WorldWideScience

Sample records for optical fiber sensor

  1. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  2. Infrared Fiber Optic Sensors

    Science.gov (United States)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  3. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  4. Interferometric fiber optic sensors.

    Science.gov (United States)

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  5. Optical fiber synaptic sensor

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  6. Fiber-Optic Sensor Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Constructs and evaluates fiber-optic sensors for a variety of measurands. These measurands include acoustic, pressure, magnetic, and electric field as well...

  7. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  8. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  9. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...

  10. Fiber Optic Magnetic Sensor Research.

    Science.gov (United States)

    1983-02-28

    Michelson inter- ferometric fiber optical point temperature sensor (Appendix B). The sensor has potential applicntion to non-invnsive and high...3roeniheaingUsing similar techniques, to for monolithic circuits. Lange couplers have been fabricated on alumina substrates. The: re- Fig 3 illustrates

  11. Fiber-Optic Temperature Sensor

    Science.gov (United States)

    Maram, Jonathan M.

    1987-01-01

    Proposed sensor measures temperatures over wide range, from cryogenic liquids to burning gases. Made in part of optical fibers, sensor lighter in weight than thermocouple and immune to electromagnetic interference. Device does not respond to temperatures elsewhere than at sensing tip. Thermal expansion and contraction of distance between fiber end and mirror alters interference between light reflected from those two surfaces, thereby giving interferometric indication of temperatures.

  12. Gold island fiber optic sensor

    Science.gov (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Downey, Todd R.; Buncick, Milan; Ferrell, Trinidad L.

    1999-12-01

    A fiber optic chemical sensor based on gold-island surface plasmon excitation is presented. The sensing part of the fiber is the end of the fiber onto which a thin layer of gold has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an optical absorbance near 535 nm with the fiber in air. The optical absorption resonance of the gold particles is shifted if the fiber is immersed in a medium other than air. These resonance shifts are examined by transmission spectroscopy through the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics.

  13. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  14. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  15. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  16. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  17. Great prospects for fiber optics sensors

    Science.gov (United States)

    Hansen, T. E.

    1983-10-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  18. Fiber Optic Chemical Sensors

    Science.gov (United States)

    1993-10-01

    Studies Press Ltd, Book Chapter, AIS, 1-25, 1983. Saarl, Linda A. and Seltz, Rudolf W., "Immobilized Morin as Fluorescence Sensor for Determination...34Thin Films," Photonics Spectra, AVO, AIS, 113-118, 1988. Hanst, Philip L. and Stephens, Edgar R., "Infrared Analysis of Engine Exhausts: Methyl...79-84, 1988. Watson, Jr., Edgar , "On-line Analysis of Trace Contaminants 145 36 in Process Streams," Amarican Laboratory, AVO, AIS, 97-101, 1988

  19. Structural health monitoring with fiber optic sensors

    Institute of Scientific and Technical Information of China (English)

    F.ANSARI

    2009-01-01

    Optical fiber sensors have been successfully implemented in aeronautics, mechanical systems, and medical applications. Civil structures pose further challenges in monitoring mainly due to their large dimensions, diversity and heterogeneity of materials involved, and hostile construction environment. This article provides a summary of basic principles pertaining to practical health monitoring of civil engineering structures with optical fiber sensors. The issues discussed include basic sensor principles, strain transfer mechanism, sensor packaging, sensor placement in construction environment, and reliability and survivability of the sensors.

  20. Fiber optic sensors for smart taxiways

    Science.gov (United States)

    Janzen, Douglas D.; Fuerstenau, Norbert; Goetze, Wolfgang

    1995-09-01

    Fiber-optic sensors could offer advantages in the field of airport ground traffic monitoring: immunity to electromagnetic interference, installation without costly and time consuming airfield closures, and low loss, low noise optical connection between sensors and signal processing equipment. This paper describes fiber-optic sensors developed for airport taxiway monitoring and the first steps toward their installation in an experimental surface movement guidance and control system at the Braunschweig airport. Initial results obtained with fiber- optic light barriers and vibration sensors are reported. The feasibility of employing interferometric strain gauges for this application will be discussed based on sensor characteristics obtained through measurements of strain in an aircraft structure in flight.

  1. Assessment of fiber optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  2. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array for measuring air flow pressure at multiple points on the skin of aircrafts for Flight Load Test...

  3. Fiber Optic Pressure Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — VIP Sensors proposes to develop a Fiber Optic Pressure Sensor Array System for measuring air flow pressure at multiple points on the skin of aircrafts for Flight...

  4. Development Of Porous Glass Fiber Optic Sensors

    Science.gov (United States)

    Macedo, P. B.; Barkatt, Aa.; Feng, X.; Finger, S. M.; Hojaji, H.; Laberge, N.; Mohr, R.; Penafiel, M.; Saad, E.

    A method for producing rugged, continuous porous glass fiber optic sensors was developed. pH and temperature sensors based on this technology have been successfully produced. The sensor portion of the fiber is made porous by selective leaching of a specially formulated borosilicate glass fiber. This results in a strong, monolithic structure where the sensor portion of the fiber remains integrally attached to the rest of the fiber (which acts as a light pipe), essentially eliminating losses at the sensor-light pipe interface. Pore size in the sensor can be controllably varied by modifying heat treatment conditions, making these sensors suitable for chemical concentration measurements in liquids and gases. Appropriate dyes were chemically bonded by silanization to the large interior surface area of the porous sensors to produce the pH and temperature sensors. Cresol red and phenol red were used for pH and pinacyanol chloride was used for temperature sensing. The sensitivity of these devices can be controlled by varying the concentration of the chemically bonded dye and the length of the porous region. Optical absorbance measurements were made in the visible range. The tip of the sensors was coated with a thin, porous layer of gold to reflect the incident light, resulting in a double pass across the porous sensor. Experimental measurements were made over a pH range of 3 to 8 and a temperature range of 28-70 C. These porous glass fiber optic sensors were found to be rugged and reliable due to their monolithic structure and large interior surface area for attachment of active species. A broad range of sensors based on this technology could be developed by using different active species, such as enzymes and other biochemicals, which could be bonded to the interior surface of the porous glass sensor.

  5. Thermal strain analysis of optic fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  6. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  7. Polydimethylsiloxane fibers for optical fiber sensor of displacement

    Science.gov (United States)

    Martincek, Ivan; Pudis, Dusan; Gaso, Peter

    2013-09-01

    The paper describes the preparation of polydimethylsiloxane (PDMS) fiber integrated on the conventional optical fibers and their use for optical fiber displacement sensor. PDMS fiber was made of silicone elastomer Sylgard 184 (Dow Corning) by drawing from partially cured silicone. Optical fiber displacement sensor using PDMS fiber is based on the measurement of the local minimum of optical signal in visible spectral range generated by intermodal interference of circularly symmetric modes. Position of the local minimum in spectral range varies by stretching the PDMS fiber of 230 μm in the wavelength range from 688 to 477 nm. In the stretched PDMS fiber is possible to determine the longitudinal displacement with an accuracy of approximately 1 micrometer.

  8. Fiber optic liquid refractive index sensor

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  9. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  10. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  11. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  12. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  13. Study of fiber optic sugar sensor

    Indian Academy of Sciences (India)

    A Jayanth Kumar; N M Gowri; R Venkateswara Raju; G Nirmala; B S Bellubbi; T Radha Krishna

    2006-08-01

    Over the last two decades, the fiber optic technology has passed through many analytical stages. Some commercially available fiber optic sensors, though in a small way, are being used for automation in mechanical and industrial environments. They are also used for instrumentation and controls. In the present work, an intensity-modulated intrinsic fiber optic sugar sensor is presented. This type of sensor, with slight modification, can be used for on-line determination of the concentration of sugar content in sugarcane juice in sugar industry. In the present set-up, a plastic fiber made of polymethylmethacrylate is used. A portion of the cladding (1 cm, 2 cm, 3 cm) at the mid-point along the length of the fiber is removed. This portion is immersed in sugar solution of known concentration and refractive index. At one end of the fiber an 850 nm source is used and at the other end a power meter is connected. By varying the concentration of sugar solution, the output power is noted. These studies are made due to the change in refractive index of the fluid. The device was found to be very sensitive which is free from EMI and shock hazards, stable and repeatable and they can be remotely interfaced with a computer to give on-line measurements and thus become useful for application in sugar industries.

  14. Optical Sensors Based on Plastic Fibers

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  15. Optical Sensors Based on Plastic Fibers

    Directory of Open Access Journals (Sweden)

    Rogério Nogueira

    2012-09-01

    Full Text Available The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  16. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  17. Enzyme-Based Fiber Optic Sensors

    Science.gov (United States)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  18. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  19. Fiber-optically sensorized composite wing

    Science.gov (United States)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  20. Fiber Optic Pressure Sensor using Multimode Interference

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Perez, V I; Sanchez-Mondragon, J J [INAOE, Apartado Postal 51 y 216, Puebla 72000 (Mexico); Basurto-Pensado, M A [CIICAp, Universidad Autonoma del Estado de Morelos (Mexico); LiKamWa, P [CREOL, University of Central Florida, Orlando, FL 32816 (United States); May-Arrioja, D A, E-mail: iruiz@inaoep.mx, E-mail: mbasurto@uaem.mx, E-mail: delta_dirac@hotmail.com, E-mail: daniel_may_arrioja@hotmail.com [UAT Reynosa Rodhe, Universidad Autonoma de Tamaulipas (Mexico)

    2011-01-01

    Based on the theory of multimode interference (MMI) and self-image formation, we developed a novel intrinsic optical fiber pressure sensor. The sensing element consists of a section of multimode fiber (MMF) without cladding spliced between two single mode fibers (SMF). The MMI pressure sensor is based on the intensity changes that occur in the transmitted light when the effective refractive index of the MMF is changed. Basically, a thick layer of Polydimethylsiloxane (PDMS) is placed in direct contact with the MMF section, such that the contact area between the PDMS and the fiber will change proportionally with the applied pressure, which results in a variation of the transmitted light intensity. Using this configuration, a good correlation between the measured intensity variations and the applied pressure is obtained. The sensitivity of the sensor is 3 {mu}V/psi, for a range of 0-60 psi, and the maximum resolution of our system is 0.25 psi. Good repeatability is also observed with a standard deviation of 0.0019. The key feature of the proposed pressure sensor is its low fabrication cost, since the cost of the MMF is minimal.

  1. NOVEL SPECTRUM ABSORPTION OPTICAL FIBER METHANE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Wang Shutao; Che Rensheng

    2005-01-01

    Based on spectrum principle and analyzing the infrared absorption spectrum of methane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributed feedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology is used to carry out harmonic wave detecting the concentration of methane. The sensitivity can arrive at 10-5.Experiments results show that the performance targets of the sensor such as sensitivity can basically satisfy the requests of methane detection.

  2. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...

  3. Human psychophysiological activity monitoring methods using fiber optic sensors

    Science.gov (United States)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  4. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes an innovative fiber optic-based, multiplexable, highly ruggedized, integrated sensor system for real-time...

  5. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  6. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  7. In-fiber integrated chemiluminiscence online optical fiber sensor.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Yang, Jun; Dong, Biao; Liu, Yanxin; Zheng, Yao; Yuan, Libo

    2013-09-01

    We report an in-fiber integrated chemiluminiscence (CL) sensor based on a kind of hollow optical fiber with a suspended inner core. The path of microfluid is realized by etching microholes for inlets and outlets on the surface of the optical fiber without damaging the inner core and then constructing a melted point beside the microhole of the outlet. When samples are injected into the fiber, the liquids can be fully mixed and form steady microflows. Simultaneously, the photon emitted from the CL reaction is efficiently coupled into the core and can be detected at the end of the optical fiber. In this Letter, the concentration of H2O2 samples is analyzed through the emission intensity of the CL reaction among H2O2, luminol, K3Fe(CN)6, and NaOH in the optical fiber. The linear sensing range of 0.1-4.0 mmol/L of H2O2 concentration is obtained. The emission intensity can be determined within 400 ms at a total flow rate of 150 μL/min. Significantly, this work presents the information of developing in-fiber integrated online analyzing devices based on optical methods.

  8. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  9. Optical fiber strain sensor with improved linearity range

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1995-01-01

    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  10. Single mode variable-sensitivity fiber optic sensors

    Science.gov (United States)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  11. Improved Fiber-Optic-Coupled Pressure And Vibration Sensors

    Science.gov (United States)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1994-01-01

    Improved fiber-optic coupler enables use of single optical fiber to carry light to and from sensor head. Eliminates problem of alignment of multiple fibers in sensor head and simplifies calibration by making performance both more predictable and more stable. Sensitivities increased, sizes reduced. Provides increased margin for design of compact sensor heads not required to contain amplifier circuits and withstand high operating temperatures.

  12. Fiber optic pressure sensors for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M.; Black, C.L. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-04-01

    In the last few years, the nuclear industry has experienced some problems with the performance of pressure transmitters and has been interested in new sensors based on new technologies. Fiber optic pressure sensors offer the potential to improve on or overcome some of the limitations of existing pressure sensors. Up to now, research has been motivated towards development and refinement of fiber optic sensing technology. In most applications, reliability studies and failure mode analyses remain to be exhaustively conducted. Fiber optic sensors have currently penetrated certain cutting edge markets where they possess necessary inherent advantages over other existing technologies. In these markets (e.g. biomedical, aerospace, automotive, and petrochemical), fiber optic sensors are able to perform measurements for which no alternate sensor previously existed. Fiber optic sensing technology has not yet been fully adopted into the mainstream sensing market. This may be due to not only the current premium price of fiber optic sensors, but also the lack of characterization of their possible performance disadvantages. In other words, in conservative industries, the known disadvantages of conventional sensors are sometimes preferable to unknown or not fully characterized (but potentially fewer and less critical) disadvantages of fiber optic sensors. A six-month feasibility study has been initiated under the auspices of the US Nuclear Regulatory Commission (NRC) to assess the performance and reliability of existing fiber optic pressure sensors for use in nuclear power plants. This assessment will include establishment of the state of the art in fiber optic pressure sensing, characterization of the reliability of fiber optic pressure sensors, and determination of the strengths and limitations of these sensors for nuclear safety-related services.

  13. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  14. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  15. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    Science.gov (United States)

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  16. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  17. Simple fiber optic sensor for applications in security systems

    Science.gov (United States)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  18. Optical sensors of bulk refractive index using optical fiber resonators

    Science.gov (United States)

    Eryürek, M.; Karadag, Y.; Ghafoor, M.; Bavili, N.; Cicek, K.; Kiraz, A.

    2017-05-01

    Optical fiber resonator (OFR) sensor is presented for bulk liquid refractive index (RI) sensing. The sensing mechanism relies on the spectral shifts of whispering gallery modes (WGMs) of OFRs which are excited using a tapered fiber. OFR liquid RI sensor is fully characterized using water solutions of ethanol and ethylene glycol (EG). A good agreement is achieved between the analytical calculations and experimental results for both TE and TM polarizations. The detection limit for bulk RI is calculated to be between 2.7 - 4.7 × 10-5 refractive index unit (RIU). The OFR sensor provides a robust, easy-to-fabricate and sensitive liquid refractive index sensor which can be employed in lab-on-a-chip applications.

  19. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  20. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  1. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  2. Optical fiber sensor having an active core

    Science.gov (United States)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  3. Advances in fiber optic sensors for in-vivo monitoring

    Science.gov (United States)

    Baldini, Francesco; Mignani, Anna G.

    1995-09-01

    Biomedical fiber-optic sensors are attractive for the measurement of both physical and chemical parameters as well as for spectral measurements directly performed on the patient. An overview of fiber-optic sensors for in vivo monitoring is given, with particular attention to the advantages that these sensors are able to offer in different fields of application such as cardiovascular and intensive care, angiology, gastroenterology, ophthalmology, oncology, neurology, dermatology, and dentistry.

  4. Networking of optical fiber sensors for extreme environments

    Science.gov (United States)

    Peters, Kara

    2016-04-01

    One of the major benefits of optical fiber sensors for applications to structural health monitoring and other structural measurements is their inherent multiplexing capabilities, meaning that a large number of sensing locations can be achieved with a single optical fiber. It has been well demonstrated that point wise sensors can be multiplexed to form sensor networks or optical fibers integrated with distributed sensing techniques. The spacing between sensing locations can also be tuned to match different length scales of interest. This article presents an overview of directions to adapt optical fiber sensor networking techniques into new applications where limitations such as available power or requirements for high data acquisition speeds are a driving factor. In particular, the trade-off between high fidelity sensor information vs. rapid signal processing or data acquisition is discussed.

  5. A fiber optic hybrid multifunctional AC voltage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovsky, A.; Zadvornov, S. [IRE, Moscow (Russian Federation); Ryabko, M. [UFD, Moscow (Russian Federation)

    2008-07-01

    Hybrid sensors have the advantages of both electronic and optical technologies. Their sensing element is based on conventional transducers and the optical fiber is used as a transmission media for the optical signal encoded with information between the local module and the remote module. The power supply for the remote module is usually provided by a built-in photoelectric converter illuminated by the optical radiation going through the same or another optical fiber. Electro-optic hybrid sensors have been widely used because of the electrical isolation provided by optical fiber. In the conventional fiber optic voltage sensor, piezoelectric or electro-optic transducers are implemented. Processing and conditioning measurement information is a complex task in these sensors. Moreover, the considerable drawback of most of these systems is that only one parameter, usually voltage value, is measured. This paper presented a novel fiber optic hybrid sensor for alternating current voltage measurements. This instrument provides the simultaneous measurement of four parameters, notably voltage value, frequency, phase angle and the external temperature. The paper described the measurement technology of the instrument including the remote module and optical powering as well as the unique modulation algorithm. The results and conclusions were also presented. 7 refs., 4 figs.

