design based on digital signal processing

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; ZHANG Juan; LI Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure. The method is simple and effective, and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range (FSR). A design example of notch filter based on cascaded single-fiber-rings is given. On this basis, an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure. This new structure can improve the stability and applicability of system. The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.

  15. Narrow-Band WGM Optical Filters With Tunable FSRs

    Science.gov (United States)

    Mohageg, Makan; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Strekalov, Dmitry

    2007-01-01

    Optical resonators of the whispering-gallery-mode (WGM) type featuring DC-tunable free spectral ranges (FSRs) have been demonstrated. By making the FSR tunable, one makes it possible to adjust, during operation, the frequency of a microwave signal generated by an optoelectronic oscillator in which an WGM optical resonator is utilized as a narrow-band filter.

  16. A Monolithic Filter Cavity for Experiments in Quantum Optics

    CERN Document Server

    Palittapongarnpim, Pantita; Lvovsky, A I

    2012-01-01

    By applying a high-reflectivity dielectric coating on both sides of a commercial plano-convex lens, we produce a stable monolithic Fabry-Perot cavity suitable for use as a narrow band filter in quantum optics experiments. The resonant frequency is selected by means of thermal expansion. Owing to the long term mechanical stability, no optical locking techniques are required. We characterize the cavity performance as an optical filter, obtaining a 45 dB suppression of unwanted modes while maintaining a transmission of 60%.

  17. CCD polarization imaging sensor with aluminum nanowire optical filters.

    Science.gov (United States)

    Gruev, Viktor; Perkins, Rob; York, Timothy

    2010-08-30

    We report an imaging sensor capable of recording the optical properties of partially polarized light by monolithically integrating aluminum nanowire optical filters with a CCD imaging array. The imaging sensor, composed of 1000 by 1000 imaging elements with 7.4 μm pixel pitch, is covered with an array of pixel-pitch matched nanowire optical filters with four different orientations offset by 45°. The polarization imaging sensor has a signal-to-noise ratio of 45 dB and captures intensity, angle and degree of linear polarization in the visible spectrum at 40 frames per second with 300 mW of power consumption.

  18. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  19. Analyzing subcellular structure with optical Fourier filtering based on Gabor filters

    Science.gov (United States)

    Boustany, Nada N.; Sierra, Heidy

    2013-02-01

    Label-free measurement of subcellular morphology can be used to track dynamically cellular function under various conditions and has important applications in cellular monitoring and in vitro cell assays. We show that optical filtering of scattered light by two-dimensional Gabor filters allows for direct and highly sensitive measurement of sample structure. The Gabor filters, which are defined by their spatial frequency, orientation and Gaussian envelope, can be used to track locally and in situ the characteristic size and orientation of structures within the sample. Our method consists of sequentially implementing a set of Gabor filters via a spatial light modulator placed in a conjugate Fourier plane during optical imaging and identifying the filters that yield maximum signal. Using this setup, we show that Gabor filtering of light forward-scattered by spheres yields an optical response which varies linearly with diameter between 100nm and 2000nm. The optical filtering sensitivity to changes in diameter is on the order of 20nm and can be achieved at low image resolution. We use numerical simulations to demonstrate that this linear response can be predicted from scatter theory and does not vary significantly with changes in refractive index ratio. By applying this Fourier filtering method in samples consisting of diatoms and cells, we generate false-color images of the object that encode at each pixel the size of the local structures within the object. The resolution of these encoded size maps in on the order of 0.36μm. The pixel histograms of these encoded images directly provide 20nm resolved "size spectra", depicting the size distribution of structures within the analyzed object. We use these size spectra to differentiate the morphology of apoptosis-competent and bax/bak null apoptosis-resistant cells during cell death. We also utilize the sensitivity of the Gabor filters to object orientation to track changes in organelle morphology, and detect mitochondrial

  20. Robust Optical User Motion Tracking Using a Kalman Filter

    OpenAIRE

    Dorfmüller-Ulhaas, Klaus

    2007-01-01

    Optical tracking has a great future in applications of virtual and augmented reality. It will assist to enhance the acceptance of virtual reality user interfaces, since optical tracking allows wireless interaction and precise tracking. Existing commercial motion capture systems are neither working reliably in real-time. Additionally, only few optical trackers can smooth and predict motion and include a motion estimator supplying similar results to the presented approach. A Kalman filter formu...

  1. Acousto-optic collinear filter with optoelectronic feedback

    Science.gov (United States)

    Mantsevich, S. N.; Balakshy, V. I.; Kuznetsov, Yu. I.

    2017-04-01

    A spectral optoelectronic system combining a collinear acousto-optic cell fabricated of calcium molybdate single crystal and a positive electronic feedback is proposed first and examined theoretically and experimentally. The feedback signal is formed at the cell output due to the optical heterodyning effect with the use of an unconventional regime of cell operation. It is shown that the feedback enables controlling spectral characteristics of the acousto-optic cell, resulting in enhancing the spectral resolution and the accuracy of optical wavelength determination. In the experiment, maximal filter passband narrowing was as great as 37 times.

  2. Optical fiber gas sensing system based on FBG filtering

    Science.gov (United States)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  3. Development of low optical cross talk filters for VIIRS (JPSS)

    Science.gov (United States)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  4. A reflective-type, quasi-optical metasurface filter

    Science.gov (United States)

    Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2017-08-01

    We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.

  5. Spectral measurement using IC-compatible linear variable optical filter

    NARCIS (Netherlands)

    Emadi, A.; Grabarnik, S.; Wu, H.; De Graaf, G.; Hedsten, K.; Enoksson, P.; Correia, J.H.; Wolffenbuttel, R.F.

    2010-01-01

    This paper reports on the functional and spectral characterization of a microspectrometer based on a CMOS detector array covered by an IC-Compatible Linear Variable Optical Filter (LVOF). The Fabry-Perot LVOF is composed of 15 dielectric layers with a tapered middle cavity layer, which has been

  6. Tunable, nondispersive optical filter using photonic Hilbert transformation.

    Science.gov (United States)

    Bazargani, Hamed Pishvai; Fernández-Ruiz, María del Rosario; Azaña, José

    2014-09-01

    We propose and numerically demonstrate a new design concept for implementing nondispersive complementary (band-pass/band-reject) optical filters with a wide range of bandwidth tunability. The device consists of two photonic Hilbert transformers (PHTs) incorporated into a Michelson interferometer (MI). By controlling the central frequency of PHTs with respect to each other, both the central frequency and the spectral width of the rejection/pass bands of the filter are proved to be tunable. Bandwidth tuning from 260 MHz to 60 GHz is numerically demonstrated using two readily feasible fiber Bragg grating-based PHTs. The designed filter offers a high extinction ratio between the pass band and rejection band (>20  dB in the narrow-band filtering case) with a very sharp transition with a slope of 170  dB/GHz from rejection to pass band.

  7. Optical tweezers formed by pure phase pupil filter

    Science.gov (United States)

    Lv, Wei; You, Chenglong; Wang, Mei; Yun, Maojin

    2013-09-01

    The focusing properties of vector beams have attracted great attention and quickly became the subject of extensive worldwide research due to their applications in lithography, optical storage, microscopy, material processing, and optical trapping. Focusing properties of the radially polarized beam and generalized cylindrical vector beams in high numerical aperture system with designed pure phase filter are analyzed in detail by using vector Debye diffraction theory. By utilizing diffractive optical element to partly change the polarization of vector beams, the energy density of light field in the vicinity of focus is studied by the numerical analysis. Numerical simulation result shows that optical bubbles can be obtained by changing the composition and polarization of the incident beams. At last, optical tweezers are constituted by two optical bubbles around the focus.

  8. Optical filters with fractal transmission spectra based on diffractive optics.

    Science.gov (United States)

    Mendoza-Yero, Omel; Mínguez-Vega, Gladys; Fernández-Alonso, Mercedes; Lancis, Jesús; Tajahuerce, Enrique; Climent, Vicent; Monsoriu, Juan A

    2009-03-01

    The duality between the axial irradiance distribution originated by any circularly symmetric diffracting aperture under monochromatic illumination and its diffracted spectral intensity at a fixed on-axis point under broadband illumination is highlighted and experimentally investigated. Two applications are derived from this basic result. On the one hand, we suggest the use of a broadband source and a spectrometer for a single-shot measurement of the axial response of pupil filters. Second, we implement a spectral filter having a transmission spectrum with a fractal structure of frequencies. Experimental results and potential applications in synthetic spectra designs are provided.

  9. Gelled colloidal crystals as tunable optical filters for spectrophotometers

    Science.gov (United States)

    Sugao, Yukihiro; Onda, Sachiko; Toyotama, Akiko; Takiguchi, Yoshihiro; Sawada, Tsutomu; Hara, Shigeo; Nishikawa, Suguru; Yamanaka, Junpei

    2016-08-01

    We examined the performance of charged colloidal crystals immobilized in a polymer gel as tunable optical filters. The colloidal crystals of charged silica particles (particle diameter = 121 nm; particle concentration = 3.5 vol %; and Bragg wavelength λB = 630-720 nm) were produced by unidirectional crystallization under a temperature gradient. Photocurable gelation reagents were dissolved in the sample beforehand; this enabled gel immobilization of the crystals under ultraviolet illumination. The crystals had dimensions of more than 25 mm2 in area and 1 mm in thickness, and spatial λB variations of less than 1%. Upon mechanical compression, λB values shifted linearly and reversibly over almost the entire visible spectrum. Using the gelled crystals as tunable optical filters, we measured the transmittance spectra of various samples and found them to be in close agreement with those determined using a spectrophotometer equipped with optical gratings.

  10. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  11. Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations

    Science.gov (United States)

    Hyde, Milo W.; Bose-Pillai, Santasri R.

    2017-08-01

    High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propagation and over a specified region of interest, yields an observation plane field that is statistically representative of that produced by the original broadband source. The pros and cons of both approaches are discussed in detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation plane in the near-zone is performed to validate the two filtering approaches.

  12. Multispectral Imager With Improved Filter Wheel and Optics

    Science.gov (United States)

    Bremer, James C.

    2007-01-01

    is in the longer-wavelength transmission band of the dichroic beam splitter (see Figure 2). Each of the two optical paths downstream of the dichroic beam splitter contains an additional broad-band-pass filter: The filter in the path of the light transmitted by the dichroic beam splitter transmits and attenuates in the same bands that are transmitted and reflected, respectively, by the beam splitter; the filter in the path of the light reflected by the dichroic beam splitter transmits and attenuates in the same bands that are reflected and transmitted, respectively, by the dichroic beam splitter. In each of these paths, the filtered light is focused onto an FPA. As the filter wheel rotates at a constant angular speed, its shaft angle is monitored, and the shaft-angle signal is used to synchronize the exposure times of the two FPAs. When a single narrowband-pass filter on the wheel occupies the entire cross section of the beam of light coming out of the telescope, the spectrum of light that reaches the dichroic beam splitter lies entirely within the pass band of that filter. Therefore, the beam in its entirety is either transmitted by the dichroic beam splitter and imaged on the longer-wavelength FPA or reflected by the beam splitter and imaged onto the shorter-wavelength FPA.

  13. Optical differentiation wavefront sensing with binary pixelated transmission filters.

    Science.gov (United States)

    Qiao, J; Mulhollan, Z; Dorrer, C

    2016-05-02

    Sensors measuring the spatial phase of optical waves are widely used in optics. The optical differentiation wavefront sensor (ODWS) reconstructs the wavefront of an optical wave from wavefront slope measurements obtained by inducing linear field-transmission gradients in the far-field. Its dynamic range and sensitivity can be adjusted simply by changing the gradient slope. We numerically and experimentally demonstrate the possibility of implementing the spatially varying transmission gradient using distributions of small pixels that are either transparent or opaque. Binary pixelated filters are achromatic and can be fabricated with high accuracy at relatively low cost using commercial lithography techniques. We study the impact of the noise resulting from pixelation and binarization of the far-field filter for various test wavefronts and sensor parameters. The induced wavefront error is approximately inversely proportional to the pixel size. For an ODWS with dynamic range of 100 rad/mm over a 1-cm pupil, the error is smaller than λ/15 for a wide range of test wavefronts when using 2.5-μm pixels. We experimentally demonstrate the accuracy and consistency of a first-generation ODWS based on binary pixelated filters.

  14. Terahertz wave electro-optic measurements with optical spectral filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V. [Institute of Applied Physic RAS, Nizhny Novgorod 603950 (Russian Federation); Kitaeva, G. Kh. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Akhmedzhanov, R. A. [Institute of Applied Physic RAS, Nizhny Novgorod 603950 (Russian Federation); N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation)

    2015-03-23

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  15. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  16. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  17. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  18. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times...

  19. Multiclass optical correlation filters for alphanumeric field recognition

    Science.gov (United States)

    Casasent, David P.; Gopalaswamy, Srinivasan; Iyer, Anand K.

    1993-01-01

    We consider the use of new distortion-invariant optical correlation filters for machine-printed OCR. Our work is unique in its treatment of a large set of different fonts, printer types, plus rotations and scale (point size) variations, and various practical issues such as printing artifacts and background noise. We detail their use in the locations and recognition of alphanumeric fluids (digits) in destination address blocks (DABs).

  20. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  1. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances.

    Science.gov (United States)

    Leung, Tsz Wing; Li, Roger Wing-Hong; Kee, Chea-Su

    2017-01-01

    To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18-30 yrs, middle-aged adults: 40-55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR-BT [-0.05, 0.05]; AR-BF [-0.05, 0.06]; BT-BF [-0.06, 0.06]) or without glare (95% CI: AR-BT [-0.01, 0.03]; AR-BF [-0.01, 0.03]; BT-BF [-0.02, 0.02]) and colour discrimination (95% CI: AR-BT [-9.07, 1.02]; AR-BF [-7.06, 4.46]; BT-BF [-3.12, 8.57]). Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may serve as a supplementary option for protecting the retina from potential

  2. DWDM VSB modulation-format optical transmission: Effects of optical filtering and electrical equalization

    Science.gov (United States)

    Binh, Le Nguyen

    2008-10-01

    The transmission of 40 Gb/s wavelength multiplexed channels under vestigial single side band modulation format is transmitted over long haul optically amplified fiber systems. Bit-error-rate (BER) of 10 -12 or better can be achieved across all channels. Optical filters are designed with asymmetric roll-off bands. Simulations of the transmission performance, BER versus receiver sensitivity are demonstrated with wavelength channel spacing of 20-40 GHz. An optical filter, whose passband is 28 GHz and 20 dB cut-off band, performs best for 40 Gb/s bit rate due to optimum filtering and minimum noise contribution. Furthermore the single-sideband property of VSB format can assist linear equalization by electronic processing. The transmission performance is accurately evaluated based on the eye opening using a fast statistical method based on an equivalent Gaussian probability density distribution (pdf) which is derived from multiple peaks pdf of distorted eye diagram.

  3. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering.

    Science.gov (United States)

    Hong, Xuezhi; Wang, Dawei; Xu, Lei; He, Sailing

    2010-06-07

    A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

  4. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... as the bit period at 80 Gbit=s. Large dynamic ranges for the input power and SOA current are experimentally demonstrated. The scheme is expected to be scalable toward higher bit rates. © 2011 Optical Society of America....

  5. Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters

    National Research Council Canada - National Science Library

    Robert M. Pasternack; Zhen Qian; Jing-Yi Zheng; Dimitris N. Metaxas; Nada N. Boustany

    2009-01-01

    .... The method consists of applying an optical Fourier filter bank consisting of Gabor-like filters of varying periods and extracting the optimum filter period that maximizes the filtered object signal...

  6. Brillouin optical reflectometer with a Brillouin active filter

    Science.gov (United States)

    Budylin, G. S.; Gorshkov, B. G.; Gorshkov, G. B.; Zhukov, K. M.; Paramonov, V. M.; Simikin, D. E.

    2017-07-01

    A new scheme of a fibre-optic Brillouin reflectometer is experimentally studied, in which the spectral line of spontaneous Brillouin scattering is selected by an active Brillouin filter represented by the tested fibre itself. To improve the reflectometer characteristics, a cyclic code and Raman amplification of the scattering signal are applied. With an averaging time of 5 min, scanning of 25 km of fibre with a spatial resolution of 4 m and a sampling resolution of 1 m are provided. The root-mean-square deviation in determining the Brillouin frequency is less than 1.1 MHz. The reflectometer sensitivity is evaluated with respect to the temperature changes and mechanical deformation.

  7. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  8. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael;

    2014-01-01

    We propose a novel approach for all optical RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal using a simple phase filter implemented by a commercial optical waveshaper....

  9. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    with only 0.9-dB power penalty to achieve BER of 1E-9. Using the proposed labeling scheme, optical packet switching of 640 Gb/s data packets is experimentally demonstrated in which two data packets are labeled by making none and one spectral hole using a notch filter and are switched using a LiNbO$_3...

  10. Rational engineering of nanoporous anodic alumina optical bandpass filters

    Science.gov (United States)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  11. Telecentric confocal optics for aberration correction of acousto-optic tunable filters.

    Science.gov (United States)

    Suhre, Dennis R; Denes, Louis J; Gupta, Neelam

    2004-02-20

    A telecentric confocal optical arrangement is presented that greatly reduces the diffraction aberrations of the acousto-optic tunable filter (AOTF). Analytical expressions for the aberrations were identified based on the fundamental properties of Bragg diffraction, and additional aberrations due to focusing through the AOTF were also included. The analysis was verified by use of a geometrical ray trace optical code, and an experimental AOTF system was analyzed. Considerable improvement in the potential spatial resolution is predicted with confocal optics, which could accommodate large pixel-limited image fields of greater than 10(6) pixels. When the image quality of the experimental system was assessed, the resolution was found to be improved by the confocal optics and was diffraction limited. Higher resolution could have been obtained with the use of larger optics to increase the throughput before being limited by the aberrations.

  12. Optical thin-film reflection filters based on the theory of photonic crystals.

    Science.gov (United States)

    Sun, Xuezheng; Shen, Weidong; Gai, Xin; Gu, Peifu; Liu, Xu; Zhang, Yueguang

    2008-05-01

    Based on the theory of photonic crystals and the framework of a single-channel reflection filter that we presented before, structures of reflection filters with multiple channels are proposed. These structures can overcome some drawbacks of conventional multichannel transmission filters and are much easier to fabricate. We have practically fabricated the reflection filters with two and three channels, and the tested results show approximate agreement with theoretical simulation. Moreover, the superprism effect is also simulated in the single-channel reflection filter, the superiorities to transmission filters are discussed, and these analyses may shed some light on new applications of reflection filters in optical communication and other systems.

  13. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  14. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  15. Influence of optical filters on pulse circulation in fiber rings with a frequency shifter and EDFA.

    Science.gov (United States)

    Takano, Katsumi; Nakagawa, Kiyoshi; Ito, Hiromasa

    2006-10-30

    Optical fiber ring circuits constructed with frequency shifters and EDFAs are applicable to pulsed lightwave frequency sweepers, wavelength converters, and optical packet buffers. The salient criterion for those applications is how many times the optical pulse can circle the ring. Optical band-pass filters in the ring can serve an important role for pulse circulation because the filter determines the gain bandwidth at every circulation under the condition of signal wavelength shift. This paper clarifies the effects of optical filter response on pulse circulation in the ring through numerical simulation of the EDFA dynamic model, considering the gain spectrum.

  16. Optical security features and filters using plasmonic nanostructures

    Science.gov (United States)

    Gallinet, Benjamin; Lütolf, Fabian; Duempelmann, Luc; Basset, Guillaume; Luu-Dinh, Angélique; Schnieper, Marc; Bosshard, Christian

    2017-02-01

    Plasmonics involves the interaction of light with metallic structures at the nanoscale, which enables in particular the generation of strong reflection and absorption effects in the visible and near infrared range. The fabrication of plasmonic nanostructures using ultra-violet (UV) imprint and thin metallic coatings is reported. Wafer-scale fabrication and process compatibility with cost-efficient roll-to-roll production are demonstrated, which paves the road towards an industrial implementation. The color, phase, polarization and direction of the transmitted light are controlled by tuning the process parameters and the symmetry of the nanostructures. A family of devices is presented, for which the potential for sensing, filtering, anticounterfeiting and optical security is evaluated.

  17. Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides

    Directory of Open Access Journals (Sweden)

    M. P. Bulk

    2008-01-01

    Full Text Available The refractive index modulation associated with the implantation of oxygen or silicon into waveguides formed in silicon-on-insulator (SOI has been investigated to determine the feasibility of producing planar, implantation induced Bragg grating optical filters. A two-dimensional coupled mode theory-based simulation suggests that relatively short grating lengths, on the order of a thousand microns, can exhibit sufficient wavelength suppression, of >10 dB, using the implantation technique. Fabricated planar implanted slab-guided SOI waveguides demonstrated an extinction of −10 dB for TE modes and −6 dB for TM modes for the case of oxygen implantation. Extinctions of −5 dB and −2 dB have been demonstrated with silicon implantation.

  18. Study on Optical Filter Heating in Background Limited Detector Experiments

    Science.gov (United States)

    Bueno, J.; de Visser, P. J.; Doyle, S.; Baselmans, J. J. A.

    2014-09-01

    Cryogenic test setups with controlled stray light environments capable of reaching ultra-low radiative background levels are required to test far infrared (FIR) and submillimeter (sub-mm) wave radiation detectors for future space based observatories. In recent experiments (Nature Commun 5:3130, 2014), in which 1.54 THz radiation was coupled onto an antenna-coupled kinetic inductance detector (KID), we found a higher than expected optical loading. We show that this can be explained by assuming heating of the metal mesh IR filters and re-radiation onto the KID. Note that the total power from the cryogenic black body source used in the experiments (at T = - K) is much larger than the power inside the - THz band we use to calibrate our detector. The out-of-band radiation can have up to 5 orders of magnitude more power than inside the - THz band of interest. A strategy to mitigate the filter heating problem is presented, and when it is implemented, the validated upper limit for stray light at the detector level is down to few aW.

  19. Parallelized unscented Kalman filters for carrier recovery in coherent optical communication.

    Science.gov (United States)

    Jignesh, Jokhakar; Corcoran, Bill; Lowery, Arthur

    2016-07-15

    We show that unscented Kalman filters can be used to mitigate local oscillator phase noise and to compensate carrier frequency offset in coherent single-carrier optical communication systems. A parallel processing architecture implementing the unscented Kalman filter is proposed, improving upon a previous parallelized linear Kalman filter (LKF) implementation.

  20. Temporal characteristics of narrow-band optical filters and their application in lidar systems.

    Science.gov (United States)

    Yang, G; Billmers, R; Herczfeld, P R; Contarino, V M

    1997-03-15

    The temporal characteristics of two different narrow-band optical filters at 532 nm are reported. Both filters operate on the 4P(1/2) - 8S(1/2) atomic transition of potassium vapor, where the 4P(1/2) state is excited by a 770-nm, 10-ns laser pulse. The filters operate on the principle of circular birefringence induced by either the Faraday effect or two-photon transition, which is confirmed by experiments. The characteristic decay times of the filters are 5 and 0.015 mus, which is significant for the design of optical gating and signal processing with matched filters for ocean lidar.

  1. Design of optical notch filter based on Michelson Gires-Tournois interferometer

    Science.gov (United States)

    Guo, Sen; Zhang, Juan; Li, Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is presented for Michelson interferometer with Gires-Tournois Etalon. The method is not only effective and simple, but also can be used to implement the designing of the optical notch filter which has arbitrary numbers of notch points in one free spectrum range. As a designing example, the optical notch filter with one notch point is given in the paper. The change of output intensity spectrum is also investigated for the reflection coefficient of the mirror and the distance between the mirrors deviating from the ideal value, finally the tuning characteristics of the notch filter is discussed.

  2. Transversal filter MMIC design for multi-Gbit/s optical CDMA systems.

    OpenAIRE

    Aguilar Torrentera, J.

    2004-01-01

    In this thesis, the approach of the distributed-amplifier based transversal filter for multi-Gbit/s Optical CDMA systems is addressed. Of particular interest is the research into circuits that enable handling high rate sequences for high-speed system applications. Different distributed transversal filter structures were considered, in particular those that allow extending the range of filtering functions by including positive and negative tap gain weight control. A novel transversal filter to...

  3. Optical properties of the direct-coupled Y-branch filters by using photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Tian Jie; Ren Cheng; Feng Shuai; Liu Ya-Zhao; Tao Hai-Hua; Li Zhi-Yuan; Cheng Bing-Ying; Zhang Dao-Zhong; Jin Ai-Zi

    2006-01-01

    We fabricated a new type of two-dimensional photonic crystal slab filter. The resonant cavities were directly put into the waveguide arms. The optical transmissions of the filters were measured and the results show that the optimized two-channel filters give good intensity distribution at the output ports of the waveguide. A minimum wavelength spacing of 5 nm of the filter outputs is realized by accurately controlling the size of the resonant cavities.

  4. High-resolution 640 Gbit/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Guan, P.; Kasai, K.

    2010-01-01

    We demonstrate pre-scaled 40 GHz clock recovery from 640 Gbit/s optical time-division-multiplexed data using LiNbO$_3$ modulators, based on time-domain optical Fourier transformation and optical filtering. The clock recovery is used in a 640 Gbit/s error-free transmission over 300 km....

  5. NOVEL FIBER GRATING SENSOR DEMODULATION TECHNIQUE BASED ON OPTICAL WAVELET FILTERING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The optical wavelet filter is designed. It can filter and choose frequency swiftly. It can realize demodulation of distributed fiber Bragg grating(FBG) measurement system. Its scanning resolution and scanning period depend on wavelet function. Wavelet function is controlled by computer. Compared to conventional scan filter, optical wavelet filtering has some advantages such as simple structure, high scan frequency, high resolution and good linearity. At last, the error of optical wavelet filter scanning procedure is analyzed. Scanning step length refers to the shifting of optical wavelet window's central frequency. It affects system precision directly. If scanning step length is different, the measured signal is different. The methods of reducing step length guarantee scanning periodic time are presented.

  6. Dynamics of semiconductor microring lasers subject to on-chip filtered optical feedback

    Science.gov (United States)

    Khoder, Mulham; Friart, Gaetan; Danckaert, Jan; Erneux, Thomas; Van der Sande, Guy; Verschaffelt, Guy

    2016-04-01

    Tunable laser diodes are needed in a range of applications including wavelength division multiplexing, optical instrument testing, optical sensing and tera hertz generation. In this work, we investigate the stability of lasers which use filtered optical feedback for wavelength tuning. We investigate experimentally the dynamics induced by this on-chip filtered optical feedback. In this study, we choose to use a compact device which combines a semiconductor ring laser with on-chip filtered optical feedback to achieve wavelength tunability. The filtered optical feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback of each wavelength channel independently. Experimental observations show that the stability of the clockwise and counterclockwise propagation modes depends on the feedback strength. Experiments also show that for a specific range of the feedback strength, anti-phase oscillations in the intensity of the clockwise and counterclockwise propagating modes can be induced. These oscillations could not be seen in the same semiconductor ring laser without filtered optical feedback. We investigate how the frequency and the amplitude of these oscillations change under the effect of filtered optical feedback. We also discuss how these anti-phase oscillations can be suppressed by properly choosing the feedback strength.

  7. Hyperresolving phase-only filters with an optically addressable liquid crystal spatial light modulator.

    Science.gov (United States)

    McOrist, J; Sharma, M D; Sheppard, C J R; West, E; Matsuda, K

    2003-01-01

    Hyperresolving (sometimes called 'superresolving' or 'ultraresolving') phase-only filters can be generated using an optically addressable liquid crystal spatial light modulator. This approach avoids the problems of low efficiency, and coupling between amplitude and phase modulation, that arise when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. In this paper we present experimental hyperresolved images obtained using an optically addressable parallel-aligned nematic LCD with two zone Toraldo type phase-only filters. The images are compared with theoretical predictions.

  8. Design of Super-resolution Filters with a Gaussian Beam in Optical Data Storage Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Sha-Sha; ZHAO Xiao-Feng; LI Cheng-Fang; RUAN Hao

    2008-01-01

    @@ Super-resolution filters based on a Ganssian beam are proposed to reduce the focusing spot in optical data storage systems.Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions.Their performances are analysed and compared with those based on plane wave in detail.The energy utilizations are presented.The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.

  9. Peptide-modified optical filters for detecting protease activity.

    Science.gov (United States)

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-11-01

    The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).

  10. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  11. Optimization of optical filter using triple coupler ring resonators structure based on polyimide substrate

    Science.gov (United States)

    Mahmudin, D.; Estu, T. T.; Fathnan, A. A.; Maulana, Y. Y.; Daud, P.; Sugandhi, G.; Wijayanto, Y. N.

    2016-11-01

    Optical filter is very important components in WDM network. MRR is a basic structure to design the optical filter because of easy to design for improving its performance. This paper discusses an innovative structure of the MRR, which is Triple Coupler Ring Resonators (TCRR) for optical filter applications. Values of width between bus and ring and values of radius of the ring in the structure TCRR were analyzed and optimized for several variations for obtaining coupling coefficient values. Therefore, wide Free Spectral Range (FSR) and high crosstalk suppression bandwidth can be obtained. As results, at the optimized width of gap of 100 nm and the optimized radiation of 8 μm, FSR of 2.85 THz and crosstalk suppression bandwidth of 60 GHz were achieved. Based on the results, this structure can be used for filtering optical signals in optical fiber communication.