  6. A Passive Optical Fiber Current Sensor Based on YIG

    Institute of Scientific and Technical Information of China (English)

    Jing Shao; Wen Liu; Cui-Qing Liu; Duan Xu

    2008-01-01

    A research on passive optical fiber current sensor based on magneto-optical crystal and a new design of light path of the sensor head are presented. Both methods of dual-channel optical detection of the polarization state of the output light and signal processing are proposed. Signal processing can obtain the linear output of the current measurement of the wire more conveniently. Theoretical analysis on the magneto-optical fiber current sensor is given, followed by experiments. After that, further analysis is made according to the results, which leads to clarifying the exiting problems and their placements.

  7. Fiber optic sensors for military, industrial and commercial applications

    Science.gov (United States)

    James, K. A.; Quick, W. H.; Strahan, V. H.

    1978-01-01

    Four examples of specific fiber optic sensor system designs, each of which demonstrates a different optical modulation format, are described. The birefrigent temperature transducer illustrates direct digital signal modulation. The temperature/pressure dependent semiconductor filter illustrates high-pass optical wavelength signal encoding. The coupled polarized-mode transducer shows how a solid-state sensor can produce narrow-bandpass optical wavelength signal encoding. The luminescent temperature sensor illustrates a way to construct a solid state sensor in order to produce pulse width modulation of an optical signal.

  8. Low-cost fiber optic weigh-in-motion sensor

    Science.gov (United States)

    Safaai-Jazi, A.; Ardekani, S. A.; Mehdikhani, M.

    1990-11-01

    A design for a fiber optic weigh in motion (WIM) sensor is proposed. A prototype of the proposed sensor is designed, manufactured, and tested in the laboratory for different load frequency combinations using a material testing system (MTS) machine. Statistical analysis of data are performed to assess the response of the sensor under varying load frequencies for comparison.

  9. Fiber optic and laser sensors V; Proceedings of the Meeting, San Diego, CA, Aug. 17-19, 1987

    Science.gov (United States)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1988-01-01

    The papers contained in this volume focus on recent developments in fiber optic and laser sensors. Topics discussed include electric and magnetic field sensors, fiber optic pressure sensors, fiber optic gyros, fiber optic sensors for aerospace applications, fiber sensor multiplexing, temperature sensors, and specialized fiber optic sensors. Papers are presented on remote fiber optic sensors for angular orientation; fiber optic rotation sensor for space missions; adaptation of an electro-optic monitoring system to aerospace structures; optical fiber sensor for dust concentration measurements; and communication-sensing system using a single optical fiber.

  10. High Performance Fiber-Optic Sensor for Environmental Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research (LGR) proposes to develop a low-cost, compact, lightweight, rugged and easy-to-use environmental monitoring optical fiber sensor device based on...

  11. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  12. Fiber Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Incorporated proposes to develop a patent-pending fiber optic continuous liquid sensor for low-thrust level settled mass gauging with measurement...

  13. In-Space Distributed Fiber Optic Hydrogen Leak Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  14. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Soto, J G; Antonio-Lopez, J E; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); May-Arrioja, D A, E-mail: darrioja@uat.edu.mx

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25 deg. C to 375 deg. C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  15. Towards biochips using microstructured optical fiber sensors

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Hoiby, Poul Erik; Jensen, Jesper Bo

    2006-01-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO2 laser. The developed chip configuration allows...... the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing...

  16. Modal Frequency Detection in Composite Beams Using Fiber Optic Sensors

    Science.gov (United States)

    2011-07-28

    interference have been developed. These include the Fabry-Perot interferometer , the Mach-Zehner interferometer , and the Michelson interferometer [8]. The...widely studied. A Fabry-Perot interferometer as a fiber optic sensor was first introduced in 1982 [10]. In a later study intrinsic Fabry-Perot...Yoshino, Kiyoshi Kurosawa, Katsuji Itoh, and Teruzi Ose, " Fiber -Optic Fabry-Perot Interferometer and its Sensor Applications," IEEE Journal of Quantum

  17. Review Of Fiber-Optic Electric-Field Sensors

    Science.gov (United States)

    De Paula, Ramon P.; Jarzynski, Jacek

    1989-01-01

    Tutorial paper reviews state of art in fiber-optic sensors of alternating electric fields. Because such sensors are made entirely of dielectric materials, they are relatively transparent to incident electric fields; they do not distort fields significantly. Paper presents equations that express relationships among stress, strain, and electric field in piezoactive plastic and equations for phase shift in terms of photoelastic coefficients and strains in optical fiber.

  18. Volatile organic compound optical fiber sensors: a review

    OpenAIRE

    Arregui, Francisco J.; Candido Bariain; Matias, Ignacio R; Cesar Elosua

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the...

  19. Network Integration of Distributed Optical Fiber Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    Gui-Yan Li; Hong-Lin Liu; Zai-Xuan Zhang

    2008-01-01

    The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.

  20. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  1. Realization and characterization of fiber optic reflective sensor

    Science.gov (United States)

    Guzowski, B.; Łakomski, M.; Słapek, B.

    2016-11-01

    In almost all of non-invasive techniques, fiber optic sensors may be the most promising ones because of their inherent advantages such as very small size and hard environment tolerance. Proximity sensors based on optical fiber are highly required especially in the impact area of electromagnetic fields. In this paper three different types of fiber optic reflective sensors are presented. In all three types of the sensor four multimode optical fibers (MMF) illuminate the movable surface. The difference is in the number of collecting the reflected light MMF. In the first one, 12 MMF collect the light, in the second one 20 MMF, while in the third one the number of MMF collecting reflected light is 32. Moreover, all three types of fiber optic reflective sensors were realized in two configurations. In the first one, the cleaved MMF were used to collect reflected light, while in the second configuration - the ball-lensed optical fibers were chosen. In this paper an analysis of each type of realized sensor is presented. In the last part of this paper the obtained results and the detailed discussion are given.

  2. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  3. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  4. Fiber optic sensors current status and future possibilities

    CERN Document Server

    Ikezawa, Satoshi; Corres, Jesus

    2017-01-01

    This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range...

  5. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  6. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show that sel...

  7. Optical Fiber Pressure Sensor with Reference channel①

    Institute of Scientific and Technical Information of China (English)

    YUZhijing; TIANWei

    1997-01-01

    The principle of optical fiber pressure sensing probe with common diaphragm and the method for stabilizing the laser diodes are described in this paper at first.Then we discussed the improvement in characteristics of the system by means of taking the techniques of reference light channel and ratio measurement.

  8. Operation principle of a novel curvature plastic fiber optic sensor

    Institute of Scientific and Technical Information of China (English)

    Fu Yili; Liu Renqiang; Wang Shuguo

    2005-01-01

    The operation principle of a new type of intensity modulate macrobend curvature optical fiber senor was presented based on surface light scattering theory. Sensor's static and dynamic performance was investigated. This type of sensor can distinguish between positive and negative bending directions. When curvature radius is larger than 50mm, the sensor will keep good linearity. Two-dimensional shape measurement experiments using curvature sensors have been implemented.

  9. Optic Fiber-Based Dynamic Pressure Sensor

    Institute of Scientific and Technical Information of China (English)

    Jiu-Lin Gan; Hai-Wen Cai; Jian-Xin Geng; Zheng-Qing Pan; Rong-Hui Qu; Zu-Jie Fang

    2008-01-01

    Weigh-in-Motion(WIM) technique is the process of measuring the dynamic tire forces of a moving vehicle and estimating the corresponding tire loads of the static vehicle. Compared with the static weigh station, WIM station is an efficient and cost effective choice that will minimize unneccessary stops and delay for truckers. The way to turn birefringence of single-mode fiber into a prime quality for a powerful and reliable sensor is shown. Preliminary results for the development of a weigh-in-motion (WIM) technique based on sagnac-loop sensor are presented. After a brief description of the sensor and its principle of operation, the theoretical model is developed. Then, a full characterization made in static conditions is presented.

  10. Fiber optic and laser sensors VIII; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    This issue presents topics on the advances in fiber-optic sensor technology, fiber-optic gyroscope, fiber-optic position and pressure sensors, fiber-optic magnetic and temperature sensors, and generic fiber-optic sensors. Papers included are on a novel analog phase tracker for interferometric fiber-optic sensor applications, recent development status of fiber-optic sensors in China, the magnetic-field sensitivity of depolarized fiber-optic gyros, a depolarized fiber-optic gyro for future tactical applications, fiber-optic position transducers for aircraft controls, and a metal embedded optical-fiber pressure sensor. Attention is also given to a fiber-optic magnetic field sensor using spectral modulation encoding, a bare-fiber temperature sensor, an interferometric fiber-optic accelerometer, improvement of specular reflection pyrometer, a theoretical analysis of two-mode elliptical-core optical fiber sensors, and a fiber probe for ring pattern.

  11. Recent Developments in Micro-Structured Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2017-01-01

    Full Text Available Recent developments in fiber-optic sensing have involved booming research in the design and manufacturing of novel micro-structured optical fiber devices. From the conventional tapered fiber architectures to the novel micro-machined devices by advanced laser systems, thousands of micro-structured fiber-optic sensors have been proposed and fabricated for applications in measuring temperature, strain, refractive index (RI, electric current, displacement, bending, acceleration, force, rotation, acoustic, and magnetic field. The renowned and unparalleled merits of sensors-based micro-machined optical fibers including small footprint, light weight, immunity to electromagnetic interferences, durability to harsh environment, capability of remote control, and flexibility of directly embedding into the structured system have placed them in highly demand for practical use in diverse industries. With the rapid advancement in micro-technology, micro-structured fiber sensors have benefitted from the trends of possessing high performance, versatilities and spatial miniaturization. Here, we comprehensively review the recent progress in the micro-structured fiber-optic sensors with a variety of architectures regarding their fabrications, waveguide properties and sensing applications.

  12. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  13. Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Rong-Sheng Zheng; Yong-Hua Lu; Zhi-Guo Xie; Jun Tao; Kai-Qun Lin; Hai Ming

    2008-01-01

    Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe.Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.

  14. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2008-12-01

    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  15. Fiber optical Bragg grating sensors embedded in CFRP wires

    Science.gov (United States)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  16. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  17. Monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  18. Sensitization of an optical fiber methane sensor with graphene

    Science.gov (United States)

    Zhang, J. Y.; Ding, E. J.; Xu, S. C.; Li, Z. H.; Wang, X. X.; Song, F.

    2017-09-01

    We analyze the mechanism by which tin oxide can be utilized for the optical sensing of methane gas via surface adsorption and electromagnetic theory. Single-mode optical fibers with core diameters of 9 μm and cladding diameters of 12 μm were used. A 15 mm-long segment of each optical fiber was polished to the core via wheel side-polishing; the exposed fiber core areas were coated with graphene-doped tin oxide such that a novel graphene-based optical fiber methane sensor was fabricated. The experimental results show that the sensor exhibits excellent linear fitting and reproducibility, making it useful for the detection of low concentrations of methane.

  19. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  20. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    Science.gov (United States)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  1. Fiber-optic sensor applications in civil and geotechnical engineering

    Science.gov (United States)

    Habel, Wolfgang R.; Krebber, Katerina

    2011-09-01

    Different types of fiber-optic sensors based on glass or polymeric fibers are used to evaluate material behavior or to monitor the integrity and long-term stability of load-bearing structure components. Fiber-optic sensors have been established as a new and innovative measurement technology in very different fields, such as material science, civil engineering, light-weight structures, geotechnical areas as well as chemical and high-voltage substations. Very often, mechanical quantities such as deformation, strain or vibration are requested. However, measurement of chemical quantities in materials and structure components, such as pH value in steel reinforced concrete members also provides information about the integrity of concrete structures. A special fiber-optic chemical sensor for monitoring the alkaline state (pH value) of the cementitious matrix in steel-reinforced concrete structures with the purpose of early detection of corrosion-initiating factors is described. The paper presents the use of several fiber-optic sensor technologies in engineering. One example concerns the use of highly resolving concrete-embeddable fiber Fabry-Perot acoustic emission (AE) sensors for the assessment of the bearing behaviour of large concrete piles in existing foundations or during and after its installation. Another example concerns fiber Bragg grating (FBG) sensors attached to anchor steels (micro piles) to measure the strain distribution in loaded soil anchors. Polymer optical fibers (POF) can be — because of their high elasticity and high ultimate strain — well integrated into textiles to monitor their deformation behaviour. Such "intelligent" textiles are capable of monitoring displacement of soil or slopes, critical mechanical deformation in geotechnical structures (dikes, dams, and embankments) as well as in masonry structures during and after earthquakes.

  2. Optical fiber based slide tactile sensor for underwater robots

    Institute of Scientific and Technical Information of China (English)

    TAN Ding-zhong; WANG Qi-ming; SONG Rui-han; YAO Xin; GU Yi-hua

    2008-01-01

    In the underwater environment,many visual sensors don't work,and many sensors which work well for robots working in space or on land can not be used underwater.Therefore,an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers.The principles and structure of the sensor are explained in detail.Its static and dynamic characteristics were analyzed theoretically and then simulated.A dynamic characteristic model was built and the simulation made using the GA based neural network.In order to improve sensor response,the recognition model of the sensor was designed based on the'inverse solution'principle of neural networks,increasing the control precision and the sensitivity of the manipulator.

  3. Towards biochips using microstructured optical fiber sensors.

    Science.gov (United States)

    Rindorf, Lars; Høiby, Poul Erik; Jensen, Jesper Bo; Pedersen, Lars Hagsholm; Bang, Ole; Geschke, Oliver

    2006-08-01

    In this paper we present the first incorporation of a microstructured optical fiber (MOF) into biochip applications. A 16-mm-long piece of MOF is incorporated into an optic-fluidic coupler chip, which is fabricated in PMMA polymer using a CO(2) laser. The developed chip configuration allows the continuous control of liquid flow through the MOF and simultaneous optical characterization. While integrated in the chip, the MOF is functionalized towards the capture of a specific single-stranded DNA string by immobilizing a sensing layer on the microstructured internal surfaces of the fiber. The sensing layer contains the DNA string complementary to the target DNA sequence and thus operates through the highly selective DNA hybridization process. Optical detection of the captured DNA was carried out using the evanescent-wave-sensing principle. Owing to the small size of the chip, the presented technique allows for analysis of sample volumes down to 300 nL and the fabrication of miniaturized portable devices.

  4. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren;

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  5. Optical fiber sensors for IoT and smart devices

    CERN Document Server

    Domingues, Maria de Fátima F

    2017-01-01

    This brief provides a review of the evolution of optical fiber sensing solutions and related applications. Unique production methods are presented and discussed, highlighting their evolution and analyzing their complexity. Under this scope, this brief presents the existing silica optical fiber sensors and polymer optical fiber sensors solutions, comparing its field of action (sensitivity, accuracy), complexity of manufacture and economic cost. Special attention is given to low-cost production methods. This brief evaluates the different existing techniques, assessing the accuracy and suitability of these sensors for possible Internet of Things (IoT) integration in different considered scenarios. Critical analytical techniques, also covered in this brief, are expected to play a key role in the world of IoT and the smart city of tomorrow.

  6. Fiber optic stress-independent helical torsion sensor.

    Science.gov (United States)

    Fernandes, Luís A; Grenier, Jason R; Aitchison, J Stewart; Herman, Peter R

    2015-02-15

    Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments.

  7. Acoustic emission monitoring using a multimode optical fiber sensor

    Science.gov (United States)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  8. Experimental results of fiber optic contrast-sensitive dislocation sensor

    Science.gov (United States)

    Zyczkowski, M.; Szustakowski, M.; Palka, N.

    2005-05-01

    The dislocation sensor based on the contrast phenomenon in an unbalanced fiber optic Michelson interferometer with a 3 x 3 coupler and a semiconductor multimode laser. Periodic contrast oscillations, which depend on a laser spectrum, occur if a measuring arm of the interferometer is elongated. A conception of the elongation sensor that based on linearization of contrast oscillations is shown. Next, a setup of the sensor and signal processing scheme of the sensor is presented. During measurements, for 1-m long sensor we obtained 5-mm measuring range with +/-28-μm uncertainty. Explanation of these differences and conclusion to further research are formulated.

  9. Fiber optic sensors for environmental applications: A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J.

    1992-04-01

    Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface.

  10. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor.

    Science.gov (United States)

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-09-16

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well.