  12. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    Science.gov (United States)

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  13. Effect of optoelectronic feedback on the characteristics of acousto-optical collinear filtering

    Energy Technology Data Exchange (ETDEWEB)

    Balakshy, V I; Kuznetsov, Yu I; Mantsevich, S N [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2016-02-28

    The first results of the theoretical and experimental studies of an acousto-optical system with feedback based on a collinear cell made of a calcium molybdate crystal are presented. It is shown that the positive electronic feedback allows essential sharpening of the instrument function of the acousto-optical collinear filter, thus increasing the precision of measuring the optical radiation wavelength. (acoustooptics)

  14. Silica-on-silicon optical couplers and coupler based optical filters

    DEFF Research Database (Denmark)

    Leick, Lasse

    2002-01-01

    This work concerns modeling and chracterization of non ampligying silica-on-silicon optical components for wavelength division mulitplexed networks. Emphasis is placed on optical couplers and how they can be used as building blocks for devices with a larger complexity. It has been investigated how...... mode interference couplers have superior proces tolerance. The measured characteristics of mulit mode interference couplers deviate from the simulations, showing an unexpected imbalance and large polarization sensitivity. This can be explained by a sligthly non-uniform index distribution across...... penalty. The dispersion can be removed by adding a three-stage all-pass filter on the input arm. The above mentioned silica-on-silicon components have been fabricated using a conventional method where the waveguides are defined and fabricated using cleanroom processing. Waveguides can also be fabricated...

  15. Suppression of Sidelobe for Acousto-Optic Tunable Filter in Near-Infrared Spectral Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we calculated the acoustic intensity distribution of different transducers, and designed acousto-optic tunable filter(AOTF) based on different transducers. Through the experiment, we find sidelobe can be reduced by changing the transducer geometry.

  16. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During our Phase I SBIR research, we propose to integrate a novel low-temperature large-strain actuator technology into Fabry-Perot optical filters. The resulting...

  17. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs.

    NARCIS (Netherlands)

    Theelen, T.; Wesseling, P.; Keunen, J.E.E.; Klevering, B.J.

    2007-01-01

    BACKGROUND: Our study aims to identify anatomical characteristics of glaucoma filtering blebs by means of slit lamp-adapted optical coherence tomography (SL-OCT) and to identify new parameters for the functional prognosis of the filter in the early post-operative period. METHODS: Patients with

  18. Liquid crystal TV-based white light optical tracking novelty filter.

    Science.gov (United States)

    Li, Y; Kostrzewski, A; Kim, D H; Eichmann, G

    1989-11-15

    A compact white light optical tracking novelty filter is demonstrated. Based on the use of two inexpensive liquid crystal televisions, a filtered and collimated white light source, digital delay, and video recorder, this portable white light device performs two major image comparison operations, a real time image subtraction and novelty tracking operations. Some preliminary experimental results are presented.

  19. Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating.

    Science.gov (United States)

    d'Alessandro, Antonio; Donisi, Domenico; De Sio, Luciano; Beccherelli, Romeo; Asquini, Rita; Caputo, Roberto; Umeton, Cesare

    2008-06-23

    We report the fabrication and the optical characterization of a hybrid tunable integrated optical filter. It consists of a diffused ion-exchanged channel waveguide on a borosilicate glass substrate with a cover of the same glass to form a gap filled with a holographic grating. The grating morphology, called POLICRYPS (POlymer LIquid CRYstal Polymer Slices), is made of alternating stripes of polymer and liquid crystal acting as overlayer for the underneath waveguide. The filter structure includes aluminum coplanar electrodes to electrically control the grating properties, allowing the tunability of the filter. The electric driving power required to tune the filter obtained was in the range of submilliwatts due to the efficient liquid crystal electro-optic effect.

  20. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    Science.gov (United States)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  1. General IIR optical notch filter based on Michelson Gires-Tournois interferometer

    Science.gov (United States)

    Zhang, Juan; Guo, Sen; Li, Xue

    2012-03-01

    A general IIR optical notch filter design is presented from a digital filter design perspective for Michelson Gires-Tournois Interferometer structure. Optical notch filter with arbitrary notch frequency, notch point number, and 3 dB rejection bandwidth can be designed easily. According to the spectral requirement of desired notch filter, in frequency domain we firstly calculate the transfer function of desired allpass filter. Then the numbers of reflectors in Gires-Tournois etalon can be determined. We calculate the transfer function of this multi-cavity Gires-Tournois etalon by using Z-transform. By making the transfer function of allpass filter in frequency domain equal to that of the multi-cavity Gires-Tournois etalon, the notch filter can be directly realized. Different design examples are given in detail in the paper. The change of output spectrum is also investigated for the reflectance of the reflectors and the distance between the reflectors deviating from the ideal value. The results show that the notch filter has the tunability of notch frequency and 3 dB rejection bandwidth. The chromatic dispersion characteristic of the notch filter is analyzed finally. It shows that the notch filter has excellent chromatic dispersion characteristic.

  2. Thin-film optical notch filter spectacle coatings for the treatment of migraine and photophobia

    Science.gov (United States)

    Hoggan, Ryan N.; Subhash, Amith; Blair, Steve; Digre, Kathleen B.; Baggaley, Susan K.; Gordon, Jamison; Brennan, K.C.; Warner, Judith E.A.; Crum, Alison V.; Katz, Bradley J.

    2017-01-01

    Previous evidence suggests optical treatments hold promise for treating migraine and photophobia. We designed an optical notch filter, centered at 480 nm to reduce direct stimulation of intrinsically photosensitive retinal ganglion cells. We used thin-film technology to integrate the filter into spectacle lenses. Our objective was to determine if an optical notch filter, designed to attenuate activity of intrinsically photosensitive retinal ganglion cells, could reduce headache impact in chronic migraine subjects. For this randomized, double-masked study, our primary endpoint was the Headache Impact Test (HIT-6; GlaxoSmithKline, Brentford, Middlesex, UK). We developed two filters: the therapeutic filter blocked visible light at 480 nm; a 620 nm filter was designed as a sham. Participants were asked to wear lenses with one of the filters for 2 weeks; after 2 weeks when no lenses were worn, they wore lenses with the other filter for 2 weeks. Of 48 subjects, 37 completed the study. Wearing either the 480 or 620 nm lenses resulted in clinically and statistically significant HIT-6 reductions. However, there was no significant difference when comparing overall effect of the 480 and 620 nm lenses. Although the 620 nm filter was designed as a sham intervention, research published following the trial indicated that melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, is bi-stable. This molecular property may explain the unexpected efficacy of the 620 nm filter. These preliminary findings indicate that lenses outfitted with a thin-film optical notch filter may be useful in treating chronic migraine. PMID:26935748

  3. The behaviours of optical novelty filter based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Yuan Yi-Zhe; Liang Xin; Xu Tang; Zhang Chun-Ping; Song Qi-Wang

    2006-01-01

    The quality of the novelty filter image is investigated at different intensities of the incident blue and yellow beams irradiating a bacteriorhodopsin (bR) film. The relationship between the transmitted blue beams and the incident yellow beams is established. The results show that the contrast of the novelty filter image depends on the lifetime of longest lived photochemical state (M state). These results enable one to identify the direction of a moving object and to improve the quality of the novel filter image by prolonging the lifetime of M state.

  4. Control of the polychromatic response of an optical system through the use of annular color filters.

    Science.gov (United States)

    Escalera, J C; Yzuel, M J; Campos, J

    1995-04-01

    The use of annular color filters as a tool to modify the polychromatic response of an optical system is investigated. The introduction of filters with transmission that depends on the wavelength produces a significant modification of the chromaticity response. In contrast, the position in the pupil of the annuli in which the color filters are placed modifies mainly the illuminance response. The influence of different types of annular color filter on the transverse and axial responses of the aberration-free system is studied.

  5. LIGHT MODULATION: Quasi-collinear tunable acousto-optic paratellurite crystal filters for wavelength division multiplexing and optical channel selection

    Science.gov (United States)

    Molchanov, V. Ya; Voloshinov, V. B.; Makarov, O. Yu

    2009-04-01

    Quasi-collinear acousto-optic interaction is studied in acoustically and optically anisotropic paratellurite crystals. The possible applications of this interaction in acousto-optic tunable filters with a high spectral resolution are discussed. Different modifications of devices are compared and variants of devices intended for processing light beams and selection of light signals in fibreoptic communication systems with wavelength division multiplexing (WDM) at λ simeq 1550 nm are considered.

  6. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  7. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Kunpeng Feng

    2017-02-01

    Full Text Available To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO. The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry–Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  8. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis.

    Science.gov (United States)

    Feng, Kunpeng; Cui, Jiwen; Dang, Hong; Wu, Weidong; Sun, Xun; Jiang, Xuelin; Tan, Jiubin

    2017-02-10

    To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA) of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF) was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO). The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry-Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  9. A Lossy Fabry-perot Based Optical Filter for Natural Gas Analysis

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2014-01-01

    A set-up for optical gas composition measurement based on absorption spectroscopy is composed of a white light source, a gas cell and a spectrometer. The Fabry-Perot optical filter is suitable for miniaturization of this system, as it is composed of only two reflectors with a transparent layer in-be

  10. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  11. Optical Filter for Providing the Required Illumination to Enable Narrow Band Imaging

    NARCIS (Netherlands)

    Silva, M.F.; Rodrigues, J.A.; Oliveira, M.J.; Fernandes, A.R.; Pereira, S.; Costa, C.G.; Ghaderi, M.; Ayerden, P.; Goncalves, L.M.; De Graaf, G.; Wolffenbuttel, R.F.; Correia, J.H.

    2014-01-01

    This paper presents the design, fabrication and characterization of two Fabry Perot type optical filters (415 nm and 540 nm) for enabling Narrow Band Imaging (NBI) in medical devices (MD). The two-colour illumination should satisfy a highly specific optical design, which is composed of a thin-film

  12. Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Gain-saturation-induced self-phase modulation (SPM) leading to pulse distortion in a semiconductor optical amplifier (SOA) is overcome by shifting a tunable optical filter (TOF). A recovered or broadened pulse can be obtained after filtering the amplified pulse in the SOA even if the short pulse...... to a longer wavelength for RZ signals and to a shorter for NRZ signals. 80-Gb/s optical time division multiplexing (OTDM) signal amplification in the SOA is demonstrated for the first time. We also demonstrate that a large IPDR for the 80-Gb/s OTDM signal can be obtained by shifting the TOF....

  13. Wave-plate structures, power selective optical filter devices, and optical systems using same

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  14. Investigation of utilizing a VCSEL diode to work as a tunable optical bandpass filter

    Science.gov (United States)

    Chang, Ching-Hung; Huang, Yi-Syuan; Li, Chung-Yi

    2017-04-01

    Tunable optical band-pass filter (TOBPF) composed of a vertical-cavity surface-emitting laser (VCSEL) is proposed for multi-wavelength optical fiber transport systems. Experimental results prove that through properly adjusting VCSEL driving current, one of multiple injected lightwaves can properly flow through the proposed optical filter and others will be attenuated roughly 12 dB. Furthermore, by changing the VCSEL driving current, the pass-band window of the VCSEL-based TOBPF can be shifted to align with different designated injected lightwave and to block the others. By employing the TOBPF in multi-wavelength optical fiber transport systems, proper eye diagrams are experimentally observed for each dedicated optical signal. The proposed scheme is shown to be a practical and flexible component for multi-wavelength optical fiber transport systems.

  15. Filter Performance of a Cesium Faraday Optical Filter at 852 nm

    Institute of Scientific and Technical Information of China (English)

    掌蕴东; 贾晓玲; 毕勇; 马祖光; 王骐

    2002-01-01

    We have investigated a cesium Faraday filter at 852nm in relatively weak and strong magnetic fields, theoretically and experimentally. With a cesium cell of 0.02m length in an axial magnetic field of 0.06T, the line-centre operation has been achieved. The calculated peak transmission reached 99% with a full width at half maximum (FWHM) bandwidth of only 3.9 GHz. The measured FWHM bandwidth of the filter is 3.29 GHz, which is in general agreement with the theoretical result.

  16. Fabrication of optical filters based on polymer asymmetric Bragg couplers.

    Science.gov (United States)

    Chuang, Wei-Ching; Lee, An-Chen; Chao, Ching-Kong; Ho, Chi-Ting

    2009-09-28

    In this work, we successfully developed a process to fabricate dual-channel polymeric waveguide filters based on an asymmetric Bragg coupler (ABC) using holographic interference techniques, soft lithography, and micro molding. At the cross- and self-reflection Bragg wavelengths, the transmission dips of approximately -16.4 and -11.5 dB relative to the 3 dB background insertion loss and the 3 dB transmission bandwidths of approximately 0.6 and 0.5 nm were obtained from an ABC-based filter. The transmission spectrum overlaps when the effective index difference between two single waveguides is less than 0.002.

  17. Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance

    Science.gov (United States)

    Kozlova, O.; Sadouni, A.; Truong, D.; Briaudeau, S.; Himbert, M.

    2016-12-01

    We describe a high-performance, transportable, versatile spectroradiometer based on an acousto-optical tunable filter (AOTF). The instrument was developed for temperature metrology, namely, to determine the thermodynamic temperature of black bodies above the Ag freezing point (961.78 °C). Its main design feature is the attenuation of the diffraction side lobes (and, thus, out-of-band stray light) thanks to the use of a double-pass configuration. The radiofrequency tuning of the AOTF allows continuous, fine, and rapid wavelength control over a wide spectral range (650 nm-1000 nm). The instrument tunability can be easily calibrated with an Ar spectral lamp with reproducibility within 10 pm over one week. The instrument was characterised in terms of relative signal stability (few 10-4) and wavelength stability (1 pm) over several hours. The spectral responsivity of the instrument was calibrated with two complementary methods: tuning of the wavelength of the optical source or tuning the radiofrequency of the AOTF. Besides the application for thermodynamic temperature determination at the lowest uncertainty level, this instrument can also be used for multispectral non-contact thermometry of processed materials of non-grey and non-unitary emissivity (in the glass or metallurgical industries).

  18. Non-orthogonal optical multicarrier access based on filter bank and SCMA.

    Science.gov (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-10-19

    This paper proposes a novel non-orthogonal optical multicarrier access system based on filter bank and sparse code multiple access (SCMA). It offers released frequency offset and better spectral efficiency for multicarrier access. An experiment of 73.68 Gb/s filter bank-based multicarrier (FBMC) SCMA system with 60 km single mode fiber link is performed to demonstrate the feasibility. The comparison between fast Fourier transform (FFT) based multicarrier and the proposed scheme is also investigated in the experiment.

  19. Note: An ultranarrow bandpass filter system for single-photon experiments in quantum optics.

    Science.gov (United States)

    Höckel, David; Martin, Eugen; Benson, Oliver

    2010-02-01

    We describe a combined ultranarrow bandpass filtering setup for single-photon experiments in quantum optics. The filter is particularly suitable for single-photon electromagnetically induced transparency (EIT) experiments, but can also be used in several similar applications. A multipass planar Fabry-Perot etalon together with polarization filters and spatial filtering allows 114 dB pump beam suppression, while the signal beam is attenuated by just 4 dB, although both wavelengths are only separated by 0.025 nm (9.2 GHz). The multipass etalon alone accounts for 46 dB suppression while it has a peak transmission of 65%. We demonstrate EIT experiments in Cs vapor at room temperature with probe power in the femtowatt regime using this filter.

  20. Ultra Fast Optical Sectioning: Signal preserving filtering and surface reconstruction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Poel, Mike van der; Larsen, Rasmus

    2011-01-01

    In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...... to extract high quality 3D surface points from 2D images recorded at over 3000 fps. The scanner has been developed for digital impression taking in the dental area. Our work relates to future in-ear scanning for tting custom hearing aids without impression taking.......In 3D surface scanning it is desirable to lter away bad data without altering the quality of the remaining good data. Filtering of raw scanner data before surface reconstruction can minimize the induced er- ror and improve on the probability of reconstructing the true surface. If outliers consist...

  1. Highly-efficient thermally-tuned resonant optical filters.

    Science.gov (United States)

    Cunningham, John E; Shubin, Ivan; Zheng, Xuezhe; Pinguet, Thierry; Mekis, Attila; Luo, Ying; Thacker, Hiren; Li, Guoliang; Yao, Jin; Raj, Kannan; Krishnamoorthy, Ashok V

    2010-08-30

    We demonstrate spectral tunability for microphotonic add-drop filters manufactured as ring resonators in a commercial 130 nm SOI CMOS technology. The filters are provisioned with integrated heaters built in CMOS for thermal tuning. Their thermal impedance has been dramatically increased by the selective removal of the SOI handler substrate under the device footprint using a bulk silicon micromachining process. An overall ~20x increase in the tuning efficiency has been demonstrated with a 100 µm radius ring as compared to a pre-micromachined device. A total of 3.9 mW of applied tuning power shifts the filter resonant peak across one free spectral node of the device. The Q-factor of the resonator remains unchanged after the co-integration process and hence this device geometry proves to be fully CMOS compatible. Additionally, after the cointegration process our result of 2π shift with 3.9 mW power is among the best tuning performances for this class of devices. Finally, we examine scaling the tuning efficiency versus device footprint to develop a different performance criterion for an easier comparison to evaluate thermal tuning. Our criterion is defined as the unit of power to shift the device resonance by a full 2π phase shift.

  2. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  3. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Pu, Minhao; Liu, Liu

    2011-01-01

    A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired...... tunability. A detailed analysis and the design of the device are presented. The shape factor and extinction ratio of the filter are optimized by thermally controlling the phase difference between the two arms of the MZI. Simultaneous bandwidth and wavelength tunability with in-band ripple control...

  4. Accurate Gain Flattening Filters Manufactured by Optical Compensation Monitoring Method

    Institute of Scientific and Technical Information of China (English)

    J. J. Pan; FengQing Zhou; James Guo; Mingjie Zhang; Ming Zhou; Joy Jiang

    2003-01-01

    GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.

  5. Transmission Maps of the ACIS UV/Optical Blocking Filter Flight Units

    Science.gov (United States)

    Townsley, L. K.; Broos, P. S.; Mackay, J. F.

    1996-05-01

    The AXAF CCD Imaging Spectrometer (ACIS) employs filters made of Lexan coated on both sides with aluminum to block optical and UV light, so that the CCDs see only X-radiation from astronomical targets. These filters must be characterized by spatially mapping their transmission at various astrophysically and instrumentally important energies. The Penn State University ACIS team determined that a synchrotron, where a variety of well-determined X-ray energies is available, would provide the best calibration. We measured engineering grade UV/optical blocking filters at the University of Wisconsin Synchrotron Radiation Center (SRC) in June and October 1995, modified the hardware and software on a dry run in January 1996, and just completed the calibration of the flight filters in March 1996. The Multilayer Beamline at the SRC was used for these measurements because it can access several energies important to the calibration and its built-in, computer-controlled x-z stage allows us to map the filters automatically with user-specified spatial resolution. These transmission maps formed the basis for choosing the actual flight filter units from the set of filters manufactured with flight specifications. We obtained transmission measurements at five energies in the range 200-2000 eV. We present here best-fit models of the filter transmission based on these data points. Better than one percent accuracy in transmission as a function of energy was achieved over the entire filter area on scales corresponding to thirty arcseconds in the focal plane of AXAF (the amplitude of the planned aspect dither of the spacecraft). The pair of filters (one for the Imaging array and one for the Spectroscopy array) selected for flight will be installed on the ACIS focal plane in early summer.

  6. An adaptive filter for studying the life cycle of optical rogue waves.

    Science.gov (United States)

    Liu, Chu; Rees, Eric J; Laurila, Toni; Jian, Shuisheng; Kaminski, Clemens F

    2010-12-06

    We present an adaptive numerical filter for analyzing fiber-length dependent properties of optical rogue waves, which are highly intense and extremely red-shifted solitons that arise during supercontinuum generation in photonic crystal fiber. We use this filter to study a data set of 1000 simulated supercontinuum pulses, produced from 5 ps pump pulses containing random noise. Optical rogue waves arise in different supercontinuum pulses at various positions along the fiber, and exhibit a lifecycle: their intensity peaks over a finite range of fiber length before declining slowly.

  7. Double pass in acousto-optic tunable filter for telecommunication network

    Science.gov (United States)

    Issa, Hadeel; Quintard, Véronique; Pérennou, André; Sakkour, Afif

    2014-07-01

    We investigate an acousto-optic tunable filter setup for wavelength division multiplexing telecommunication applications in wideband C (100 nm around 1550 nm). Anisotropic Bragg diffraction of light in TeO2 bulk crystal is first investigated experimentally and theoretically in a quasi-collinear interaction configuration. Based on those characterizations, we propose a double-pass optical beam which allows us to improve the filter performances in terms of crosstalk and selectivity: the full width at half maximum and the sidelobe level are reduced.

  8. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  9. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Dino; Oddershede, Lene B., E-mail: oddershede@nbi.dk [Niels Bohr Institute (NBI), University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Reihani, S. Nader S. [Department of Physics, Sharif University of Technology, 11369-9161 Tehran (Iran, Islamic Republic of)

    2014-05-15

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts.

  10. Low power consumption integrated acousto-optic filter in domain inverted LiNbO3 superlattice

    National Research Council Canada - National Science Library

    Yudistira, D; Janner, D; Benchabane, S; Pruneri, V

    2010-01-01

    We report on an integrated acousto-optic filter in domain inverted LiNbO3 using a coplanar electrode configuration, which can achieve complete optical switching at electrical powers as low as 50 mW...

  11. Low power consumption integrated acousto-optic filter in domain inverted LiNbO_3 superlattice

    National Research Council Canada - National Science Library

    Yudistira, D; Janner, D; Benchabane, S; Pruneri, V

    2010-01-01

    We report on an integrated acousto-optic filter in domain inverted LiNbO(3) using a coplanar electrode configuration, which can achieve complete optical switching at electrical powers as low as 50mW...

  12. An Evaluation of Mass Absorption Cross-Section for Optical Carbon Analysis on Teflon Filter Media.

    Science.gov (United States)

    Presler-Jur, Paige; Doraiswamy, Prakash; Hammond, Oki; Rice, Joann

    2017-04-05

    Black carbon (BC) or elemental carbon (EC) is a by-product of incomplete fuel combustion, and contributes adversely to human health, visibility, and climate impacts. Previous studies have examined non-destructive techniques for particle light attenuation measurements on Teflon(®) filters to estimate BC. The incorporation of an inline Magee Scientific OT21 Transmissometer into the MTL AH-225 robotic weighing system provides the opportunity to perform optical transmission measurements on Teflon(®) filters at the same time as the gravimetric mass measurement. In this study, we characterize the performance of the inline OT21, and apply it to determine the mass absorption cross-section (MAC) of PM2.5 BC across the U.S. We analyzed 5393 archived Teflon(®) filters from the Chemical Speciation Network (CSN) collected during 2010-2011 and determined MAC by comparing light attenuation on Teflon(®) filters to corresponding thermal EC on quartz-fiber filters. Results demonstrated the importance of the initial transmission (I0) value used in light attenuation calculations. While light transmission varied greatly within filter lots, the average I0 of filter blanks during from the sampling period provided an estimate for archived filters. For newly collected samples, it is recommended that filter-specific I0 measurements be made (i.e., same filter before sample collection). The estimated MAC ranged from 6.9 to 9.4 m(2)/g that varied by region and season across the U.S., indicating that using a default value may lead to under- or over-estimated BC concentrations. An analysis of the chemical composition of these samples indicated good correlation with EC for samples with higher EC content as a fraction of total PM2.5 mass, while the presence of light scattering species such as crustal elements impacted the correlation affecting the MAC estimate. Overall, the method is demonstrated to be a quick, cost-effective approach to estimate BC from archived and newly sampled Teflon

  13. Infrared fiber coupled acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Levin, K. H.; Kindler, E.; Ko, T.; Lee, F.; Tran, D. C.; Tapphorn, R. M.

    A spectrometer design is introduced which combines an acoustooptic tunable filter (AOTF) and IR-transmitting flouride-glass fibers. The AOTF crystal is fabricated from TeO2 and permits random access to any wavelength in less than 50 microseconds, and the resulting spectrometer is tested for the remote analysis of gases and hydrocarbons. The AOTF spectrometer, when operated with a high-speed frequency synthesizer and optimized algorithms, permits accurate high-speed spectroscopy in the mid-IR spectral region.

  14. Analysis of an effective optical filtering technique to enhance microwave phase shifts based on slow and fast light effects

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Xue, Weiqi

    2008-01-01

    We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....

  15. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    Science.gov (United States)

    Wu, Bao-Jian; Lu, Xin; Qiu, Kun

    2010-06-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking.

  16. LIGHT MODULATION: Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    Science.gov (United States)

    Magdich, L. N.; Yushkov, K. B.; Voloshinov, V. B.

    2009-04-01

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 μm.

  17. Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Matsuura, Motoharu; Raz, Oded; Gomez-Agis, Fausto; Calabretta, Nicola; Dorren, Harm J S

    2013-01-15

    We present an ultrahigh-speed optical demultiplexing concept based on optical blue-shift filtering in a quantum-dot semiconductor optical amplifier (QD-SOA). Using a simple scheme, a QD-SOA and an optical bandpass filter, we have successfully achieved error-free operations at 40 Gbit/s on all the extracted tributaries from an aggregated traffic at 320 Gbit/s.

  18. Passive Ranging Using a Dispersive Spectrometer and Optical Filters

    Science.gov (United States)

    2012-12-20

    sending a number of light rays , from the same point in the scene, into the optical system. Then it traces them through to find where they hit on the focal...55 Appendix A. MATLAB Code Used... radar . First, since no signal is emitted, a passive sensor is much more difficult to detect, which is especially important on stealth platforms

  19. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter......-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification....

  20. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  1. Towards events recognition in a distributed fiber-optic sensor system: Kolmogorov-Zurbenko filtering

    CERN Document Server

    Fedorov, Aleksey; Zhirnov, Andrey; Nesterov, Evgeniy; Namiot, Dmitry; Pnev, Alexey; Karasik, Valery

    2015-01-01

    The paper is about de-noising procedures aimed on events recognition in signals from a distributed fiber-optic vibration sensor system based on the phase-sensitive optical time-domain reflectometry. We report experimental results on recognition of several classes of events in a seismic background. A de-noising procedure uses the framework of the time-series analysis and Kolmogorov-Zurbenko filtering. We demonstrate that this approach allows revealing signatures of several classes of events.

  2. Tunable optical filters for in-plane integration on InP MEMS platform

    Science.gov (United States)

    Datta, M.; McGee, J.; Pruessner, M. W.; Amarnath, K.; Kanakaraju, S.; Ghodssi, R.

    2005-07-01

    We have demonstrated a planar waveguide-based tunable integrated optical filter in indium phosphide (InP) with on-chip micro-electro-mechanical (MEMS) actuation. An air-gap Fabry-Perot resonant microcavity is formed between two waveguides, whose facets have monolithically integrated high-reflectivity multilayer InP/air Distributed Bragg Reflector (DBR) mirrors. A suspended beam electrostatic microactuator attached to one of the DBR mirrors modulates the microcavity length, resulting in a tunable filter. The DBR mirrors provide a broad high-reflectivity spectrum, within which the transmission wavelength can be tuned. The in-plane configuration of the filter enables easy integration with other active and passive waveguide-based optoelectronic devices on a chip and simplifies fiber alignment. Experimental results from the first generation of tunable optical filters are presented. The microfabricated filter exhibited a resonant wavelength shift of 12nm (1513-1525nm) at a low operating voltage of 7V. A full-width-half-maximum (FWHM) of 33 nm was experimentally observed, and the quality factor was calculated to be 46. Several improvements of the MEMS actuator, waveguide, and optical cavity design for the future devices are discussed.

  3. Design and Specification of Optical Bandpass Filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    Science.gov (United States)

    Leviton, Douglas B.; Tsevetanov, Zlatan; Woodruff, Bob; Mooney, Thomas A.

    1998-01-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) have been developed on a filter-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device (CCD) detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey (SDSS) which are optimized for astronomical photometry using today's charge-coupled-devices (CCD's). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  4. Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity

    OpenAIRE

    Zhiyang Hu; Shuhong Xu; Xiaojing Xu; Zhaochong Wang; Zhuyuan Wang; Chunlei Wang; Yiping Cui

    2015-01-01

    In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving o...

  5. An optical fiber MEMS pressure sensor using microwave photonics filtering technique

    Science.gov (United States)

    Wang, Yiping; Wang, Ming; Ni, Xiaoqi; Xia, Wei; Guo, Dongmei; Hao, Hui; Ma, Qingyu; Zhuang, Wei

    2017-04-01

    A fiber-optic micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filtering technique is firstly proposed and experimentally demonstrated. A single-bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure sensor has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4MPa.

  6. Iterative nonlinear ISI cancellation in optical tilted filter-based Nyquist 4-PAM system

    Science.gov (United States)

    Ju, Cheng; Liu, Na

    2016-09-01

    The conventional double sideband (DSB) modulation and direct detection scheme suffers from severer power fading, linear and nonlinear inter-symbol interference (ISI) caused by fiber dispersion and square-law direct detection. The system's frequency response deteriorates at high frequencies owing to the limited device bandwidth. Moreover, the linear and nonlinear ISI is enhanced induced by the bandwidth limited effect. In this paper, an optical tilted filter is used to mitigate the effect of power fading, and improve the high frequency response of bandwidth limited device in Nyquist 4-ary pulse amplitude modulation (4-PAM) system. Furtherly, iterative technique is introduced to mitigate the nonlinear ISI caused by the combined effects of electrical Nyquist filter, limited device bandwidth, optical tilted filter, dispersion, and square-law photo-detection. Thus, the system's frequency response is greatly improved and the delivery distance can be extended.

  7. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional

  8. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional all-dielectric

  9. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  10. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide

    Science.gov (United States)

    Debnath, Kapil; Welna, Karl; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G.; O'Faolain, Liam

    2013-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  11. Highly efficient optical filter based on vertically coupled Photonic crystal cavity and bus waveguide

    CERN Document Server

    Debnath, Kapil; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G; O'Faolain, Liam

    2012-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  12. Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm.

    Science.gov (United States)

    Ren, Hongwu; Dekany, Richard; Britton, Matthew

    2005-05-01

    We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system.

  13. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  14. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  15. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  16. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  17. Shot noise reduced terahertz detection via spectrally post-filtered electro-optic sampling

    CERN Document Server

    Porer, Michael; Huber, Rupert

    2016-01-01

    In ultrabroadband terahertz electro-optic sampling, spectral filtering of the gate pulse can strongly reduce the quantum noise while the signal level is only weakly affected. The concept is tested for phase-matched electro-optic detection of field transients centered at 45 THz with 12-fs near-infrared gate pulses in AgGaS2. Our new approach increases the experimental signal-to-noise ratio by a factor of 3 compared to standard electro-optic sampling. Under certain conditions an improvement factor larger than 5 is predicted by our theoretical analysis.

  18. Valley Filtering and Electronic Optics Using Polycrystalline Graphene

    Science.gov (United States)

    Nguyen, V. Hung; Dechamps, S.; Dollfus, P.; Charlier, J.-C.

    2016-12-01

    In this Letter, both the manipulation of valley-polarized currents and the optical-like behaviors of Dirac fermions are theoretically explored in polycrystalline graphene. When strain is applied, the misorientation between two graphene domains separated by a grain boundary can result in a mismatch of their electronic structures. Such a discrepancy manifests itself in a strong breaking of the inversion symmetry, leading to perfect valley polarization in a wide range of transmission directions. In addition, these graphene domains act as different media for electron waves, offering the possibility to modulate and obtain negative refraction indexes.

  19. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  20. Detection of mitochondrial fission with orientation-dependent optical Fourier filters.

    Science.gov (United States)

    Pasternack, Robert M; Zheng, Jing-Yi; Boustany, Nada N

    2011-02-01

    We utilize a recently developed optical imaging method based on Fourier processing with Gabor-like filters to detect changes in light scattering resulting from alterations in mitochondrial structure in endothelial cells undergoing apoptosis. Imaging based on Gabor filters shows a significant decrease in the orientation of subcellular organelles at 60 to 100 minutes following apoptosis induction and concomitant with mitochondrial fragmentation observed by fluorescence. The optical scatter changes can be detected at low resolution at the whole cell level. At high resolution, we combine fluorescence imaging of the mitochondria with optical Fourier-based imaging to demonstrate that the dynamic decrease in organelle orientation measured by optical Gabor filtering is spatially associated with fluorescent mitochondria and remains largely absent from nonfluorescent subcellular regions. These results provide strong evidence that the optical Gabor responses track mitochondrial fission during apoptosis and can be used to provide label-free, rapid monitoring of this morphological process within single cells. Copyright © 2011 International Society for Advancement of Cytometry.

  1. Zero-crossing detection algorithm for arrays of optical spatial filtering velocimetry sensors

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Pedersen, Finn; Hanson, Steen Grüner

    2008-01-01

    This paper presents a zero-crossing detection algorithm for arrays of compact low-cost optical sensors based on spatial filtering for measuring fluctuations in angular velocity of rotating solid structures. The algorithm is applicable for signals with moderate signal-to-noise ratios, and delivers...... a "real-time" output (0-1 kHz). The sensors use optical spatial-filtering velocimetry on the dynamical speckles arising from scattering off a rotating solid object with a non-specular surface. The technology measures the instantaneous angular velocity of a target, without being biased by any linear...... factor is directly related to the thermal expansion and refractive-index coefficients of the optics (> 10(-5) K-1 for glass). By cascade-coupling an array of sensors, the ensemble-averaged angular velocity is measured in "real-time". This will reduce the influence of pseudo-vibrations arising from...

  2. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.

    2005-01-01

    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  3. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  4. Optimizing the optical field distribution of solid immersion lens system by a continuous phase filter

    Institute of Scientific and Technical Information of China (English)

    Xuehua Ye; Yaoju Zhang; Junfeng Chen

    2007-01-01

    In solid immersion lens (SIL) microscopy systems with high numerical aperture (NA), there always exists the aberration produced by Fresnel effects at the interface between SIL and the sample. This aberration may cause the degradation of the image of sample. We design a continuous phase filter and optimize the optical field distribution of SIL system. The numerical results show that when the continuous phase filter is used, the field distribution of SIL system can be optimized, and the focal depth and intensity of transmitted light can be increased. At the same time, the intensity of side-lobe and the resolution are kept almost unchanged.

  5. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter.

    Science.gov (United States)

    Jung, Yongmin; Brambilla, Gilberto; Richardson, David J

    2008-09-15

    We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.

  6. Quartz optical filter for wavelength selection of frequency-doubled laser based on optical rotatory dispersion effect

    Institute of Scientific and Technical Information of China (English)

    Shan Zhang; Fuquan Wu; Wendi Wu; Haifeng Wang

    2007-01-01

    Based on the optical rotatory dispersion effect, an optical filter for selecting the second harmonic of a frequency-doubled laser is constructed from quartz in combination with polarizers. The operating principle is analyzed by matrix formulation, and the result indicates that the second harmonic of a frequency-doubled laser will be obtained when the rotation angle has a difference of (2n + 1)π/2 (n = 0, 1, 2, 3,… ) between the two polarizations of the second-harmonic laser and the fundamental laser. The spectrum of the output laser is taken by the AQ-6315A spectrometer, and the experimental results are in good agreement with the theoretical results.

  7. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    Science.gov (United States)

    Proklov, V. V.; Byshevski-Konopko, O. A.; Filatov, A. L.; Lugovskoi, A. V.; Pisarevsky, Yu V.

    2016-08-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB.

  8. The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design

    Science.gov (United States)

    Barbera, M.; Branduardi-Raymont, G.; Collura, A.; Comastri, A.; Eder, J.; Kamisiński, T.; Lo Cicero, U.; Meidinger, N.; Mineo, T.; Molendi, S.; Parodi, G.; Pilch, A.; Piro, L.; Rataj, M.; Rauw, G.; Sciortino, L.; Sciortino, S.; Wawer, P.

    2015-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all type of X-ray sources that present a UV/Visible bright counterpart. In this paper, we describe the main activities that we are carrying on for the conceptual design of the optical blocking filter, that will be mounted on the filter wheel, in order to satisfy the scientific requirements on optical load from bright UV/Vis astrophysical source, to maximize the X-ray transmission, and to withstand the severe acoustic and vibration loads foreseen during launch.

  9. Block matching 3D random noise filtering for absorption optical projection tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  10. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    Science.gov (United States)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  11. Cooled optical filters for Q-band infrared astronomy (15-40 μm)

    Science.gov (United States)

    Hawkins, Gary J.; Sherwood, Richard E.; Djotni, Karim; Threadgold, Timothy M.

    2016-07-01

    With a growing interest in mid- and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.

  12. CMOS single-photon avalanche diodes and micromachined optical filters for integrated fluorescence sensing

    Science.gov (United States)

    Dandin, Marc Peralte

    This dissertation presents a body of work that addresses the two most pressing challenges in the field of integrated fluorescence sensing, namely, the design of integrated optical sensors and the fabrication of high-rejection micro-scale optical filters. Two novel enabling technologies were introduced. They are: the perimeter-gated single-photon avalanche diode (PGSPAD), for on-chip photon counting, and the benzotriazole (BTA)-doped thin-film polymer filter, for on-chip ultraviolet light rejection. Experimental results revealed that the PGSPAD front-end, fabricated in a 0.5 μm standard mixed-signal CMOS process, had the capability of counting photons in the MHz regime. In addition, it was found that a perimeter gate, a structural feature used to suppress edge breakdown in the diode, also maximized the signal-to-noise-ratio in the high-count rate regime whereas it maximized sensitivity at low count rates. On the other hand, BTA-doped filters were demonstrated utilizing three commonly used polymers as hosts. The filters were patternable, utilizing the same procedures traditionally used to pattern the undoped polymer hosts, a key advantage for integration into microsystems. Filter performance was analyzed using a set of metrics developed for optoelectronic characterization of integrated fluorescence sensors; high rejection levels (nearing -40 dB) of UV light were observed in films of only 5 μm in thickness. Ultimately, BTA-doped filters were integrated into a portable sensor, and their use was demonstrated in two types of bioassays.

  13. Measurement of object structure from size-encoded images generated by optically-implemented Gabor filters.

    Science.gov (United States)

    Sierra, Heidy; Zheng, Jing-Yi; Rabin, Bryan; Boustany, Nada N

    2012-12-17

    We use optical Fourier processing based on two dimensional (2D) Gabor filters to obtain size-encoded images which depict with 20nm sensitivity to size while preserving a 0.36μm spatial resolution, the spatial distribution of structural features within transparent objects. The size of the object feature measured at each pixel in the encoded image is determined by the optimal Gabor filter period, S(max), that maximizes the scattering signal from that location in the object. We show that S(max) (in μm) depends linearly on feature size (also in μm) over a size range from 0.11μm to 2μm. This linear response remains largely unchanged when the refractive index ratio is varied and can be predicted from numerical simulations of Gabor-filtered light scattering. Pixel histograms of the size-encoded images of isolated spheres and diatoms were used to generate highly resolved size distributions ("size spectra") exhibiting sharp peaks characterizing the known major structural features within the studied objects. Dynamic signal associated with changes in selected feature sizes within living cells is also demonstrated. Taken together, our data suggest that a label-free, direct and objective measurement of sample structure is enabled by the size-encoded images and associated pixel histograms generated from a calibrated optical processing microscope based on Gabor filtering.

  14. Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks

    Science.gov (United States)

    Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.

    2017-04-01

    Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.

  15. Experimental Analysis and Reduction of FWM Using Optical Rectangle Filter for WDM

    Directory of Open Access Journals (Sweden)

    Ghulam Fizza

    2016-01-01

    Full Text Available Nonlinearities implanted by refractive index and scattering degrade the performance of optical networks. In this paper, FWM (Four Wave Mixing has been analyzed for four different channels with 10 nm spacing. Due to the presence of resonant frequency, FWM interface of different channels in WDM (Wavelength Division Multiplexing hinders the performance of the system. The system is affected by nonlinear cross talk. A system with the bandwidth of 10 Gbps has been investigated using External Modulation and an optical rectangle filter as a key parameter to improve the system performance with respect to FWM effect

  16. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  17. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    Science.gov (United States)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  18. Fibre Optic Notch Filter For The Antiproton Decelerator Stochastic Cooling System

    CERN Document Server

    Simmonds, Max Vincent John

    2016-01-01

    The project scope included reverse engineering, upgrading, and recovering the operational conditions of an existing fibre optic notch filter. Once operational, tests were to be preformed to confirm the performance of the temperature stabilisation. The end goal is to use said notch filter in the Antiproton Decelerator (AD) facility at CERN to help aid antimatter research. The notch filter was successfully reverse engineered and then documented. Changes were made in order to increase performance and reliability, and also allow easy integration into the AD. An additional phase was added whereby the notch filter was to be controller via a touchscreen computer, situated next to the filter, allowing engineers to set-up each of the electronic devices used. While one of the devices (Motorised Delay Line) can be controlled by the touchscreen computer, the other two cannot.Due to time constraints and difficulties with the Beckhoff TwincatII programming language, the USB devices were not able to be controlled via the To...

  19. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Science.gov (United States)

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  20. Lighting conditions and optical filters effects on visual performance of speleologists exposed to cave environments

    Directory of Open Access Journals (Sweden)

    Carla Costa Lança

    2016-01-01

    Full Text Available The aim of this study is to evaluate lighting conditions and speleologists’ visual performance using optical filters when exposed to the lighting conditions of cave environments. A cross-sectional study was conducted. Twenty-three speleologists were submitted to an evaluation of visual function in a clinical lab. An examination of visual acuity, contrast sensitivity, stereoacuity and flashlight illuminance levels was also performed in 16 of the 23 speleologists at two caves deprived of natural lightning. Two organic filters (450nm and 550nm were used to compare visual function with and without filters. The mean age of the speleologists was 40.65 (± 10.93 years. We detected 26.1% participants with visual impairment of which refractive error (17.4% was the major cause. In the cave environment the majority of the speleologists used a head flashlight with a mean illuminance of 451.0 ± 305.7 lux. Binocular visual acuity (BVA was -0.05±0.15 LogMAR (20/18. BVA for distance without filter was not statistically different from BVA with 550 nm or 450 nm filters (p=0.093. Significant improved contrast sensitivity was observed with 450 nm filters for 6 cpd (p = 0.034 and 18 cpd (p = 0.026 spatial frequencies. There were no signs and symptoms of visual pathologies related to cave exposure. Illuminance levels were adequate to the majority of the activities performed. The enhancement in contrast sensitivity with filters could potentially improve tasks related with the activities performed in the cave.

  1. Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jiang-Tao; Zhou Yun-Song; Wang Fu-He; Gu Ben-Yuan

    2005-01-01

    We present a new type of optical filter with an ultra-narrow bandwidth and a wide field-of-view (FOV). This kind of optical filter consists of one-dimensional photonic crystal (PC) incorporating an anomalous-dispersion-material (ADM) with, for instance, an anomalous dispersion of 6P3/2 ← 6S1/2 hyperfine structure transition of a caesium atom.The transmission spectra of optical filters are calculated by using the transfer-matrix method. The simulation results show that the designed optical filter has a bandwidth narrower than 0.33GHz and a wide FOV of ±30° as well. The response of transmission spectrum to an external magnetic field is also investigated.

  2. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  3. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  4. Design and fabrication of stress-compensated optical coatings: Fabry-Perot filters for astronomical applications.

    Science.gov (United States)

    de Denus-Baillargeon, Marie-Maude; Schmitt, Thomas; Larouche, Stéphane; Martinu, Ludvik

    2014-04-20

    The performance of optical coatings may be negatively affected by the deleterious effects of mechanical stress. In this work, we propose an optimization tool for the design of optical filters taking into account both the optical and mechanical properties of the substrate and of the individual deposited layers. The proposed method has been implemented as a supplemental module in the OpenFilters open source design software. It has been experimentally validated by fabricating multilayer stacks using e-beam evaporation, in combination with their mechanical stress assessment performed as a function of temperature. Two different stress-compensation strategies were evaluated: (a) design of two complementary coatings on either side of the substrate and (b) implementing the mechanical properties of the individual materials in the design of the optical coating on one side only. This approach has been tested by the manufacture of a Fabry-Perot etalon used in astronomy while using evaporated SiO2 and TiO2 films. We found that the substrate curvature can be decreased by 85% and 49% for the first and second strategies, respectively.

  5. A blue optical filter for narrow-band imaging in endoscopic capsules

    Science.gov (United States)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  6. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering.

    Science.gov (United States)

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi

    2014-03-01

    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible.

  7. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering

    CERN Document Server

    Fang, Joyce

    2016-01-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with eight degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis (PCA) on the simulated dataset to obtain Karhunen-Lo\\`eve (KL) modes, which form the basis set whose weights are the system measurements. A model function which maps the state to the measurement is learned using nonlinear least squares fitting and serves as the measurement function for the nonlinear estimator (Extended and Unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss both simulated and experimental results of the full system in op...

  8. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  9. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering

    Science.gov (United States)

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with eight degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis (PCA) on the simulated dataset to obtain Karhunen-Lo\\`eve (KL) modes, which form the basis set whose weights are the system measurements. A model function which maps the state to the measurement is learned using nonlinear least squares fitting and serves as the measurement function for the nonlinear estimator (Extended and Unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss both simulated and experimental results of the full system in operation.

  10. Mathematical Description of Acousto-Optic Tunable Filter Orthogonal Polarizing Method

    Institute of Scientific and Technical Information of China (English)

    XU Kexin; WEN Huizhi; ZHANG Hao; FAN Guofang; YANG Jisheng

    2005-01-01

    The transfer function of the optical splitting system of the acousto-optic tunable filter (AOTF) is deduced to be a reference to optical design. The characteristic matrix (transfer function) of AOTF is used to describe quantitatively the characters of polarization elements in the orthogonal polarizing system. According to the characteristic matrix, the included angle of polarizer's transmission direction and polarization analyzer's transmission direction should be 90°. As a result the signal to noise ratio increased about 20 times though the light intensity was reduced to 54.3% polarization analyzer are 0.74, which is an intrinsic character. The orthogonal polarizing method is an effective method to get rid of the influence of zero order light and improve the spectrum resolution and signal-to-noise ratio.

  11. Analysis of cross-sectional image filters for evaluating nonaveraged optical microangiography images.

    Science.gov (United States)

    Reif, Roberto; Yousefi, Siavash; Choi, Woo June; Wang, Ruikang K

    2014-02-10

    Optical microangiography (OMAG) is a method that enables the noninvasive extraction of blood vessels within biological tissues. OMAG B-frames are prone to noise; therefore, techniques such as B-frame averaging have been applied to reduce these effects. A drawback of this method is that the total acquisition time and amount of data collected are increased; hence, the data are susceptible to motion artifacts and decorrelation. In this paper we propose using an image filter on a nonaveraged OMAG B-frame to reduce its noise. Consequently, B-frames comparable to the averaged OMAG B-frame are obtained, while reducing the total acquisition and processing time. The method is tested with two different systems, a high-resolution spectral domain and a relatively low-resolution swept-source optical coherence tomography system. It is demonstrated that the weighted average filter produces the lowest B-frame error; however, all filters produce comparable results when quantifying the en face projection view image.

  12. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

    Science.gov (United States)

    Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.

    2017-10-01

    We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

  13. Enhanced optical characteristics of terahertz bandpass filters based on plasmonic nanoparticles

    Science.gov (United States)

    Yadollahzadeh, Sajjad; Baghban, Hamed

    2016-04-01

    Plasmonic nanostructures enable considerable control and manipulation of light at the subwavelength scale and are promising for demonstration of optical metamaterials with enhanced spectral response. In this paper, we introduce a generation of terahertz bandpass filters that exploit the characteristics of subwavelength plasmonic nanoparticles. The design procedure is discussed based on a well-known complementary split ring resonator with a resonant feature at the THz region (˜1.5 THz), and it has been shown that device design based on plasmonic nanoparticles can conquer the poor off-resonance selectivity limit of common THz filters and exhibit higher transmission response, faster roll-off, and almost ripple-free operation. A much larger coupling capacitance for nanoparticles in the touching condition can modify the resonance wavelength, and localized hot spots enhance the device sensitivity for special applications. The effect of plasmonic nanoparticle size on the filtering characteristics is also discussed. A simple fabrication procedure based on discontinuous islandized surface morphology of thin metallic films on a dielectric has been proposed for demonstration of the THz filters introduced here.

  14. Design of characteristics of optical filter set for prediction and visualization of fat content in raw beef cuts

    DEFF Research Database (Denmark)

    Kobayashi, Ken-ichi; Nishino, Ken; Dissing, Bjørn Skovlund

    2011-01-01

    imaging is however very expensive. We propose a way to design a simple measurement system consisting of a NIR sensitive monochrome camera together with a small set of optical filters to estimate and visualize a specific food compound without requiring a full hyperspectral device. Based on a set...... of hyperspectral measurements of beef and physical and chemical analysis of the fat within the beef, we propose a method to design a set of ideal Band Pass Filters (BPF), as small as possible while still maintaining predictability of fat content. The results show that 2 filters is a suitable amount of filters...

  15. Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters.

    Science.gov (United States)

    Pasternack, Robert M; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N; Boustany, Nada N

    2009-07-06

    We use optical Gabor-like filtering implemented with a digital micromirror device to achieve nanoscale sensitivity to changes in the size of finite and periodic objects imaged at low resolution. The method consists of applying an optical Fourier filter bank consisting of Gabor-like filters of varying periods and extracting the optimum filter period that maximizes the filtered object signal. Using this optimum filter period as a measure of object size, we show sensitivity to a 7.5 nm change in the period of a chirped phase mask with period around 1 microm. We also show 30 nm sensitivity to change in the size of polystyrene spheres with diameters around 500 nm. Unlike digital post-processing our optical processing method retains its sensitivity when implemented at low magnification in undersampled images. Furthermore, the optimum Gabor filter period found experimentally is linearly related to sphere diameter over the range 0.46 microm-1 microm and does not rely on a predictive scatter model such as Mie theory. The technique may have applications in high throughput optical analysis of subcellular morphology to study organelle function in living cells.

  16. Optical Metrology for the Filter Set for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    Science.gov (United States)

    Leviton, Douglas B.; Boucarut, Rene A.; Content, David A.; Keski-Kuha, Ritva A.; Krebs, Carolyn A.; Miner, Linda A.; Norton, Todd A.; Mehalick, Kimberly; Petrone, Peter; Bush, Frank D.; Puc, Bernard; Standley, Clive; Tsvetanov, Zlatan; Kral, Catherine

    1998-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) will employ a wide variety of spectral filtration components including narrow band, medium band, wide band, and far ultraviolet (FUV) long pass filters, spatially- variable filters (ramp filters), VIS/IR polarizers, NUV polarizers, FUV prisms, and a grism. These components are spread across ACS's Wide Field, High Resolution, and Solar Blind channels which provide diffraction-limited imaging of astronomical targets using aberration-correcting optics which remove most aberrations from HST's Optical Telescope Assembly (OTA). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements which these filters must meet include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, and a high degree of parfocality. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The development of optical metrology stations used to demonstrate that each ACS filter will meet its design specifications is discussed. Of particular note are specially-designed spectral transmissometers and interferometers.

  17. Spectral characterization of acousto-optic filters used in imaging spectroscopy.

    Science.gov (United States)

    Georgiev, Georgi; Glenar, David A; Hillman, John J

    2002-01-01

    The purpose of this investigation is to improve the study of the characteristics of noncollinear acoustooptic tunable filters (AOTFs) used in imaging spectroscopy. Three filters were characterized and the results compared with tuning models to verify that device operation can be reliably predicted in advance. All these devices use tellurium dioxide as the interaction medium and have large geometric apertures for spectroscopic imaging applications in the spectral range 0.5-3.5 microm. The device characteristics that we studied were compared with the results of AOTF models, and the spectral and angular dependence of acoustic frequency and bandpass width for both output polarization states were confirmed by measurements. One of the AOTFs was used as a dispersive element coupled to external imaging optics. We summarize measurements of the basic spectral and imaging characteristics in this configuration.

  18. Spectral characterization of integrated acousto-optic tunable filters by means of laser frequency modulation spectroscopy.

    Science.gov (United States)

    Di Maio, Antonio; Salza, Mario; Gagliardi, Gianluca; Ferraro, Pietro; De Natale, Paolo

    2006-12-20

    The spectral characteristics of an integrated acousto-optic tunable filter (AOTF) as well as its responsivity to the rf driving signal and sensitivity to temperature changes are experimentally investigated and quantified using a diode-laser-based interrogation system. A spectroscopic technique, exploiting the rf frequency modulation of the laser beam and the phase-sensitive detection of the AOTF transmission, has been used for this purpose. That allows for the generation of a dispersivelike signal, which serves as a reference for tracking any wavelength change of the filter's peak with high resolution. The possibility of using the integrated AOTF as a spectrum analyzer with this interrogation scheme for fiber Bragg grating (FBG) strain sensing is also discussed.

  19. Improved Automatic Filtered Power Control Pumping Method for Uniform Shortpass Band in Optical Fiber Communications

    Science.gov (United States)

    Shen, Jyi-Lai; Huang, Hau-Min; Lee, Yueh-Chien; Huang, Chia-Chih; Lin, Huang-Cuang; Lin, Chin-Yuan

    2009-01-01

    To form a low noise figure and uniform shortpass band in optical fiber communications an improved automatic filtered power control (AFPC) pumping method is proposed here. A modulated single laser signal was entered in a closed feedback loop, in which the erbium-doped fiber amplifier (EDFA) was used as a part of the AFPC loop. Owing to the constant filtered signal and the quadrature phase shift delay inside the feedback loop, an optical pass band was uniformly formed. This EDFA attains high performance with a low noise figure simultaneously. The method was successfully applied to the fabrication of practical 12.0 m length of erbium-doped fiber pumped at 980 nm wavelength and 20 dBm power. Experiments prove that the signal gain of the loop remain flat in the range of 18.2 to 22.4 dB with a worst case error of ±0.5 dB and the noise figure was reduced by 2.2 dB at optimal, which correspond to a shortpass range of 40 nm band pass from 1525 nm to 1565 nm in wavelength. Of course, it should be possible to extent the system performance to all pumping configurations for semiconductor optical amplifiers. This provides the simplest and most economical way to transmit a well-defined band of modulated laser signal and to reject all other unwanted radiation.

  20. Optical Spatial Filter to Suppress Beam Wander and Spatial Noise Induced by Atmospheric Turbulence in Free-Space Optical Communications

    Directory of Open Access Journals (Sweden)

    Ucuk Darusalam

    2015-01-01

    Full Text Available We propose an optical spatial filter (OSF method to suppress beam wander and spatial noise effects. Signal from random displacements of the focus spot around the optical axis within the constricted area is collected. This method advantageously suppresses fluctuations in signal intensity. The OSF consists of a pinhole and cone reflector. The pinhole produces Fresnel diffraction on the focus spot. The cone reflector provides directed reflectance onto the pinhole for random focus spot displacements due to beam wander. The calculations of signal power are based on fluctuations of signal intensity that are minimized by the circular aperture function of the pinhole and the cosine of the reflectance angle from the cone reflector. The method is applied to free-space optical communications at a wavelength of 1.55 μm with an atmospheric chamber to provide optical propagation media. Based on calculations, the beam wander angles that can be received by the OSF are from 14.0° to 28.0°. Moreover, based on experiment, the OSF with a pinhole diameter of 20.0 μm and cone reflector diameter of 1.5 mm produces signal power of −15.3 dBm. Both calculations and experiment show that the OSF enhances the received signal power in the presence of turbulence.

  1. Auto bias control and bias hold circuit for IQ-modulator in flexible optical QAM transmitter with Nyquist filtering.

    Science.gov (United States)

    Kawakami, Hiroto; Kobayashi, Takayuki; Yoshida, Mitsuteru; Kataoka, Tomoyoshi; Miyamoto, Yutaka

    2014-11-17

    An Auto Bias Control (ABC) technique for the IQ-modulator of a flexible optical QAM transmitter is described. This technique can support various optical QAM signal formats with Nyquist filtering and electronic dispersion pre-compensation. 16, 32 and 64-QAM signals (21 Gbaud) are successfully generated, and all bias voltages are held to their optimum value even when signal format is changed.

  2. Experimental study on filtering,transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The key problem to be solved for the dielectrophoresis (DEP) application is to provide dynamically reconfigurable microelectrodes and low-cost methodology for bioparticle manipulation.The emergence of optically induced DEP (ODEP) based on photoconductive effect provides a potential solution for the above problem.In this paper,an ODEP chip is designed and fabricated,and the corresponding experimental platform was established,whereupon four types of particle manipulation regimes–filtering,transporting,concentrating and focusing based on ODEP are experimentally demonstrated and the operating performances are quantitatively analyzed.The experiment results show that the functions and performances of ODEP manipulation are heavily dependent on the geometrical shape,scales and speed of optical patterns,actuating signal frequency and the electric conductivity of the solution.The manipulation efficiency can increase by more than 50% via increasing the optical line width.Moreover,the efficiency is obviously affected by the inclination angle of the optical oblique lines in the manipulation of particle focusing.Additionally,the maximum velocity of particles increases with the increment of the inside radius and the thickness of the optical trapping ring.Particle manipulation efficiency is always related to signal frequency and solution conductivity,and empirically,satisfactory performance and high efficiency are obtained when the solution electric conductivity ranges from 5×10-4 S/m to 5×10-3 S/m.

  3. Optical readout uncooled infrared imaging detector using knife-edge filter operation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Q; MIAO Z; GUO Z; DONG F; XIONG Z; WU X; CHEN D; LI C; JIAO B

    2007-01-01

    An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation(KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10-5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metallized legs is specially designed and modeled. A FPA with 160× 160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.

  4. Pulse Compression by Filamentation in Argon with an Acoustic Optical Programmable Dispersive Filter for Predispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Wei; JIANG Yong-Liang; LENG Yu-Xin; LIU Jun; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2006-01-01

    @@ We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12fs.

  5. Detecting Low-Power RF Signals Using a Multimode Optoelectronic Oscillator and Integrated Optical Filter

    Science.gov (United States)

    2010-02-01

    output is connected to an erbium-doped fiber amplifier ( EDFA ) and the amplified signal is sent to a photodetector. Part of the detected electrical...1 dB below threshold at 1 GHz with a photocurrent of 20.2 mA. The mode spacing is 5.2 MHz, limited by the long length of fiber in the EDFA . We inject...insertion loss. The optical signal after the filter is then amplified by an EDFA and measured at an ESA. The RF gain of the different RF tones was measured

  6. A Novel Analysis Approach for Ring-resonator Performance as Optical Filter

    Institute of Scientific and Technical Information of China (English)

    XU Jing-bo

    2008-01-01

    A novel attempt has been made in this paper for a different approach for determination of ring resonator transmittance with the help of delay line signal processing techniques and Totally Coded Method (TCM). A generalized approach for determination of transfer function in Z-domain of optical waveguide based ring resonator is introduced. Delay line signal processing technique is used to develop the signal flow graph of different ring resonator architectures, and a rule is implemented to determine its overall transmittance. The parameters describing the performance of optical filter can be directly estimated from the frequency response plot. A waveguide based double ring resonator (DRR) architecture is proposed, and its frequency response analysis is carried out.

  7. Tunable integrated optical filters based on sapphire microspheres and liquid crystals

    Science.gov (United States)

    Gilardi, Giovanni; Yilmaz, Hasan; Sharif Murib, Mohammed; Asquini, Rita; d'Alessandro, Antonio; Serpengüzel, Ali; Beccherelli, Romeo

    2010-05-01

    We present an integrated optical narrowband electrically tunable filter based on the whispering gallery modes of sapphire microspheres and double ion-exchanged channel BK7 glass waveguides. Tuning is provided by a liquid crystal infiltrated between the spheres and the glass substrate. By suitably choosing the radii of the spheres and of the circular apertures, upon which the spheres are positioned, arrays of different filters can be realized on the same substrate with a low cost industrial process. We evaluate the performance in terms of quality factor, mode spacing, and tuning range by comparing the numerical results obtained by the numerical finite element modeling approach and with the analytical approach of the Generalized Lorenz-Mie Theory for various design parameters. By reorienting the LC in an external electrical field, we demonstrate the tuning of the spectral response of the sapphire microsphere based filter. We find that the value of the mode spacing remains nearly unchanged for the different values of the applied electric field. An increase of the applied electric field strength, changes the refractive index of the liquid crystal, so that for a fixed geometry the mode spacing remains unchanged.