  11. A Differential Reflective Intensity Optical Fiber Angular Displacement Sensor

    Science.gov (United States)

    Jia, Binghui; He, Lei; Yan, Guodong; Feng, Yong

    2016-01-01

    In this paper, a novel differential reflective intensity optical fiber angular displacement sensor was proposed. This sensor can directly measure the angular and axial linear displacement of a flat surface. The structure of the sensor probe is simple and its basic principle was first analyzed according to the intensity modulation mechanisms. Secondly, in order to trim the dark output voltage to zero, the photoelectric conversion circuit was developed to adjust the signals. Then, the sensor model including the photoelectric conversion circuit has been established, and the influence of design parameters on the sensor output characteristic has been simulated. Finally, the design parameters of the sensor structure were obtained based on the simulation results; and an experimental test system was built for the sensor calibration. Experimental results show that the linear angular range and the sensitivity of the sensor were 74.4 and 0.051 V/°, respectively. Its change rules confirm the operating principle of the sensor well. PMID:27649199

  12. Double-Tubing Encapsulated Fiber Optic Temperature Sensor

    Science.gov (United States)

    Xu, Juncheng; Pickrell, Gary; Huang, Zhengyu; Qi, Bing; Zhang, Po; Duan, Yuhong; Wang, Anbo

    2003-09-01

    Increasing the efficiency of oil production operations requires improved sensors to supply critical information such as mixed-phase fluid flow, pressure and temperature measurements within the down-hole oil environment. In order to provide robust and reliable fiber optic temperature sensors capable of operating in the harsh down-hole oil environment, where temperatures might exceed 250 °C and pressures might reach 20,000 psi (140 Mpa), a novel type of fiber optic temperature sensor has been developed. This temperature sensor functions as an EFPI (extrinsic Fabry-Perot interferometric) sensor. One unique contribution of this work is that the glass tubing used is a borosilicate glass with a relatively high coefficient of thermal expansion (CTE) and long gauge length, allowing a much higher sensitivity to be achieved, without hysteresis. The sensor structure utilizes a dual tubing design (tubing within a tubing) to allow pressure isolation. An LED light beam is used as the signal interrogation source to remotely interrogate the sensor which may be located tens of thousands of meters away, connected by an optical fiber. A white-light interferometer measurement system is utilized to process the returned interference signal and to precisely determine the length of the Fabry-Perot interferometric cavity. Another unique feature of this work is that the sensor has been packaged with a specially developed hermetic protection process to prevent water penetration and to improve the mechanical integrity of the sensor. This protection process has allowed the successful hydraulic deployment of fiber optic sensors through 3 mm ID stainless steel tubing into a functioning oil well. Data on the resolution, repeatability and pressure sensitivity are presented.

  13. Lightning Current Measurement with Fiber-Optic Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  14. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  15. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie Cooper

    2008-07-19

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  16. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Iker García

    2015-06-01

    Full Text Available Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  17. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    Science.gov (United States)

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  18. New fiber optic sensor: application to refractive index sensing

    Science.gov (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Ferrell, Trinidad L.

    2000-08-01

    Optical fibers are more and more used as chemical sensors. This is, mainly due to their low cost, and their high efficiency to work in harsh and remote environments. Many devices are based on thin film plasmon excitation where a metal coating is evaporated onto the core of an etched optical fiber. In this paper, a new sensor configuration is presented. Instead of exciting surface plasmon waves on a thin film, surface plasma waves are excited on metal islands. The fiber is coated with 3 layers of gold. Each layer is annealed before the next layer is evaporated onto it. this is done to avoid any light leakage, fact which was found on a prior version with only one gold coating. Different sets of fibers were tested and sensitive and reproducible results for liquid with refraction indices varying from 1.3 to 1.7 were obtained.

  19. Development of an optical fiber sensor for angular displacement measurements.

    Science.gov (United States)

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.

  20. SMART composite high pressure vessels with integrated optical fiber sensors

    Science.gov (United States)

    Blazejewski, Wojciech; Czulak, Andrzej; Gasior, Pawel; Kaleta, Jerzy; Mech, Rafal

    2010-04-01

    In this paper application of integrated Optical Fiber Sensors for strain state monitoring of composite high pressure vessels is presented. The composite tanks find broad application in areas such as: automotive industry, aeronautics, rescue services, etc. In automotive application they are mainly used for gaseous fuels storage (like CNG or compressed Hydrogen). In comparison with standard steel vessels, composite ones have many advantages (i.e. high mechanical strength, significant weight reduction, etc). In the present work a novel technique of vessel manufacturing, according to this construction, was applied. It is called braiding technique, and can be used as an alternative to the winding method. During braiding process, between GFRC layers, two types of optical fiber sensors were installed: point sensors in the form of FBGs as well as interferometric sensors with long measuring arms (SOFO®). Integrated optical fiber sensors create the nervous system of the pressure vessel and are used for its structural health monitoring. OFS register deformation areas and detect construction damages in their early stage (ensure a high safety level for users). Applied sensor system also ensured a possibility of strain state monitoring even during the vessel manufacturing process. However the main application of OFS based monitoring system is to detect defects in the composite structure. An idea of such a SMART vessel with integrated sensor system as well as an algorithm of defect detection was presented.

  1. Optical fiber sensors for damage analysis in aerospace materials

    Science.gov (United States)

    Schindler, Paul; May, Russell; Claus, Richard

    1995-01-01

    Under this grant, fiber optic sensors were investigated for use in the nondestructive evaluation of aging aircraft. Specifically, optical fiber sensors for detection and location of impacts on a surface, and for detection of corrosion in metals were developed. The use of neural networks was investigated for determining impact location by processing the output of a network of fiberoptic strain sensors distributed on a surface. This approach employs triangulation to determine location by comparing the arrival times at several sensors, of the acoustic signal generated by the impact. For this study, a neural network simulator running on a personal computer was used to train a network using a back-propagation algorithm. Fiber optic extrinsic Fabry-Perot interferometer (EFPI) strain sensors are attached to or embedded in the surface, so that stress waves emanating from an impact can be detected. The ability of the network to determine impact location by time-or-arrival of acoustic signals was assessed by comparing network outputs with actual experimental results using impacts on a panel instrumented with optical fiber sensors. Using the neural network to process the sensor outputs, the impact location can be inferred to centimeter range accuracy directly from the arrival time data. In addition, the network can be trained to determine impact location, regardless of material anisotropy. Results demonstrate that a back-propagation network identifies impact location for an anisotropic graphite/bismaleimide plate with the same accuracy as that for an isotropic aluminum plate. Two different approaches were investigated for the development of fiber optic sensors for corrosion detection in metals, both utilizing optical fiber sensors with metal coatings. In the first approach, an extrinsic Fabry-Perot interferometric fiber optic strain sensor was placed under tensile stress, and while in the resulting strained position, a thick coating of metal was applied. Due to an increase in

  2. Fiber Optic Sensors For Detection of Toxic and Biological Threats

    Directory of Open Access Journals (Sweden)

    Jianming Yuan

    2007-12-01

    Full Text Available Protection of public and military personnel from chemical and biological warfareagents is an urgent and growing national security need. Along with this idea, we havedeveloped a novel class of fiber optic chemical sensors, for detection of toxic and biologicalmaterials. The design of these fiber optic sensors is based on a cladding modificationapproach. The original passive cladding of the fiber, in a small section, was removed and thefiber core was coated with a chemical sensitive material. Any change in the opticalproperties of the modified cladding material, due to the presence of a specific chemicalvapor, changes the transmission properties of the fiber and result in modal powerredistribution in multimode fibers. Both total intensity and modal power distribution (MPDmeasurements were used to detect the output power change through the sensing fibers. TheMPD technique measures the power changes in the far field pattern, i.e. spatial intensitymodulation in two dimensions. Conducting polymers, such as polyaniline and polypyrrole,have been reported to undergo a reversible change in conductivity upon exposure tochemical vapors. It is found that the conductivity change is accompanied by optical propertychange in the material. Therefore, polyaniline and polypyrrole were selected as the modifiedcladding material for the detection of hydrochloride (HCl, ammonia (NH3, hydrazine(H4N2, and dimethyl-methl-phosphonate (DMMP {a nerve agent, sarin stimulant},respectively. Several sensors were prepared and successfully tested. The results showeddramatic improvement in the sensor sensitivity, when the MPD method was applied. In thispaper, an overview on the developed class of fiber optic sensors is presented and supportedwith successful achieved results.

  3. Detection of Aeromonas hydrophila Using Fiber Optic Microchannel Sensor

    Directory of Open Access Journals (Sweden)

    Samla Gauri

    2017-01-01

    Full Text Available This research focuses on the detection of Aeromonas hydrophila using fiber optic microchannel biosensor. Microchannel was fabricated by photolithography method. The fiber optic was chosen as signal transmitting medium and light absorption characteristic of different microorganisms was investigated for possible detection. Experimental results showed that Aeromonas hydrophila can be detected at the region of UV-Vis spectra between 352 nm and 354 nm which was comparable to measurement provided by UV spectrophotometer and also theoretical calculation by Beer-Lambert Absorption Law. The entire detection can be done in less than 10 minutes using a total volume of 3 μL only. This result promises good potential of this fiber optic microchannel sensor as a reliable, portable, and disposable sensor.

  4. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    Science.gov (United States)

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-02-24

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

  5. Optical fiber sensor for membrane submicrometer vibration measurement.

    Science.gov (United States)

    Prokopczuk, Krzysztof; Rozwadowski, Krzysztof; Aleksandra Starzyńska, M D; Domański, Andrzej W

    2014-09-10

    This paper presents an optical fiber sensor for membrane submicrometer vibration measurement. The sensor is designed ultimately for low-cost medical audiometric applications such as determining the mobility of the tympanic membrane stimulated by the tone. The sensing method is minimally invasive, and the sensing head does not contact the surface of the membrane. Measurements were performed on tympanic membrane phantoms. Deflections of a few nanometers were measured, and vibration maps of phantoms were taken.

  6. YBCO Coated Conductor with an Integrated Optical Fiber Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sathyamurthy, Srivatsan [American Superconductor Corporation, Devens, MA (United States); Rupich, Marty [American Superconductor Corporation, Devens, MA (United States); Schwartz, Justin [North Carolina State Univ., Raleigh, NC (United States)

    2016-03-31

    The primary objectives of the Phase I Project was to develop a proof-of-principle for a concept of integrating an optical fiber sensor into the laminated 2G wire, there by producing a functionalized 2G wire with self-monitoring capabilities

  7. Fiber optical magnetic field sensor for power generator monitoring

    Science.gov (United States)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  8. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    McCary, Kelly Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  9. Fiber optic flow velocity sensor based on an in-fiber integrated Michelson interferometer

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai

    2008-04-01

    A novel fiber optic flow velocity sensor based on a twin-core fiber Michelson interferometer has been proposed and demonstrated. The sensor only is a segment of twin-core fiber acting as cylinder cantilever beam. The force exerted on the cylinder by the flow of a fluid with unknown velocity bends the fiber, which corresponding to the shift of the phase of the twin-core in-fiber integrated Michelson interferometer. This twin-core fiber sensing technique could automatically compensate the variation of environmental temperature and pressure due to both arms of the interferometer would be affected equally by such changes.

  10. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No. 7,379,630...

  11. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable, nonassignable...

  12. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No. 83...

  13. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  14. 1st International Conference on Fiber-Optic Rotation Sensors

    CERN Document Server

    Arditty, Hervé

    1982-01-01

    Currently there is considerable interest in the application of optical meth­ ods for the measurement of absolute rotation. Active approaches, so-called ring laser gyros, have been under serious development for at least 15 years. More recently, passive approaches using ring resonators or multi turn fiber interferometers have also demonstrated much pro~ise. The only previous conference devoted exclusively to optical rotation sensors, held in 1978 in San Diego, California, was organized by the Society of Photo-optical Instru­ mentation Engineers(S.P.I.E.J. Although the main emphasis at that conference was on ring laser gyros, a number of papers were also included that described the early development of fiber gyroscopes. Since then the field of fiber optic rotation sensors has grown so rapidly that a conference devoted primarily to this subject was needed. The First International Conference on Fiber-Optic Rotation Sensors was held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, Nove~­ b...

  15. Structural Health Monitoring of Composite Structures Using Fiber Optic Sensors

    Science.gov (United States)

    Whitaker, Anthony

    Structural health monitoring is the process of detecting damage to a structure, where damage can be characterized as changes to material/mechanical properties including but not limited to plastically deforming the material or the modification of connections. Fiber optic cables with fiber Bragg gratings have emerged as a reliable method of locally measuring strains within a structure. During the manufacturing of composite structures, the fiber optic cables can be embedded between lamina plies, allowing the ability to measure strain at discrete locations within the structure as opposed to electrical strain gauges, which must typically be applied to the surface only. The fiber optic sensors may be used to see if the local strain at the sensor location is beyond desired limits, or the array response may be mined to determine additional information about the loading applied to the structure. The work presented in this thesis is to present novel and potential applications of FBG sensors being used to assess the health of the structure. The first application is the dual application of the FBG sensor as a method to determine the strain around a bolt connection as well as the preload of the fastener using a single fiber optic sensor. The composite material around the bolted connections experience stress concentrations and are often the location of damage to the structure from operational cyclic loading over the lifetime of the structure. The degradation can occur more quickly if the fastener is insufficiently tight to transfer load properly. The second application is the ability to locate the impact location of a projectile with damaging and non-damaging energy. By locating and quantifying the damage, the sensor array provides the basis for a structural health monitoring system that has the potential to determine if the damage is extensive enough to replace, or if the part can be salvaged and retrofitted.

  16. Ground strain measuring system using optical fiber sensors

    Science.gov (United States)

    Sato, Tadanobu; Honda, Riki; Shibata, Shunjiro; Takegawa, Naoki

    2001-08-01

    This paper presents a device to measure the dynamic horizontal shear strain of the ground during earthquake. The proposed device consists of a bronze plate with fiber Bragg grating sensors attached on it. The device is vertically installed in the ground, and horizontal shear strain of the ground is measured as deflection angle of the plate. Employment of optical fiber sensors makes the proposed device simple in mechanism and highly durable, which makes it easy to install our device in the ground. We conducted shaking table tests using ground model to verify applicability of the proposed device.

  17. Fiber optic and laser sensors VII; Proceedings of the Meeting, Boston, MA, Sept. 5-7, 1989

    Science.gov (United States)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1990-01-01

    Various papers on fiber optic and laser sensors are presented. Individual topics addressed include: fiber optic photoelastic pressure sensor for high-temperature gases, fiber optic gyroscope using an eight-component LiNbO3 integrated optic circuit, design and performance of a fiber optic gyroscope using integrated optics, digital angular position sensor using wavelength division multiplexing, simple repeatable fiber optic intensity sensor for temperature measurement, compensation for effects of ambient temperature on rare-earth-doped fiber optic thermometer.

  18. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  19. Miniature temperature sensor with germania-core optical fiber.

    Science.gov (United States)

    Yang, Jingyi; Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Shum, Perry Ping; Su, Haibin

    2015-07-13

    A miniature all-fiber temperature sensor is demonstrated by using a Michelson interferometer formed with a short length of Germania-core, silica-cladding optical fiber (Ge-fiber) fusion-spliced to a conventional single-mode fiber (SMF). Thanks to the large differential refractive index of the Ge-fiber sensing element, a reasonably small free spectral range (FSR) of 18.6 nm is achieved even with an as short as 0.9 mm Ge-fiber that may help us increase the measurement accuracy especially in point sensing applications and, at the same time, keep large measurement temperature range without overlapping reading problem. Experimental results show that high sensitivity of 89.0 pm/°C is achieved and the highest measurement temperature is up to 500°C.

  20. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  1. Curvature optical fiber sensor by using bend enhanced method

    Institute of Scientific and Technical Information of China (English)

    Jianrong ZHANG; Hairong LIU; Xinkun WU

    2009-01-01

    Deflection curvature measurement can offer a number of advantages compared with the well-established strain measurement alternative. It is able to measure thin structure; fiber has no resistance with force, which leads to a high precision. There are many kinds of curvature gauges with different operation principles. A low-cost curvature optical fiber sensor using bend enhanced method to improve its curvature measurement sensitivity was devel-oped in recent years. This sensor can distinguish between convex bending and concave bending and has a good linearity in measuring large curvature deformation. Whisper gallery ray theory and Monte Carlo simulation are new achievements by computer experiment. The operation mechanism of this curvature optical fiber sensor is presented based on light scattering theory. The attenuation is ascribed to the transmission mode changing by the curvature of the fiber, which affects the attenuation of the surface scattering. The mathematical model of relationship among light loss, bending curvature, surface roughness, and parameters of the fiber's configuration is also presented. We design different kinds of shapes of sensitive zones; each zone has different parameters. Through detecting their output optical attenuations in different curvatures and fitting the results by exponential decaying functions, the proposed model is demonstrated by experimental results. Also, we compare the experi-mental results with the theoretical analysis and discuss the sensitivity dependence on bending direction.

  2. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  3. Optical fiber sensor for tracking line-focus solar collectors.

    Science.gov (United States)

    Wiczer, J J

    1982-08-01

    Currently there is a need to provide an alignment monitor feedback signal to the tracking mechanism of line-focus trough-type concentrating solar collectors. We report here on the novel use of an optical fiber as a distributed integrating sensor to generate such a signal. Experiments have shown that 3.0 m of optical fiber exposed to concentrated sunlight equal to ~40 suns in intensity will generate 1 microA of signal current in a silicon photodiode. These data were measured in an experimental line-focus solar collector using solar flux conditions common to this type of collector.

  4. An Optical Fiber Sensor for Electrification Measurement in Power Transformers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Static electrification and partial discharges caused by oil flow in power transformers lead to many accidents. In this paper, an optical fiber sensor which can be directly mounted inside high-voltage electric devices for electrification measurement in power transformers is introduced. Unlike the existing normal electrification measurement methods which only be used in static oil, the new one takes optical fiber as its probe and measures the electrification in flowing oil by detecting luminous flux, and is available for on-line monitoring.

  5. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  6. Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors

    OpenAIRE

    Fucai Li; Hideaki Murayama; Kazuro Kageyama; Takehiro Shirai

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber r...

  7. Optical fiber sensor for low dose gamma irradiation monitoring

    Science.gov (United States)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  8. A Fiber-Optical Intrusion Alarm System Based on Quasi-Distributed Fiber Bragg Grating Sensors

    Institute of Scientific and Technical Information of China (English)

    Qi Jiang; Yun-Jiang Rao; De-Hong Zeng

    2008-01-01

    A fiber-optical intrusion alarm system based on quasi-distributed fiber Bragg grating (FBG) sensors is demonstrated in this paper. The algorithms of empirical mode decomposition (EMD) and wavelet packet characteristic entropy are adopted to determine the intrusion location. The intrusion alarm software based on the Labview is developed, and it is also proved by the experiments. The results show that such a fiber-optical intrusion alarm system can offer the automatic intrusion alarm in real-time.

  9. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  10. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real

  11. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  12. A Novel Acoustic Emission Fiber Optic Sensor Based on a Single Mode Optical Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    CHEN Rongsheng; LIAO Yanbiao; ZHENG Gangtie; LIU Tongyu; Gerard Franklyn Fernando

    2001-01-01

    This paper reports, for the first time, on the use of a fused-taper single mode optical fiber coupler as a sensing element for the detection of acoustic emission (AE) and ultrasound. When an acoustic wave impinges on the mode-coupling region of a coupler, the coupling coefficient is modulated via the photo-elastic effect. Therefore, the transfer function of the coupler is modulated by an acoustic wave. The sensitivity of the sensor at 140 kHz was approximately 5.2 mV/Pa and the noise floor was 1 Pa. The bandwidth of the sensor was up to several hundred kHz. This AE sensor exhibits significant advantage compared with interferometer-based AE sensors.

  13. Two-interferometer fiber optic sensor with disturbance localization

    Science.gov (United States)

    Kondrat, M.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2006-09-01

    We present investigation results of a new generation of the fiber optic perimeter sensor in a Sagnac and Michelson interferometers configuration. This sensor can detect a potential intruder and determine its position along a protected zone. We propose a localization method that makes use of the inherent properties of both interferometers. After demodulation of signals from both interferometers, the obtained amplitude characteristic of the Sagnac interferometer depends on position of a disturbance along the interferometer, while amplitude characteristic of the Michelson interferometer do not depend on this position. So, quotient of both demodulated characteristics makes it possible to localize the disturbance. Arrangement of a laboratory model of the sensor and its signal processing scheme is also presented. During research of the laboratory model of the sensor, it was possible to detect the position of the disturbance with resolution of about 40m along the 6-km long sensor.

  14. Control systems using modal domain optical fiber sensors for smart structure applications

    Science.gov (United States)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  15. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  16. Miniature fiber optic sensor based on fluorescence energy transfer

    Science.gov (United States)

    Meadows, David L.; Schultz, Jerome S.

    1992-04-01

    Optical fiber biosensors based on fluorescence assays have several distinct advantages when measuring biological analytes such as metabolites, cofactors, toxins, etc. Not only are optical signals immune to electronic interferences, but the polychromatic nature of most fluorochemical assays provides more potentially useful data about the system being studied. One of the most common difficulties normally encountered with optical biosensors is the inability to routinely recalibrate the optical and electronic components of the system throughout the life of the sensor. With this in mind, we present an optical fiber assay system for glucose based on a homogeneous singlet/singlet energy transfer assay along with the electronic instrumentation built to support the sensor system. In the sensor probe, glucose concentrations are indirectly measured from the level of fluorescence quenching caused by the homogeneous competition assay between TRITC labeled concanavalin A (receptor) and FITC labeled Dextran (ligand). The FITC signal is used to indicate glucose concentrations and the TRITC signal is used for internal calibration. Data is also presented on a protein derivatization procedure that was used to prevent aggregation of the receptor protein in solution. Also, a molecular model is described for the singlet/singlet energy transfer interactions that can occur in a model system composed of a monovalent ligand (FITC labeled papain) and a monovalent receptor (TRITC labeled concanavalin A).

  17. New multiplexing structures for fiber optic sensors

    OpenAIRE

    Leandro González, Daniel

    2017-01-01

    El campo de la fibra óptica ha sufrido una rápida evolución durante las últimas décadas debido a sus buenas prestaciones en aplicaciones de telecomunicaciones. Aprovechando este avance científico y técnico en componentes fotónicos, los sensores de fibra óptica han emergido como una solución flexible para solventar algunas de las principales limitaciones sufridas por los sensores convencionales. Por ejemplo, la fibra óptica es químicamente inerte y electromagnéticamente pasiva. ...

  18. Development of plasma bolometers using fiber-optic temperature sensors

    Science.gov (United States)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve coatings, along with improving the spectral resolution of the interrogator.

  19. Microbend fiber optic sensor for perioperative pediatric vital signs monitoring

    Science.gov (United States)

    Chen, Zhihao; Hee, Hwan Ing; Ng, Soon Huat; Teo, Ju Teng; Yang, Xiufeng; Wang, Dier

    2017-02-01

    We have demonstrated a highly sensitive microbend fiber optic sensor for perioperative pediatric vital signs monitoring that is free from direct contact with skin, cableless, electromagnetic interference free and low cost. The feasibility of our device was studied on infants undergoing surgery and 10 participants ranging from one month to 12 months were enrolled. The sensor was placed under a barrier sheet on the operating table. All patients received standard intraoperative monitoring. The results showed good agreement in heart rate and respiratory rate between our device and the standard physiological monitoring when signals are clean.

  20. Intensity based sensor based on single mode optical fiber patchcords

    Science.gov (United States)

    Bayuwati, Dwi; Waluyo, Tomi Budi; Mulyanto, Imam

    2016-11-01

    This paper describes the use of several single mode (SM) fiber patchcords available commercially in the market for intensity based sensor by taking the benefit of bending loss phenomenon. Firtsly, the full transmission spectrum of all fiber patchcords were measured and analyzed to examine its bending properties at a series of wavelength using white light source and optical spectrum analyzer. Bending spectral at various bending diameter using single wavelength light sources were then measured for demonstration.Three good candidates for the intensity based sensor are SM600 fiber patchcord with 970 nm LED, SMF28 fiber patchcord with 1050 nm LED and 780HP fiber patchcord with 1310 nm LED which have noticeable bending sensitive area. Experiments show that the combination of the SMF28with 1050 nm LED has 30 mm measurement range which is the widest; with sensitivity 0.107 dB/mm and resolution 0.5 mm compared with combination of SM600 patchcord and LED 970 nm which has the best sensitivity (0.891 dB/mm) and resolution (0.06 mm) but smaller range measurement (10 mm). Some suitable applications for each fiber patchcord - light source pair have also been discussed.

  1. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  2. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    Science.gov (United States)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  3. Interferometric fiber-optic bending / nano-displacement sensor using plastic dual-core fiber

    CERN Document Server

    Qu, H; Skorobogatiy, M

    2014-01-01

    We demonstrate an interferometric fiber-optic bending/micro-displacement sensor based on a plastic dual-core fiber with one end coated with a silver mirror. The two fiber cores are first excited with the same laser beam, the light in each core is then back-reflected at the mirror-coated fiber-end, and, finally, the light from the two cores is made to interfere at the coupling end. Bending of the fiber leads to shifting interference fringes that can be interrogated with a slit and a single photodetector. We find experimentally that the resolution of our bending sensor is ~3x10-4 m-1 for sensing of bending curvature, as well as ~70 nm for sensing of displacement of the fiber tip. We demonstrate operation of our sensor using two examples. One is weighting of the individual micro-crystals of salt, while the other one is monitoring dynamics of isopropanol evaporation.

  4. Adhesive bond failure monitoring with triboluminescent optical fiber sensor

    Science.gov (United States)

    Shohag, Md Abu S.; Hammel, Emily C.; Olawale, David O.; Okoli, Okenwa O.

    2016-04-01

    One of the most severe damage modes in modern wind turbines is the failure of the adhesive joints in the trailing edge of the large composite blades. The geometrical shape of the blade and current manufacturing techniques make the trailing edge of the wind turbine blade more sensitive to damage. Failure to timely detect this damage type may result in catastrophic failures, expensive system downtime, and high repair costs. A novel sensing system called the In-situ Triboluminescent Optical Fiber (ITOF) sensor has been proposed for monitoring the initiation and propagation of disbonds in composite adhesive joints. The ITOF sensor combines the triboluminescent property of ZnS:Mn with the many desirable features of optical fiber to provide in-situ and distributed damage sensing in large composite structures like the wind blades. Unlike other sensor systems, the ITOF sensor does not require a power source at the sensing location or for transmitting damage-induced signals to the hub of the wind turbine. Composite parts will be fabricated and the ITOF integrated within the bondline to provide in-situ and real time damage sensing. Samples of the fabricated composite parts with integrated ITOF will be subjected to tensile and flexural loads, and the response from the integrated sensors will be monitored and analyzed to characterize the performance of the ITOF sensor as a debonding damage monitoring system. In addition, C-scan and optical microscopy will be employed to gain greater insights into the damage propagation behavior and the signals received from the ITOF sensors.

  5. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  6. Optical fiber temperature sensor based on wavelength-dependent detection

    Institute of Scientific and Technical Information of China (English)

    Zhigang Li(李志刚); Zhenhui Du(杜振辉); Baoguang Wang(王宝光); Chengzhi Jiang(蒋诚志)

    2004-01-01

    Semiconductor fiber temperature sensors have been used widely in many fields, but most of them pick up temperature by measuring the optical intensity of certain fixed narrow-band in absorption spectrum.Furthermore, they are sensitive to the loss of optical intensity and the fluctuation of light source power.The novel temperature measurement system proposed in this paper is based on the semiconductor absorption theory and the spectral analysis of method. To measure temperature, the sensor model detects not the certain narrow-band spectrum but the most spectra of the optical absorption edge. Therefore the measurement accuracy and the stability can be improved greatly. Experimental results are in agreement with theoretical analysis results perfectly.

  7. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    Directory of Open Access Journals (Sweden)

    Bongsoo Lee

    2011-10-01

    Full Text Available A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  8. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Science.gov (United States)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  9. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    Directory of Open Access Journals (Sweden)

    Frank Clemens

    2008-07-01

    Full Text Available In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 x 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections.

  10. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  11. Fiber-optic Fabry-Pérot strain sensor based on graded-index multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Tian Zhao; Yuan Gong; Yunjiang Rao; Yu Wu; Zengling Ran; Huijuan Wu

    2011-01-01

    By using a graded-index multimode fiber (GI-MMF) with a relatively flat index profile and high refractive index of the fiber core, a microextrinsic fiber-optic Fabry-Pérot interferometric (MEFPI) strain sensor is fabricated through chemical etching and fusion splicing. Higher reflectance of the microcavity is obtained due to the less-curved inner wall in the center of the fiber core after etching and higher index contrast between the GI-MMF core and air. The maximum reflection of the sensor is enhanced 12 dB than that obtained by etching of the Er- or B-doped fibers. High fringe contrast of 22 dB is obtained. The strain and temperature responses of the MEFPI sensors are investigated in this experiment. Good linearity and high sensitivity axe achieved, with wavelength-strain and wavelength-temperature sensitivities of 7.82 pm/μεand 5.01 pm/℃, respectively.%@@ By using a graded-index multimode fiber (GI-MMF) with a relatively flat index profile and high refractive index of the fiber core, a microextrinsic fiber-optic Fabry-Pérot interferometric (MEFPI) strain sensor is fabricated through chemical etching and fusion splicing.Higher reflectance of the microcavity is obtained due to the less-curved inner wall in the center of the fiber core after etching and higher index contrast between the GI-MMF core and air.

  12. Strain Sensor Using Optical Fiber Unsymmetrical F-P Cavity and the Characteristic Analysis

    Institute of Scientific and Technical Information of China (English)

    BI Weihong

    2000-01-01

    An intrinsic Fabry-Perot cavity consisted of different reflective mirrors is used in fiber-optical sensors for measuring the strain. The character of the unsymmetrical fiber-optical Fabry-Perot cavity and fiber-optic longitudinal stress-strain effect is analysed. The general theory and measurement method of strain are presented. A low fineness Fabry-Perot cavity is used to improve the linearity of optical fiber strain sensors. The result of experiment agrees well with the theory.

  13. Recovering Signals from Optical Fiber Interferometric Sensors

    Science.gov (United States)

    1991-06-01

    explained in numerous books on operational amplifiers (for example, see Sedra and Smith [Ref. 171) and so will not be further discussed here, except to say...618. 1 October 1982. 17. Sedra , A. S.. and Smith .- K. C.. Microelectronic CrciimHolt. Rinehart and Winston, 1982. 18. Abramowitz, M. and- Stegun. I.A...Interfcromctcrse, Applied Optics. Volume 21. Number 4. 689-693. 1982. 46. Smith , L. and Sheingold, D.H.. "Noise and Operational Amplifier Circuits’, Analog

  14. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Science.gov (United States)

    Ortega-Mendoza, J. Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-01-01

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented. PMID:25302813

  15. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end.

    Science.gov (United States)

    Ortega-Mendoza, J Gabriel; Padilla-Vivanco, Alfonso; Toxqui-Quitl, Carina; Zaca-Morán, Placido; Villegas-Hernández, David; Chávez, Fernando

    2014-10-09

    This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR). We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  16. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  17. Optical fiber waveguide sensor for the colorimetric detection of ammonia

    Science.gov (United States)

    Schmitt, Katrin; Rist, Jonas; Peter, Carolin; Wöllenstein, Jürgen

    2011-06-01

    We present the development and characterization of a fiber-optic colorimetric gas sensor combined with the electronic circuitry for measurement control and RFID communication. The gas sensor detects ammonia using a 300 μm polyolefin fiber coated with a gas-sensitive polymer film. The spectral and time-dependent sensitivity of various polymer films was tested in transmission measurements. Light from a standard LED at λ = 590 nm was coupled into the polyolefin fiber through the front face. A prototype of the gas sensor with the direct coupling method was tested under realistic measurement conditions, i.e. battery-driven and in a completely autonomous mode. The sensor system showed good sensitivity to the ammonia concentrations and response times in the order of minutes. The achievable power consumption was below 100μW.The films contained the pH-sensitive dyes bromocresol purple or bromophenol blue embedded in either ethyl cellulose or polyvinyl butyral, and optionally tributyl phosphate as plasticizer. The bromophenol blue based films showed a strong reaction to ammonia, with saturation concentrations around 1000 ppm and response times of about 15 seconds to 100ppm. The colorimetric reaction was simulated using a simple kinetic model which was in good agreement with the experimental results.

  18. Development of Optical Fiber Sensor for Water Quality Measurement

    Science.gov (United States)

    Omar, A. F.; MatJafri, M. Z.

    2008-05-01

    The development of water quality fiber sensor through spectroscopy analysis utilizes the emission of incident light and detection of backscattered light through fiber optic cables as key elements of the design. The system has the capability to detect the light scattered 180° away from the incident light when there is an interaction between the light and the solids suspended in the water. The empirical analysis is conducted for the measurement of the capacity of clay suspended in water (in mg/L). The system consists of two separate light detector circuitry that is sensitive to blue (470 nm) and red (635 nm) monochromatic light. The heart of the system is the sensor, TSLB257 and TSLR257 that having a peak response at wavelength of 470 nm and 635 nm respectively. The final result of detection is submitted to Basic Stamp 2 microcontroller for processing and analysis. The level of turbidity is then defined and displayed by the microcontroller.

  19. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  20. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  1. Interferometric and localized surface plasmon based fiber optic sensor

    Science.gov (United States)

    Muri, Harald Ian D. I.; Bano, Andon; Hjelme, Dag Roar

    2017-02-01

    We demonstrate a novel single point, multi-parameter, fiber optic sensor concept based on a combination of interferometric and plasmonic sensor modalities on an optical fiber end face. The sensor consists of a micro-Fabry-Perot interferometer in the form of a hemispherical stimuli-responsive hydrogel with immobilized gold nanoparticles. We present results of proof-of-concept experiments demonstrating local surface plasmon resonance (LSPR) sensing of refractive index (RI) in the visible range and interferometric measurements of volumetric changes of the pH stimuli-responsive hydrogel in near infrared range. The response of LSPR to RI (Δλr/ΔRI 877nm/RI) and the free spectral range (FSR) to pH (ΔpH/ΔFSR = 0.09624/nm) were measured with LSPR relatively constant for hydrogel swelling degree and FSR relatively constant for RI. We expect this novel sensor concept to be of great value for biosensors for medical applications.

  2. Improved fiber-optic chemical sensor for penicillin

    Energy Technology Data Exchange (ETDEWEB)

    Healy, B.G.; Walt, D.R. [Tufts Univ., Medford, MA (United States)

    1995-12-15

    An optical penicillin biosensor is described, based on the enzyme penicillinase. The sensor is fabricated by selective photodeposition of analyte-sensitive polymer matrices on optical imaging fibers. The penicillin-sensitive matrices are fabricated by immobilizing the enzyme as micrometer-sized particles in a polymer hydrogel with a covalently bound pH indicator. An array of penicillin-sensitive and pH-sensitive matrices are fabricated on the same fiber. This array allows for the simultaneous, independent measurement of pH and penicillin. Independent measurement of the two analytes allows penicillin to be quantitated in the presence of a concurrent pH change. An analysis was conducted of enzyme kinetic parameters in order to model the penicillin response of the sensor at all pH values. This analysis accounts for the varying activity of the immobilized penicillinase at different pH values. The sensor detects penicillin in the range 0.25-10.0 mM in the pH range 6.2-7.5. The sensor was used to quantify penicillin concentration produced during a Penicillium chrysogenum fermentation. 27 refs., 7 figs., 1 tab.

  3. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  4. Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991

    Science.gov (United States)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.

  5. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  6. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    Science.gov (United States)

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited.