  8. Integrated wideband optical frequency combs with high stability and their application in microwave photonic filters

    Science.gov (United States)

    Sun, Wenhui; Wang, Sunlong; Zhong, Xin; Liu, Jianguo; Wang, Wenting; Tong, Youwan; Chen, Wei; Yuan, Haiqing; Yu, Lijuan; Zhu, Ninghua

    2016-08-01

    An integrated wideband optical frequency comb (OFC) based on a semiconductor quantum dot laser is realized with high stability. The OFC module is packaged in our lab. A circuit which is designed to provide a low-ripple current and control the temperature regards as a servo system to enhance the stability of the OFC. The frequency stability of the OFC is 2.7×10-9 (Allan Variance). The free spectral range (FSR) of the OFC is 40 GHz and the number of comb lines is up to 55. The flatness of the OFC over span of 4 nm can be limited to 0.5 dB. Negative coefficients microwave photonic filters with multiple taps are generated based on the proposed OFC. For the 10 taps microwave photonic filter, the pass-band at 8.74 GHz has a 3 dB bandwidth of 630 MHz with 16.58 dB side-lobe suppression. Compared with the published microwave photonic filters, the proposed system is more stable, of more compact structures, and of less power consumption.

  9. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  10. Thermal annealing of thin PECVD silicon-oxide films for airgap-based optical filters

    Science.gov (United States)

    Ghaderi, M.; de Graaf, G.; Wolffenbuttel, R. F.

    2016-08-01

    This paper investigates the mechanical and optical properties of thin PECVD silicon-oxide layers for optical applications. The different deposition parameters in PECVD provide a promising tool to manipulate and control the film structure. Membranes for use in optical filters typically are of ~λ/4n thickness and should be slightly tensile for remaining flat, thus avoiding scattering. The effect of the thermal budget of the process on the mechanical characteristics of the deposited films was studied. Films with compressive stress ranging from  -100 to 0 MPa were deposited. Multiple thermal annealing cycles were applied to wafers and the in situ residual stress and ex situ optical properties were measured. The residual stress in the films was found to be highly temperature dependent. Annealing during the subsequent process steps results in tensile stress from 100 to 300 MPa in sub-micron thick PECVD silicon-oxide films. However, sub-100 nm thick PECVD silicon-oxide layers exhibit a lower dependence on the thermal annealing cycles, resulting in lower stress variations in films after the annealing. It is also shown that the coefficient of thermal expansion, hence the residual stress in layers, varies with the thickness. Finally, several free-standing membranes were fabricated and the results are compared.

  11. Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Jiang, Zhaojie; Zhou, Qi; Tao, Zhiming; Zhang, Xiaogang; Zhang, Shengnan; Zhu, Chuanwen; Lin, Pingwei; Chen, Jingbiao

    2016-08-01

    We demonstrate an 852-nm external cavity diode laser (ECDL) system whose wavelength is mainly determined by an interference filter instead of other wavelength selective elements. The Lorentzian linewidth measured by the heterodyne beating between two identical lasers is 28.3 kHz. Moreover, we test the application of the ECDL in the Faraday atomic filter. Besides saturated absorption spectrum, the transmission spectrum of the Faraday atomic filter at 852 nm is measured by using the ECDL. This interference filter ECDL method can also be extended to other wavelengths and widen the application range of diode laser. Project supported by the National Natural Science Foundation of China (Grant No. 91436210) and the International Science and Technology Cooperation Program of China (Grant No. 2010DFR10900).

  12. Fabrication and Analysis of Three-Layer All-Silicon Interference Optical Filter with Sub-Wavelength Structure toward High Performance Terahertz Optics

    CERN Document Server

    Makitsubo, Hironobu; Kataza, Hirokazu; Mita, Makoto; Suzuki, Toyoaki; Yamamoto, Keita

    2016-01-01

    We propose an all-silicon multi-layer interference filter composed solely of silicon with sub-wavelength structure (SWS) in order to realize high performance optical filters operating in the THz frequency region with robustness against cryogenic thermal cycling and mechanical damage. We demonstrate fabrication of a three-layer prototype using well-established common micro-electro-mechanical systems (MEMS) technologies as a first step toward developing practical filters. The measured transmittance of the three-layer filter agrees well with the theoretical transmittances calculated by a simple thin-film calculation with effective refractive indices as well as a rigorous coupled-wave analysis simulation. We experimentally show that SWS layers can work as homogeneous thin-film interference layers with effective refractive indices even if there are multiple SWS layers in a filter.

  13. Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity.

    Science.gov (United States)

    Hu, Zhiyang; Xu, Shuhong; Xu, Xiaojing; Wang, Zhaochong; Wang, Zhuyuan; Wang, Chunlei; Cui, Yiping

    2015-10-08

    In optics, when polychromatic light is filtered by an optical filter, the monochromaticity of the light can be improved. In this work, we reported that Ag dopant atoms could be used as an optical filter for nanosized Mn:ZnSe quantum dots (QDs). If no Ag doping, aqueous Mn:ZnSe QDs have low monochromaticity due to coexisting of strong ZnSe band gap emission, ZnSe trap emission, and Mn dopant emission. After doping of Ag into QDs, ZnSe band gap and ZnSe trap emissions can be filtered, leaving only Mn dopant emission with improved monochromaticity. The mechanism for the optical filtering effect of Ag was investigated. The results indicate that the doping of Ag will introduce a new faster deactivation process from ZnSe conduction band to Ag energy level, leading to less electrons deactived via ZnSe band gap emission and ZnSe trap emission. As a result, only Mn dopant emission is left.

  14. Improving Recording Density of All-Optical Magnetic Storage by Using High-Pass Angular Spectrum Filters

    Institute of Scientific and Technical Information of China (English)

    ZHUANG You-Yi; ZHANG Yao-Ju

    2009-01-01

    A new design is presented to improve the magnetic recording density in all-optical magnetic storage.By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy.Magnetization of the film is induced by the inverse Faraday effect.As the obstructed angle of the filter increases the magnetic recording density increases evidently.The magnetization intensity and the sidelobe effect are also discussed.

  15. Half baudrate electrical clock based demultiplexing scheme for OTDM-DQPSK signal using SOA and optical filter

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Deming Kong; Yan Li; Junyi Zhang; Jian Wu; Jintong Lin

    2012-01-01

    A demultiplexing scheme based on semiconductor optical amplifier (SOA) and optical filter for optical time division multiplexing differential quadrature phase shift keying (OTDM-DQPSK) system is proposed and investigated experimentally.With only a common half baudrate electrical clock modulated 33% duty cycle return-to-zero (RZ-33) optical clock signal as pump,this scheme is cost-effective,energy-efficient,and integration-potential.A proof-of-concept experiment is carried out for the demultiplexing of a 2×40GBd OTDM-DQPSK signal.Error-free performance is demonstrated,and the average power penalty for both channels is about 3 dB.

  16. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  17. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael;

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  18. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  19. Pure RGB Emissions Based on a White OLED Combined with Optical Colour Filters

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Ming; HUA Yu-Lin; WANG Zhao-Qi; YIN Shou-Gen; ZHENG Jia-Jin; DENG Jia-Chun; M. C. Petty

    2006-01-01

    @@ We report on a white organic light emitting device (OLED) with a single light emitting layer consisting of a greenish-white emitting host bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) and an orange-red dopant 5,6,11,12-tetraphenylnaphthacene (rubrene). The Commission Internationale De L'Eclairage (CIE) coordinates, external quantum efficiency, and brightness of the white OLED are (0.341, 0.334), 0.63% and 4000 Cd/m2 at the bias of 20 V, respectively. Pure red-green-blue (RGB) emissions have been successfully achieved from the white OLED combined well with several built-in optical colour filters (CFs). The CIE coordinates of the white mixture calculated in theory are very close to the coordinates of the white mixture which recorded with spectrophotometer in practice.

  20. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    -signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain......The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small...... copression in the lasing mode. An integral equation for the electrical field is derived from the frequency domain model and used for time domain simulations of large-signal behavior....

  1. Optical detection of spin-filter effect for electron spin polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Majee, S.; Lampel, G.; Lassailly, Y.; Paget, D.; Peretti, J. [Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique - CNRS, 91128 Palaiseau Cedex (France); Tereshchenko, O. E., E-mail: teresh@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2014-08-04

    We have monitored the cathodoluminescence (CL) emitted upon injection of free electrons into a hybrid structure consisting of a thin magnetic Fe layer deposited on a p-GaAs substrate, in which InGaAs quantum wells are embedded. Electrons transmitted through the unbiased metal/semiconductor junction recombine radiatively in the quantum wells. Because of the electron spin-filtering across the Fe/GaAs structure, the CL intensity, collected from the backside, is found to depend on the relative orientation between the injected electronic spin polarization and the Fe layer magnetization. The spin asymmetry of the CL intensity in such junction provides a compact optical method for measuring spin polarization of free electrons beams or of hot electrons in solid-state devices.

  2. Search for global oscillations on Jupiter with a double-cell sodium magneto-optical filter

    Science.gov (United States)

    Cacciani, A.; Dolci, M.; Moretti, P. F.; D'Alessio, F.; Giuliani, C.; Micolucci, E.; Di Cianno, A.

    2001-06-01

    Doppler observations on Jupiter are presented and discussed. A two-cells Magneto-Optical Filter (MOF), able to obtain two separate signals, Red and Blue, on the opposite wings of the Sodium D-lines, along with a continuum reference signal, has been used. This set of data permits to discriminate between real oscillations and albedo ``modes" by means of the two algorithms D=(B-R)/(B+R) and S=(B+R)/continuum. No unambiguous oscillation modes were detected with amplitudes above the 1-sigma level of ~ 1.2 m s-1 in the range between 0.5 and 0.7 mHz. However, using refined analysis for signal recovery in a noisy background we notice an increase of power also in the region of the solar 5 min oscillations. The albedo variations on the Jupiter's surface and instrumental effects are addressed to be responsible for the spurious signals.

  3. Modeling and Testing of a PV/T hybrid system with Water based Optical Filter

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    2015-12-01

    Full Text Available A theoretical model has been developed for the Non-imaging V-trough hybrid PV/T concentrator systems along with optical filter and validated with the designed and fabricated system to assess over all thermal efficiency of the PV/T system. A V-trough concentrator system has been developed for two axes tracking. Commercially available solar modules were evaluated for their usability under 2-sun concentration. V-trough concentrator with geometric concentration ratio of 2 (2-sun, we are getting an average overall efficiency of the PV/T system increased by 23.54 % extra overall thermal efficiency of the PV/T system as compared to the solar module efficiency at standard test conditions.

  4. Performance analysis of all optical swapping networks with a label eraser made of a Gaussian filter

    Institute of Scientific and Technical Information of China (English)

    Zhensheng Jia(贾振生); Minghua Chen(陈明华); Jia Feng(冯佳); Yi Dong(董毅); Shizhong Xie(谢世钟)

    2003-01-01

    In this paper, a simple label eraser employing Gaussian apodized fiber Bragg grating (FBG) for all opticallabel swapping (AOLS) networks is proposed. Relying on the analysis of the payload through multi-stageerasers, this kind of eraser significantly improves the cascadability in comparison with the traditionalfiber-loop mirror (FLM) eraser. The influences of the residual labels on the intermediate swapping nodelabels through the eraser are also investigated. It is shown that the power penalty is only less 1 dB whenthe optical power ratio of residual label to the new label signal arrives at -8 dB. The influence is negligibledue to the sharp notch filtering effect of the Gaussian apodized FBG.

  5. Design of a broad spectrum multichannel optical filter based on FBG

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-tao; PAN Wei; YAN Lian-shan; LUO Bin; WEN Kun-hua; FENG Xian-gui

    2009-01-01

    To increase the channel number in the optic filter, the multiple-phase-shift (MPS) technology is adoped based on the multiple-reflection-spectrum-envelopes-concatenation (MRSEC) model which has a broadband flatness. The reflection spectra of the MPS digital concatenated sample gratings are simulated with transfer matrix method, the results show that wave band of the reflection spectrum is widened and the channel number is multiplied. What's more, the spectrum flatness is improved with the increasing of refraction index change. Moreover, to improve the extinction ratio and peak value when MPS is adopted in concatenated SFBG, an available designing method based on the cascaded unit is put forward and the optimized results are obtained.

  6. Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm.

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong

    2016-06-27

    In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

  7. Design of jitter compensation algorithm for robot vision based on optical flow and Kalman filter.

    Science.gov (United States)

    Wang, B R; Jin, Y L; Shao, D L; Xu, Y

    2014-01-01

    Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation.

  8. Design of Jitter Compensation Algorithm for Robot Vision Based on Optical Flow and Kalman Filter

    Directory of Open Access Journals (Sweden)

    B. R. Wang

    2014-01-01

    Full Text Available Image jitters occur in the video of the autonomous robot moving on bricks road, which will reduce robot operation precision based on vision. In order to compensate the image jitters, the affine transformation kinematics were established for obtaining the six image motion parameters. The feature point pair detecting method was designed based on Eigen-value of the feature windows gradient matrix, and the motion parameters equation was solved using the least square method and the matching point pairs got based on the optical flow. The condition number of coefficient matrix was proposed to quantificationally analyse the effect of matching errors on parameters solving errors. Kalman filter was adopted to smooth image motion parameters. Computing cases show that more point pairs are beneficial for getting more precise motion parameters. The integrated jitters compensation software was developed with feature points detecting in subwindow. And practical experiments were conducted on two mobile robots. Results show that the compensation costing time is less than frame sample time and Kalman filter is valid for robot vision jitters compensation.

  9. Folded-Cavity Resonators as Key Elements for Optical Filtering and Low-Voltage Electroabsorption Modulation

    Science.gov (United States)

    Djordjev, Kostadin D.; Lin, Chao-Kun; Zhu, Jintian; Bour, David; Tan, Michael R.

    2006-09-01

    Folded-cavity (FC) resonators, which are based on shallow-etched ridge waveguides combined with four deeply etched turning mirrors, are designed and fabricated. The device consists of a resonant FC and a bus waveguide coupled to it through a directional coupler. Optical passive filters, based on this technology, exhibit quality factors in the excess of 5000, with a low insertion loss of 5 dB (including the input coupling loss to a fiber) and more than 15-dB extinction at resonance. When the filter is combined with an electroabsorption active region and is designed to operate in the overcoupled regime, a low-voltage/high-extinction-ratio resonant modulation becomes feasible. The resonant modulator exhibits a low insertion loss (greater than 22-dB extinction at resonance) and offers a low-voltage operation. A change in the applied voltage by 0.7 V (close to the critically coupled conditions) leads to a transmission change of more than 16 dB. Open eye diagrams at 12 Gb/s are presented. To decrease the insertion loss, multiple material bangaps are further monolithically integrated across the wafer by utilizing the quantum-well-intermixing techniques.

  10. Tunable All-Optical Filtering and Buffering in a Coupled Quantum Dot-Planar Photonic Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    QIAN Yong; QIAN Jun; WANG Yu-Zhu

    2009-01-01

    We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure,where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide.We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred piceseconds within the dephasing time of the QD.The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode,which can be explored in future for on-clup all-optical logic and signal processing.

  11. Gabor filter based optical image recognition using Fractional Power Polynomial model based common discriminant locality preserving projection with kernels

    Science.gov (United States)

    Li, Jun-Bao

    2012-09-01

    This paper presents Gabor filter based optical image recognition using Fractional Power Polynomial model based Common Kernel Discriminant Locality Preserving Projection. This method tends to solve the nonlinear classification problem endured by optical image recognition owing to the complex illumination condition in practical applications, such as face recognition. The first step is to apply Gabor filter to extract desirable textural features characterized by spatial frequency, spatial locality and orientation selectivity to cope with the variations in illumination. In the second step we propose Class-wise Locality Preserving Projection through creating the nearest neighbor graph guided by the class labels for the textural features reduction. Finally we present Common Kernel Discriminant Vector with Fractional Power Polynomial model to reduce the dimensions of the textural features for recognition. For the performance evaluation on optical image recognition, we test the proposed method on a challenging optical image recognition problem, face recognition.

  12. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    Science.gov (United States)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  13. Aerosol optical depth determination in the UV using a four-channel precision filter radiometer

    Science.gov (United States)

    Carlund, Thomas; Kouremeti, Natalia; Kazadzis, Stelios; Gröbner, Julian

    2017-03-01

    The determination of aerosol properties, especially the aerosol optical depth (AOD) in the ultraviolet (UV) wavelength region, is of great importance for understanding the climatological variability of UV radiation. However, operational retrievals of AOD at the biologically most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR (UV precision filter radiometer) sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high-altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) derived from Langley plot calibrations underestimate the true extraterrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument's spectral response functions also result in an apparent air-mass-dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore introduced. Langley calibrations performed 13-14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a high-accuracy standard precision filter radiometer, measuring AOD at 368-862 nm wavelengths, showed consistent results. Also, very good agreement was achieved by comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB is higher than that reported from AOD instruments measuring in UVA and visible ranges. However, the precision can be high among instruments using harmonized algorithms for ozone and Rayleigh optical depth as

  14. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  15. Faraday色散光学滤波器的研究进展%The Research Advance of Faraday Dispersion Optical Filter

    Institute of Scientific and Technical Information of China (English)

    贾晓玲; 掌蕴东; 王骐

    2001-01-01

    本文综述了Faraday反常色散光学滤波器的国内外研究进展,并提出发展前景。%This paper summarized the international and domestic developmentof Faraday anomalous dispersion optical filters in detail. Meanwhile,the prospect of the optical filter was also analyzed.

  16. Space qualification of the optical filter assemblies for the ICESat-2/ATLAS instrument

    Science.gov (United States)

    Troupaki, E.; Denny, Z. H.; Wu, S.; Bradshaw, H. N.; Smith, K. A.; Hults, J. A.; Ramos-Izquierdo, L. A.; Cook, W. B.

    2015-02-01

    The Advanced Topographic Laser Altimeter System (ATLAS) will be the only instrument on the Ice, Cloud, and Land Elevation Satellite -2 (ICESat-2). ICESat-2 is the 2nd-generation of the orbiting laser altimeter ICESat, which will continue polar ice topography measurements with improved precision laser-ranging techniques. In contrast to the original ICESat design, ICESat-2 will use a micro-pulse, multi-beam approach that provides dense cross-track sampling to help scientists determine a surface's slope with each pass of the satellite. The ATLAS laser will emit visible, green laser pulses at a wavelength of 532 nm and a rate of 10 kHz and will be split into 6 beams. A set of six identical, thermally tuned optical filter assemblies (OFA) will be used to remove background solar radiation from the collected signal while transmitting the laser light to the detectors. A seventh assembly will be used to monitor the laser center wavelength during the mission. In this paper, we present the design and optical performance measurements of the ATLAS OFA in air and in vacuum prior to their integration on the ATLAS instrument.

  17. Electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals.

    Science.gov (United States)

    Kee, Chul-Sik; Lee, Yeong Lak; Lee, Jongmin

    2008-04-28

    We investigate electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals. The multi-wavelength Solc filters are composed of two building blocks A and B, in which each containing a pair of antiparallel poled domains, arranged as a Fibonacci sequence. The transmittances at filtering wavelengths can be modulated from 0 to 100% by applying an external voltage but the filtering wave-lengths are unchanged. The filtering wavelengths can be tuned by varying temperature. As temperature decreases, the filtering wavelengths increase (approximately -0.45 nm/degrees C).

  18. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully tested with two......We present an all-optical adaptive-antenna radio over fiber transport system that uses proven, commercially-available components to effectively deliver standard-compliant optical signaling to adaptive multiantenna arrays for current and emerging radio technology implementations. The system is based...

  19. Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA

    Science.gov (United States)

    Deng, Ye; Li, Ming; Shi, Nuannuan; Tang, Jian; Sun, Shuqian; Zhang, Lihong; Li, Wei; Zhu, Ninghua

    2016-10-01

    A fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA has been theoretically analyzed and experimentally demonstrated in this paper. By employing an optical vector network analyzer (OVNA), transmission characteristics of the equivalent-phase-shifted DFB-SOA are obtained. The influences of driven current on transmission characteristics of the equivalent-phase-shifted DFB-SOA are also investigated. In addition to the advantage of integration, the proposed equivalent-phase-shifted DFB-SOA also shows significant application in design of photonic devices for all-optical signal processing and computing.

  20. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    Science.gov (United States)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  1. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  2. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  3. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a method of fabrication of far IR and THZ range multilayer metal-mesh filters. This type of filter consists of alternative...

  4. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  5. 9.4 nm Tunable Vertically Coupled Microring Resonator Filter by Thermo-Optic Effect

    Institute of Scientific and Technical Information of China (English)

    Yuji; Yanagase; Shunichi; Yamagata; Yasuo; Kokubun

    2003-01-01

    A wide range (9.4nm) tuning of vertically coupled microring resonator filter was demonstrated utilizing a large TO coefficient of polymer. The power consumption was about 60m W and no degradation of filter response was observed.

  6. 9.4 nm Tunable Vertically Coupled Microring Resonator Filter by Thermo-Optic Effect

    Institute of Scientific and Technical Information of China (English)

    Yuji Yanagase; Shunichi Yamagata; Yasuo Kokubun

    2003-01-01

    A wide range (9.4nm) tuning of vertically coupled microring resonator filter was demonstrated utilizing a large TO coefficient of polymer. The power consumption was about 60mW and no degradation of filter response was observed.

  7. A high-speed automatic spectrometer based on a solid-state non-collinear acousto-optic tunable filter

    Institute of Scientific and Technical Information of China (English)

    Jianhua Zhu(朱建华); Andrew Y.S.Cheng(郑玉臣)

    2003-01-01

    An automatic visible spectrometer based on a non-collinear acousto-optic tunable filter (AOTF) isconstructed for high-speed spectrometry. Its spectral filtering characteristics, such as relationshipsbetween the radio-frequency (RF) driving frequency and the output central wavelength, the outputbandwidth and the central wavelength, its typical spectral point spread function (PSF), and so on, arestudied systematically. The preliminary measurement results of AOTF spectrometer show that it is asolid-state, high-speed, easily controllable by computer-programming, rugged and compact spectroscopicdevice in comparison with a conventional grating spectrometer, and has the potential for widespreadspectrometric applications.

  8. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Directory of Open Access Journals (Sweden)

    J. E. Engström

    2011-08-01

    Full Text Available The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed.

    One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter.

    Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season or pristine air from the Southern Indian Ocean (summer monsoon. The two ways of correction (optical and chemical lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm−1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm−1. A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter

  9. Optical flow based Kalman filter for body joint prediction and tracking using HOG-LBP matching

    Science.gov (United States)

    Nair, Binu M.; Kendricks, Kimberley D.; Asari, Vijayan K.; Tuttle, Ronald F.

    2014-03-01

    We propose a real-time novel framework for tracking specific joints in the human body on low resolution imagery using optical flow based Kalman tracker without the need of a depth sensor. Body joint tracking is necessary for a variety of surveillance based applications such as recognizing gait signatures of individuals, identifying the motion patterns associated with a particular action and the corresponding interactions with objects in the scene to classify a certain activity. The proposed framework consists of two stages; the initialization stage and the tracking stage. In the initialization stage, the joints to be tracked are either manually marked or automatically obtained from other joint detection algorithms in the first few frames within a window of interest and appropriate image descriptions of each joint are computed. We employ the use of a well-known image coding scheme known as the Local Binary Patterns (LBP) to represent the joint local region where this image coding removes the variance to non-uniform lighting conditions as well as enhances the underlying edges and corner. The image descriptions of the joint region would then include a histogram computed from the LBP-coded ROI and a HOG (Histogram of Oriented Gradients) descriptor to represent the edge information. Next the tracking stage can be divided into two phases: Optical flow based detection of joints in corresponding frames of the sequence and prediction /correction phases of Kalman tracker with respect to the joint coordinates. Lucas Kanade optical flow is used to locate the individual joints in consecutive frames of the video based on their location in the previous frame. But more often, mismatches can occur due to the rotation of the joint region and the rotation variance of the optical flow matching technique. The mismatch is then determined by comparing the joint region descriptors using Chi-squared metric between a pair of frames and depending on this statistic, either the prediction

  10. Enhanced performance of 400 Gb/s DML-based CAP systems using optical filtering technique for short reach communication.

    Science.gov (United States)

    Tao, Li; Wang, Yiguang; Xiao, Jiangnan; Chi, Nan

    2014-12-01

    A parallel transmission approach is more likely to realize 400 Gb/s and above short reach transmission as it helps to reduce the cost of both electrical and optical device largely. Directly modulated lasers (DML) are more attractive in 400 Gb/s approach, because it requires relatively small amount of driving power and has low insertion loss, thus lowering its cost. However, the intrinsic chirp will degrade the transmission performance. In this paper, an optical filtering technique is introduced for 400 Gb/s high-speed DML-based carrierless amplitude and phase (CAP) modulation short reach systems for the first time. Owing to the additional optical filter, 1 dB and 3.6 dB sensitivity improvement at BER of 3.8 x 10(-3) is obtained for the back-to-back and 15 km fiber link transmission for single lane at the bitrate of 28 Gb/s. Then a 16-lane CAP16 system with a total bit rate of 413 Gb/s is demonstrated experimentally using low-cost 10 GHz-class DML using optical filtering technique.

  11. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Pipa Daniel

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  12. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    Science.gov (United States)

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  13. Design of MEMS-tunable novel monolithic optical filters in InP with horizontal bragg mirrors

    Science.gov (United States)

    Datta, Madhumita; Pruessner, Marcel W.; Kelly, Daniel P.; Ghodssi, Reza

    2004-11-01

    This paper presents the theoretical design and analysis of a tunable Fabry-Perot resonant microcavity filter realized by movable-waveguide-based integrated optical MEMS technology in InP. Wide-bandwidth, high-reflectivity horizontal InP/air-gap distributed bragg reflector (DBR) mirrors monolithically integrated with the waveguides have been proposed. The filter can be tuned by moving one of the high-reflectivity mirrors axially with on-chip MEMS electrostatic actuation. Spectral performance of the filter is numerically simulated taking into account the diffraction effects. Finite element mechanical modeling of the parallel-plate capacitive microactuator, consisting of a micromachined suspension beam and fixed electrodes, predicts a wide wavelength tuning range (1250-1650 nm) achievable by low actuation voltage (<7 V).

  14. Optimal low noise phase-only and binary phase-only optical correlation filters for threshold detectors

    Science.gov (United States)

    Kallman, Robert R.

    1986-12-01

    Phase-only (PO) and binary phase only (BPO) versions of recently developed Synthetic Discriminant Filters, SDFs, (Kallman, 1986) are discussed which are potentially useful for threshold optical correlation detectors. A formulation of the performance or SNR of a filter against a training set is first presented which takes into account the POF or BPOF, unlike the SDF, being unable to control the actual size of the recognition spike of the output correlation plane when a valid target is centered in the filter input plane. Numerical tests of the present recipes for POFs and BPOFs have been carried out on four SDFs made from tank imagery, and the SNR for 12 POFs and 24 BPOFs were computed.

  15. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Science.gov (United States)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  16. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Science.gov (United States)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  17. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    Science.gov (United States)

    Namin, Frank Farhad A.

    (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  18. Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine; Peterman, Erwin J G; Weber, Tom

    2006-01-01

    In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasicit effect is due...... this detection system of optical tweezers a bandwidth, accuracy, and precision that are limited only by the data acquisition board's bandwidth and bandpass ripples, here 96.7 kHz and 0.005 dB, respectively. ©2006 American Institute of Physics...

  19. Optical contrast of 2D InSe on SiO2/Si and transparent substrates using bandpass filters

    Science.gov (United States)

    Brotons-Gisbert, M.; Andres-Penares, D.; Martínez-Pastor, J. P.; Cros, A.; Sánchez-Royo, J. F.

    2017-03-01

    The particular optical and electronic properties recently reported for 2D InSe depict this 2D material as being very versatile for future electronic and optoelectronic devices with tunable and optimized functionalities. For its fundamental study and the development of practical applications, rapid and accurate identification methods of atomically thin InSe are essential. Here, we demonstrate an enhancement of the optical contrast between InSe nanosheets and the underlying SiO2/Si substrate by illuminating with a 40 nm wide bandpass filter centered at 500 nm. Moreover, we study the optical contrast of 2D InSe on transparent substrates. Our results suggest that a good optical contrast is achieved for transparent substrates with low real refractive indices such as LiF or a viscoelastic polydimethylsiloxane stamp. In this case, an optimum optical contrast would be achieved by using a bandpass filter centered at 450 nm. These results can be very useful for speeding up the continuously growing research on 2D InSe and its applications.

  20. ALMA Band 1 Optics (35-50 GHz): Tolerance Analysis, Effect of Cryostat Infrared Filters and Cold Beam Measurements

    Science.gov (United States)

    Gonzalez, A.; Tapia, V.; Finger, R.; Huang, C.-D.; Asayama, S.; Huang, Y.-D.

    2017-10-01

    The Atacama Large Millimeter/Sub-millimeter Array (ALMA) is currently the largest (sub-)mm wave telescope in the world and will be used for astronomical observations in all atmospheric windows from 35 to 950 GHz when completed. The ALMA band 1 (35-50 GHz) receiver will be used for the longest wavelength observations with ALMA. Because of the longer wavelength, the size of optics and waveguide components will be larger than for other ALMA bands. In addition, all components will be placed inside the ALMA cryostat in each antenna, which will impose severe mechanical constraints on the size and position of receiver optics components. Due to these constraints, the designs of the corrugated feed horn and lens optics are highly optimized to comply with the stringent ALMA optical requirements. In this paper, we perform several tolerance analyses to check the impact of fabrication errors in such an optimized design. Secondly, we analyze the effects of operating this optics inside the ALMA cryostat, in particular the effects of having the cryostat IR filters placed next to the band 1 feed horn aperture, with the consequent near-field effects. Finally, we report on beam measurements performed on the first three ALMA band 1 receivers inside test cryostats, which satisfy ALMA specifications. In these measurements, we can clearly observe the effects of fabrication tolerances and IR filter effects on prototype receiver performance.