  7. Development of plasma bolometers using fiber-optic temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L., E-mail: reinkeml@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Han, M.; Liu, G. [University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Eden, G. G. van [Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Evenblij, R.; Haverdings, M. [Technobis, Pyrietstraat 2, 1812 SC Alkmaar (Netherlands); Stratton, B. C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  8. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  9. Rockslide deformation monitoring with fiber optic strain sensors

    Directory of Open Access Journals (Sweden)

    J. R. Moore

    2010-02-01

    Full Text Available With micro-strain resolution and the capability to sample at rates of 100 Hz and higher, fiber optic (FO strain sensors offer exciting new possibilities for in-situ landslide monitoring. Here we describe a new FO monitoring system based on long-gauge fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. The new FO monitoring system can detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: (1 fully embedded borehole sensors and (2 surface extensometers. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous data are logged every 5 min. Deformation time series for all sensors show displacements consistent with previous monitoring. Accelerated shortening following installation of the borehole sensors is likely related to long-term shrinkage of the grout. A number of transient signals have been observed, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new insight into the deformation process. Accelerated surface crack opening in spring is shown to have a diurnal trend, which we attribute to the effect of snowmelt seeping into the crack void space and freezing at night to generate pressure on the crack walls. Controlled-source tests investigated the sensor response to dynamic inputs, which compared an independent measure of ground motion against the strain measured across a surface crack. Low frequency signals were comparable but the FO record suffered from aliasing, where undersampling of higher frequency signals generated spectral peaks not related to ground motion.

  10. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors

    Directory of Open Access Journals (Sweden)

    V. Antonucci

    2011-12-01

    Full Text Available The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE processing simulations. A good agreement between the numerical and experimental infusion times has been found demonstrating the potentiality of the fiber sensor system as suitable tool to evaluate impregnation times and permeability characteristics.

  11. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    Directory of Open Access Journals (Sweden)

    Hsu-Chih Cheng

    2013-05-01

    Full Text Available This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning and a fiber Bragg grating (FBG to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously.

  12. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  13. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  14. Distributed fiber optic strain sensor based on the Sagnac and Michelson interferometers

    Science.gov (United States)

    Udd, Eric

    1996-04-01

    By placing fiber optic gratings in a Sagnac loop a distributed strain sensor may be formed by using the light reflected from the fiber gratings as sources for balanced Michelson and Mach- Zehnder interferometers. In this manner the resulting fiber optic sensor is capable of measuring integrated strain over lengths determined by the fiber grating position, point strain and temperature at the fiber grating locations and localizing and measuring the position of a time varying signal such as an acoustic wave.

  15. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  16. Optically Powered Temperature Sensor with Optical Fiber Ling①

    Institute of Scientific and Technical Information of China (English)

    YUZhijing; WANGYutian

    1997-01-01

    The principle of a new optical fiber temperature transducer is presented,and ingenious design scheme of this transducer is given.Because taking the special modulation and ratio measurement,this new transducer has provided with high characteristics:experimental transmitting distance is 500m;measurement error,in the measured temperature range of 0-250℃,,is less than ±0.5℃;power consumption of the probe is less than 300μW.Finally,some points of the experiment are given.

  17. Nanostructured Fiber Optic Cantilever Arrays and Hybrid MEMS Sensors for Chemical and Biological Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in nano-/micro-scale sensor fabrication and molecular recognition surfaces offer promising opportunities to develop miniaturized hybrid fiber optic and...

  18. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  19. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  20. Development and Application of Fiber-Optic Sensors in Environmental and Life Sciences

    DEFF Research Database (Denmark)

    Rickelt, Lars Fledelius

    The light guiding properties of optical fibers are the fundament for fiber-optic sensors. The composition of the fiber materials as well as the fabrication methods for both glass optical fibers and plastic optical fibers (POF) are useful knowledge for improvements of the sensor design. A majority...... of sensing materials includes imbedded luminescent dyes and all O2 fiber-optic sensors are based on O2 quenching of a luminophore. The mechanisms of luminescence and O2 quenching are described. A new procedure for etching a recess in the tip of multimode graded index optical glass fibers was used to improve...... inside vials with polymorphonuclear leukocytes revealed strong O2 consumption. The O2 level was measured from outside the vials with a POF. A new method for producing fiber-optic microprobes for measuring scalar irradiance is presented along with an experimental setup for measuring the isotropic response...

  1. Analysis of a plastic optical fiber-based displacement sensor.

    Science.gov (United States)

    Jiménez, Felipe; Arrue, Jon; Aldabaldetreku, Gotzon; Durana, Gaizka; Zubia, Joseba; Ziemann, Olaf; Bunge, Christian-Alexander

    2007-09-01

    An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided.

  2. Experimental study on vibration frequency response of micro-bend optic-fiber sensor

    Institute of Scientific and Technical Information of China (English)

    Fuxiang Qin; Honggang Li; Wande Fan; Qiuqin Sheng

    2009-01-01

    We make an experimental study on vibration frequency response of micro-bend optic-fiber sensor, and single-mode fibers and multi-mode fibers are used as the sensitive optic-fibers. Contrast between the two sensitive fibers is presented. Result shows that the micro-bend optic-fiber sensor has good frequency response characteristics and strong ability to restore the waveform. With the frequency varying in the range of 500 - 4762 Hz, the vibration sensors using multi-mode optic-fiber as the sensitive fiber is more sensitive than that using single-mode optic-fiber. And the former has better frequency response characteristics and stronger capacity of waveform revivification. But with the frequency in the range of 287 - 500 Hz, the latter is better.

  3. Design Ammonia Gas Detection System by Using Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Dr. Bushra. R. Mhdi

    2013-07-01

    Full Text Available Design study and construction of Ammonia gas detection using a fiber as a sensor to based on evanescent wave sensing technique was investigated. Multi-mode fiber type (PCS with core diameter (600μm and (50cm length used where plastic clad was removed by chemical etching for effective sensing area which coated with sol-gel film to enhance its absorption characteristics to evanescent wave around the optical spectrum emitted from halogen lamp measurements through different temperature rang (25-60oc with and without air using as a carrier to ammonia molecules are investigated. Finally sensing efficiency are monitored to ammonia gas it affected to different temperature and environmental condition are studied and our result are compatible to scientific publishes

  4. Unbalanced Michelson's interferometer as a fiber optic distributed sensor of external signals

    Science.gov (United States)

    Chojnacki, M.; Szustakowski, Mieczyslaw; Zyczkowski, Marek

    2001-08-01

    The subject of this work is a novel fiber optic distributed sensor system. The system uses a technique called multiplexed reflectometric interferometry to measure dynamic strain in a network of single mode optical fiber sensors. The sensor is constructed on unbalanced fiber optic Michelson's interferometer is activated by series of double pulse. The time interval between those pulses depends on the length of the section of sensor. Acousto-optical modulator acts as an optical frequency shifter. A change in a frequency of electrical pulses exciting the modulator result in a frequency shift in each generated wave packet.

  5. Tri-Axial MRI Compatible Fiber-optic Force Sensor

    Science.gov (United States)

    Tan, U-Xuan; Yang, Bo; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    Magnetic resonance imaging (MRI) has been gaining popularity over standard imaging modalities like ultrasound and CT because of its ability to provide excellent soft-tissue contrast. However, due to the working principle of MRI, a number of conventional force sensors are not compatible. One popular solution is to develop a fiber-optic force sensor. However, the measurements along the principal axes of a number of these force sensors are highly cross-coupled. One of the objectives of this paper is to minimize this coupling effect. In addition, this paper describes the design of elastic frame structures that are obtained systematically using topology optimization techniques for maximizing sensor resolution and sensor bandwidth. Through the topology optimization approach, we ensure that the frames are linked from the input to output. The elastic frame structures are then fabricated using polymers materials, such as ABS and Delrin®, as they are ideal materials for use in MRI environment. However, the hysteresis effect seen in the displacement-load graph of plastic materials is known to affect the accuracy. Hence, this paper also proposes modeling and addressing this hysteretic effect using Prandtl-Ishlinskii play operators. Finally, experiments are conducted to evaluate the sensor’s performance, as well as its compatibility in MRI under continuous imaging. PMID:21666783

  6. Miniaturized fiber-optic Michelson-type interferometric sensors

    Science.gov (United States)

    Murphy, Kent A.; Miller, William V., III; Tran, Tuan A.; Vengsarkar, Ashish M.; Claus, Richard O.

    1991-01-01

    A novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts is presented. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. The detection of surface acoustic waves, microdisplacements, and magnetic fields is reported. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.

  7. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    Science.gov (United States)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  8. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    Yun-Jiang Rao; Jian Jiang; Zheng-Lin Ran

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  9. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  10. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    OpenAIRE

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-01-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, ...

  11. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends

    Directory of Open Access Journals (Sweden)

    Elizaveta Klantsataya

    2016-12-01

    Full Text Available Surface Plasmon Resonance (SPR fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications.

  12. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends.

    Science.gov (United States)

    Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M; François, Alexandre

    2016-12-23

    Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications.

  13. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  14. Effect of coating on the strain transfer of optical fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2011-01-01

    Optical fiber strain sensors with light weight, small dimensions and immunity to electromagnetic interference are widely used in structural health monitoring devices. As a sensor, it is expected that the strains between the optical fiber and host structure are the same. However, due to the shear deformation of the protective coating, the optical fiber strain is different from that of host structure. To improve the measurement accuracy, the strain measured by the optical fiber needs to be modified to reflect the influence of the coating. In this investigation, a theoretical model of the strain transferred from the host material to the optical fiber is developed to evaluate the interaction between the host material and coating. The theoretical predictions are validated with a numerical analysis using the finite element method. Experimental tests are performed to reveal the differential strains between the optical fiber strain sensor and test specimen. The Mach-Zehnder interferometric type fiber-optic sensor is adopted to measure the strain. Experimental results show that the strain measured at the optical fiber is lower than the true strain in the test specimen. The percentage of strain in the test specimen actually transferred to the optical fiber is dependent on the bonded length of the optical fiber and the protective coating. The general trend of the strain transformation obtained from both experimental tests and theoretical predictions shows that the longer the bonded length and the stiffer the coating the more strain is transferred to the optical fiber.

  15. Monitoring of Moisture in Transformer Oil Using Optical Fiber as Sensor

    Directory of Open Access Journals (Sweden)

    S. Laskar

    2013-01-01

    Full Text Available This paper describes an optical fiber sensor and temperature sensor-based instrumentation system to measure the moisture content in transformer oil. The sensor system consists of (i Diode Laser Source, (ii a bare and bent multimode fiber as sensor probe, (iii an LDR as detector, (iv LM35-based temperature sensor, and (v microcontroller system having a trained ANN for processing and calibration. The bare and bent optical fiber sensor and the temperature sensor LM35 are used to provide the measures of refractive index (RI and temperature of a transformer oil sample. An ATmega32-microcontroller-based system with trained ANN algorithm has been developed to determine the moisture content of the transformer oil sample by sampling the readings of the bare bent optical fiber sensor and the temperature sensor.

  16. The fiber optic gyroscope - a portable rotational ground motion sensor

    Science.gov (United States)

    Wassermann, J. M.; Bernauer, F.; Guattari, F.; Igel, H.

    2016-12-01

    It was already shown that a portable broadband rotational ground motion sensor will have large impact on several fields of seismological research such as volcanology, marine geophysics, seismic tomography and planetary seismology. Here, we present results of tests and experiments with one of the first broadband rotational motion sensors available. BlueSeis-3A, is a fiber optic gyroscope (FOG) especially designed for the needs of seismology, developed by iXBlue, France, in close collaboration with researchers financed by the European Research council project ROMY (Rotational motions - a new observable for seismology). We first present the instrument characteristics which were estimated by different standard laboratory tests, e.g. self noise using operational range diagrams or Allan deviation. Next we present the results of a field experiment which was designed to demonstrate the value of a 6C measurement (3 components of translation and 3 components of rotation). This field test took place at Mt. Stromboli volcano, Italy, and is accompanied by seismic array installation to proof the FOG output against more commonly known array derived rotation. As already shown with synthetic data an additional direct measurement of three components of rotation can reduce the ambiguity in source mechanism estimation and can be taken to correct for dynamic tilt of the translational sensors (i.e. seismometers). We can therefore demonstrate that the deployment of a weak motion broadband rotational motion sensor is in fact producing superior results by a reduction of the number of deployed instruments.

  17. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a vit

  18. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a vit

  19. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  20. Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Fucai Li

    2009-05-01

    Full Text Available Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG and Doppler effect-based fiber optic (FOD sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH0 guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  1. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception

    Institute of Scientific and Technical Information of China (English)

    Muping Song; Bin Zhao; Xianmin Zhang

    2005-01-01

    In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fiber sensor is achieved.

  2. Compact Fiber Optic Strain Sensors (cFOSS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  3. Tapered optical fiber sensor for chemical pollutants detection in seawater

    Science.gov (United States)

    Irigoyen, Maite; Sánchez-Martin, Jose Antonio; Bernabeu, Eusebio; Zamora, Alba

    2017-04-01

    Three tapered silica optical fibers, uncoated and coated with metallic (Al or Cu) and dielectric layers (TiO2), are employed to determine the presence of oil and Hazardous and Noxious Substances (HNS from now on) in water, by means of the measurement of their spectral transmittance. With our experimental assembly, the presence of oil and HNS spills can be detected employing the three different kinds of tapers, since the complete range of refractive indices of the pollutants (1.329-1.501) is covered with these tapers. The most suitable spectral range to detect the presence of a chemical pollutant in seawater has been identified and a complete spectral characterization of the three types of optical fiber tapers has been carried out. The results obtained show that, in general terms, these devices working together can be employed for the early detection of oil and HNS spills in seawater in a marine industrial environment. These sensors have many advantages, such as its low cost, its simplicity and versatility (with interesting properties as quick response and repeatability), and especially that they can be self-cleaned with seawater in motion.

  4. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; G. Pickrell; R. May

    2002-09-10

    material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

  5. High-temperature sapphire optical sensor fiber coatings

    Science.gov (United States)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  6. Damage detection and characterization using fiber optic sensors

    Science.gov (United States)

    Glisic, Branko; Sigurdardottir, Dorotea; Yao, Yao; Hubbell, David

    2013-04-01

    Fiber optic sensors (FOS) have significantly evolved and have reached their market maturity during the last decade. Their widely recognized advantages are high precision, long-term stability, and durability. But in addition to these advantageous performances, FOS technologies allow for affordable instrumentation of large areas of structure enabling global large-scale monitoring based on long-gauge sensors and integrity monitoring based on distributed sensors. These two approaches are particularly suitable for damage detection and characterization, i.e., damage localization and to certain extent quantification and propagation, as illustrated by two applications presented in detail in this paper: post-tensioned concrete bridge and segmented concrete pipeline. Early age cracking was detected, localized and quantified in the concrete deck of a pedestrian bridge using embedded long-gauge FOS. Post-tensioning of deck closed the cracks; however, permanent weakening in a bridge joint occurred due to cracking and it was identified and quantified. The damage was confirmed using embedded distributed FOS and a separate load test of the bridge. Real-size concrete pipeline specimens and surrounding soil were equipped with distributed FOS and exposed to permanent ground displacement in a large-scale testing facility. Two tests were performed on different pipeline specimens. The sensors bonded on the pipeline specimens successfully detected and localized rupture of pipeline joints, while the sensors embedded in the soil were able to detect and localize the failure plane. Comparison with strain-gauges installed on the pipeline and visual inspection after the test confirmed accurate damage detection and characterization.

  7. A distributed optical fiber bi-directional strain-displacement sensor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A distributed optical fiber strain-displacement sensor is developed, which consists of an optical fiber gauge of strain-displacement and an optical time domain reflectometer (OTDR). The operational principle is the modulation of fiber loss in OTDR, i.e. the strain and displacement in monitoring position are obtained from the bending loss of optical fiber bonded on the optical fiber gauge of strain-displacement. After examining the strain and displacement in the cantilever and the micro displacement rack respectively, the result indicates that the distributed optical fiber gauge of strain-displacement can monitor strains or displacements in different sensitive lengths. The key technique for measuring bi-directional strain-displacement is the pretreatment of bending of the freely suspended optical fibers, which can be identified with OTDR by inserting time delay optical fiber.

  8. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber.

    Science.gov (United States)

    Sun, L; Jiang, S; Marciante, J R

    2010-03-15

    An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium-doped silicate fiber with a Verdet constant of -24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

  9. Optical fiber sensors and their application in monitoring stress build-up in dental resin cements

    Science.gov (United States)

    Ottevaere, H.; Tabak, M.; Fernandez Fernandez, A.; Berghmans, F.; Thienpont, H.

    2005-09-01

    The field of optical fiber sensing is highly diverse and this diversity is perceived as a great advantage over more conventional sensors in that an optical sensor can be tailored to measure any of a myriad of physical parameters. In this paper we present a niche application for optical fiber sensors in the domain of biophotonics, namely the monitoring of stress build-up during the curing process of dental resin cements. We discuss the origin of this stress build-up and the problems it can cause when treating patients. Optical fiber sensors aim at excelling in two kind of applications: firstly to perform quality control on batch produced dental cements and measure their total material shrinkage, secondly to monitor the hardening of the cement during in-vivo measurements resulting in the dynamic measurement of the shrinkage and to control the stress in a facing based restoration. We therefore investigated two types of optical fiber sensors as alternatives to conventional measurement techniques; namely polarimetric optical fiber sensors and fiber Bragg gratings written in polarization maintaining fibers. After discussing the results obtained with both optical fiber sensors, we will conclude with a critical assessment of the suitability of the two proposed sensing configurations for multi-parameter stress monitoring.

  10. Temperature measurement of geothermal wells by optical fiber sensor; Hikari fiber sensor wo mochiita chinetsusei no ondo bunpu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, N.; Sakaguchi, K. [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Experiments of temperature measurement were conducted in high temperature and high pressure geothermal wells using optical fiber sensor. A temperature measurement system using optical fiber sensor was applied to geothermal wells. Working availability was confirmed under the condition up to the depth of 1,750 m and the temperature of 240 centigrade. Observed values agreed well with those observed by the conventional temperature logging. Durability of the optical fiber sensor was also sufficient. The maximum standard deviations of measured values were 1.3 centigrade at the depth of 1,750 m at 195 centigrade for the loop-type sensor, and 3.7 centigrade at the depth of 365 m at about 200 centigrade for the single-end sensor. Although the accuracy was inferior to the conventional measurement using a thermo couple, it was enough to be applied to usual temperature logging. Furthermore, for this system, the temperature profile in the whole well can be monitored, simultaneously. Through the experiments, the detailed successive change of temperature profile accompanied with the water injection can be clearly illustrated. 3 refs., 7 figs.