  1. Optical contrast of 2D InSe on SiO2/Si and transparent substrates using bandpass filters.

    Science.gov (United States)

    Brotons-Gisbert, M; Andres-Penares, D; Martínez-Pastor, J P; Cros, A; Sánchez-Royo, J F

    2017-03-17

    The particular optical and electronic properties recently reported for 2D InSe depict this 2D material as being very versatile for future electronic and optoelectronic devices with tunable and optimized functionalities. For its fundamental study and the development of practical applications, rapid and accurate identification methods of atomically thin InSe are essential. Here, we demonstrate an enhancement of the optical contrast between InSe nanosheets and the underlying SiO2/Si substrate by illuminating with a 40 nm wide bandpass filter centered at 500 nm. Moreover, we study the optical contrast of 2D InSe on transparent substrates. Our results suggest that a good optical contrast is achieved for transparent substrates with low real refractive indices such as LiF or a viscoelastic polydimethylsiloxane stamp. In this case, an optimum optical contrast would be achieved by using a bandpass filter centered at 450 nm. These results can be very useful for speeding up the continuously growing research on 2D InSe and its applications.

  2. Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator.

    Science.gov (United States)

    Liu, Li; Yang, Yue; Li, Zhihua; Jin, Xing; Mo, Wenqin; Liu, Xing

    2017-01-23

    We propose and experimentally demonstrate a continuously tunable all-optical microwave filter using a silicon opto-mechanical microring resonator (MRR). By finely adjusting the pump light with submilliwatt power level, transmission spectrum of the MRR could be continuously shifted based on the nonlinear effects, including the opto-mechanical effect and thermo-optic effect. Therefore, in the case of optical single sideband (OSSB) modulation, the frequency intervals between the optical carrier (near one MRR resonance) and the corresponding resonance could be flexibly manipulated, which is the critical factor to achieve continuously tunable microwave photonic filter (MPF). In the experiment, the central frequency of the MPF could be continuously tuned from 6 GHz to 19 GHz with the pump power lower than -2.5 dBm. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages, such as compact footprint, all-optical control and low power consumption. In the future, using light to control light, the opto-mechanical structure on silicon platforms might have many other potential applications in microwave systems, such as microwave switch.

  3. Ultraviolet filters.

    Science.gov (United States)

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  4. Oil accumulation in intact olive fruits measured by near infrared spectroscopy-acousto-optically tunable filter.

    Science.gov (United States)

    Bellincontro, Andrea; Caruso, Giovanni; Mencarelli, Fabio; Gucci, Riccardo

    2013-04-01

    A field experiment was conducted to test the reliability of the near infrared spectroscopy (NIR)-acousto-optically tunable filter (AOTF) method to measure mesocarp oil content in vivo against nuclear magnetic resonance (NMR) determinations using three different olive cultivars at different stages of ripening. In the partial least squares model carried out for the cultivar 'Arbequina', the coefficient of determination in calibration (R(2)c) was 0.991, while the coefficient of determination in cross-validation (R(2)cv) was 0.979. For the cultivar 'Frantoio' the indexes were 0.982 and 0.971, respectively; while for the cultivar 'Leccino' R(2)c was 0.977 and R(2)cv was 0.965. Finally, for the combined model (sum of the three varieties) these indexes were 0.921 and 0.903, respectively. The residual predictive deviation (RPD) ratio was insufficient for the predictive model of cultivar 'Leccino' only (1.98), whereas in the other cases the RPD ratios were completely sufficient, within the estimation range over 2.5-3 (2.61 in the global model, and 4.23 in the cultivar 'Frantoio'), or in describing a large capacity with values greater than 5, as in the cultivar 'Arbequina' (9.58). NIR-AOTF spectroscopy proved to be a novel, rapid and reliable method to monitor the oil accumulation process in intact olive fruits in the field. The innovative approach of coupling NIR and NMR technologies opens up new scenarios for determining the optimal time for harvesting olive trees to obtain maximum oil production. © 2012 Society of Chemical Industry.

  5. 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Using cross-phase modulation in a 1-km high-nonlinearity dispersion-shifted fiber with subsequent filtering by a tunable optical filter, 80-Gb/s pulsewidth maintained wavelength conversion is realized. Penalty-free transmission over 80-km conventional single-mode fiber and 12-km dispersion...

  6. Observations of vector magnetic fields with a magneto-optic filter

    Science.gov (United States)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  7. Ultra-narrow linewidth optical filter based on Faraday effect at isotope 87Rb 420 nm transitions

    Science.gov (United States)

    Bi, Gang; Kang, Jia; Fu, Jun; Ling, Li; Chen, Jingbiao

    2016-12-01

    An ultra-narrow linewidth optical filter with isotope 87Rb vapor at 420 nm, within the best waveband 400-500 nm for deep sea communication is achieved for the first time. The Faraday effect, circular dichroism, and nonlinear saturation techniques are utilized to narrow the bandwidth from previous 2.5 GHz to about 15 MHz level on the energy transition 5S1/2 → 6P3/2. By changing the temperature and magnetic field, the maximum transmission is obtained when the temperature and the magnetic field of the 87Rb cell are at 100 °C and 12 G. We discuss the varying influences of temperature, magnetic field, and pump power on the transmission of the atomic filter. The maximum single peak transmission at 5S1/2, F = 2 → 6P3/2, F‧ = 3 transition is 2.1% with a bandwidth of 17.8 MHz, and 1.9% at the 5S1/2, F = 2 → 6P3/2, F‧ = 2 , 3 (cross-over) transition with that of 14.2 MHz. The calculated equivalent noise bandwidth of this system is 32.5 MHz. Compared with the conventional Faraday anomalous dispersion optical filter, the bandwidth of our system is narrowed at least two orders of magnitude and is closer to the natural linewidth. This ultra-narrow linewidth filter has the potential to be applied to submarine communication or the pump laser in a four-level Rb-based active optical clock.

  8. Relationship between parameters of bacteriorhodopsin film and behavior of optical novelty filters.

    Science.gov (United States)

    Chen, Guiying; Zhang, Chunping; Guo, Zongxia; Xu, Tang; Liang, Xin; Wang, Xinyu; Tian, Jianguo; Song, Q Wang

    2005-10-20

    To continue our earlier research on novelty filters in a system of incoherent light [Opt. Lett. 30,81 (2005)], we discuss the relationship between parameters of a bacteriorhodopsin film and the quality of a novelty filter image. For both fixed and moving velocities of the input image, differences in the novelty filter's image as a function of thickness, lifetime of the M state, and molecular concentration are displayed, and the optimal ranges of parameters of the bR film that correspond to the entire novelty filter image and obvious gray-level differences in the image are given. The method can be used to design high-quality novelty filter images in incoherent light systems.

  9. Polaritonic-to-Plasmonic Transition in Optically Resonant Bismuth Nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters

    CERN Document Server

    Cuadrado, Alexander; Serna, Rosalia

    2015-01-01

    In the quest aimed at unveiling alternative plasmonic elements overcoming noble metals for selected applications in photonics, we investigate by numerical simulations the near ultraviolet-to-near infrared optical response of solid and liquid Bi nanospheres embedded in a dielectric matrix. We also determine the resulting transmission contrast upon reversible solid-liquid phase transition to evaluate their potential for switchable optical filtering. The optical response of the solid (liquid) Bi nanospheres is ruled by localized polaritonic (plasmonic) resonances tunable by controlling the diameter. For a selected diameter between 20 nm and 50 nm, both solid and liquid nanospheres present a dipolar resonance inducing a strong peak extinction in the near ultraviolet, however at different photon energies. This enables a high transmission contrast at selected near ultraviolet photon energies. It is estimated that a two-dimensional assembly of 20 nm solid Bi nanospheres with a surface coverage of 28% will totally ex...

  10. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    Science.gov (United States)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  11. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    Science.gov (United States)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  12. Tuning Plasmon Resonance in Magnetoplasmonic Nanochains by Controlling Polarization and Interparticle Distance for Simple Preparation of Optical Filters.

    Science.gov (United States)

    Song, Y; Tran, V T; Lee, J

    2017-07-26

    Magnetoplasmonic Fe3O4-coated Ag nanoparticles (NPs) are assembled in large scale (18 × 18 mm(2)) in order to observe unique modulation of plasmonic coupling and optical tunable application via both external magnetic field and the combination of magnetic dipole and electrostatic interactions of particle-particle and particle-substrate. These large nanochains film exhibits outstanding tunability of plasmonic resonance from visible to near-infrared range by controlling the polarization angle and interparticle distance (IPD). The enormous spectral shift mainly originated from far-field rather than near-field coupling of Ag cores because of the sufficiently large separation between them in which Fe3O4 shell acts as spacer. This tunable magnetoplasmonic film can be applicable in the field of anisotropic optical waveguides, tunable optical filter, and nanoscale sensing platform.

  13. 80-GB all-optical serial-to-parallel convertor for QPSK signal based on cascaded phase modulators and optical filters

    Institute of Scientific and Technical Information of China (English)

    Deming Kong; Yan Li; Hui Wang; Jian Wu; Jintong Lin

    2012-01-01

    An all-optical serial-to-parallel converter (SPC) utilizing two cascaded phase modulators and optical bandpass filters (OBPFs) is experimentally investigated and applied to demultiplex an 80-GBd optical timedivision multiplexing (OTDM) return-to-zero (RZ) differential quadrature phase-shift keying (QPSK) signal.Two 40-GBd OTDM tributaries are error-free demultiplexed with a power penalty of approximately 4 dB in the worst case.With its advantages of compact structure,high speed,low power penalty,simultaneous two-tributary operation,and no assistance from a light source,the SPC has potential for use in future OTDM networks.However,the performance of the SPC still needs improvement.

  14. The separation efficiency of ceramic barrier filters determined at high temperatures by optical particle size and concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmer, G.; Umhauer, H.; Kasper, G. [Univ. Karlsruhe, Inst. fuer Mechanische Verfahrenstechnik und Mechanik, Karlsruhe (Germany); Berbner, S. [Freudenberg Nonwovens, Filtration Div., Hopkinsville, KY (United States)

    1999-07-01

    Based on the experiences of earlier investigations a special optical particle counter was developed capable of recording size and quantity (concentration) of the particles directly within a given gas particle stream under the prevailing conditions (true in-situ measurements at high temperatures). In addition to earlier investigations [1], a second type of ceramic filter media with much smaller porosity and a membrane layer on the filtration side was tested. The candles with a length of 1.5 m which are used in industrial applications were mounted in the same hot gas filtration unit already used before. Measurements on the clean gas side at temperatures of up to 1000 C have been conducted using a fraction of quartz particles as test dust. The particle size ranged between 0.3 {mu}m and 10 {mu}m. Filtration velocity (1.5 cm/s) and final pressure drop of dust cake {delta}p (1000 Pa) were kept constant. As a main result the fractional efficiency as function of temperature is discussed and compared with that obtained before for a filter media of type I: The fractional efficiency values of filter type II are at least 100 times higher than that of filter type I. (orig.)

  15. Large Format Narrow Band High Throughput Optical Filters for 0.5-2.75 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the most efficient ways to create narrow band filter is the use of reflective Bragg gratings or which allow increasing of efficiency and decreasing of weight...

  16. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  17. Fabrication and Characterization of Efficient Optical Filter Arrays Implemented by 3D Nanoimprint

    OpenAIRE

    Memon, Imran

    2016-01-01

    In dieser Arbeit werden optische Filterarrays für hochqualitative spektroskopische Anwendungen im sichtbaren (VIS) Wellenlängenbereich untersucht. Die optischen Filter, bestehend aus Fabry-Pérot (FP)-Filtern für hochauflösende miniaturisierte optische Nanospektrometer, basieren auf zwei hochreflektierenden dielektrischen Spiegeln und einer zwischenliegenden Resonanzkavität aus Polymer. Jeder Filter erlaubt einem schmalbandigem spektralen Band (in dieser Arbeit Filterlinie genannt) ,abhängig v...

  18. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  19. Optical properties of plasma ion-assisted deposition silicon coatings: application to the manufacture of blocking filters for the near-infrared region.

    Science.gov (United States)

    Bruynooghe, Stephane

    2008-05-01

    I report on the preparation and characterization of optical constants of silicon coatings deposited by an electron beam gun with plasma ion-assisted deposition. With the fabrication of long-wave-pass filters the reliability of the optical constants is assured.

  20. Space-variant optical correlator based on the fractional Fourier transform: implementation by the use of a photorefractive Bi(12)GeO(2(a)) (BGO) holographic filter.

    Science.gov (United States)

    Granieri, S; Del Carmen Lasprilla, M; Bolognini, N; Sicre, E E

    1996-12-10

    A space-variant optical correlator is proposed on the basis of the fractional Fourier transform. The optical device uses as a recording medium for the holographic filter a photorefractive Bi(12)GeO(2) (BGO) crystal. The experimental results confirm the shift-variance properties. Some limitations that arise from the volume diffraction are also considered.

  1. A nonlinear training set superposition filter derived by neural network training methods for implementation in a shift-invariant optical correlator

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Birch, Philip M.; Chatwin, Christopher R.

    2003-08-01

    The various types of synthetic discriminant function (sdf) filter result in a weighted linear superposition of the training set images. Neural network training procedures result in a non-linear superposition of the training set images or, effectively, a feature extraction process, which leads to better interpolation properties than achievable with the sdf filter. However, generally, shift invariance is lost since a data dependant non-linear weighting function is incorporated in the input data window. As a compromise, we train a non-linear superposition filter via neural network methods with the constraint of a linear input to allow for shift invariance. The filter can then be used in a frequency domain based optical correlator. Simulation results are presented that demonstrate the improved training set interpolation achieved by the non-linear filter as compared to a linear superposition filter.

  2. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    Science.gov (United States)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  3. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  4. Neutron spin filter based on optically polarized {sup 3}He in a near-zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Skoy, V.R. E-mail: skoy@nf.jinr.ru; Prokofichev, Yu.V.; Sorokin, V.N.; Kolachevski, N.N.; Sobelman, I.I.; Sermyagin, A.V

    2003-04-01

    A test of polarization of {sup 3}He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of {sup 3}He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  5. Improvement of Three-Dimensional Resolution in Optical Data Storage by Combination of Two Annular Binary Phase Filters

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Feng; LI Cheng-Fang; RUAN Hao

    2004-01-01

    @@ We present an improved confocal readout system to achieve three-dimensional superresolution. This improved system is based on a combination of two different annular binary phase filters, the one designed for increasing the transverse superresolution and the other for achieving axial superresolution. By adjusting the pupil parameters,each pupil can be well designed. The simulation results show that with this improved system, the area of the central lobe of the three-dimensional point spread function of the read optics is greatly reduced. Moreover, the side-lobes are extinguished.

  6. A measurement of the absolute neutron beam polarization produced by an optically pumped sup 3 He neutron spin filter

    CERN Document Server

    Rich, D R; Crawford, B E; Delheij, P P J; Espy, M A; Haseyama, T; Jones, G; Keith, C D; Knudson, J; Leuschner, M B; Masaike, A; Masuda, Y; Matsuda, Y; Penttilae, S I; Pomeroy, V R; Smith, D A; Snow, W M; Szymanski, J J; Stephenson, S L; Thompson, A K; Yuan, V

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized sup 3 He spin filter and a relative transmission measurement technique. sup 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.

  7. Gaussian mixture sigma-point particle filter for optical indoor navigation system

    Science.gov (United States)

    Zhang, Weizhi; Gu, Wenjun; Chen, Chunyi; Chowdhury, M. I. S.; Kavehrad, Mohsen

    2013-12-01

    With the fast growing and popularization of smart computing devices, there is a rise in demand for accurate and reliable indoor positioning. Recently, systems using visible light communications (VLC) technology have been considered as candidates for indoor positioning applications. A number of researchers have reported that VLC-based positioning systems could achieve position estimation accuracy in the order of centimeter. This paper proposes an Indoors navigation environment, based on visible light communications (VLC) technology. Light-emitting-diodes (LEDs), which are essentially semiconductor devices, can be easily modulated and used as transmitters within the proposed system. Positioning is realized by collecting received-signal-strength (RSS) information on the receiver side, following which least square estimation is performed to obtain the receiver position. To enable tracking of user's trajectory and reduce the effect of wild values in raw measurements, different filters are employed. In this paper, by computer simulations we have shown that Gaussian mixture Sigma-point particle filter (GM-SPPF) outperforms other filters such as basic Kalman filter and sequential importance-resampling particle filter (SIR-PF), at a reasonable computational cost.

  8. An ultra-narrow-band optical filter based on whispering-gallery-mode hybrid-microsphere-cavity

    Science.gov (United States)

    Wan, Hongdan; Zhu, Haohan; Liu, Linqian; Xu, Ji; Wang, Jin

    2016-10-01

    We demonstrate an ultra-narrow-band mode-selection method based on a hybrid-microsphere-cavity which consists of a coated silica microsphere. Optical field distribution and narrow-band transmission spectrum of the whispering gallery modes (WGM) are investigated by finite-difference time-domain method. WGM transmission spectra are measured for microsphere and tapered fibers with different diameters. A high refractive index layer coated on the microsphere-cavity make the Q factor increased, the transmission spectrum bandwidth compressed and the side-mode suppression ratio increased. Parameters of the hybrid-microsphere-cavity, namely, the coated shell thickness and its refractive index are optimized under different excitation light source as to investigate the whispering-gallery-modes' transmission spectrum. The 3dB bandwidth of the proposed filter can be less than MHz which will have great potential for applications in all-optical sensing and communication systems.

  9. Improving the segmentation for weed recognition applications based on standard RGB cameras using optical filters

    DEFF Research Database (Denmark)

    Stigaard Laursen, Morten; Jørgensen, Rasmus Nyholm; Midtiby, Henrik

    . This method utilizes that most vegetation reflects more green light than blue and red. As silicon based image sensors is also sensitive to near-infrared light a typical rgb-camera will have a filter in place to block the near-infrared light. When using excess green the ideal filter would be a sinc...... diseases, weeds and fungus. A common method for interpretation is based on the leaf shape. However in order to reliably achieve a good description of the shape a good segmentation is required. The excess green index is one of the most common methods for green vegetation segmentation within agriculture...

  10. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Ortega, Beatriz; Min, Rui; Sáez-Rodri­guez, David

    2017-01-01

    In this contribution we report on the fabrication of novel bandpass transmission filters based on PS-FBGs in microstructured polymer fibers at telecom wavelengths. The phase mask technique is employed to fabricate several superimposed gratings with slight different periods in order to form Moir......é structures with a single or various π phase shifts along the device. Simulations and experimental results are included in order to demonstrate very narrowband transmission filters. Experimental characterization under strain and temperature variations is provided in a non-annealed fiber and time stability...

  11. Correcting ray optics at curved dielectric microresonator interfaces: phase-space unification of Fresnel filtering and the Goos-Hänchen shift.

    Science.gov (United States)

    Schomerus, Henning; Hentschel, Martina

    2006-06-23

    We develop an amended ray-optics description for reflection at the curved dielectric interfaces of optical microresonators which improves the agreement with wave optics by about one order of magnitude. The corrections are separated into two contributions of similar magnitude, corresponding to ray displacement in independent quantum-phase-space directions, which can be identified with Fresnel filtering and the Goos-Hänchen shift, respectively. Hence we unify two effects which only have been studied separately in the past.

  12. WO3∕SiO2 composite optical films for the fabrication of electrochromic interference filters.

    Science.gov (United States)

    Baloukas, Bill; Martinu, Ludvik

    2012-06-01

    New security devices based on innovative technologies and ideas are essential in order to limit counterfeiting's profound impact on our economy and society. Interference security image structures have been in circulation for more than 20 years, but commercially available iridescent products now represent a potential threat. Therefore, the introduction of active materials, such as electrochromic WO3, to present-day optical security devices offers interesting possibilities. We have previously proposed electrochromic interference filters based on porous and dense WO3, which possessed an angle-dependent and voltage-driven color shift. However, the low index contrast required filters with a high number of layers. In this article, we increase the index contrast (0.61) by mixing WO3 with SiO2 and study the physical and electrochromic properties of mixtures. We next combine high and low index films in tandem configurations to observe the bleaching/coloration dynamics. To account for the film performance, we propose a simple explanation based on the differences in electron diffusion coefficients. An 11 layer electrochromic interference filter (EIF) based on the alternation of pure WO3 and (WO3)0.17(SiO2)0.83 films with a blue to purple angular color shift is then presented. Finally, we discuss possible applications of these EIFs for security.

  13. Real-time modeling and online filtering of the stochastic error in a fiber optic current transducer

    Science.gov (United States)

    Wang, Lihui; Wei, Guangjin; Zhu, Yunan; Liu, Jian; Tian, Zhengqi

    2016-10-01

    The stochastic error characteristics of a fiber optic current transducer (FOCT) influence the relay protection, electric-energy metering, and other devices in the spacer layer. Real-time modeling and online filtering of the FOCT’s stochastic error tends to be an effective method for improving the measurement accuracy of the FOCT. This paper first pretreats and inspects the FOCT data, statistically. Then, the model order is set by the AIC principle to establish an ARMA (2,1) model and model’s applicability is tested. Finally, a Kalman filter is adopted to reduce the noise in the FOCT data. The results of the experiment and the simulation demonstrate that there is a notable decrease in the stochastic error after time series modeling and Kalman filtering. Besides, the mean-variance is decreased by two orders. All the stochastic error coefficients are decreased by the total variance method; the BI is decreased by 41.4%, the RRW is decreased by 67.5%, and the RR is decreased by 53.4%. Consequently, the method can reduce the stochastic error and improve the measurement accuracy of the FOCT, effectively.

  14. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    Science.gov (United States)

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  15. Optical Filter Effects on Night Vision Goggle Acuity and Preservation of Dark Adaptation

    Science.gov (United States)

    2010-09-01

    2010 NVG FILTER STUDY — THOMAS ET AL. uncorrected or best corrected Snellen visual acuities of 20/20 (6/6) or better and were evaluated with their ha... Snellen equivalent of the mean in parenthesis. * Indicates a signifi cant difference ( P , 0.05). TABLE II. TIME REQUIRED TO ACHIEVE BASELINE

  16. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network

    Science.gov (United States)

    Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui

    2017-02-01

    An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.

  17. Numerical Analysis of the Crosstalk on an Integrated Acousto-Optic Tunable Filter (AOTF) for Network Applications

    Science.gov (United States)

    Sobrinho, C. S.; de Oliveira, M. V. N.; Silva, M. G. Da; Lima, J. L. S.; de Almeida, E. F.; Sombra, A. S. B.

    In this article, we did a study of the crosstalk level (Xtalk) and extinction ratio (Xratio) of an acousto-optic tunable filter (AOTF) operating with ultra-short light pulses (2 ps). It is clear that the transmission bandwidth decreases as the length of the device increases. The compression factor was studied for the switched pulse in an AOTF without loss considering five nonlinearity profiles. One can observe that there is always an optimum value for β (final value of the nonlinearity) that one can obtain a switched pulse with the same time duration of the input pulse. The study of the crosstalk level, of this device, considering the optimum values of β obtained from the compression studies, as a function of the pump power (P0) was done. For the soliton profile at 1 W of pump power one can notice that the Gaussian profile presents the lower Xtalk value (-13 dB), and the constant profile presents the worst value (-9.8 dB). However, if one is looking for a specific Xtalk value, one can conclude that with the constant profile one can obtain this value with a lower power. For the quasi-soliton profile of the same device, with low pump power (1 W), one can notice again that the Gaussian profile presents the lower Xtalk value (-13 dB) and the constant profile presents the worst value (-9.87 dB). This fact can be explained because, with pump power at 1 W, soliton and quasi-soliton profiles lead equivalent input pulses and under the same conditions produce equal results. The Xtalk level, considering all the profiles as a function of the β value, was studied. For all the profiles one has a strong increase of the Xtalk level with the increase of the final β value of the nonlinearity profile. Comparing all the profiles one can conclude that the Gaussian profile presents the lower Xtalk value in the range of β values in use. At the same time the value of the Xtalk for this profile does not change much with the change in the β value, presenting values in interval (-13 d

  18. Tuning the defect mode in ternary photonic crystal with external voltage for designing a controllable optical filter

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Rashidi, Shiva; Vahedi, Ali

    2015-09-01

    In this work, behavior of defect mode in one-dimensional ternary photonic crystal (1DTPC) structure with arrangement of (MgF2/Ag/TiO2)5LiNbO3(TiO2/Ag/MgF2)5 was investigated under the applied external electric dc voltage. The defect layer is lithium niobate (LiNbO3), an electro-optical (EO) material whose refractive index is voltage-dependent with high EO coefficient. In comparison, magnesium fluoride (MgF2) and titanium dioxide (TiO2) layers have very low EO coefficients. A narrow localized defect mode with perfect transmittance was appeared inside the photonic band gap. Under applying the positive or negative biases, red shift and blue shift was observed in the defect mode, respectively. More than 120 nm tunability was obtained under externally applied voltage in the range of -200 V to 200 V. The physical interpretation is very simple. Change in optical path-length displaces the localized wavelength of the defect mode due to Bragg interface condition. The externally tunable localized mode can be employed in designing a controllable optical filter, one of the essential devices for new-generation all-optical integrated circuits.

  19. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  20. Effects of quantum noise on the nonlinear dynamics of a semiconductor laser subject to two spectrally filtered, time-delayed optical feedbacks

    Science.gov (United States)

    Suelzer, Joseph S.; Prasad, Awadhesh; Ghosh, Rupamanjari; Vemuri, Gautam

    2016-07-01

    We report on a theoretical and computational investigation of the complex dynamics that arise in a semiconductor laser that is subject to two external, time-delayed, filtered optical feedbacks with special attention to the effect of quantum noise. In particular, we focus on the dynamics of the instantaneous optical frequency (wavelength) and its behavior for a wide range of feedback strengths and filter parameters. In the case of two intermediate filter bandwidths, the most significant results are that in the presence of noise, the feedback strengths required for the onset of chaos in a period doubling route are higher than in the absence of noise. We find that the inclusion of noise changes the dominant frequency of the wavelength oscillations, and that certain attractors do not survive in the presence of noise for a range of filter parameters. The results are interpreted by use of a combination of phase portraits, rf spectra, and first return maps.

  1. Implementation of Accelerated Beam-Specific Matched-Filter-Based Optical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A S; Rice, K L; Taha, T M

    2009-01-29

    Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real-time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process the image as fast as possible. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro FPGA hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.0 GHz AMD Opteron core.

  2. Three-State Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing

    Directory of Open Access Journals (Sweden)

    Jaakko T. Astola

    2005-05-01

    Full Text Available Textural features are one of the most important types of useful information contained in images. In practice, these features are commonly masked by noise. Relatively little attention has been paid to texture preserving properties of noise attenuation methods. This stimulates solving the following tasks: (1 to analyze the texture preservation properties of various filters; and (2 to design image processing methods capable to preserve texture features well and to effectively reduce noise. This paper deals with examining texture feature preserving properties of different filters. The study is performed for a set of texture samples and different noise variances. The locally adaptive three-state schemes are proposed for which texture is considered as a particular class. For “detection” of texture regions, several classifiers are proposed and analyzed. As shown, an appropriate trade-off of the designed filter properties is provided. This is demonstrated quantitatively for artificial test images and is confirmed visually for real-life images.

  3. Approach to realize sharp cut-off characteristics multi-ring optical filters; Fukugo ringu kyoshin koha fuiruta no shadan tokusei no kyushunka ni taisuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hirosuke; Tsuruta, Ken' ichi; Miyamoto, Tokuo

    1999-03-01

    Recently, optical filters for wavelength division multiplexing (WDM) systems has been very intensively investigated. However, the report on improved cut-off characteristics is very few. For this reason, we tried to improve cut-off characteristics of filters adding feedback route to the ring resonators. Very sharp cut-off characteristics are obtained. But the attenuation loss become down. It may be very effective to improve the cut-off characteristics of filters to adding a new feedback route to the resonators but some new measurements must be necessary to keep the high stop band loss. (author)

  4. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Why are rugged, low temperature actuator materials important? By themselves, they are useless; however, when fabricated into thin films and integrated into optical...

  5. QSOs in the ALHAMBRA survey. I. Photometric redshift accuracy through a 23 optical-NIR filter photometry

    CERN Document Server

    Matute, I; Masegosa, J; Husillos, C; del Olmo, A; Perea, J; Alfaro, E J; Fernández-Soto, A; Moles, M; Aguerri, J A L; Aparicio-Villegas, T; Benítez, N; Broadhurst, T; Cabrera-Cano, J; Castander, F J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Infante, L; Delgado, R M González; Martínez, V J; Molino, A; Prada, F; Quintana, J M

    2012-01-01

    We characterize the ability of the ALHAMBRA survey to assign accurate photo-z's to BLAGN and QSOs based on their ALHAMBRA very-low-resolution optical-NIR spectroscopy. A sample of 170 spectroscopically identified BLAGN and QSOs have been used together with a library of templates (including SEDs from AGN, normal, starburst galaxies and stars) in order to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the spectroscopic sources over 2.5 deg^2 in different areas of the survey, all of them brighter than m678=23.5 (equivalent to r(SLOAN)~24.0). The derived photo-z accuracy is better than 1% and comparable to the most recent results in other cosmological fields. The fraction of outliers (~12%) is mainly caused by the larger photometric errors for the faintest sources and the intrinsic variability of the BLAGN/QSO p...

  6. 10 Gb/s full-duplex bidirectional transmission with RSOA-based ONU using detuned optical filtering and decision feedback equalization.

    Science.gov (United States)

    Omella, M; Papagiannakis, I; Schrenk, B; Klonidis, D; Lázaro, J A; Birbas, A N; Kikidis, J; Prat, J; Tomkos, I

    2009-03-30

    Full-duplex bidirectional transmission at 10 Gb/s is demonstrated for extended wavelength division multiplexed passive optical network (WDM-PON) applications, achieving transmission distances up to 25 km of standard single mode fiber (SSMF) when using a low-bandwidth (approximately 1.2 GHz) reflective semiconductor optical amplifier (RSOA) for signal re-modulation at the optical network unit (ONU). The system is assisted by optimum offset filtering at the optical line terminal (OLT)-receiver and the performance is further improved with the use of decision-feedback equalization (DFE). Chromatic dispersion (CD) and Rayleigh Backscattering (RB) effects are considered and analyzed.

  7. 耦合型光纤滤波器的特性分析%Characteristics Analysis for Coupling Optical Fiber Filter

    Institute of Scientific and Technical Information of China (English)

    陈金鹏; 张少先; 柳春郁

    2013-01-01

      光纤滤波器在光纤通信和光纤激光器制作中发挥着重要的作用。通过对耦合理论分析,利用宽带光源和光谱仪构建测试系统,测试了耦合型光纤滤波器光谱响应,研究了不同拉锥周期与透射波长的关系。实验表明,拉锥周期越长,透射波长峰值间隔越密集,光谱响应更加敏感。因此可以利用这一特性制作不同透射波长、不同滤波间隙的光纤滤波器。%Optical fiber filters play an important role in optical fiber communication and optical fiber lasers fabrication. Based on coupling theory analysis, spectral response of coupling optical fiber filters is tested and the relationship between tapered cycle and transmission wavelength is researched by broadband light source and spec⁃trometer building and testing system. Experimental results show that the longer tapered cycle is, the denser peak intervals of transmission wavelength is and the more sensitive spectral response is. So optical fiber filters with dif⁃ferent transmission wavelength and filtering gap can be produced according to the property.

  8. Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters.

    Science.gov (United States)

    Nazirizadeh, Yousef; Müller, Jürgen; Geyer, Ulf; Schelle, Detlef; Kley, Ernst-Bernhard; Tünnermann, Andreas; Lemmer, Uli; Gerken, Martina

    2008-05-12

    We present an experimental method for direct analysis of guided-mode resonances in photonic crystal slab structures using transmission measurements. By positioning the photonic crystal slab between orthogonally oriented polarization filters light transmission is suppressed except for the guided-mode resonances. Angle resolved transmission measurements with crossed polarizers are performed to obtain the band structure around the Gamma-point. Results are compared to mode simulations. Spatially resolved measurements in a confocal microscope setup are used for homogeneity characterizations. Stitching errors and inhomogeneities in exposure dose down to 1.3% in photonic crystal slabs fabricated by electron beam lithography are observed using this method.

  9. Optical observations of the nearby galaxy IC342 with narrow band [SII] and Hα filters. I

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2013-01-01

    Full Text Available We present observations of a portion of the nearby spiral galaxy IC342 using narrow band [SII] and Hα filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, Hα and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 5 times higher than previously known in these two parts of the galaxy. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission nebulae: structure and evolution

  10. Optical injection and spectral filtering of high-power UV laser diodes

    CERN Document Server

    Schäfer, V M; Tock, C J; Lucas, D M

    2015-01-01

    We demonstrate injection-locking of 120mW laser diodes operating at 397nm. We achieve stable operation with injection powers of ~100uW and a slave laser output power of up to 110mW. We investigate the spectral purity of the slave laser light via photon scattering experiments on a single trapped Ca40 ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission.

  11. Pose estimation of surgical instrument using sensor data fusion with optical tracker and IMU based on Kalman filter

    Directory of Open Access Journals (Sweden)

    Oh Hyunmin

    2015-01-01

    Full Text Available Tracking system is essential for Image Guided Surgery(IGS. The Optical Tracking Sensor(OTS has been widely used as tracking system for IGS due to its high accuracy and easy usage. However, OTS has a limit that tracking fails when occlusion of marker occurs. In this paper, sensor fusion with OTS and Inertial Measurement Unit(IMU is proposed to solve this problem. The proposed algorithm improves the accuracy of tracking system by eliminating scattering error of the sensor and supplements the disadvantages of OTS and IMU through sensor fusion based on Kalman filter. Also, coordinate axis calibration method that improves the accuracy is introduced. The performed experiment verifies the effectualness of the proposed algorithm.

  12. Generalized regression neural network trained preprocessing of frequency domain correlation filter for improved face recognition and its optical implementation

    Science.gov (United States)

    Banerjee, Pradipta K.; Datta, Asit K.

    2013-02-01

    The paper proposes an improved strategy for face recognition using correlation filter under varying lighting conditions and occlusion where spatial domain preprocessing is carried out by two convolution kernels. The first convolution kernel is a contour kernel for emphasizing high frequency components of face image and the other kernel is a smoothing kernel used for minimization of noise those may arise due to preprocessing. The convolution kernels are obtained by training a generalized regression neural network using enhanced face features. Face features are enhanced by conventional principal component analysis. The proposed method reduces the false acceptance rate and false rejection rate in comparison to other standard correlation filtering techniques. Moreover, the processing is fast when compared to the existing illumination normalization techniques. A scheme of hardware implementation of all optical correlation technique is also suggested based on single spatial light modulator in a beam folding architecture. Two benchmark databases YaleB and PIE are used for performance verification of the proposed scheme and the improved results are obtained for both illumination variations and occlusions in test face images.

  13. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.

    Science.gov (United States)

    Blume, Niels Göran; Wagner, Steven

    2015-07-20

    Long-distance fiber links require precise knowledge of fiber dispersion characteristics. Similar dispersion characteristics are necessary for supercontinuum broadband laser absorption spectroscopy (SCLAS) to allow proper data evaluation and species concentration determination, as well as numerous other applications. In this work, a time-of-flight approach to measuring the dispersion characteristic of fibers with supercontinuum laser light sources (SCLs) and acousto-optical tunable filters (AOTFs) is presented. Broadband emission of the SCL is filtered with a narrowband AOTF and dispersed in time by the fiber under test. By using the wavelength-specific delay, the dispersion characteristic can be calculated. The technique is especially suited for longer fibers and was verified against a state-of-the-art phase-shift-based dispersion measurement system. Advantages of the new approach include solely utilizing SCLAS system components, as well as a high level of automation and wide spectral coverage, ranging from 1100 to 1700 nm in a single measurement setup.

  14. Optical microring resonators constructed from organic dye nanofibers and their application to miniaturized channel drop/add filters.

    Science.gov (United States)

    Takazawa, Ken; Inoue, Jun-ichi; Mitsuishi, Kazutaka

    2013-07-10

    We fabricated micrometer-scale optical ring resonators by micromanipulation of thiacyanine (TC) dye nanofibers that propagate exciton polaritons (EPs) along the fiber axis. High mechanical flexibility of the nanofibers and a low bending loss property of EP propagation enabled the fabrication of microring resonators with an average radius (r(ave)) as small as 1.6 μm. The performances of the fabricated resonators (r(ave) = 1.6-8.9 μm) were investigated by spatially resolved microscopy techniques. The Q-factors and finesses were evaluated as Q ≈ 300-3500 and F ≈ 2-12. On the basis of the r(ave)-dependence of resonator performances, we revealed the origin of losses in the resonators. To demonstrate the applicability of the microring resonators to photonic devices, we fabricated a channel drop filter that comprises a ring resonator (r(ave) = 3.9 μm) and an I/O bus channel nanofiber. The device exhibited high extinction ratios (4-6 dB) for its micrometer-scale dimensions. Moreover, we successfully fabricated a channel add filter comprising a ring resonator (r(ave) = 4.3 μm) and two I/O bus channel nanofibers. Our results demonstrated a remarkable potential for the application of TC nanofibers to miniaturized photonic circuit devices.

  15. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring

    Directory of Open Access Journals (Sweden)

    Radek Martinek

    2017-04-01

    Full Text Available This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS, and the Normalized Least Mean Square (NLMS Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs, filtered from abdominal maternal phonocardiograms (mPCGs by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV.

  16. Approach to wide the stop-band of multi fabry-perot optical filters; Fukugo fuaburi {center_dot} pero koha fuiruta soshiiki no kotaiikika

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hirosuke; Kawabe, Isamu; Miyamoto, Tokuo

    1999-03-01

    The optical filters for wavelength division multiplexing systems are required flat pass-band and wide stop-band. In the filter which consists of Fabry-Perot optical resonator, stop-band width are limited because of the repetitive resonance peak. In this paper, the adjoining resonance peaks are suppressed by changing the cavity length of the double Fabry-Perot optical resonator, and the stop-band could be spread. At the 1.55 {mu}m wavelength region, 4THz stop-band and 28GHz pass-band are calculated by setting the optics lengths 187.5 {mu}m and 150 {mu}m as each resonators. (author)

  17. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    Science.gov (United States)

    Rutkowski, Lucile; Morville, Jérôme

    2017-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique which allows us to record broadband spectra at high sensitivity and GHz resolution (Rutkowski and Morville, 2014) [1]. We discuss here the effect of Vernier filtering on the observed lineshapes in the 3 ν + δ band of water vapor and the entire A-band of oxygen around 800 nm in ambient air. We derive expressions for the absorption profiles resulting from the continuous Vernier filtering method, testing them on spectra covering more than 2000 cm-1 around 12,500 cm-1. With 31,300 independent spectral elements acquired at the second time scale, an absorption baseline noise of 2 ×10-8cm-1 is obtained, providing a figure of merit of 1.1×10-10 cm-1/√{ Hz } per spectral element with a cavity finesse of 3000 and a cavity round-trip length around 3.3 m.

  18. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras

    Science.gov (United States)

    Priore, Ryan J.; Jacksen, Niels

    2016-05-01

    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  19. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    Science.gov (United States)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  20. Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop.

    Science.gov (United States)

    Lin, Jiachuan; Xi, Lixia; Li, Jianrui; Zhang, Xiaoguang; Zhang, Xia; Niazi, Shahab Ahmad

    2014-04-07

    In this paper, an improved multi-carrier generation scheme based on single-side-band recirculating frequency shifter with optical finite impulse response (FIR) filter for amplified spontaneous emission (ASE) noise suppression is proposed and experimentally demonstrated. The carrier-to-noise-ratio (CNR) instead of tone-to-noise-ratio (TNR) is introduced to more reasonably and exactly evaluate the signal-to-noise-ratio of a multi-carrier source with non-flat noise floor. We have experimentally attain the worst case CNR of 22.5dB and 19.1dB for generated 50 and 69 flat low noise carriers, which has shown significant improvement than the previous cited works based on recirculating frequency shifter.

  1. Adaptive guided image filter for warping in variational optical flow computation

    NARCIS (Netherlands)

    Tu, Z.; Poppe, R.W.; Veltkamp, R.C.

    2016-01-01

    The variational optical flow method is considered to be the standard method to calculate an accurate dense motion field between successive frames. It assumes that the energy function has spatiotemporal continuities and appearance motions are small. However, for real image sequences, the temporal con

  2. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    Science.gov (United States)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  3. Tunable RF photonic phase shifter based on optical DSB modulation and FBG filtering

    Science.gov (United States)

    Wei, Yongfeng; Huang, Shanguo; Sun, Kai; Gao, Xinlu; Gu, Wanyi

    2016-01-01

    A broadband RF photonic phase shifter that can achieve the tunable phase shift with little RF amplitude variation is presented. It is based on homodyne mixing technique. The beating between phase-modulated optical carrier and the sidebands can generate RF signal with desired phase shift. Results show the RF phase shifter can achieve a continuous phase shift with low amplitude variation.

  4. Photonic synthesis of continuous‐wave millimeter‐wave signals using a passively mode‐locked laser diode and selective optical filtering

    DEFF Research Database (Denmark)

    Acedo, P.; Carpintero, G.; Criado, A.R.

    2012-01-01

    We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...... the characteristics of the PMLLD electrical power spectrum....

  5. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  6. Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii.

    Science.gov (United States)

    Kieu, K; Li, C; Fang, Y; Cohoon, G; Herrera, O D; Hildebrand, M; Sandhage, K H; Norwood, R A

    2014-06-30

    Diatoms are a renewable (biologically reproducible) source of three-dimensional (3-D) nanostructured silica that could be attractive for a variety of photonic devices, owing to the wide range of quasi-periodic patterns of nano-to-microscale pores available on the silica microshells (frustules) of various diatom species. We have investigated the optical behavior of the silica frustule of a centric marine diatom, Coscinodiscus wailesii, using a coherent broadband (400-1700 nm) supercontinuum laser focused to a fine (20 µm diameter) spot. The C. wailesii frustule valve, which possessed a quasi-periodic hexagonal pore array, exhibited position-dependent optical diffraction. Changes in such diffraction behavior across the frustule were consistent with observed variations in the quasi-periodic pore pattern.

  7. Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display.

    Science.gov (United States)

    Hu, Xiao; Zhan, Li; Xia, Yuxing

    2008-08-10

    Using metallic film perforated with a subwavelength periodic structure, a novel concept of a color filter for multicolor organic light-emitting diode (OLED) display is proposed. Based on the phase-matching condition for extraordinary optical transmission, three primary color emissions can be obtained by optimizing the structure's periodicity. Two periodic structures, an array of one-dimensional periodic slits and a two-dimensional periodic hole array, are studied using coupled mode theory. Also, the feasibility of applying these structures as color filters is analyzed. The relative intensity at the unwanted wavelength, which is generated by higher resonant transmission, had been calculated to eliminate its effect on the purity of these filters. It is important that this type of color filter simultaneously solves the low emission efficiency problem for OLEDs with the aid of enhanced transmission of metal film.

  8. Asymmetric transmission and optical low-pass filtering in a stack of random media with graded transport mean free path

    Science.gov (United States)

    Bingi, J.; Hemalatha, M.; Anita, R. W.; Vijayan, C.; Murukeshan, V. M.

    2015-11-01

    Light transport and the physical phenomena related to light propagation in random media are very intriguing, they also provide scope for new paradigms of device functionality, most of which remain unexplored. Here we demonstrate, experimentally and by simulation, a novel kind of asymmetric light transmission (diffusion) in a stack of random media (SRM) with graded transport mean free path. The structure is studied in terms of transmission, of photons propagated through and photons generated within the SRM. It is observed that the SRM exhibits asymmetric transmission property with a transmission contrast of 0.25. In addition, it is shown that the SRM works as a perfect optical low-pass filter with a well-defined cutoff wavelength at 580 nm. Further, the photons generated within the SRM found to exhibit functionality similar to an optical diode with a transmission contrast of 0.62. The basis of this functionality is explained in terms of wavelength dependent photon randomization and the graded transport mean free path of SRM.

  9. 640 Gbit/s return-to-zero to non-return-to-zero format conversion based on optical linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael;

    2016-01-01

    We propose a novel approach for all-optical return-to-zero (RZ) to non-return-to-zero (NRZ) telecommunication data format conversion based on linear spectral phase manipulation of an RZ data signal. The operation principle is numerically analyzed and experimentally validated through successful fo...... format conversion of a 640 Gbit/s coherent RZ signal into the equivalent NRZ time-domain data using a simple phase filter implemented by a commercial optical waveshaper. (C) 2015 Optical Society of America...

  10. Theoretical Analysis and Experiment of Temperature Stability for Fiber-optic Mach-Zehnder Interferometer Filter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fiber-optic Mach-Zehnder interferometer(MZI) can be used as wavelength-multiplexers and demultiplexers. The △L and △φ directly influence the properties of MZI. To lengthen the △L can demultiplex much more wavelengths, but when the △L is longer, the temperature will influence MZI more seriously. A method to solve this problem is proposed, which enables MZI to work stably. The wavelength distance is 0.8nm, and the extinction ratio is high.

  11. Optical Cluster-Finding with An Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    CERN Document Server

    Dong, Feng; Gunn, James E; Wechsler, Risa H

    2007-01-01

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is ~85% complete and over 90% pure for clusters with masses above 1.0*10^{14} h^{-1} M_solar and redshifts up to z=0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensi...

  12. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  13. Qualitative analysis of repaired filtering blebs with anterior segment-optical coherence tomography.

    Science.gov (United States)

    Cerdà-Ibáñez, M; Pérez-Torregrosa, V T; Olate-Pérez, A; Almor Palacios, I; Gargallo-Benedicto, A; Osorio-Alayo, V; Barreiro Rego, A; Duch-Samper, A

    2017-08-01

    To provide a qualitative analysis of filtering blebs after being surgically repaired due to late blebs leaks. Blebs were studied 6 months after surgical reparation using AS-OCT Triton (Topcon(®)). An analysis was made of the morphological pattern and internal structures of blebs, including the covering, in 10 patients. The images were obtained using OCTs at a wavelength of 1050nm. According to the Hirooka classification, three different patterns were found in the structure of blebs, which made it possible to correlate them with their functionality. A full covering was observed in 70% of the cases, and they showed sub-epithelial cysts (cystoid pattern). Two cases showed a full conjunctival retraction without Tenon's covering. The walls were thin, with a de-structured bleb (diffuse pattern) being visualised. In the third group, the image showed a partial conjunctival retraction with Tenon's covering. There were some sub-epithelial diffuse cysts with walls following a laminar pattern. Using AS-OCT, it is possible to study the bleb's characteristics in detail, as well as the cover, in the case of blebs requiring repair due to late leaks, using conjunctival advancement. It allows for the early visualisation of conjunctival retractions that were not visible in a slit lamp, and to predict the functionality of the blebs by their morphology. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters

    Science.gov (United States)

    Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-10-01

    MEMS-based airgap optical filters are composed of quarter-wave thick high-index dielectric membranes that are separated by airgaps. The main challenge in the fabrication of these filters is the intertwined optical and mechanical requirements. The thickness of the layers decreases with design wavelength, which makes the optical performance in the UV more susceptible to fabrication tolerances, such as thickness and composition of the deposited layers, while the ability to sustain a certain level of residual stress by the structural strength becomes more critical. Silicon-nitride has a comparatively high Young's modulus and good optical properties, which makes it a suitable candidate as the membrane material. However, both the mechanical and optical properties in a silicon-nitride film strongly depend on the specifics of the deposition process. A design trade-off is required between the mechanical strength and the index of refraction, by tuning the silicon content in the silicon-nitride film. However, also the benefit of a high index of refraction in a silicon-rich film should be weighed against the increased UV optical absorption. This work presents the design, fabrication, and preliminary characterization of one and three quarter-wave thick silicon-nitride membranes with a one-quarter airgap and designed to give a spectral reflectance at 400 nm. The PECVD silicon-nitride layers were initially characterized, and the data was used for the optical and mechanical design of the airgap filters. A CMOS compatible process based on polysilicon sacrificial layers was used for the fabrication of the membranes. Optical characterization results are presented.

  15. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    Science.gov (United States)

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  16. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation

    Science.gov (United States)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-01

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic

  17. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-21

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.

  18. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  19. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  20. Curvature dependence of semiclassical corrections to ray optics: How Goos-Hänchen shift and Fresnel filtering deviate from the planar case result

    Science.gov (United States)

    Stockschläder, P.; Kreismann, J.; Hentschel, M.

    2014-09-01

    Ray optics is a useful tool even in the regime where, actually, full wave calculations would be appropriate. However, wave-inspired adjustments are needed to ensure the accuracy of ray-based predictions. Here, we investigate these semiclassical corrections to the ray picture —the Goos-Hänchen shift and the Fresnel filtering effect— for the reflection of light beams at curved, rather than planar, interfaces. We present analytical and numerical results that highlight the role of boundary curvature and show clear deviations from the planar case. The Goos-Hänchen shift is decreased at convexely curved interfaces present in optical microcavities and microlasers compared to the planar case, and increased for concave curvature. In contrast, the Fresnel filtering effect is increased by both kinds of curvature. For a straightforward explanation of these findings we introduce an intuitive picture that explicitly takes curvature into account and that allows for a qualitative understanding of the beam shift behaviour.

  1. Local ensemble transform Kalman filter, a fast non-stationary control law for adaptive optics on ELTs: theoretical aspects and first simulation results

    CERN Document Server

    Gray, Morgan; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry

    2014-01-01

    We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).

  2. Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal.

    Science.gov (United States)

    Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-05-01

    We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.

  3. Improvement of Axial Resolution in Confocal Microscopy by an Optical Pupil Filter with Two Zones Phase-Shifted by π

    Institute of Scientific and Technical Information of China (English)

    林列; 王湘晖; 王肇圻; 母国光

    2003-01-01

    A filter with two zones phase-shifted by π is proposed to improve the axial resolution of confocal microscopes with a finite-sized detector. The optimum axial resolution for a given size of the detector can be achieved by adjusting the zone boundary of the filter. The experimental results are well in agreement with the theoretical predictions.

  4. Narrow Bandwidth Faraday Anomalous Dispersion Optical Filter%窄带 Faraday 反常色散光学滤波器

    Institute of Scientific and Technical Information of China (English)

    刘阳; 王健; 王海华; 康智慧; 王磊; 罗梦希; 闫西章; 王潇潇; 高锦岳

    2014-01-01

    研究 Faraday 反常色散光学滤波器,给出其理论计算过程和模拟结果。结果表明, Faraday反常色散光学滤波器有线翼和线芯透过两种工作方式,其中线翼透过单峰谱线线宽约为600 MHz,透过率约为25%,线芯透过谱线线宽约为700 MHz,透过率约为100%。实验结果与理论结果相符。%To obtain the weak signal light from the high background light,a narrow bandwidth Faraday anomalous dispersion optical filter (FADOF)was studied.The theoretical model for the filter was reported.The Faraday anomalous dispersion optical filters have two working modes:two side peak transmission and center peak transmission.The former work mode can get single peak transmission of 25% with a bandwidth of about 600 MHz.The other work mode can get a spectra with a transmission rate of almost 100% and a bandwith of about 700 MHz.The experimental measurements are consistent with theoretical results.

  5. Imaging of filtering blebs after implantation of the Ex-PRESS shunt with the use of the Visante optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    Aristeidis; Konstantinidis; Georgios; D; Panos; Magdalini; Triantafylla; Georgios; Labiris; Efthimia; Tsaragli; Zisis; Gatzioufas; Vassilios; Kozobolis

    2015-01-01

    AIM: To analyze the features of the filtering blebs following implantation of the Ex-PRESS glaucoma device(model P-50) with the aid of the Visante anterior segment optical coherence tomography(AS-OCT)METHODS: Five patients with open angle glaucomas were included in the study. They all underwent implantation of the Ex-PRESS device under a scleral flap. The surgical procedure was augmented with the use of mitomycin C subconjunctivally. The filtering blebs were analyzed with the Visante AS-OCT with the scans taken along the axis of the implantation of the glaucoma device.RESULTS: All filtering blebs were graded as diffuse functioning. The morphological characteristics of the blebs were similar to those of the trabeculectomy.However the use of the Ex-PRESS implant tend to form a characteristic episcleral lake at the site of the plate of the implant. CONCLUSION: The use of the Ex-PRESS implant produces filtering blebs similar to those of the trabeculectomy with the formation of a characteristic episcleral lake at the site of the plate of the implant.

  6. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL

    Directory of Open Access Journals (Sweden)

    L. Quarrie

    2014-09-01

    Full Text Available The lifetime of Diode-Pumped Alkali Lasers (DPALs is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  7. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    Science.gov (United States)

    Quarrie, L.

    2014-09-01

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  8. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    Energy Technology Data Exchange (ETDEWEB)

    Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  9. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs.In order to improve the filtering efficiency,a feedback method is introduced by closing the waveguide.It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency.Based on our analyses,two different types of filters are designed.The transmission spectra and scattering-light far-field patterns are measured,which agree well with theoretical prediction.In addition,the resonant filters are highly sensitive to the size of the resonant cavities,which are useful for practical applications.

  10. Design and fabrication of ripple-free CMOS-compatible stacked membranes for airgap optical filters for UV-visible spectrum

    Science.gov (United States)

    Ghaderi, Mohammadamir; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2016-04-01

    CMOS-compatible fabrication of thin dielectric membranes for the ultraviolet and visible spectrum is presented for use in airgap/SiO2-based interference filter design. A typical optical design consists of multiple membranes of 50-100 nm thickness. Maintaining flatness over a large area, as required by the optical application, is challenging. In such a free-standing membrane, the residual stress is the main force acting on the structure. Although an overall tensile residual stress can effectively stretch the membrane, too much stress would exceed the yield strength of the material and results in fracturing. Furthermore, the presence of a residual stress gradient causes the membrane to deform. In this work, the effect of a stress profile in the thin film has is investigated. Although PECVD SiO2 layers with an average tensile stress level of 178 MPa are used for the fabrication of the membranes, the presence of a stress gradient of about 0:67 MPa=nm results in a deformation in the membrane. A simple straining method is applied to reduce flatness. The preliminary results and discusses the challenges in the fabrication of stacked membranes for optical filters are presented.

  11. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  12. Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz

    Science.gov (United States)

    Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.

    2013-12-01

    We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.

  13. An Iterative Formula for the Reflection Coefficient of Multi-layer Thin Film and Its Application in the Design of Optical All Pass Filter

    Institute of Scientific and Technical Information of China (English)

    MENG Yichao; TAN Weihan; HUANG Zhaoming

    2002-01-01

    In this paper, an iterative formula for the reflection coefficient of the multi-layer thin film is deduced and the design of multi-layer thin film gires-tournois interferometer optical all pass filter(GTI-OAPF) is discussed. The group delay τm ranges from 0.06 to 460 ps and the bandwidth Δω ranges from 0.068 to 0.0000079 (1015 rad/s). By changing the incident angle θ0, the multi-channel dispersion compensation may be achieved.

  14. Suppression of Nonlinear Patterning Effect in Wavelength Conversion Based on Transient Cross-Phase Modulation in Semiconductor Optical Amplifier Assisted with a Detuning Filter

    Institute of Scientific and Technical Information of China (English)

    ZHOU En-Bo; ZHANG Xin-Liang; YU Yu; HUANG De-Xiu

    2009-01-01

    Nonlinear patterning (NLP) effect in wavelength conversion based on transient cross-phase modulation (XPM) in semiconductor optical amplifier (SOA) assisted with a detuning filter is theoretically investigated.A nonadiabatic model is used to estimate the ultrafast dynamics o[ gain,phase and electron temperature in the SOA.Simulation results show that the NLP can be greatly suppressed by introducing an assist light,especially for the probe wavelength distant from gain peak.Furthermore,the results also indicate that the improvement is more evident for long wavelength probe light and assist light in counter-propagating configuration.

  15. High-speed 100 MHz strain monitor using fiber Bragg grating and optical filter for magnetostriction measurements under ultrahigh magnetic fields

    Science.gov (United States)

    Ikeda, Akihiko; Nomura, Toshihiro; Matsuda, Yasuhiro H.; Tani, Shuntaro; Kobayashi, Yohei; Watanabe, Hiroshi; Sato, Keisuke

    2017-08-01

    A high-speed 100 MHz strain monitor using a fiber Bragg grating, an optical filter, and a mode-locked optical fiber laser has been devised, whose resolution is Δ L /L ˜1 0-4. The strain monitor is sufficiently fast and robust for the magnetostriction measurements of materials under ultrahigh magnetic fields generated with destructive pulse magnets, where the sweep rate of the magnetic field is in the range of 10-100 T/μ s. As a working example, the magnetostriction of LaCoO3 was measured at room temperature, 115 K, and 7 ˜ 4.2 K up to a maximum magnetic field of 150 T. The smooth dependence on the squared magnetic field and the first-order transition were observed at 115 K and 7 ˜ 4.2 K, respectively, reflecting the field-induced spin state evolution.

  16. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub......-THz signals. The analysis of the synthesized sub-THz signals up to 120 GHz gives as a result an effective reduction of the electrical linewidth when compared to direct harmonic generation that begins at 50 GHz and becomes greater as the frequency increases. The phase noise reduction offered by the setup......, along with its integration potential, cost and bandwidth, make it a promising candidate to the development of an integrated and high performance low phase noise local oscillator in the sub-THz range....

  17. Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal.

    Science.gov (United States)

    Wang, Qi; Zhang, Dawei; Huang, Yuanshen; Ni, Zhengji; Chen, Jiabi; Zhong, Yangwan; Zhuang, Songlin

    2010-04-15

    A narrowband guided-mode resonance filter (GMRF) incorporating polymer-dispersed liquid crystal (PDLC) is designed. Simulating the characteristics of the filter with rigorous coupled-wave analysis, we find that the resonance wavelength of the new kind of GMRF can be tuned from 672.4 to 698.4 nm by varying the refractive index of the PDLC layer with the applied voltage. Furthermore, the resonance wavelengths vary in a linear fashion with respect to the refractive index of the PDLC layer. Therefore, the desired resonance wavelength can be conveniently selected and tuned in a tuning range of 26 nm by using the applied voltage.

  18. Optical Fabry-Perot filter based on photonic band gap quasi-periodic one-dimensional multilayer according to the definite Rudin-Shapiro distribution

    Science.gov (United States)

    Bouazzi, Y.; Kanzari, M.

    2012-06-01

    In this work, a new type of optical filter using photonic band gap materials has been suggested. Indeed, a combination of periodic H(LH)J and Rudin-Shapiro quasi-periodic one-dimensional photonic multilayer systems (RSM) were used. SiO2 (L) and TiO2 (H) were chosen as two elementary layers with refractive indexes nL = 1.45 and nH = 2.30 respectively. The study configuration is H(LH)J[RSM]PH(LH)J, which forms an effective Fabry-Perot filter (FPF), where J and P are respectively the repetition number of periodic and (RSM) stacks. We have numerically investigated by means of transfer-matrix approach the transmission properties in the visible spectral range of FPF system. We show that the number and position of resonator peaks are dependent on the (RSM) repetition number P and incidence angle of exciting light. The effect of these two parameters for producing an improved polychromatic filter with high finesse coefficient (F) and quality factor (Q) is studied in details.

  19. Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs.