  11. Highly Sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulate in the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 and a 3 dB bandwidth of ~10 MHz.

  12. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  13. Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber

    Science.gov (United States)

    Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang

    2017-01-01

    This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.

  14. Development of Fiber-Optic Humidity Sensor Probe with Gelatin Cladding

    Directory of Open Access Journals (Sweden)

    Akhiruddin Maddu

    2010-10-01

    Full Text Available Humidity sensor based on optical fiber with gelatin cladding has been developed. In this humidity sensor probe, the origin cladding of optical fiber is replaced by gelatin coating as humidity sensitive cladding. Testing of the optical fiber sensor probe was conducted by measuring of light intensity transmitted on the optical fiber probe for each variation of different humidity treatments. Response of the optical fiber sensor probe measured from 42%RH to 99%RH, the results show an optical transmission curve varied with relative humidity (RH. Optical transmission in the optical fiber probe increase with RH value at a specific wavelength range, that is from green to red spectrum bands (500 nm - 700 nm, where a significant variation from 600 nm to 650 nm in yellow to red spectrum bands. Wavelength where is a maximum intensity of optical transmission occurs at 610 nm. Therefore, the optical fiber humidity sensor probe could response humidity form 42%RH to 99%RH with the best response in humidity range of 60%RH to 72%RH that is have a good  linearity and sensitivity

  15. Fiber optic Bragg grating sensor network installed in a concrete road bridge

    Science.gov (United States)

    Maaskant, Robert; Alavie, A. Tino; Measures, Raymond M.; Ohn, Myo M.; Karr, Shawn E.; Glennie, Derek J.; Wade, C.; Tadros, Gamil; Rizkalla, Sami

    1994-05-01

    The installation of a fiber optic Bragg grating strain sensor network in a new road bridge is described. These sensors are attached to prestressing tendons embedded in prefabricated concrete girders. Three types of prestressing tendons are being monitored: conventional steel strand and two types of carbon fibers reinforced plastic tendons. Sensor durability issues are reviewed and the installation is described. Initial measurements indicate that the sensors are operational and provide some early comparison of tendon performance.

  16. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    OpenAIRE

    David Sánchez Montero; Carmen Vázquez; Pedro Contreras Lallana

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity arou...

  17. A bridge-style fiber-optic weigh-in-motion sensor for military vehicle monitoring

    Science.gov (United States)

    Wang, Ke; Wei, Zhanxiong; Chen, Bingquan; Cui, Hong-Liang

    2005-05-01

    This paper introduces a novel design of "bridge style" fiber-optic weigh-in-motion (WIM) sensor using fiber Bragg grating (FBG) technology. Compared with other designs of fiber-optic WIM sensors, the bridge-style design is reliable, sensitive and can bear more loads. With these advantages, the bridge-style WIM sensor is specifically suitable for heavy vehicle dynamic weighing, especially for military vehicles, cargos and equipments. Experiment is conducted and the results show good repeatability and sensitivity under large loads. The minimum achieved resolvable weight is 7.1 kilograms. Finally, WIM sensor on-site installation method is suggested.

  18. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, C. A. F.; Saez-Rodriguez, D.

    2017-01-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with t...

  19. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  20. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor

    Science.gov (United States)

    Imai, Michio

    2015-03-01

    As an optical fiber is able to act as a sensing medium, a Brillouin-based sensor provides continuous strain information along an optical fiber. The sensor has been used in a wide range of civil engineering applications because no other tool can satisfactorily detect discontinuity such as a crack. Cracking generates a local strain change on the embedded optical fiber, thus Brillouin optical correlation domain analysis (BOCDA), which offers a high spatial resolution by stimulated Brillouin scattering, is expected to detect a fine crack on concrete structures. The author installed the surface-mounted optical fiber on a concrete deck and periodically monitored strain distribution for seven years. This paper demonstrates how a BOCDA-based strain sensor can be employed to monitor cracks in a concrete surface. Additionally, focusing on another advantage of the sensor, the natural frequency of the deck is successfully measured by dynamic strain history.

  1. A new magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer

    Institute of Scientific and Technical Information of China (English)

    Shuguang LI; Xinwan LI; Xin WANG; Jianping CHEN

    2009-01-01

    This paper presents a new structure for magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer. The magnetostrictive optical fiber sensor is placed in one of the two arms of the Mach-Zehnder interferometer, which can detect the optic phase shift by testing the length difference of the arm caused by environmental magnetic field. Because of forward and backward transmission in the arms, the Mach-Zehnder/ Sagnac optical fiber interferometer can deduce twice exactly of the phase shift proportional to the length difference as Mach-Zehnder interferometer. Theoretically, description of the Mach-Zehnder/Sagnac interferometer is given, and some main issues in the magnetic field sensor with optical fiber interferometer are demonstrated with experiments. The magnetic sensors are implemented using the proposed methods.

  2. Multiparameter Fiber Optic Sensor Suite for Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Structural Health Monitoring (SHM) for microspacecraft is a rapidly growing technology area for the use of fiber optics and MEMS. Morgan Research Corporation...

  3. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    Science.gov (United States)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  4. Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992

    Science.gov (United States)

    Udd, Eric (Editor); Depaula, Ramon P. (Editor)

    1993-01-01

    Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.

  5. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    Science.gov (United States)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  6. Monitoring applications of power generators for the increase of energy efficiency using novel fiber optical sensors

    Science.gov (United States)

    Villnow, Michael; Willsch, Michael; Bosselmann, Thomas; Schmauss, Bernhard

    2011-05-01

    To verify optimization measures of power generators to improve the energy efficiency and to monitor critical parameters, fiber optical sensors have been developed and investigated. A fiber optical hot wire anemometer based on the thermooptic effect of Fiber Bragg Gratings was investigated to measure the flow distribution along the stator core. Fiber optical magnetic field sensors, based on the strain-optic effect of FBGs, were used to measure the magnetic field distribution on the end windings of a power generator. A novel fiber-optical accelerometer was used to measure the end winding vibrations. In this paper the functionality of each sensor is described and results of field test under real conditions are shown and discussed.

  7. A simple optical fiber interferometer based breathing sensor

    Science.gov (United States)

    Li, Xixi; Liu, Dejun; Kumar, Rahul; Ng, Wai Pang; Fu, Yong-qing; Yuan, Jinhui; Yu, Chongxiu; Wu, Yufeng; Zhou, Guorui; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-03-01

    A breathing sensor has been experimentally demonstrated based on a singlemode-multimode-singlemode (SMS) fiber structure which is attached to a thin plastic film in an oxygen mask. By detecting power variations due to the macro bending applied to the SMS section by each inhalation and exhalation process, the breath state can be monitored. The proposed sensor is capable of distinguishing different types of breathing conditions including regular and irregular breath state. The sensor can be used in a strong electric/magnetic field and radioactive testing systems such as magnetic resonance imaging (MRI) systems and computed tomography (CT) examinations where electrical sensors are restricted.

  8. Realization of a fiber optic sensor detecting the presence of a liquid

    Science.gov (United States)

    Guzowski, B.; Łakomski, M.; Nowogrodzki, K.

    2016-11-01

    Over the past thirty years, optical fibers have revolutionized the telecommunication market. Fiber optics play also important roles in other numerous applications. One of these applications is fiber sensing - very fast developing area. In this paper, realization of different configurations of a fiber optic sensor detecting the presence of liquid is presented. In the presented sensor, two multimode fibers (MMF) are placed opposite each other, where the first one transmits the light radiation, while the second one is a receiver. Due to the small size of the core (50 μm diameter), they had to be precisely positioned. Therefore the optical fibers were placed in the etched channels in the silicon substrate. In order to make sensors more sensitive, ball-lensed optical fibers were used. Four different diameters of lenses were examined. Sensitivity to the presence of liquids was compared in all realized sensors. Moreover, the influence of distance between the transmitting and receiving optical fiber on the received optical power is also described in this paper. All developed sensors were tested at 1300 nm wavelength. In the last part of this paper the detailed discussion is given.

  9. Fluorescence Referencing for Fiber-optic Sensor Using Visible Wavelengths

    Institute of Scientific and Technical Information of China (English)

    WU Jin-ling; WANG Yu-tian; MA Hai-bin

    2006-01-01

    A kind of fluorescence optic-fiber thermometer is devised based on the ruby and absorbing glass sample. The optic- fiber temperature measurement probe based on ruby is developed. This system is particularly adaptable to the temperature measurement in the range of 0℃ to 130℃. A considerably improved performance is seen in this new device. The drive current to the LED can be easily kept within the required defined bounds through the control circuitry.

  10. Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986

    Science.gov (United States)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1987-01-01

    The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.

  11. Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986

    Science.gov (United States)

    De Paula, Ramon P. (Editor); Udd, Eric (Editor)

    1987-01-01

    The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.

  12. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    Science.gov (United States)

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  13. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    Directory of Open Access Journals (Sweden)

    Joseba Zubia Zaballa

    2013-09-01

    Full Text Available The design and development of a plastic optical fiber (POF macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of . The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations.

  14. Performance Analysis of a Noncontact Plastic Fiber Optical Fiber Displacement Sensor with Compensation of Target Reflectivity

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2013-01-01

    Full Text Available An inexpensive fiber-based noncontact distance sensor specific for monitoring short-range displacements in micromachining applications is presented. To keep the overall costs low, the sensor uses plastic optical fibers and an intensiometric approach based on the received light intensity after the reflection from the target whose displacement has to be measured. A suitable target reflectivity compensation technique is implemented to mitigate the effects due to target surface nonuniformity or ageing. The performances of the sensor are first evaluated for different fiber configurations and target reflectivity profiles and positions using a numerical method based on Monte Carlo simulations. Then, experimental validations on a configuration designed to work up to 1.5 mm have been conducted. The results have confirmed the validity of the proposed sensor architecture, which demonstrated excellent compensation capabilities, with errors below 0.04 mm in the (0-1 mm range regardless the color and misalignment of the target.

  15. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  16. Development of smart textiles with embedded fiber optic chemical sensors

    Science.gov (United States)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  17. Refractometric sensors based on long period optical fiber gratings

    OpenAIRE

    2006-01-01

    In this work, results of the design of uniform and nonuniform longperiod gratings are presented, with a view to being used as refractometric sensors. We found an optimal combination of the longitudinal variation of the fiber refractive index and the grating period, which increases the sensor linearity in comparison with a uniform grating, without decreasing its average sensitivity within a range of the external refractive index from 1.41 to 1.44.

  18. Development of fiber optic sensor for fluid flow of astronauts’ life-support system

    Science.gov (United States)

    Shachneva, E. A.; Murashkina, T. I.

    2016-08-01

    This paper proposes a fiber optic sensor consumption (volume, speed) of liquids in life-support systems of astronauts, as well as offers a simple method and apparatus for reproducing the parameters of fluid flow needed in research, yustiovke and adjusting the optical sensor system.

  19. Research Progress on F-P Interference—Based Fiber-Optic Sensors

    Science.gov (United States)

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications. PMID:27598173

  20. Fiber Optic Microcantilever Sensor Coupled with Reactive Polymers for Vapor Phase Detection of Ammonia Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations proposes to adapt its current aqueous-based, fiber-optic microcantilever sensor technology for real-time, monitoring of ammonia in air. Phase I...

  1. High-Frequency Flush Mounted Miniature LOX Fiber-Optic Pressure Sensor II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations has teamed with the University of Alabama, Huntsville, to develop a miniature flush-mounted fiber-optic pressure sensor that will allow accurate,...

  2. High-Frequency Flush Mounted Miniature LOX Fiber-Optic Pressure Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is teaming with the University of Alabama, Huntsville, to develop a miniature flush-mounted fiber-optic pressure sensor that will allow accurate,...

  3. Research Progress on F-P Interference-Based Fiber-Optic Sensors.

    Science.gov (United States)

    Huang, Yi Wen; Tao, Jin; Huang, Xu Guang

    2016-01-01

    We review our works on Fabry-Perot (F-P) interferometric fiber-optic sensors with various applications. We give a general model of F-P interferometric optical fiber sensors including diffraction loss caused by the beam divergence and the Gouy phase shift. Based on different structures of an F-P cavity formed on the end of a single-mode fiber, the F-P interferometric optical sensor has been extended to measurements of the refractive index (RI) of liquids and solids, temperature as well as small displacement. The RI of liquids and solids can be obtained by monitoring the fringe contrast related to Fresnel reflections, while the ambient temperature and small displacement can be obtained by monitoring the wavelength shift of the interference fringes. The F-P interferometric fiber-optic sensors can be used for many scientific and technological applications.

  4. Active vibration control using a modal-domain fiber optic sensor

    Science.gov (United States)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  5. Fiber optic sensor solutions for increase of efficiency and availability of electric power generators

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Villnow, M.

    2010-09-01

    Multiple fiber optic sensors have been developed for strain, vibration, temperature, magnetic field and air flow measurement in electric power generators. This paper describes the recent state of development and reports about todays field experience.

  6. Active vibration control using a modal-domain fiber optic sensor

    Science.gov (United States)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  7. MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER

    Directory of Open Access Journals (Sweden)

    Bushra R. Mahdi

    2016-07-01

    Full Text Available A fiber-optic pH sensor based on evanescent wave penetration is presented. Evanescent wave penetration is generated by removing the clad and contact the core with the solution. Testing samples were perpetrated by add a strong acid (HCL or a strong base (NaOH at distilled water to produce different value of pH (from 4 to 13. To determine the absorption or transmission of the evanescent waves, that generate after where obtained on appropriate calibration curve to determine a wide range of pH, by using pH indicators. Where using methyl red, by add fixed amounts of this dyes to the water samples were obtained on samples with colors vary with pH values. Calculate the transmission and absorption with draw a relationship between the transmissions or absorption with the pH values, to obtain on suitable curves, considered as calibration curves. Calibration curve for methyl red is best, where extends (from 4 to 12 for pH value. Can calculate the pH value for any water sample to tested, by the add the same ratios of the organic dyes it used.

  8. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  9. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-10-01

    Full Text Available The Karhunen-Loeve Transform (KLT is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1 demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs and Fabry-Perot Interferometers (FPIs; (2 demodulation of dual (FBG/FPI sensors; (3 application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  10. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    Science.gov (United States)

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  11. Effect of thermally induced strain on optical fiber sensors embedded in cement-based composites

    Science.gov (United States)

    Yuan, Li-bo; Zhou, Li-min; Jin, Wei; Lau, K. T.; Poon, Chi-kin

    2003-04-01

    A critical issue in developing a fiber-optic strain gauge is its codependency on temperature and strain. Any changes in the output of the optical fiber sensor due to its own thermal sensitivity and the thermal expansion of the most material will be misinterpreted as a change in shape-induced strain in the structure. This codependence is often referred to as thermally induced apparent strain or simply apparent strain. In this paper, an analytical model was developed to evaluate the thermally induced strain in fiber optic sensors embedded in cement-based composites. The effects of thermal induced strain on embedded optical fiber were measured with a white-light fiber-optic Michelson sensing interferometer for a number of cement-based host materials.

  12. Synchronous phase detection for optical fiber interferometric sensors.

    Science.gov (United States)

    Bush, I J; Phillips, R L

    1983-08-01

    A system has been developed to accurately detect phase signals produced in optical interferometric sensors. The system employs optical heterodyning and synchronously detects optical phase by feeding back an error signal to a phase modulator in the reference leg of the interferometer. This system is seen to have properties similar to a phase-locked loop. The system is mathematically analyzed and a simple second-order model developed which accurately predicts the system response.

  13. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  14. Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    Science.gov (United States)

    Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance

    2005-01-01

    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.

  15. Optical fiber sensor temperature coded for concentration measurement of oil-biodiesel blends

    Science.gov (United States)

    Possetti, Gustavo Rafael Collere; Kamikawachi, Ricardo Canute; Muller, Marcia; Fabris, José Luís

    2013-12-01

    This work describes the operation of an optical fiber sensor employed in the determination of remaining oil concentration in oil-biodiesel blends. The sensor is based both on the sensitivity of a long period grating to changes in the surroundings refractive index and on the thermo-optical properties of oil-biodiesel blends. The sensor response is provided by a temperature coded interrogation unit that employs an auxiliary fiber Bragg grating. The standard metrological analysis of an optimized sensor showed that is possible to detect until 0.10% v/v of oil in oil-biodiesel blends.

  16. A fiber optics textile composite sensor for geotechnical applications

    Science.gov (United States)

    Artières, Olivier; Dortland, Gerrit

    2010-09-01

    The fiber optics in structural health monitoring systems for civil engineering applications have been widely used. By integrating fiber optic sensing into a geotextile fabric, the TenCate GeoDetect® system is the first designed specifically for geotechnical applications. This monitoring solution embodies fiber optics on a geotextile fabric, e.g. a textile used into the soil, and combines the benefits of geotextile materials, such as high interface friction in contact with the soil, with the latest fiber optics sensing technologies. It aims to monitor geotechnical structure and to generate early warnings if it detects and localizes the early signs of malfunctioning, such as leaks or instability. This is a customizable solution: Fiber Bragg gratings, Brillouin and Raman scattering can be built into this system. These technologies measure both strain and temperature changes in soil structures. It can provide a leak and deformation location within accuracies resp. 1 l/min/m and 0.02%. The TenCate GeoDetect® solution provides objective, highly precise, and timely in-situ performance information, allowing the design professional and owner to understand system performance in addition to providing alerts for negative "geo-events" (subsidence) and other potentially deleterious events.