    Science.gov (United States)

    Duan, X; Giddings, R P; Bolea, M; Ling, Y; Cao, B; Mansoor, S; Tang, J M

    2014-08-11

    Real-time optical OFDM (OOFDM) transceivers with on-line software-controllable channel reconfigurability and transmission performance adaptability are experimentally demonstrated, for the first time, utilizing Hilbert-pair-based 32-tap digital orthogonal filters implemented in FPGAs. By making use of an 8-bit DAC/ADC operating at 2GS/s, an oversampling factor of 2 and an EML intensity modulator, the demonstrated RF conversion-free transceiver supports end-to-end real-time simultaneous adaptive transmissions, within a 1GHz signal spectrum region, of a 2.03Gb/s in-phase OOFDM channel and a 1.41Gb/s quadrature-phase OOFDM channel over a 25km SSMF IMDD system. In addition, detailed experimental explorations are also undertaken of key physical mechanisms limiting the maximum achievable transmission performance, impacts of transceiver's channel multiplexing/demultiplexing operations on the system BER performance, and the feasibility of utilizing adaptive modulation to combat impairments associated with low-complexity digital filter designs. Furthermore, experimental results indicate that the transceiver incorporating a fixed digital orthogonal filter DSP architecture can be made transparent to various signal modulation formats up to 64-QAM.

  20. High Voltage Ramp Generator for Electro-Optically Tunable Filter for the MSE-CIF Diagnostics on NSTX.

    Science.gov (United States)

    Wu, Ying; Levinton, Fred

    2004-11-01

    The motional Stark effect (MSE) diagnostic is routinely used to determine the q-profile in large fusion devices. To apply the MSE diagnostic to experiments with low magnetic fields such as NSTX (<1 T), a tunable birefringent Lyot filter is used with high throughput and high resolution which allows for a good signal-to-noise ratio. The birefringent filter is made from lithium-niobate crystals, which are coated with a layer of indium tin-oxide (ITO). The ITO layer is a transparent conductive coating. By applying an electric field across the crystal the index of refraction is varied. This allows tunability of the filter. Putting multiple crystals together and tuning them individually it is possible to pass certain wavelengths of light and reject others. A high voltage ramp generator circuit is under development to ramp a 5 kV signal using a simple design involving MOSFET ladders. The goal is to design the circuit so that it can ramp ±5000 volts at a frequency of around 1 kHz. This would allow the filter to sweep over a range of ˜ 1nm.

  1. Tunable photonic filters: a digital signal processing design approach.

    Science.gov (United States)

    Binh, Le Nguyen

    2009-05-20

    Digital signal processing techniques are used for synthesizing tunable optical filters with variable bandwidth and centered reference frequency including the tunability of the low-pass, high-pass, bandpass, and bandstop optical filters. Potential applications of such filters are discussed, and the design techniques and properties of recursive digital filters are outlined. The basic filter structures, namely, the first-order all-pole optical filter (FOAPOF) and the first-order all-zero optical filter (FOAZOF), are described, and finally the design process of tunable optical filters and the designs of the second-order Butterworth low-pass, high-pass, bandpass, and bandstop tunable optical filters are presented. Indeed, we identify that the all-zero and all-pole networks are equivalent with well known principles of optics of interference and resonance, respectively. It is thus very straightforward to implement tunable optical filters, which is a unique feature.

  2. Tracking speckle displacement by double Kalman filtering

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ A tracking technique using two sequentially-connected Kalman filter for tracking laser speckle displacement is presented. One Kalman filter tracks temporal speckle displacement, while another Kalman filter tracks spatial speckle displacement. The temporal Kalman filter provides a prior for the spatial Kalman filter, and the spatial Kalman filter provides measurements for the temporal Kalman filter. The contribution of a prior to estimations of the spatial Kalman filter is analyzed. An optical analysis system was set up to verify the double-Kalman-filter tracker's ability of tracking laser speckle's constant displacement.

  3. An application of fuzzy sets in real time filtering problems. [for space rendezvous navigation optical and radar sensors

    Science.gov (United States)

    Lea, Robert N.

    1987-01-01

    The human decision-making task is modeled with fuzzy sets and the Kalman filter updates to the state vector are weighted using fuzzy functions. Results of the study show that the use of fuzzy set models gives results comparable to those requiring human assistance, e.g. lock on to false targets, and better results when the problem is caused by noise and/or bias, or unexpected errors in the state vector at initial acquisition.

  4. Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimutal filtering technique

    CERN Document Server

    Labonte, Laurent; Roy, Philippe; Balhoul, Faouzi; Zghal, Mourad; Melin, Gilles; Burov, Ekaterina; Renversez, Gilles

    2010-01-01

    A simple self-referenced non destructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2m MOF sample is measured with a precision of 10nm, in good agreement with theoretical predictions.

  5. Optical high-resolution analysis of rotational movement: testing circular spatial filter velocimetry (CSFV) with rotating biological cells

    Science.gov (United States)

    Schaeper, M.; Schmidt, R.; Kostbade, R.; Damaschke, N.; Gimsa, J.

    2016-07-01

    Circular spatial filtering velocimetry (CSFV) was tested during the microscopic registration of the individual rotations of baker’s yeast cells. Their frequency-dependent rotation (electrorotation; ER) was induced in rotating electric fields, which were generated in a glass chip chamber with four electrodes (600 μm tip-to-tip distance). The electrodes were driven with sinusoidal quadrature signals of 5 or 8 V PP with frequencies up to 3 MHz. The observed cell rotation was of the order of 1-100 s per revolution. At each measuring frequency, the independent rotations of up to 20 cells were simultaneously recorded with a high-speed camera. CSFV was software-implemented using circular spatial filters with harmonic gratings. ER was proportional to the phase shift between the values of the spatial filtering signal of consecutive frames. ER spectra obtained by CSFV from the rotation velocities at different ER-field frequencies agreed well with manual measurements and theoretical spectra. Oscillations in the rotation velocity of a single cell in the elliptically polarized field near an electrode, which were resolved by CSFV, could not be visually discerned. ER step responses after field-on were recorded at 2500 frames per second. Analysis proved the high temporal resolution of CSFV and revealed a largely linear torque-friction relation during the acceleration phase of ER. Future applications of CSFV will allow for the simple and cheap automated high-resolution analysis of rotational movements where mechanical detection has too low a resolution or is not possible, e.g. in polluted environments or for gas and fluid vortices, microscopic objects, etc.

  6. Optical Observations of M81 Galaxy Group in Narrow Band [SII] and H_alpha Filters: Holmberg IX

    Directory of Open Access Journals (Sweden)

    Arbutina, B.

    2009-12-01

    Full Text Available We present observations of the nearby tidal dwarf galaxy Holmberg IX in M81 galaxy group in narrow band [SII] and H$alpha$ filters, carried out in March and November 2008 with the 2m RCC telescope at NAO Rozhen, Bulgaria. Our search for resident supernova remnants (identified as sources with enhanced [SII] emission relative to their H$alpha$ emission in this galaxy yielded no sources of this kind, besides M&H 10-11 or HoIX X-1. Nevertheless, we found a number of objects with significant H$alpha$ emission that probably represent uncatalogued HII regions.

  7. Optical observations of the nearby galaxy IC342 with narrow band [SII] and H$\\alpha$ filters. I

    CERN Document Server

    Vucetic, M M; Urosevic, D; Dobardzic, A; Pavlovic, M Z; Pannuti, T G; Petrov, N

    2013-01-01

    We present observations of the portion of the nearby spiral galaxy IC342 using narrow band [SII] and H$\\alpha$ filters. These observations were carried out in November 2011 with the 2m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper we report coordinates, diameters, H$\\alpha$ and [SII] fluxes for 203 HII regions detected in two fields of view in IC342 galaxy. The number of detected HII regions is 2.5 times higher than previously known in these two parts of the galaxy.

  8. Speckle reduction by combination of digital filter and optical suppression in a modified Gerchberg-Saxton algorithm computer-generated hologram.

    Science.gov (United States)

    Chen, Chien-Yue; Deng, Qing-Long; Wu, Pei-Jung; Lin, Bor-Shyh; Chang, Hsuan T; Hwang, Hone-Ene; Huang, Guan-Syun

    2014-09-20

    A speckleless illuminated modified-Gerchberg-Saxton-algorithm-type computer-generated hologram, which adopts a lower frequency of the iterative algorithm and calculation time, is proposed to code a hologram with two signals and position a multiplexing phase-only function, which can reconstruct the left and the right viewing holograms on the pupillary-distance position after the decryption and still maintain the content with high contrast and definition. The reconstructed image quality presents root mean square error of 0.03, with a diffraction efficiency of 87%, and signal-to-noise ratio of 8 dB after the analysis. Furthermore, two denoising techniques for the digital filter and optical suppression are combined, in which the speckle suppression with pseudorandom phase modulation and a rotating diffuser are utilized for successfully reducing the speckle contrast, which was reduced to below 4%. The goal was to reduce visual fatigue for the viewers.

  9. Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis

    Directory of Open Access Journals (Sweden)

    B. A. Flowers

    2010-11-01

    Full Text Available Transport of aerosols in pollution plumes from the mainland Asian continent was observed in situ at Jeju, South Korea during the Cheju Asian Brown Cloud Plume-Asian Monsoon Experiment (CAPMEX field campaign throughout August and September 2008 using a 3-laser photoacoustic spectrometer (PASS-3, chemical filter analysis, and size distributions. The PASS-3 directly measures the effects of morphology (e.g. coatings on light absorption that traditional filter-based instruments are unable to address. Transport of mixed sulfate, carbonaceous, and nitrate aerosols from various Asian pollution plumes to Jeju accounted for 74% of the deployment days, showing large variations in their measured chemical and optical properties. Analysis of eight distinct episodes, spanning wide ranges of chemical composition, optical properties, and source regions, reveals that episodes with higher organic carbon (OC/sulfate (SO42− and nitrate (NO3/SO42− composition ratios exhibit lower single scatter albedo at shorter wavelengths (ω405. We infer complex refractive indices (n–ik as a function of wavelength for the high, intermediate, and low OC/SO42− pollution episodes by using the observed particle size distributions and the measured optical properties. The smallest mean particle diameter corresponds to the high OC/SO42− aerosol episode. The imaginary part of the refractive index (k is greater for the high OC/SO42− episode at all wavelengths. A distinct, sharp increase in k at short wavelength implies enhanced light absorption by OC, which accounts for 50% of the light absorption at 405 nm, in the high OC/SO42− episode. Idealized analysis indicates increased absorption at 781 nm by factors greater than 3 relative to denuded black carbon in the laboratory. We hypothesize

  10. Deep Ultraviolet Macroporous Silicon Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make deep and far UV optical filters from macroporous silicon. This type of filter consists of an array of...

  11. A gain regulation system for a large set of photomultipliers using light-emitting diodes and optical filters

    CERN Document Server

    De Palma, M; Sacchetti, A; Spirelli, P; Waldner, F

    1979-01-01

    Describes the solution adopted for the on-line gain regulation with a PDP 11/60 of the 480 photomultipliers of the calorimeter of the experiment NA5 (at CERN) by means of light emitting diodes (LEDs) and polymer optical fibers. The regulation of the light yield of the LEDs is obtained comparing it to the light pulse of a NaI scintillator doped with /sup 241/Am. (6 refs).

  12. Optical processing

    Science.gov (United States)

    Gustafson, S. C.

    1985-12-01

    The technical contributions were as follows: (1) Optical parallel 2-D neighborhood processor and optical processor assessment technique; (2) High accuracy with moderately accurate components and optical fredkin gate architectures; (3) Integrated optical threshold computing, pipelined polynomial processor, and all optical analog/digital converter; (4) Adaptive optical associative memory model with attention; (5) Effectiveness of parallelism and connectivity in optical computers; (6) Optical systolic array processing using an integrated acoustooptic module; (7) Optical threshold elements and networks, holographic threshold processors, adaptive matched spatial filtering, and coherence theory in optical computing; (8) Time-varying optical processing for sub-pixel targets, optical Kalman filtering, and adaptive matched filtering; (9) Optical degrees of freedom, ultra short optical pulses, number representations, content-addressable-memory processors, and integrated optical Givens rotation devices; (10) Optical J-K flip flop analysis and interfacing for optical computers; (11) Matrix multiplication algorithms and limits of incoherent optical computers; (12) Architecture for machine vision with sensor fusion, pattern recognition functions, and neural net implementations; (13) Optical computing algorithms, architectures, and components; and (14) Dynamic optical interconnections, advantages and architectures.

  13. Pose estimation of surgical instrument using sensor data fusion with optical tracker and IMU based on Kalman filter

    OpenAIRE

    Oh Hyunmin; Chae You Seong; An Jinung; Kim Min Young

    2015-01-01

    Tracking system is essential for Image Guided Surgery(IGS). The Optical Tracking Sensor(OTS) has been widely used as tracking system for IGS due to its high accuracy and easy usage. However, OTS has a limit that tracking fails when occlusion of marker occurs. In this paper, sensor fusion with OTS and Inertial Measurement Unit(IMU) is proposed to solve this problem. The proposed algorithm improves the accuracy of tracking system by eliminating scattering error of the sensor and supplements the...

  14. Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures

    Science.gov (United States)

    Suh, Peter M.; Chin, Alexander W.; Marvis, Dimitri N.

    2014-01-01

    The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.

  15. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Turner, DD; Lo, C; Min, Q

    2004-12-01

    The Min and Harrison algorithm has been incorporated into an ARM Value-Added Product (VAP) called MFRSR CLDOD. This version of the VAP (1Min) uses the diffuse transmission at 415 nm from the MFRSR. Therefore, the results are only valid for “horizontally homogeneous” stratiform clouds with optical depths larger than approximately 7. The retrieval assumes a single cloud layer consisting solely of liquid water drops. As specified by Min and Harrison (1996), the wavelength at 415 nm was chosen due to the lack of gaseous absorption and the relatively constant surface albedo (in the absence of snow) at this wavelength. The MFRSR CLDOD VAP (henceforth referred to as “the VAP”) retrieves cloud optical depth (τ) from the MFRSR measurements. If the LWP is available from a coincident MWR observation, then the droplet effective radius (re) can be determined. Knowledge of the estimated re can be used to improve the estimate of τ because there is a slight dependence on the extinction coefficient, single scattering albedo, and asymmetry parameter on effective radius at this wavelength. However, if the MWR’s LWP is not available, then the VAP assumes that re = 8.0 μm. The primary output from the VAP is τ and re.

  16. Active narrowband filtering, line narrowing and gain using ladder electromagnetically induced transparency in an optically thick atomic vapour

    CERN Document Server

    Keaveney, James; Sarkisyan, David; Papoyan, Aram; Adams, Charles S

    2013-01-01

    Electromagnetically induced transparency (EIT) resonances using the $5\\rm{S}_{1/2}\\rightarrow5\\rm{P}_{3/2}\\rightarrow5\\rm{D}_{5/2}$ ladder-system in optically thick Rb atomic vapour are studied. We observe a strong line narrowing effect and gain at the $5\\rm{S}_{1/2}\\rightarrow5\\rm{P}_{3/2}$ transition wavelength due to an energy-pooling assisted frequency conversion with characteristics similar to four-wave mixing. As a result it is possible to observe tunable and switchable transparency resonances with amplitude close to $100\\%$ and a linewidth of 15 MHz. In addition, the large line narrowing effect allows resolution of $^{85}$Rb $5\\rm{D}_{5/2}$ hyperfine structure even in the presence of strong power broadening.

  17. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  18. Optical observations of the nearby galaxy IC342 with narrow band [SII] and H$\\alpha$ filters. II - Detection of 16 Optically-Identified Supernova Remnant Candidates

    CERN Document Server

    Vucetic, M M; Pavlovic, M Z; Pannuti, T G; Petrov, N; Goker, U D; Ercan, E N

    2015-01-01

    We present the detection of 16 optical supernova remnant (SNR) candidates in the nearby spiral galaxy IC342. The candidates were detected by applying [SII]/H$\\alpha$ ratio criterion on observations made with the 2 m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper, we report the coordinates, diameters, H$\\alpha$ and [SII] fluxes for 16 SNRs detected in two fields of view in the IC342 galaxy. Also, we estimate that the contamination of total H$\\alpha$ flux from SNRs in the observed portion of IC342 is 1.4%. This would represent the fractional error when the star formation rate (SFR) for this galaxy is derived from the total galaxy's H$\\alpha$ emission.

  19. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    Science.gov (United States)

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

  20. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering.

    Science.gov (United States)

    Han, Xiuyou; Chen, Xiang; Yao, Jianping

    2016-06-27

    A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f1 = 10 GHz and f2 = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f1), and 29.1 and 27.6 dB for the second intermodulation (f2-f1 and f1 + f2), as compared with a conventional MPL. For a two-tone RF signal of f1 = 9.95 GHz and f2 = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL.

  1. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction.

    Science.gov (United States)

    Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G

    2015-08-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia.

  2. 一种新型自适应联邦滤波方法在战术导弹导航系统中的应用%Model noise Kalman filter algorithm for electro-optical tracking

    Institute of Scientific and Technical Information of China (English)

    刘英; 田蔚风; 赵健康; 鲍其莲; 朱士青

    2012-01-01

    In order to reduce the sensitivity of the filtering performance to the model noise in the target state space model, the method of updating the system noise covariance and measurement noise variance was proposed. By combining it with nonlinear Kalman filter, an adaptive nonlinear Kalman filter was constituted which is suitable for applying in electro-optical target tracking. Meanwhile it was applied in nonlinear measurement electro-optical tracking system, and compared with those of extended Kalman filter and anscented Kalman filter. The Matlab simulation results show that this method can adjust measurement noise covariance and system noise covariance in real time, and can effectively avoid the problem of filter performance degradation caused by the inaccurately statistical properties of the measurement noise and system noise, and the performance by the model noise Kalman filter significantly outperforms those of the extended Kalman filter and the unscented Kalman filter.%为满足复杂的环境下战术导弹导航系统的高可靠性导航的要求,对战术导弹的多传感器组合导航进行了研究.提出了一种基于新型自适应联邦卡尔曼滤波的巡航导弹SINS/GPS/EC组合导航方法,根据联邦滤波的分散滤波结构,分别建立了各滤波器的模型,进行了仿真试验验证.仿真结果表明,采用新型自适应联邦卡尔曼滤波算法的导航精度比采用集中卡尔曼滤波算法提高幅度不大,略高一些,但从自适应联邦卡尔曼滤波器的容错性比集中卡尔曼滤波器好得多,便于各导航子系统的故障检查和隔离.本文设计自适应联邦SINS/GPS/EC滤波器的在子系统较多的组合导航设计中具有高可靠性、低计算量、低成本和小体积等优势,具有工程应用价值.

  3. Evaluation of Filtering Bleb Function after Trabeculectomy with Mitomycin C Using Biomicroscopy, Anterior Segment Optical Coherence Tomography and In Vivo Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Suzan Güven Yılmaz

    2015-08-01

    Full Text Available Objectives: To analyze and assess compatibility of trabeculectomy filtering bleb characteristics and appearances using biomicroscopy, anterior segment optical coherence tomography (AS-OCT and in vivo confocal microscopy (IVCM. Materials and Methods: Twenty-eight eyes of 28 patients who underwent glaucoma filtering surgery with mitomycin C in our clinic between 2009 and 2013 were evaluated. Morphological appearances of the blebs on slit-lamp biomicroscopy were defined according to the Moorfields bleb classification system. For the internal tissue assessment of blebs, AS-OCT and IVCM were performed. Bleb biometric parameters such as length, height and bleb wall thickness were assessed by AS-OCT; conjunctival epithelial-stromal cyst, structural network of conjunctival stroma and vascularisation were examined with IVCM. The relation between biomicroscopic morphological staging and bleb characteristics detected on AS-OCT and IVCM were assessed. Results: The mean age of the 28 patients (16 male, 12 female was 57.2±15.9 (19 to 79 years. The mean time elapsed between surgery and examination was 29.2±19.2 (6 to 68 months. According to biomicroscopic appearance, 17 (60.7% blebs were functional (13 diffuse, 4 microcystic, whereas 11 (39.3% blebs were non-functional (9 flat, 2 encapsulated. In the comparison of non-functional and functional blebs, functional blebs were found to be superior in terms of biometric parameters on AS-OCT assessment (p<0.05. Higher number of epithelial and stromal cysts and less vascularisation were detected by IVCM in functional blebs when compared with non-functional blebs (p<0.05. Conclusion: Biomicroscopic appearances and characteristics on AS-OCT and IVCM of filtration blebs are consistent with each other. Besides biomicroscopic examination, which is an easy and practical method for determining bleb morphology, cross-sectional images obtained by AS-OCT and IVCM provide objective data regarding internal structure and

  4. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  5. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  6. Food Filter

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    A typical food-processing plant produces about 500,000 gallons of waste water daily. Laden with organic compounds, this water usually is evaporated or discharged into sewers.A better solution is to filter the water through

  7. Wide stop-band filters consisted of optical directional coupler type multi resonators; Hikari hokosei ketsugoki wo mochiita fukugo kyoshinki ni yoru kososhiiki wo yusuru koha fuiruta no kento

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hirosuke; Nishikawa, Kenji; Miyamoto, Tokuo

    1999-03-01

    It is important that pass-band and stop-band of the optical filter used for optical wavelength division multiplexing systems can be set up according to systems requirements. In this paper, we presented expanding of stop-band using multi-resonator consisted of optical directional coupler. In this resonator, addition to interferences by resonation, the path length difference between two different path from input-port to output-port cause intensity changes. To use these interferences, we considerated expanding of stop-band and suppressing of resonate peak in stop-band. 30GHz passband and 60GHz cut-off frequency at 20dB point are calculated. If expanding the stop-band up to 10THz, the loss in the stop-band coms down to 24dB. (author)

  8. 光电跟踪系统非线性新息自适应卡尔曼滤波算法%Nonlinear Innovation Adaptive Kalman Filter Algorithm for Electro-optical Tracking

    Institute of Scientific and Technical Information of China (English)

    王秋平; 左玲; 康顺

    2011-01-01

    为解决非线性部分状态卡尔曼滤波算法中由于线性化误差所导致的滤波精度下降问题,提出采用UT变换方法计算系统状态误差方差,及基于新息自适应调整系统噪声方差,进而构成一种新的非线性自适应部分状态卡尔曼滤波算法,并总结出详细算法结构.同时,将此方法应用到非线性测量光电跟踪系统中,并与U卡尔曼滤波和非线性部分状态卡尔曼滤波进行性能对比.仿真实验结果证明,将UT变换和基于新息自适应调整系统噪声方差方法引入部分状态卡尔曼滤波是有效的,而且其性能明显优于U卡尔曼滤波和非线性部分状态卡尔曼滤波.%In order to solve the problem of accuracy decline caused by the linearization error in nonlinear reduced state Kalman filter, a new nonlinear adaptive reduced state Kalman filter algorithm is provided by using UT transformation to calculate the covariance of the system state error and modify adaptively the system noise covariance based on innovation,and the algorithm structure is summarized in detail. Then, the algorithm is applied in nonlinear measurement electro-optical tracking system and the performances of nonlinear adaptive reduced state Kalman filter were compared with unscented Kalman filter and nonlinear reduced state Kalman filter. The Matlab simulation results show that applying UT transformation and modifying adaptively the system noise covariance based on innovation in reduced state Kalman filter is valid, and the performance outperforms those of the unscented Kalman filter and nonlinear reduced state Kalman filter.

  9. Very Large Solar Rejection Filter for Laser Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Optics Corporation (SOC) will develop a band pass filter comprised of a visible dielectric mirror and an induced transmission filter, applied to two sides of...

  10. Very Large Solar Rejection Filter for Laser Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Optics Corporation (SOC) will develop a band pass filter comprised of a visible dielectric mirror and an induced transmission filter, applied to two sides...

  11. Symmetry properties with pupil phase-filters.

    Science.gov (United States)

    Ledesma, Silvia; Campos, J; Escalera, J; Yzuel, M

    2004-05-31

    Pupil filters can modify the three dimensional response of an optical system. In this paper, we study different pupil symmetries that produce a predictable image behavior. We show that different pupil-filters that satisfy certain symmetry conditions can produce axial responses which are either identical or mirror reflected. We also establish the differences in the symmetry properties between amplitude-only filters and phase-only filters. In particular, we are interested in phase filters that produce transverse superresolution with axial superresolution or high depth of focus.

  12. Performance of conformal guided mode resonance filters.

    Science.gov (United States)

    Cannistra, Aaron T; Poutous, Menelaos K; Johnson, Eric G; Suleski, Thomas J

    2011-04-01

    Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

  13. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  14. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  15. Application of Adaptive Transverse Filter in Interference Fibre Optical Gyro%自适应横向滤波器在干涉式光纤陀螺中的应用

    Institute of Scientific and Technical Information of China (English)

    张延顺; 孙枫; 张家海; 李绪友

    2001-01-01

    Presents the adaptive transverse filter proposed to improve the signal/noise ratio, and thereby the detection accuracy and the design of the adaptive transverse filter based upon the least mean square algorithm in accordance with the fibre optical gyro signal characteristics, and concludes from simulation results that better results can be obtained with this filter.%干涉式光纤陀螺(IFOG)的信号检测属于微弱信号检测,信噪比较低,而且在变化。基于这个特点,为了得到更好的检测精度,本文提出了自适应滤波方案。应用此方案可改善信噪比,提高信号检测精度。在分析光纤陀螺信号特点的基础之上,设计了基于最小均方算法(LMS)的自适应横向滤波器。经仿真研究证明应用此滤波器能获得较好的效果。

  16. PHASE-ONLY OPTICAL PUPIL FILTER FOR IMPROVING AXIAL RESOLUTION IN CONFOCAL MICROSCOPY%改善共焦系统轴向分辨率的位相型光瞳滤波器

    Institute of Scientific and Technical Information of China (English)

    刘力; 邓小强; 王桂英; 徐至展

    2001-01-01

    In this paper, two kinds of 3-zone phase-only pupil filter for confocal microscopy were optimally designed with constrained global optimization(CGO)algorithm. The CGO method is discussed in detail. The first kind of pupil filter can increase the axial resolution while unchanging the transverse resolution, which can improve the optical-sectioning capacity in confocal microscopy. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in 3-dimensional imaging in confocal microscopy.%利用约束全局优化算法——CGO算法,设计了两种用于共焦系统的三区位相型光瞳滤波器.第一种滤波器在不改变系统的横向分辨率的同时,可以大幅度地提高轴向分辨率,提高了系统的层析能力.第二种滤波器在提高系统轴向分辨率的同时,又能提高其横向分辨率,适用于系统的三维成像.

  17. Dispersion induced penalty for a 1xN passive interferometric optical MUX/DEMUX and its reduction using all-pass filters

    DEFF Research Database (Denmark)

    Leick, Lasse; Peucheret, Christophe

    2002-01-01

    The cascadability of 1timesN passband flattened interferometer DEMUX is investigated numerically. The passband flattening process results in detrimental dispersion induced penalty at 10 Gbit/s which can be significantly reduced with all-pass filters on the input arm...

  18. 滤波对隐藏通信系统性能影响分析%Analysis of filtering effect on performance of optical steganography transmission system

    Institute of Scientific and Technical Information of China (English)

    刘志强; 刘甲冲; 刘承禹; 孟楠; 蒲涛; 吴国锋

    2012-01-01

    According to time domain phase encoding code-division multiple access stegenography communication system model,host filter effect to stegenography system performance was analyzed.Numerical results show that introducing of filter will increase system BER performance, and reduce the recovering difficulty for the steganography signal. With the increase of filtering depth, receiving power decreases for the stegenography channel, and power ratio between host and steganography can be increased. Simulation results also show that 30dB filtering depth will be optimal for each system.%依据时域相位码分多址隐藏通信系统模型,研究了宿主滤波器对隐藏系统性能影响.系统仿真表明,滤波器的使用提高了系统性能,减低了隐藏信道的接收难度;随着滤波深度的增加,隐藏信道所需的接收功率减小,且宿主信号与隐藏信号的功率比增大;仿真研究表明当滤波深度达到30dB时可获得最佳性能.

  19. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    Science.gov (United States)

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  20. Polarization control based interference microwave photonic filters

    Science.gov (United States)

    Madziar, Krzysztof; Galwas, Bogdan

    2016-12-01

    In this paper we present a concept of multi-line Microwave Photonic Filter (MPF) based on polarization beam splitting and polarization control in each line. Coefficients of investigated filter are determined by attenuation of its lines and that on the other hand can be manipulated by change of the polarization in the fiber. Presented results involve scattering parameters (S21) measurements of optical path over polarization control unit rotation, scattering parameters (S21) characteristics of investigated filter and transmission optimization capabilities.

  1. Mesoporous Silicon Far Infrared Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make optical filters based on mesoporous silicon multilayers, for use at cold temperatures in the far infrared...

  2. Mesoporous Silicon Far Infrared Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make optical filters based on mesoporous silicon multilayers, for use at cold temperatures in the far...

  3. Active imaging system with Faraday filter

    Science.gov (United States)

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  4. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  5. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    Science.gov (United States)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  6. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  7. Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter

    Science.gov (United States)

    Wang, Fei; Zhang, Xin-Liang; Yu, Yu; Xu, En-Ming

    2011-06-01

    We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Pérot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.

  8. Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; ZHANG Xin-Liang; YU Yu; XU En-Ming

    2011-01-01

    @@ We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any pre- processing measures.A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device.Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data.This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength opera- tion, free preprocessing and convenient tuning.Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.%We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.

  9. Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters.

    Science.gov (United States)

    Ledesma, Silvia; Campos, Juan; Escalera, Juan Carlos; Yzuel, María J

    2004-05-01

    To study the three-dimensional (3-D) behavior produced by complex filters, we have extended the expressions for the axial and the transverse gain to the case in which the best image plane is not near the paraxial focus. Super-Gaussian phase filters are proposed to control the 3-D image response of an optical system. Super-Gaussian phase filters depend on several parameters that modify the shape of the phase filter, producing tunable control of the 3-D response of the optical system. The filters are capable of producing a wide range of optical effects: transverse superresolution with high depth of focus, 3-D superresolution, and transverse apodization with different axial responses.

  10. Linearity optimization of edge filter demodulators in FBGs

    Science.gov (United States)

    Li, Dong-Sheng; Sui, Qing-Mei; Cao, Yu-Qiang

    2008-05-01

    A kind of electric circuit is improved to optimize the linearity of edge filter demodulators in FBGs. By using a logarithm amplifier and an extraction operation, the linear range of optimized edge filter demodulators has been broadened effectively, and the requirement of optical filter’s linear range has been reduced. Theoretical analyses and the simulation results indicated that the linear range of optimized edge filter demodulator’s covers the whole transition region of the edge filter, while a strict linearity of the optical filter is not necessary.

  11. Precise dispersion equations of absorbing filter glasses

    Science.gov (United States)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  12. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  13. The legacy of filter design and how that has extended into current choices for advanced astronomical filter

    Science.gov (United States)

    Hull, T.; Reichel, S.; Brauneck, U.; Naulin, V.; Marín-Franch, A.

    2016-07-01

    SCHOTT was one of the interference filters inventors starting around 1935. Based on this legacy optical bandpass filters were design, manufactured, and integrated into optical instruments in satellites. In addition a special blocking coating was developed reducing cross talk and ghost. For ground based telescopes steep-edge narrow bandpass filters with low transmitted wavefront error and about 100 mm x 100 mm size were manufactured pushing the filter design and the technology to its limits. The reached results for design and measurements will be shown on an H-alpha filter.

  14. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  15. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  16. Dynamics of a filtered-feedback laser: influence of the filter width

    NARCIS (Netherlands)

    Erzgraber, H.; Krauskopf, B.

    2007-01-01

    The behavior of a semiconductor laser subject to filtered optical feedback is studied in dependence on the width of the filter. Of special interest are pure frequency oscillations where the laser intensity is practically constant. We show that frequency oscillations are stable in a large region of i

  17. 一种热光可调谐级联微环滤波器的理论分析%Theoretical analysis of a thermal-optical tunable filter based on Vernier effect of cascade microring resonators

    Institute of Scientific and Technical Information of China (English)

    任光辉; 陈少武; 曹彤彤

    2012-01-01

    A thermal-optical tunable filter based on the Venier effect of cascade microring resonator,which can expand the Free-Spectrum-Range (FSR) and the tuning range,is designed and simulated.The FSR of the filter with a radius of 48μm for the first order and 50μm for the second order microring can be expanded to 76.5 nm.which is at present the largest FSR to our best knowledge.A tuning range covering all of the above mentioned FSR can be reached under 103.1 mW heating power,which is also the largest one for silicon based thermal-optic tunable microring resonator filers.The response time,calculated by finite-element-method,of the designed tunable filter with 50μm radius ring is 3.5μs for the rise edge and 0.8μs for the fall edge.%根据Vernier效应可大幅度提高滤波器自由光谱范围和调谐范围,设计了一种热光可调谐级联微环滤波器.利用传输矩阵方法和有限元方法从理论上计算了对于第一级微环半径为48μm,第二级半径为50μm的级联微环滤波器的自由光谱范围和调谐范围可以达到75.6 nm,而功耗仅为103.1 mW,这是目前为止我们所知的基于微环谐振腔的硅基热光可调谐滤波器中最大的自由光谱范围和在如此低功耗下最大的调谐范围.利用有限元方法,还计算了半径为50μm微环的热光调谐响应时间,上升沿时间为3.5μs,下降沿时间仅为0.8μs.

  18. Normal incidence narrowband transmission filtering in zero-contrast gratings

    CERN Document Server

    Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-01-01

    We report narrowband transmission filtering based on zero-contrast grating (ZCG) reflectors at normal incidence. Computational results show that the filtering is realized through symmetry-protected modes coupling. The guided modes introduced by the slab layer make the filter frequencies flexible to modify. The rectangular structure of the filter allows simple fabrication and integration into optical systems. The quality factor of the filters could exceed 106. Owing to the low refraction index dispersion of the semiconductor and their scale-invariant operations, these filters can be applied in a broad infrared range from near infrared to terahertz wavelengths.

  19. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  20. Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

    Science.gov (United States)

    Lee, Eunji; Park, Sang-Young; Shin, Bumjoon; Cho, Sungki; Choi, Eun-Jung; Jo, Junghyun; Park, Jang-Hyun

    2017-03-01

    The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

  1. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  2. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  3. Optical manifold

    Science.gov (United States)

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  4. Tunable-Bandwidth Filter System

    Science.gov (United States)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  5. Analysis of the modal behavior of an antiguide diode laser array with Talbot filter

    NARCIS (Netherlands)

    Eijk, van Pieter D.; Reglat, Muriel; Vassilief, Georges; Krijnen, Gijs J.M.; Driessen, Alfred; Mouthaan, Anton J.

    1991-01-01

    An analysis of the filtering of the array modes in a resonant optical waveguide (ROW) array of antiguides by a diffractive spatial filter (a Talbot filter) is presented. A dispersion relation is derived for the array modes, allowing the calculation of the field distribution. The filtering is analyze

  6. Composing morphological filters

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk)

    1995-01-01

    textabstractA morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openin

  7. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  8. Software-defined microwave photonic filter with high reconfigurable resolution

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2016-01-01

    Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062

  9. Tunability of Nonuniform Reflection Holographic Filter

    Institute of Scientific and Technical Information of China (English)

    Shanhong You(游善红); Xinwan Li(李新碗); Jianhong Wu(吴建宏); Zongmin Yin(殷宗敏); Minxue Tang(唐敏学)

    2003-01-01

    The tunability of nonuniform reflection holographic filter is investigated theoretically and experimentally. It is shown that the reflection holographic filter has not only high optical density and narrow bandwidth, but also good tunability. The coupled wave theoretical model for uniform medium is compared with the model for nonuniform medium. It is identified that the coincidence of the theoretical results of the nonuniform model with the experimental results are better than that of the uniform model.

  10. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  11. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Directory of Open Access Journals (Sweden)

    Down Matthew

    2013-01-01

    Full Text Available Abstract Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.

  12. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Science.gov (United States)

    2013-01-01

    Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline. PMID:23320558

  13. Optical holography

    CERN Document Server

    Collier, Robert

    2013-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  14. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    OpenAIRE

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefor...

  15. Solar Rejection Filter for Large Telescopes

    Science.gov (United States)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  16. Application of FOG Filtering Algotithm in Electro-Optic Tracking Servo System%光电跟踪伺服系统中光纤陀螺滤波算法的应用

    Institute of Scientific and Technical Information of China (English)

    孙莉

    2012-01-01

    光纤陀螺作为光电跟踪伺服系统速度稳定回路的反馈测量元件,它的输出噪声直接影响伺服系统低速跟踪情况下的控制精度。抑制陀螺的输出噪声是改善伺服系统低速特性的有效手段之一。采用了一种简化的卡尔曼α-β滤波算法,使伺服系统的低速精度指标由原来采用移动平均滤波的0.0052°/s提高到0.0026°/s。实验证明,该算法可以有效地改善伺服系统的跟踪特性。%Fiber-optic gyro is the feedback measuring sensor of the gyro stabilized platform in electro-optic servo system. Its output noise degrades the control precision of servo system under low speed tracking. It is effective to improve the servo sys tem quality by restraining the output noise of gyro. A simplified Kalman α-β filtering algorithm is applied in actual servo sys- tem. The control precision of servo system is improved from the 0. 005 2°/s to 0. 002 6°/s. Some relative experiments prove that the alogrithm can effectively improve the tracking performance of servo system.

  17. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  18. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  19. Generating nonclassical quantum input field states with modulating filters

    Energy Technology Data Exchange (ETDEWEB)

    Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)

    2015-12-15

    We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)

  20. Generalized Hampel Filters

    Science.gov (United States)

    Pearson, Ronald K.; Neuvo, Yrjö; Astola, Jaakko; Gabbouj, Moncef

    2016-12-01

    The standard median filter based on a symmetric moving window has only one tuning parameter: the window width. Despite this limitation, this filter has proven extremely useful and has motivated a number of extensions: weighted median filters, recursive median filters, and various cascade structures. The Hampel filter is a member of the class of decsion filters that replaces the central value in the data window with the median if it lies far enough from the median to be deemed an outlier. This filter depends on both the window width and an additional tuning parameter t, reducing to the median filter when t=0, so it may be regarded as another median filter extension. This paper adopts this view, defining and exploring the class of generalized Hampel filters obtained by applying the median filter extensions listed above: weighted Hampel filters, recursive Hampel filters, and their cascades. An important concept introduced here is that of an implosion sequence, a signal for which generalized Hampel filter performance is independent of the threshold parameter t. These sequences are important because the added flexibility of the generalized Hampel filters offers no practical advantage for implosion sequences. Partial characterization results are presented for these sequences, as are useful relationships between root sequences for generalized Hampel filters and their median-based counterparts. To illustrate the performance of this filter class, two examples are considered: one is simulation-based, providing a basis for quantitative evaluation of signal recovery performance as a function of t, while the other is a sequence of monthly Italian industrial production index values that exhibits glaring outliers.

  1. Leaks in nuclear grade high efficiency aerosol filters

    Energy Technology Data Exchange (ETDEWEB)

    Scripsick, Ronald Clyde [Univ. of California, Davis, CA (United States)

    1994-07-01

    Nuclear grade high efficiency aerosol filters, also known as high efficiency particulate air (HEPA) filters, are commonly used in air cleaning systems for removal of hazardous aerosols. Performance of the filter units is important in assuring health and environmental protection. The filter units are constructed from pleated packs of fiberglass filter media sealed into rigid frames. Results of previous studies on such filter units indicate that their performance may not be completely predicted by ideal performance of the fibrous filter media. In this study, departure from ideal performance is linked to leaks existing in filter units and overall filter unit performance is derived from independent performance of the individual filter unit components. The performance of 14 nuclear grade HEPA filter units (size 1, 25 cfm) with plywood frames was evaluated with a test system that permitted independent determination of penetration as a function of particle size for the whole filter unit, the filter unit frame, and the filter media pack. Tests were performed using a polydisperse aerosol of di-2-ethylhexyl phthalate with a count median diameter of 0.2 {mu}m and geometric standard deviation of 1.6. Flow rate and differential pressure were controlled from 1% to 100% of design values. Particle counts were made upstream and downstream of the filter unit with an optical particle counter (OPC). The OPC provided count information in 28 size channels over the particle diameter range from 0.1 to 0.7 μm. Results provide evidence for a two component leak model of filler unit performance with: (1) external leaks through filter unit frames, and (2) internal leaks through defects in the media and through the seal between the media pack and frame. For the filter units evaluated, these leaks dominate overall filter unit performance over much of the flow rate and particle size ranges tested.

  2. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  3. Study of the thermo-optic polymer micro-ring resonator filter%热光聚合物微环谐振腔滤波器的研究

    Institute of Scientific and Technical Information of China (English)

    范卓妮; 恽斌峰; 胡国华; 闫以建; 崔一平

    2012-01-01

    A kind of therrnc;optic polymer micro-ring resonator filter is designed and fabricated. A racetrack is used in the micro-ring resonator. By using beam propagation method (BPM), the bending radius is designed and optimized. The micro-ring resonator is fabricated by using the traditional contact lithography technology. Experiment results show that around the wavelength of 1550 nm,the micro-ring resonator's free spectral range, extinction ratio, 3 dB bandwidth, Q factor and modulation efficiency are about 112 pm, 12.8 dB, 0. 026 nm, 5.96 × 10^4 and 6.13 pm/mW, respectively. The response time of the filter is about 1.5 ms.%设计并制备了一种热光聚合物微环谐振腔滤波器。微谐振环采用跑道型结构,通过光束传播法(BPM)对其弯曲半径进行了设计和优化。采用传统的接触式光刻曝光工艺制备了微环谐振腔滤波器并对其进行了光谱测试,实验结果表明,所设计的器件在1550nm附近的自由光谱范围(FSR)为1:12pm,消光比约为12.8dB,3dB带宽约为0.026nm,品质因子Q为5.96×10^4,调制效率是6.13pm/mW;同时测量了器件的响应时间,得到的响应时间约为1.5ms。

  4. Dispersion Synthesis with Multi-Ordered Metatronic Filters

    CERN Document Server

    Li, Yue; Engheta, Nader

    2016-01-01

    We propose the synthesis of frequency dispersion of layered structures based on the design of multi-ordered optical filters using nanocircuit concepts. Following the well known insertion loss method commonly employed in the design of electronic and microwave filters, here we theoretically show how we can tailor optical dispersion as we carry out the design of several low-pass, high-pass, band-pass and band-stop filters of different order with a (maximally flat) Butterworth response. We numerically demonstrate that these filters can be designed by combining metasurfaces made of one or two materials acting as optical lumped elements, and, hence, leading to simple, easy to apply, design rules. The theoretical results based on this circuital approach are validated with full-wave numerical simulations. The results presented here can be extended to virtually any frequency dispersion synthesis, filter design procedure and/or functionality, thus opening up exciting possibilities in the design of composite materials w...

  5. On the filter approach to perceptual transparency.

    Science.gov (United States)

    Faul, Franz; Ekroll, Vebjørn

    2011-06-09

    In F. Faul and V. Ekroll (2002), we proposed a filter model of perceptual transparency that describes typical color changes caused by optical filters and accurately predicts perceived transparency. Here, we provide a more elaborate analysis of this model: (A) We address the question of how the model parameters can be estimated in a robust way. (B) We show that the parameters of the original model, which are closely related to physical properties, can be transformed into the alternative parameters hue H, saturation S, transmittance V, and clarity C that better reflect perceptual dimensions of perceived transparency. (C) We investigate the relation of H, S, V, and C to the physical parameters of optical filters and show that C is closely related to the refractive index of the filter, whereas V and S are closely related to its thickness. We also demonstrate that the latter relationship can be used to estimate relative filter thickness from S and V. (D) We investigate restrictions on S that result from properties of color space and determine its distribution under realistic choices of physical parameters. (E) We experimentally determine iso-saturation curves that yield nominal saturation values for filters of different hue such that they appear equally saturated.

  6. Guided image filtering.

    Science.gov (United States)

    He, Kaiming; Sun, Jian; Tang, Xiaoou

    2013-06-01

    In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

  7. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    Science.gov (United States)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  8. Photonic Applications Using Electrooptic Optical Signal Processors

    Science.gov (United States)

    2011-11-16

    DPMZM transmitter, the laser source of 1550nm, the erbium-doped fiber amplifier ( EDFA ), the local oscillator (LO), and the optical filter (FBG). The LO...is generated using an optical modulator, operating at 12.25278 GHz along with an optical filter (FBG) to separate the sideband. The EDFA was used to

  9. 旋转视频中特征点的迭代筛选与光流估计匹配研究%Iterative Filter and Optical Flow Estimation Matching of Feature Points in Rotary Jitter Compensation

    Institute of Scientific and Technical Information of China (English)

    王斌锐; 徐崟; 金英连; 吴善强

    2012-01-01

    转动抖动补偿是视频稳像的难点,针对转动抖动补偿中的关键技术特征点的筛选与匹配展开研究.建立了图像的6参数仿射模型;推导得到估计有意运动参数的超定方程;采用最小二乘迭代算法来去除绝对误差和(SAD)算法误判的特征点;采用金字塔(LK)光流算法来对旋转视频进行特征点匹配.编程实现算法;用特征窗口梯度矩阵法(KLT)提取特征后,分别用SAD算法和LK光流算法进行匹配,求解得到旋转变换阵参数误差,分析、比较并图示了误差原因;利用Kalman滤波去除无意运动;对含转动抖动的视频进行稳像补偿.在自主移动机器人平台上开展了实验.结果表明LK光流算法相比SAD算法对旋转视频的特征点匹配误差小,结合Kalman滤波可有效补偿转动抖动,将最大8.37°的转动抖动稳像到3.68°以下.%Rotary jitter compensation is a difficulty in video image stabilization. The feature point matching and inaccurate point filtering were studied. An affine model with 6 parameters was established for moving images, and an over-determined equation to estimate motion parameters was derived. The least squares iterative algorithm was used to remove error feature points judged by sum of absolute difference (SAD) matching algorithm. A pyramid-style Lucas-Kanade (LK) algorithm based on optical flow was a-dopted for feature point matching of rotary video. All algorithms were programmed. After detecting feature points by using the gradient matrix of the feature window (KLT) method, SAD and LK algorithms were used to match feature points respectively, and the rotation matrix parameter errors were obtained and compared. The reasons of matching error were analyzed. Kalman filter was used to smooth rotation parameters. AH algorithms were implemented on an autonomous robot. The experiment results show that LK can get less matching errors than SAD for rotation jitter, and Kalman filter makes the maximum 8. 37

  10. Bessel–Gauss resonator with internal amplitude filter

    CSIR Research Space (South Africa)

    Litvin, IA

    2008-05-01

    Full Text Available The authors investigate a conventional resonator configuration, using only spherical curvature optical elements, for the generation of Bessel–Gauss beams. This is achieved through the deployment of a suitable amplitude filter at a Fourier plane...

  11. InP tunable ring resonator filters

    Science.gov (United States)

    Tauke-Pedretti, A.; Vawter, G. A.; Skogen, E. J.; Peake, G.; Overberg, M.; Alford, C.; Torres, D.; Cajas, F.

    2013-03-01

    Optical channelizing filters with narrow linewidth are of interest for optical processing of microwave signals. Fabrication tolerances make it difficult to place exactly the optical resonance frequency within the microwave spectrum as is required for many applications. Therefore, efficient tuning of the filter resonance is essential. In this paper we present a tunable ring resonator filter with an integrated semiconductor optical amplifier (SOA) fabricated on an InP based photonic integrated circuit (PIC) platform. The ring resonance is tuned over 37 GHz with just 0.2 mA of current injection into a passive phase section. The use of current injection is often more efficient than thermal tuning using heaters making them useful for low-power applications. The single active ring resonator has an electrical FWHM of 1.5 GHz and shows greater than 16 dB of extinction between on and off resonance. The effects of SOA internal ring gain and induced passive loss on extinction and linewidth will be shown. Agreement between experimentally demonstrated devices and simulations are shown. The integration of the active and passive regions is done using quantum well intermixing and the resonators utilize buried heterostructure waveguides. The fabrication process of these filters is compatible with the monolithic integration of DBR lasers and high speed modulators enabling single chip highly functional PICs for the channelizing of RF signals.

  12. Computer Aided Filter Design.

    Science.gov (United States)

    1987-12-01

    FIR filter can be described in the following. [Ref. 2] 1. FIR filters with exact linear phase can be easily designed. Linear phase filters are important...response for the four cases of linear phase filter , i.e., even or odd symmetry with an even or odd number of terms, can be written in the form: H (eJ ) = e...Ansari, The Design and Application of Optimal FIR Fractional Phase Filters , IEEE on Acoutics, Speech and Signal Processing, Vol. 2, 1987, pp.896-899. 77 14

  13. A unified Kalman filter

    Science.gov (United States)

    Stubberud, Allen R.

    2017-01-01

    When considering problems of linear sequential estimation, two versions of the Kalman filter, the continuous-time version and the discrete-time version, are often used. (A hybrid filter also exists.) In many applications in which the Kalman filter is used, the system to which the filter is applied is a linear continuous-time system, but the Kalman filter is implemented on a digital computer, a discrete-time device. The two general approaches for developing a discrete-time filter for implementation on a digital computer are: (1) approximate the continuous-time system by a discrete-time system (called discretization of the continuous-time system) and develop a filter for the discrete-time approximation; and (2) develop a continuous-time filter for the system and then discretize the continuous-time filter. Generally, the two discrete-time filters will be different, that is, it can be said that discretization and filter generation are not, in general, commutative operations. As a result, any relationship between the discrete-time and continuous-time versions of the filter for the same continuous-time system is often obfuscated. This is particularly true when an attempt is made to generate the continuous-time version of the Kalman filter through a simple limiting process (the sample period going to zero) applied to the discrete-time version. The correct result is, generally, not obtained. In a 1961 research report, Kalman showed that the continuous-time Kalman filter can be obtained from the discrete-time Kalman filter by taking limits as the sample period goes to zero if the white noise process for the continuous-time version is appropriately defined. Using this basic concept, a discrete-time Kalman filter can be developed for a continuous-time system as follows: (1) discretize the continuous-time system using Kalman's technique; and (2) develop a discrete-time Kalman filter for that discrete-time system. Kalman's results show that the discrete-time filter generated in

  14. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    . The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  15. Structural, optical and electrical properties of N-doped ZnO thin films prepared by thermal oxidation of pulsed filtered cathodic vacuum arc deposited Zn{sub x}N{sub y} films

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, N.H.; Kara, K.; Ozdamar, H. [Physics Department, Cukurova University, 01330 Adana (Turkey); Kavak, H., E-mail: hkavak@cu.edu.tr [Physics Department, Cukurova University, 01330 Adana (Turkey); Esen, R. [Physics Department, Cukurova University, 01330 Adana (Turkey); Karaagac, H. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2011-09-08

    Graphical abstract: Highlights: > Thermal oxidation of Zn{sub x}N{sub y} method is used to obtain N doped ZnO. > N acceptors in ZnO is not sufficiently activated at oxidation temperature below 350 deg. C. > Oxidation treatment at 450 deg. C activates more N acceptors in ZnO. > Oxidation treatment at high temperatures above 550 deg. C reduces the N concentration in the ZnO thin film. - Abstract: In this study, N-doped ZnO thin films were fabricated by oxidation of Zn{sub x}N{sub y} films. The Zn{sub x}N{sub y} thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 deg. C by oxidation of Zn{sub x}N{sub y}, with a resistivity of 16.1 {Omega} cm, hole concentration of 2.03 x 10{sup 16} cm{sup -3} and Hall mobility of 19 cm{sup 2}/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 deg. C were amorphous. However, the oxidized films in air atmosphere at 450-550 deg. C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.

  16. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  17. Use of astronomy filters in fluorescence microscopy.

    Science.gov (United States)

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  18. Development of a spatial filtering apparatus

    Science.gov (United States)

    Wilson, Nicolle

    This thesis contains a discussion of the theoretical background for Fourier spatial filtering and a description of the design and construction of a portable in-class spatial filtering apparatus. A portable, in-class spatial filtering demonstration apparatus was designed and built. This apparatus uses liquid crystal display (LCD) panels from two projectors as the object and filter masks. The blue LCD panel from the first projector serves as the object mask, and the red panel from the second projector serves as the filter mask. The panels were extracted from their projectors and mounted onto aluminum blocks which are held in place by optical component mounts. Images are written to the LCD panels via custom open source software developed for this apparatus which writes independent monochromatic images to the video signal. The software has two monochromatic image windows, basic image manipulation tools, and two video feed input display windows. Two complementary metal-oxide semiconductor (CMOS) sensors are positioned to record the reconstructed image of the object mask and the diffraction pattern created by the object mask. The object and filter mask can be digitally changed and the effects on the filtered image and diffraction pattern can be observed in real-time. The entire apparatus is assembled onto a rolling cart which allows it to be easily taken into classrooms.

  19. Polymeric waveguide Bragg grating filter using soft lithography

    Science.gov (United States)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  20. Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness

    Science.gov (United States)

    Downie, John D.

    1991-01-01

    Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.

  1. Design of dual ring wavelength filters for WDM applications

    Science.gov (United States)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  2. Fibre Bragg Grating Components for Filtering, Switching and Lasing

    OpenAIRE

    2008-01-01

    Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode the...

  3. Three-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-07-01

    The performance of pupil filters consisting of three zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters.

  4. Optical Adaptive Filter. Frequency Domain Implementation.

    Science.gov (United States)

    1983-12-01

    my advisor. Also, I thank Dr. Matt Kabrisky and Maj. Ken Castor for their expert advice. Finally, without the administrative support of Miriam and...the OSP principies of Fig. 19, see page 141 of Ref. 22. Bragg cell 1 Bragg cell 2 OPTICS• -:1b I Cos W t -I" c lectrooptic . odulator Photomulti

  5. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  6. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  7. Crux vena cava filter.

    Science.gov (United States)

    Murphy, Erin H; Johnson, Eric D; Kopchok, George E; Fogarty, Thomas J; Arko, Frank R

    2009-09-01

    Inferior vena cava filters are widely accepted for pulmonary embolic prophylaxis in high-risk patients with contraindications to anticoagulation. While long-term complications have been associated with permanent filters, retrievable filters are now available and have resulted in the rapid expansion of this technology. Nonetheless, complications are still reported with optional filters. Furthermore, device tilting and thrombus load may prevent retrieval in up to 30% of patients, thereby eliminating the benefits of this technology. The Crux vena cava filter is a novel, self-centering, low-profile filter that is designed for ease of delivery, retrievability and improved efficacy while limiting fatigue-related device complications. This device has been proven safe and user-friendly in an ovine model and has recently been implanted in human subjects.

  8. CrowdFilter

    DEFF Research Database (Denmark)

    Mortensen, Michael Lind; Wallace, Byron C.; Kraska, Tim

    for complex multi-criteria search problems through crowdsourcing. The CrowdFilter system is capable of supporting both criteria-level labels and n-gram rationales, capturing the human decision making process behind each filtering choice. Using the data provided through CrowdFilter we also introduce a novel......Multi-criteria filtering of mixed open/closed-world data is a time-consuming task, requiring significant manual effort when latent open-world attributes are present. In this work we introduce a novel open-world filtering framework CrowdFilter, enabling automatic UI generation and label elicitation...... multi-criteria active learning method; capable of incorporating labels and n-gram rationales per inclusion criteria, and thus capable of determining both clear includes/excludes, as well as complex borderline cases. By incorporating the active learning approach into the elicitation process of Crowd...

  9. Conservative Noise Filters

    Directory of Open Access Journals (Sweden)

    Mona M.Jamjoom

    2016-05-01

    Full Text Available Noisy training data have a huge negative impact on machine learning algorithms. Noise-filtering algorithms have been proposed to eliminate such noisy instances. In this work, we empirically show that the most popular noise-filtering algorithms have a large False Positive (FP error rate. In other words, these noise filters mistakenly identify genuine instances as outliers and eliminate them. Therefore, we propose more conservative outlier identification criteria that improve the FP error rate and, thus, the performance of the noise filters. With the new filter, an instance is eliminated if and only if it is misclassified by a mutual decision of Naïve Bayesian (NB classifier and the original filtering criteria being used. The number of genuine instances that are incorrectly eliminated is reduced as a result, thereby improving the classification accuracy.

  10. Monolithically Integrated Reconfigurable Filters for Microwave Photonic Links

    Science.gov (United States)

    Norberg, Erik J.

    For the purposes of commercial communication and military electronic warfare and radar alike, there is an increasing interest in RF systems that can handle very wide instantaneous bandwidths at high center frequencies. Optical signal processing has the capability to reduce latency, improve size, weight and power (SwAP) performance, and overcome the inherent bandwidth limitations of electronic counterparts. By rapidly pre-filtering wide bandwidth microwave signals in the optical domain, the analog-to-digital conversion (ADC) and subsequent digital signal processing (DSP) can be significantly relieved. Compared to channelizing and add/drop filters for wavelength division multiplexing (WDM) applications, the microwave filter application is much more challenging as it requires a more versatile filter, ideally with tunability in both frequency and bandwidth. In this work such a filter was developed using integrated photonics. By integrating the filter on a single InP chip, the stability required for coherent filtering is met, while the active integration platform offers a flexible filter design and higher tolerance in the coupler and fabrication specifications. Using an entirely deep etched fabrication with a single blanket regrowth, a simple fabrication with high yield is achieved. The reconfigurable filter is designed as an array of uncoupled filter stages with each filter stage reconfigurable as a filter pole or zero with arbitrary magnitude and phase. This gives rise to a flexible ffilter synthesis, much like an optical version of DSP filters. Flat-topped bandpass filters are demonstrated with frequency tunability over 30 GHz, bandwidth adjustable between 1.9 and 5.4 GHz, and stopband rejection >32 dB. In order to meet the stringent spurious-free dynamic range (SFDR) requirements of the microwave application, a novel epitaxial layer integration platform is developed. Optimized for high optical saturation power and low propagation loss, it produces semiconductor

  11. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  12. Design of a complex filter for depth of focus extension.

    Science.gov (United States)

    Diaz, Frédéric; Goudail, François; Loiseaux, Brigitte; Huignard, Jean-Pierre

    2009-04-15

    Different methods such as axilens and binary-phase filter have been investigated to improve the depth of focus. A method is proposed to calculate an amplitude-phase pupil filter and obtain the desired distribution of intensity along the optical axis. It produces a narrow spot with a uniform intensity level over a large depth of focus, comparable to the performance obtainable with binary-phase filters. This filter is of particular interest for applications where very low intensity fluctuations along the focus range are required.

  13. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  14. Fundamentals of Stochastic Filtering

    CERN Document Server

    Crisan, Dan

    2008-01-01

    The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient

  15. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Sta. Maria Tonantzintla, Pue. Mexico (Mexico); GarcIa-Juarez, A [Depto. de Investigacion en Fisica, Universidad de Sonora (UNISON) Hermosillo, Son. Mexico (Mexico); Rodriguez-Asomoza, J [Depto. de Ingenieria Electronica, Universidad de las Americas-Puebla (UDLA). San Andres Cholula, Pue. Mexico (Mexico); Larger, L; Courjal, N [Laboratoire d' Optique P. M. Duffieux, UMR 6603 CNRS, Institut des Microtechiques de Franche-Comte, FRW 0067, UFR Sciences et Techniques, Universite de Franche-Comte (UFC), Besancon cedex (France)

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  16. Lossless and high-resolution RF photonic notch filter.

    Science.gov (United States)

    Liu, Yang; Marpaung, David; Choudhary, Amol; Eggleton, Benjamin J

    2016-11-15

    A novel technique to create a lossless and tunable RF photonic bandstop filter with an ultra-high suppression is demonstrated using the combination of an overcoupled optical ring resonator and tailored stimulated Brillouin scattering gain. The filter bandwidth narrowing is counterintuitively synthesized from two broad optical resonance responses. Through a precise amplitude and phase tailoring in the optical domain, the RF filter achieves a minimum insertion loss (50  dB), and a tunable 3 dB bandwidth (60-220 MHz) simultaneously with wide frequency tunability (1-11 GHz). This ultra-low loss RF filter paves the way toward broadband advanced spectrum management with low loss, high selectivity, and improved signal-to-noise ratio.

  17. Filter holder and gasket assembly for candle or tube filters

    Science.gov (United States)

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  18. Polymer optical motherboard technology

    Science.gov (United States)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  19. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  20. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.