  17. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Vedran Budinski

    2017-02-01

    Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper

  18. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications

    CERN Document Server

    Shambat, Gary; Khurana, Aman; Provine, J; Sarmiento, Tomas; Cheng, Kai; Cheng, Zhen; Harris, James; Daldrup-Link, Heike; Gambhir, Sanjiv Sam; Vuckovic, Jelena

    2012-01-01

    We present a sensor capable of detecting solution-based nanoparticles using an optical fiber tip functionalized with a photonic crystal cavity. When sensor tips are retracted from a nanoparticle solution after being submerged, we find that a combination of convective fluid forces and optically-induced trapping cause an aggregation of nanoparticles to form directly on cavity surfaces. A simple readout of quantum dot photoluminescence coupled to the optical fiber shows that nanoparticle presence and concentration can be detected through modified cavity properties. Our sensor can detect both gold and iron oxide nanoparticles and can be utilized for molecular sensing applications in biomedicine.

  19. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    Directory of Open Access Journals (Sweden)

    Md. Rajibul Islam

    2014-04-01

    Full Text Available Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

  20. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review.

    Science.gov (United States)

    Islam, Md Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-04-24

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

  1. Geometrical parameter analysis of the high sensitivity fiber optic angular displacement sensor

    CERN Document Server

    Sakamoto, João M S; Kitano, Cláudio; Tittmann, Bernhard R

    2015-01-01

    In this work, we present an analysis of the influence of the geometrical parameters on the sensitivity and linear range of the fiber optic angular displacement sensor, through computational simulations and experiments. The geometrical parameters analyzed were the lens focal length, the gap between fibers, the fibers cladding radii, the emitting fiber critical angle (or, equivalently, the emitting fiber numerical aperture), and the standoff distance (distance between the lens and the reflective surface). Besides, we analyzed the sensor sensitivity regarding any spurious linear displacement. The simulation and experimental results showed that the parameters which play the most important roles are the emitting fiber core radius, the lens focal length, and the light coupling efficiency, while the remaining parameters have little influence on sensor characteristics. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the fo...

  2. Fiber optic sensor based on reflectivity configurations to detect heart rate

    Science.gov (United States)

    Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.

    2016-11-01

    Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.

  3. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  4. Two-interferometers fiber optic sensor for disturbance localization

    Science.gov (United States)

    Zyczkowski, Marek; Ciurapinski, Wieslaw; Kondrat, Marcin

    2005-09-01

    Initial researches of Two-interferometers Fibre Optic Sensor for Disturbance Localization will be presented. The sensor is typically susceptible to environmentally induced mechanical perturbation at low frequencies. The presented sensor consists of two interferometers: Sagnac and Michelson. The Sagnac transfer function is proportional to the product of two factors: firstly the rate of change, dφ/dt, of the optical signal, induced at a point by external disturbance, and secondly the distance between the disturbance point and the Sagnac coil centre. The second interferometer transfer function gives an output proportional to φ. So, if we determine a pulsation ω of the mechanical disturbance from both interferometers output signals, we will be able to localize point where the mechanical disturbance takes place along the fibre by means of simple division of these transfer function. A laboratory arrangement of the sensor and the results of numerical signal processing are also shown.

  5. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    Science.gov (United States)

    2015-11-05

    fiber-optic sensor for high-resolution and high-speed temperature sensing in ocean environment Guigen Liu1, Ming Han1,* Weilin Hou2, Silvia Matt2... sensor performance. In this paper, we present an optical fiber sensor for the high-resolution and high-speed temperature profiling. The developed sensor ...silicon, such as large thermal diffusivity, notable thermo-optic effects and thermal expansion coefficients of silicon, the proposed sensor exhibits

  6. DETERMINATION OF INTERNAL STRAIN IN 3-D BRAIDED COMPOSITES USING OPTIC FIBER STRAIN SENSORS

    Institute of Scientific and Technical Information of China (English)

    YuanShenfang; HuangRui; LiXianghua; LiuXiaohui

    2004-01-01

    A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First,the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites,to validate the ability of the optic fiber to survive the manufacturing process. On the other hand,the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain.Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.

  7. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  8. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2015-01-01

    A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to inte...

  9. A Special Fiber Optic Sensor for Measuring Wheel Loads of Vehicles on Highways

    Directory of Open Access Journals (Sweden)

    Norman W. Garrick

    2008-04-01

    Full Text Available This paper presents results from an investigation on a special optical fiber as a load sensor for application in Weigh-in-Motion (WIM systems to measure wheel loads of vehicles traveling at normal speed on highways. The fiber used has a unique design with two concentric light guiding regions of different effective optical path lengths, which has the potential to enable direct measurement of magnitudes as well as locations of forces acting at multiple points along a single fiber. The optical characteristic of the fiber for intended sensing purpose was first assessed by a simple fiber bending experiment and by correlating the bend radii with the output light signal intensities. A simple laboratory load transmitting/fiber bending device was then designed and fabricated to appropriately bend the optical fiber under applied loads in order to make the fiber work as load sensor. The device with the optical fiber was tested under a universal loading machine and an actual vehicle wheel in the laboratory. The test results showed a good relationship between the magnitude of the applied load and the output optical signal changes. The results also showed a good correlation between the time delay between the inner and outer core light pulses and the distance of the applied load as measured from the output end of the fiber.

  10. Cholesterol detection using optical fiber sensor based on intensity modulation

    Science.gov (United States)

    Budiyanto, Moh; Suhariningsih; Yasin, Moh

    2017-05-01

    The aim of the research is to detect the concentration of cholesterol by using the principle that a laser beam propagation is guided by optical fiber bundle in term of intensity profile through solution with vary concentrations of cholesterol from 0 to 300 ppm. The mechanism of cholesterol concentration detection is the propagation of He-Ne laser beam with wavelength of 632.5 nm through a fiber optic bundle and a solution of cholesterol, then is reflected by a flat mirror and enters receiving fiber. This signal is captured by a silicon detector (SL-818, Newport) in the form of output voltage. The result showed that the output voltage decrease linearly with the increase of concentration of cholesterol with a sensitivity of 0.0004 mV/ppm and the linearity more than 97%.

  11. Distributed Optical Fiber Sensor for Multi-point Temperature Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-tian; LIU Zhan-wei; HOU Pei-guo; SHAN Wei

    2004-01-01

    The distributed optical fiber sensing technology is overviewed, which is based on Raman scattering light theory. Basic operation principle, structure, system characteristics and signal processing are discussed. This structure and method of the signal processing possess of certain spatial resolution, hence will ensure the practicability of system.

  12. Modified Michelson fiber-optic interferometer: A remote low-coherence distributed strain sensor array

    Science.gov (United States)

    Yuan, Libo

    2003-01-01

    A simple modified Michelson fiber-optic low-coherence interferometric quasi-distributed sensing system permitting absolute length measurement in remote reflective sensor array is proposed. The sensor reflective signals characteristics have been analyzed and the relationship between light signal intensities and sensors number was given for multiplexing potential evaluation. The proposed sensing scheme will be useful for the remote measurement of strain. An important application could be deformation sensing in smart structures. Experimentally, a three sensors array has been demonstrated.

  13. Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers

    Directory of Open Access Journals (Sweden)

    Agustín González-Cano

    2014-03-01

    Full Text Available A review of the surface plasmon resonance (SPR transducers based on tapered fibers that have been developed in the last years is presented. The devices have proved their good performance (specifically, in terms of sensitivity and their versatility and they are a very good option to be considered as basis for any kind of chemical and biological sensor. The technology has now reached its maturity and here we summarize some of the characteristics of the devices produced.

  14. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  15. Fabrication of a porous fiber cladding material using microsphere templating for improved response time with fiber optic sensor arrays.

    Science.gov (United States)

    Henning, Paul E; Rigo, M Veronica; Geissinger, Peter

    2012-01-01

    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units.

  16. Research on a new fiber-optic axial pressure sensor of transformer winding based on fiber Bragg grating

    Science.gov (United States)

    Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu

    2017-07-01

    Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.

  17. Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations

    Science.gov (United States)

    Dube, C. M.; Wang, Tom D.; Melton, Robert G.; Jenson, David W.; Koharchik, Mike

    1988-02-01

    The feasibility is assessed of using fiber optic strain sensors embedded in a composite material to measure the magnitude and frequency of structural vibrations for control of flexible elements. This study demonstrates the ability to embed fiber optic strain sensors in a composite material, determines the performance of these sensors, identifies active control system architectures that are matched to the fiber optic system measurands to damp vibrations of large space structures, and estimates the stability achievable by these methods. A detailed laboratory study was performed using a wide band closed-loop-fiber Mach-Zehnder interferometer to conduct transverse vibration measurements on sub-scale composite elements with embedded fiber sensors. The interferometer detects vibrations by measuring the strain transferred by the composite to the embedded optical fiber. The strain sensor demonstrated the ability to track the vibrations of a cantilever beam over a frequency bandwidth ranging from approximately 5 Hz to almost 1000 Hz. The sensor was unable to detect dc strains because of thermal drift and laser power fluctuations. These factors produced a drift in the dc signal level, which was indistinguishable from static strain measurements. Beyond 1000 Hz, the composite element was unable to follow the drive mechanism. The noise equivalent strain was epsilon is approximately 10 to the minus 10th power.

  18. Magneto-Optic Fiber Bragg Gratings with Application to High-Resolution Magnetic Field Sensors

    Institute of Scientific and Technical Information of China (English)

    Bao-Jian Wu; Ying Yang; Kun Qiu

    2008-01-01

    Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.

  19. New multiplexing scheme for monitoring fiber optic Bragg grating sensors in the coherence domain

    OpenAIRE

    Dakin, J.P.; Ecke, W.; Rothardt, M.; Schauer, J; Usbeck, K.; Willsch, R.

    1997-01-01

    A new multiplexing scheme for monitoring fiber optic Bragg gratings in the coherence domain has been developed. Grating pairs with different grating distances are distributed along a fiber line, and interference between their reflections is monitored with a scanning Michelson interferometer. The Bragg wavelength of the individual sensor elements is determined from the interference signal frequency

  20. Internal Strain Measurement in 3D Braided Composites Using Co-braided Optical Fiber Sensors

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Rui HUANG; Yunjiang RAO

    2004-01-01

    3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the threedimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.

  1. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  2. Multi-hole Optical Fiber Surface Plasmon Resonance Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guan Chunying; Wang Yang; Yuan Libo, E-mail: cyguan@163.com [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    A microstructured-fiber containing six large air holes is proposed to construct the surface plasmon resonance (SPR) sensor. The finite element method is used to analyze characteristics of the surface plasmon resonance sensor. The effects of the thickness of metal films, pitch between air holes, diameter of air hole, and refractive index of liquid on the resonance wavelength are elucidated. The results show that the resonance wavelength is sensitive to the thickness of metal film and refractive index of liquid, while the resonance wavelength doesn't change basically when the pitch between air holes and diameter of air holes vary. The proposed surface plasmon resonance sensor exhibits high sensitivity up to 10{sup -4}.

  3. Composite cavity based fiber optic Fabry Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    Science.gov (United States)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Jin, Wencai; Yuan, Libo; Peng, G. D.

    2008-08-01

    A composite cavity based fiber optic Fabry-Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry-Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure.

  4. Wind tunnel unsteady pressure measurements using a differential optical fiber Fabry-Perot pressure sensor

    Science.gov (United States)

    Correia, Ricardo; Staines, Stephen E.; James, Stephen W.; Lawson, Nicholas; Garry, Kevin; Tatam, Ralph P.

    2014-05-01

    A differential extrinsic optical fiber Fabry-Perot based pressure sensor has been developed and benchmarked against a conventional piezoresistive Kulite pressure sensor. The sensors were placed on the fuselage of a 1:10/3 sub-scale model of a Scottish aviation Bulldog, which was placed in a wind-tunnel. Pressure tappings that surrounded the sensors aided the mapping of pressure distribution around this section of the fuselage. The results obtained from the fibre optic pressure sensor are in good agreement with those obtained from the Kulite and from the pressure tappings.

  5. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  6. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  7. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren;

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...... a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization....

  8. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Directory of Open Access Journals (Sweden)

    Mohd Zubir Bin MatJafri

    2009-10-01

    Full Text Available Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  9. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity.

    Science.gov (United States)

    Omar, Ahmad Fairuz Bin; Matjafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  10. Application of fiber optic distributed sensor for strain measurement in civil engineering

    Science.gov (United States)

    Kurashima, Toshio; Usu, Tomonori; Tanaka, Kuniaki; Nobiki, Atsushi; Sato, Masashi; Nakai, Kenji

    1997-11-01

    We report on civil engineering applications of a fiber optic distributed strain sensor. It consists of a sensing fiber and a high performance optical time domain reflectometer (OTDR), for measuring both strain and optical loss distribution along optical fibers by accessing only one end of the fiber. The OTDR can measure distributed strain with an accuracy of better than +/- 60 X 10-6 and a high spatial resolution of up to 1 m over a 10 km long fiber. In model experiments using the OTDR, we measured the strain changes in fibers attached to the surface of a concrete test beam. The performance of the fiber strain sensor was tested by measuring the strain distribution in optical fibers and comparing the results with resistance strain gage measurements for several loads. We found that the two sets of results were similar, and in addition, we demonstrated experimentally that the sensor was able to measure an induced strain change of less than 100 by 10-6, which is nearly the elastic limit of the concrete material. These results show the potential of the OTDR to extend the application of monitoring systems to such areas as large building diagnostics for civil engineering.

  11. Optical Properties of High Sensitivity Fiber Bragg Grating on Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.

  12. PAMAM dendrimer/gold nanoparticle nanocomposites for a reflection LSPR optical fiber sensor

    Science.gov (United States)

    Gouvêa, Paula M. P.; Cancino-Bernardi, Juliana; Zucolotto, Valtencir; Braga, Arthur M. B.; Carvalho, Isabel C. S.

    2015-09-01

    The viability of a fiber optic reflection-based Localized Surface Plasmon Resonance (LSPR) sensor using layer-by-layer technique composed by PAMAM-AuNP with and without AuNP-citrate was investigated. The PAMAM-AuNPs and PAMAM-AuNPs/AuNP-citrate layers were deposited on the endface of an optical fiber and the reflected signal was acquired. Deposition time and number of layers were optimized viewing LSPR sensing applications. Results with and without AuNP-citrate were compared. The sensor is being characterized as a refractive index sensor.

  13. Fiber optic magnetic field sensor based on the TbDyFe rod

    Science.gov (United States)

    Chen, Feifei; Jiang, Yi

    2014-08-01

    We present, and experimentally demonstrate, a fiber optic magnetic field sensor for the measurement of a weak alternating magnetic field, based on a TbDyFe rod. The fiber optic magnetic field sensor is constructed in a Michelson interferometer configuration, and the phase-generated carrier demodulation is used to obtain the time-varying phase shift induced by the applied magnetic field. A high sensitivity of up to 3.6 × 10-2 V μT - 1 (rms) with a resolution of 23 pT/√Hz (rms) at 50 Hz is achieved. Experimental results show that the sensor exhibits excellent linearity and reversibility.

  14. Stability aspects of a fiber optic sensor for CO2 phase monitoring

    Science.gov (United States)

    Prada, Dario; Martelli, Cicero; Gouvêa, Paula M. P.; Kato, Carla C.; Braga, Arthur M. B.; Gomes, Marcos S. P.

    2015-09-01

    In this paper we discuss the stability and effectiveness of an optical fiber sensor for CO2 phase monitoring that could be used inside pipelines, rock caverns and steel tanks for Carbon Capture and Storage (CCS) systems; in Enhanced Oil Recovery (EOR) processes; and in mapping of natural reservoirs. The sensor is an optical fiber refractometer and is shown to be capable of identifying phase changes and when two-phase systems co-exist, even near the phase transition line. When properly calibrated, the sensor can be used to obtain the refractive index and density (calculated with the Lorentz-Lorentz formula) of CO2.

  15. Near-infrared absorption fiber-optic sensors for ultra-sensitive CO2 detection

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2015-05-01

    We present a fiber-optic sensor working at near-infrared (NIR) wavelength (~1.57μm) for CO2 detection. In order to increase the NIR absorption, we utilize functional sensor materials metalorganic framework (MOF) on the surface of the core of a multimode-fiber with the cladding layer etched away. The selected functional materials demonstrated excellent adsorption capacity of CO2 and significantly increased the detection sensitivity down to 500 ppm with only 8-centimeter absorption length.

  16. Fiber optic refractometric sensors using a semi-ellipsoidal sensing element.

    Science.gov (United States)

    Castro Martinez, Amalia Nallely; Komanec, Matej; Nemecek, Tomas; Zvanovec, Stanislav; Khotiaintsev, Sergei

    2016-04-01

    We present theoretical and experimental results for a fiber optic refractometric sensor employing a semi-ellipsoidal sensing element made of polymethyl methacrylate. The double internal reflection of light inside the element provides sensitivity to the refractive index of the external analyte. We demonstrate that the developed sensor, operating at a wavelength of 632 nm, is capable of measurement within a wide range of refractive indices from n=1.00 to n=1.47 with sensitivity over 500 dB/RIU. A comparison of the developed sensor with two more complex refractometric sensors, one based on tapered optical fiber and the other based on suspended-core microstructure optical fiber, is presented.

  17. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  18. Experimental Results of the Superluminescent Fiber Laser Sources for Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    E. F. Pinzón-Escobar

    2012-03-01

    Full Text Available We are presenting experimental work on an erbium-doped fiber operating in the superluminescent regime. Experimental results for different pump power levels and fiber length show that the theoretical and numerical model could render useful information for predicting the total output power as a function of fiber doped length and the input pump power. These types of sources could have direct application in wavelength multiplexed arrangements of fiber sensors, fiber gyroscopes or, in general, in any sensors in which a broad wavelength and stable light source is required.

  19. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    Directory of Open Access Journals (Sweden)

    De-Wen Duan

    2012-08-01

    Full Text Available In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented.

  20. Optical fiber temperature sensor utilizing alloyed Zn(x)Cd(1-x)S quantum dots.

    Science.gov (United States)

    Zhao, Fei; Kim, Jongsung

    2014-08-01

    In this paper, optical fiber temperature sensors have been prepared by using alloyed Zn(x)Cd(1-x)S quantum dots as sensing media. The surface of the optical fiber was silanized to enhance covalent bond between quantum dots and optical fiber. The quantum dots were bonded to the surface of optical fiber and further encapsulated via sol-gel coating using 3-glycidoxypropyl trimethoxysilane (GPTMS) and 3-aminopropyl trimethoxysilane (APTMS) in ethyl alcohol in acidic condition. Quantum dots with green, yellow, and red fluorescence were used. The dependence of photoluminescence (PL) intensity from quantum dots on ambient temperature has been studied. Linear relation between the fluorescent intensity and temperature was obtained from alloyed quantum dots immobilized on the surface of optical fiber. The PL intensity, sensitivity, and thermal stability were increased by the silica encapsulation.

  1. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  2. A fiber-optic powered wireless sensor module made on elastomeric substrate for wearable sensors.

    Science.gov (United States)

    Lien, V; Lin, H; Chuang, J; Sailor, M; Lo, Y

    2004-01-01

    We demonstrate an integrated sensor module that combines a photonic nano-porous sensor and a bias-free optical powered RF transducer. The sensor signal is encoded in the RF frequency ready for transmission. The entire sensor module does not include battery and is constructed with the flexible and biocompatible elastomeric polymer, PDMS. This technology holds promise for wearable sensors.

  3. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  4. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer

    Science.gov (United States)

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-01

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  5. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.

    Science.gov (United States)

    Han, Chunyang; Ding, Hui; Lv, Fangxing

    2014-12-16

    With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.

  6. Smart City Surveillance Through Low-Cost Fiber Sensors in Metropolitan Optical Networks

    Science.gov (United States)

    Bourmpos, Michail; Argyris, Apostolos; Syvridis, Dimitris

    2014-05-01

    A continuously growing number of municipalities has optical fiber networks supporting communications at their disposal. These fiber installations can also be utilized to convey low data optical signals from a large number of deployed sensing elements, usually positioned in critical infrastructure locations, providing a variety of useful information. Such information can be used in the context of a "smart city" to provide citizens with higher-level services or even to proactively ensure public security and safety. This work demonstrates a fiber sensing network based on low-cost fiber Bragg grating sensors that are able to appropriately oversee diverse monitoring parameters.

  7. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    Directory of Open Access Journals (Sweden)

    David Sánchez Montero

    2012-05-01

    Full Text Available A low-cost intensity-based polymer optical fiber (POF sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S., and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S.

  8. A polymer optical fiber fuel level sensor: application to paramotoring and powered paragliding.

    Science.gov (United States)

    Sánchez Montero, David; Contreras Lallana, Pedro; Vázquez, Carmen

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S.

  9. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren;

    2015-01-01

    polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm......The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...

  10. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  11. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

    Science.gov (United States)

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-03-26

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

  12. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  13. DFB laser based electrical dynamic interrogation for optical fiber sensors

    Science.gov (United States)

    Carvalho, J. P.; Frazão, O.; Baptista, J. M.; Santos, J. L.; Barbero, A. P.

    2012-04-01

    An electrical dynamic interrogation technique previously reported by the authors for long-period grating sensors is now progressed by relying its operation exclusively on the modulation of a DFB Laser. The analysis of the detected first and second harmonic generated by the electrical modulation of the DFB Laser allows generating an optical signal proportional to the LPG spectral shift and resilient to optical power fluctuations along the system. This concept permits attenuating the effect of the 1/f noise of the photodetection, amplification and processing electronics on the sensing head resolution. This technique is employed in a multiplexing sensing scheme that measures refractive index variations.

  14. Applicability of a vibration sensor based on the optical fiber Bragg grating in radiation environment

    CERN Document Server

    Fujita, K; Nakazawa, M; Takahashi, H

    2003-01-01

    Fiber Bragg grating (FBG) is a kind of an optical device developing rapidly in these years and it has various excellent characteristics as a sensor. To investigate applicability of FBG as vibration sensor to nuclear plants, measurement systems were developed and tested. As a result, the FBGs could detect vibration even in gamma-ray environment. Moreover, vibration of a component around a cooling system at the YAYOI reactor could be detected successfully with FBG based sensors.

  15. Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator

    Science.gov (United States)

    Dakin, John P.; Ecke, Wolfgang; Schroeder, Kerstin; Reuter, Martin

    2009-10-01

    Hollow glass micro-spheres, firstly used to make fiber optic sensors for high hydrostatic pressure, have been interrogated using a high-resolution CCD-based spectrometer, to give far better precision than conventional spectrometric read out. It is found that these simple, low-cost micro-sensors have excellent sensitivity to both static and dynamic pressure, and have the advantage of being hermetically sealed. Many other application areas are foreseen for these low-cost sensors.

  16. Modal domain fiber optic sensor for closed loop vibration control of a flexible beam

    Science.gov (United States)

    Cox, D.; Thomas, D.; Reichard, K.; Lindner, D.; Claus, R. O.

    1990-01-01

    The use of a modal domain sensor in a vibration control experiment is described. An optical fiber is bonded along the length of a flexible beam. A control signal derived from the output of the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed and combined with models of the beam and actuator dynamics to produce a system suitable for control design.

  17. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.;

    2015-01-01

    to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity......A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential...... of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent...

  18. Landslide Monitoring Based on High-Resolution Distributed Fiber Optic Stress Sensor

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong Dai; Yong Liu; Li-Xun Zhang; Zhong-Hua Ou; Ce Zhou; Yong-Zhi Liu

    2008-01-01

    A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 Mpa, spatial resolution 10 em and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.

  19. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  20. Remote structural health monitoring with serially multiplexed fiber optic acoustic emission sensors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Development and testing of a serially multiplexed fiber optic sensor system is described. The sensor differs from conventional fiber optic acoustic systems, as it is capable of sensing AE emissions at several points along the length of a single fiber. Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of crack locations. Laboratory experiments on plain concrete beams and post-tensioned FRP tendons were performed to evaluate the crack detection capability of the sensor system. The acoustic emission sensor was able to detect initiation, growth and location of the cracks in concrete as well as in the FRP tendons. The AE system is potentially suitable for applications involving health monitoring of structures following an earthquake.

  1. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    Science.gov (United States)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  2. Optical-fiber distributed temperature sensor: design and realization

    Institute of Scientific and Technical Information of China (English)

    MENG Ling; JIANG Mingshun; SUI Qing-mei; FENG De-jun

    2008-01-01

    Through analyzing theoretically the temperature effect of the optical-fiber Raman backscattering, a distributed temperaturesensor is designed based on the single-mode fiber. Demodulation methods of temperature transduction are compared, andthen the demodulation method using the ratio of the anti-Stokes and the Stokes Raman backscattering intensity is adopted.Both the hardware composition and the software realization of the system are introduced in detail.The experiment showsthat the distinguishing ability of the temperature and that of the space are 1℃ and 2 m, respectively, and that the systemresponse time is about 180 s with a sensing range of 5 km and with a temperature measurement range of 0-100℃.

  3. Alcohol sensor based on u-bent hetero-structured fiber optic

    Science.gov (United States)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  4. Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor.

    Science.gov (United States)

    Bichler, Anthony; Lecler, Sylvain; Serio, Bruno; Fischer, Sylvain; Pfeiffer, Pierre

    2012-11-01

    A step index multimode optical fiber with a perturbation on a micrometer scale, inducing a periodic deformation of the fiber section along its propagation axis, is theoretically investigated. The studied microperturbation is mechanically achieved using two microstructured jaws squeezing the straight fiber. As opposed to optical fiber microbend sensors, the optical axis of the proposed transducer is not bended; only the optical fiber section is deformed. Further, the strain applied on the fiber produces a periodical elliptical modification of the core and a modulation of the index of refraction. As a consequence of the micrometer scale perturbation period, the resulting mode coupling occurs directly between guided and radiated modes. To simulate the transmission induced by these kinds of perturbations, simplified models considering only total mode couplings are often used. In order to investigate the range of validity of this approximation, results are compared to the electromagnetic mode couplings rigorously computed for the first time, to our knowledge, with a large multimode fiber (more than 6000 linear polarized modes) using the Marcuse model. In addition, in order to have a more complete modeling of the proposed transducer, the anisotropic elasto-optic effects in the stressed multimode fiber are considered. In this way, the transmission of the microperturbed optical fiber transmission and, therefore, the behavior of the transducer are physically explained and its applications as a future stretching sensor are discussed.

  5. Two Sorts of Fiber Optic Sensor Monitoring the Cure Process of Composite Laminate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two new sorts of fiber optic sensor are designed.Firstly, the variation of refractive index of resin surrounding the embedded fiber optic was mean to observed by measuring the speckle spatial spectrum at the end-face of the fiber optic.Secondly, it is proposed to measuring the change of thickness of the laminate by using fiber optic microbend attenuation.The experiment results measured by the fiber optic sensors are given.The first sort of sensor was found to be able to detect the viscosity process of the resin matrix during cure process includeing the minimum point of viscosity, the gelation point and the end point of cure process; the second sort of sensor could detect the course of change of the thickness of composite laminate pressed by operation pressure.It is benefit for us to optimize the operation technology and to establish the intelligent monitoring system about curing process of composites for the reason that the viscosity process and the change course of the thickness of laminate can be monitored.

  6. Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.

    Science.gov (United States)

    Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T

    2006-03-10

    Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

  7. Fiber-optic refractive index sensor based on surface plasmon resonance

    Science.gov (United States)

    Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

    2015-01-01

    A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

  8. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  9. Fiber optic liquid mass flow sensor and method

    Science.gov (United States)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  10. High-temperature fiber-optic Fabry-Perot interferometric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn [School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Liu, Yuewu [Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Science, Beijing 100190 (China)

    2015-05-15

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  11. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    Science.gov (United States)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  12. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  13. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  14. Infrared fiber-optic fire sensors - Concepts and designs for Space Station applications

    Science.gov (United States)

    Tapphorn, Ralph M.; Porter, Alan R.

    1990-01-01

    Various design configurations used for testing IR fiber-optic (IFO) fire-sensor concepts are presented. Responsibility measurements conducted to select the best concept are reviewed. The results indicate that IFO fire-sensor systems based on distributed fiber sensors are feasible for future aerospace applications. For Space Station Freedom, these systems offer alternative fire detectors for monitoring areas within equipment or stage compartments where the ventilation may be inadequate for proper operation of smoke detectors. They also allow a large number of areas to be monitored by a single central detector unit, which reduces the associated cost and weight.

  15. Sensitivity of a long-period optical fiber grating bend sensor

    DEFF Research Database (Denmark)

    Rathje, Jacob; Svalgaard, Mikael; Hübner, Jörg

    1998-01-01

    We have investigated the sensitivity of long-period fiber gratings used in curvature measuring fibre optic sensors and found a bend coefficient of 0.77 dB cm/mrad. In the current setup this corresponds to the ability of detecting curvatures with a radius up to approximately 200 m......We have investigated the sensitivity of long-period fiber gratings used in curvature measuring fibre optic sensors and found a bend coefficient of 0.77 dB cm/mrad. In the current setup this corresponds to the ability of detecting curvatures with a radius up to approximately 200 m...

  16. Liquid level sensor based on CMFTIR effect in polymer optical fiber

    Science.gov (United States)

    Hou, Yulong; Liu, Wenyi; Zhang, Huixin; Su, Shan; Liu, Jia; Zhang, Yanjun; Liu, Jun; Xiong, Jijun

    2016-09-01

    The macro-bending induced optical fiber cladding modes frustrated total internal reflection effect is used to realize the liquid level probe with a simple structure of single macro-bend polymer optical fiber loop. The test results show that the extinction ratio reaches 1.06 dB. "First bath" phenomenon is not obvious (about 0.8%). The robustness of the sensor is better, and the ability of anti-pollution is stronger compared with the conventional sensors. The process of making this sensing probe is extremely easy, and the cost is very low.

  17. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    Science.gov (United States)

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  18. LPFG based fiber optic sensor for magnetic field measurement

    Science.gov (United States)

    Gouveia, Carlos A. J.; Coelho, Luís.; Franco, Marcos A. R.

    2017-04-01

    The design and modelling of a novel magnetic field sensor based on a long period fiber grating coated with a thin film of N doped ZnO is reported. The parameters of both, the grating and the thin film were carefully chosen to operate in the transition mode and near to the dispersion turning point. At this point, an LPFG shows its maximum sensitivity to external refractive index variations. The magnetic field induces variations in the coating refractive index, which changes the effective refractive index of the cladding mode and the consequent spectral response. In this work a sensitivity to the surrounding magnetic field of 2.9 nm/mT is reported with a maximum theoretical resolution of 2 μT.

  19. Development of Interpretation Algorithm for Optical Fiber Bragg Grating Sensors for Composite Structures

    Science.gov (United States)

    Peters, Kara

    2002-12-01

    Increasingly, optical fiber sensors, and in particular Bragg grating sensors, are being used in aerospace structures due to their immunity to electrical noise and the ability to multiplex hundreds of sensors into a single optical fiber. This significantly reduces the cost per sensor as the number of fiber connections and demodulation systems required is also reduced. The primary objective of this project is to study the effects of mounting issues such as adhesion, surface roughness, and high strain gradients on the interpretation of the measured strain. This is performed through comparison with electrical strain gage benchmark data. The long-term goal is to integrate such optical fiber Bragg grating sensors into a structural integrity monitoring system for the 2nd Generation Reusable Launch Vehicle. Previously, researchers at NASA Langley instrumented a composite wingbox with both optical fiber Bragg grating sensors and electrical strain gages during laboratory load-to-failure testing. A considerable amount of data was collected during these tests. For this project, data from two of the sensing optical fibers (each containing 800 Bragg grating sensors) were analyzed in detail. The first fiber studied was mounted in a straight line on the upper surface of the wingbox far from any structural irregularities. The results from these sensors showed a relatively large amount of noise compared to the electrical strain gages, but measured the same averaged strain curve. It was shown that the noise could be varied through the choice of input parameters in the data interpretation algorithm. Based upon the assumption that the strain remains constant along the gage length (a valid assumption for this fiber as confirmed by the measured grating spectra) this noise was significantly reduced. The second fiber was mounted on the lower surface of the wingbox in a pattern that circled surface cutouts and ran close to sites of impact damage, induced before the loading tests. As

  20. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    Science.gov (United States)

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-02

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  1. 光纤传感器及其应用%Fiber optic sensors and applications

    Institute of Scientific and Technical Information of China (English)

    彭利标; 田野; 李冰玉; 王奉良

    2014-01-01

    Sensing technologies based on optical fiber have many inherent advantages that make them attractive for a wide range of industrial sensing applications. In this paper, a method to analyze the basic structure of the optical fiber sensor, working principle, classification and characteristics, draw reliable conclusions fiber optic sensor is more suited to work in a distributed sensing and resistance to harsh environments than traditional electromechanical sensors. Because of their telecommunication origins, fiber optic-based sensors can be easily integrated into large scale optical networks and communications systems.%基于光纤的传感技术具有许多先天优势,使得它们在广泛的工业传感应用中具有很强的吸引力。本文采用从光纤传感器的基本结构、工作原理、分类及特点进行分析的方法,得出光纤传感器比传统的机电式传感器更适合在分布式传感和耐恶劣环境下可靠工作的结论。由于其起源于电信业,所以基于光纤的传感器可很容易集成到大规模光网络和通信系统中。

  2. Damage detection of hybrid aramid/metal–PVB composite materials using optical fiber sensors

    Directory of Open Access Journals (Sweden)

    A. Kojović

    2009-09-01

    Full Text Available Embedding optical fiber sensors within laminar thermoplastic composite material results in forming a system known as «smart structure». These sensors present the information about the inner structure health during the material exploitation and especially in the case of exterior impacts when a geometric configuration or the property changes of the material should be expected. This paper evaluates the feasibility of the real-time monitoring of indentation and low energy impact damage in composite laminates from indentation loading and Charpy pendulum impact, using the embedded intensity-based optical fiber sensors. An optical fiber sensing system, which relies solely on monitoring light intensity for providing the indication of the composite structural health, offers simplicity in design and cost-effectiveness. For this, aramid/polyvinylbutyral (PVB and aramid/metal/PVB laminates with embedded optical fibers were fabricated. Four configurations of woven composites were tested, namely, aramid/PVB, and aramid/metal/PVB in three stacking sequences of aramid and metallic woven layers. The initiation of damage and fracture during testing was detected by observation of the intensity drop of light signal transmitted through an optical fiber.

  3. Review of fiber-optic pressure sensors for biomedical and biomechanical applications

    Science.gov (United States)

    Roriz, Paulo; Frazão, Orlando; Lobo-Ribeiro, António B.; Santos, José L.; Simões, José A.

    2013-05-01

    As optical fibers revolutionize the way data is carried in telecommunications, the same is happening in the world of sensing. Fiber-optic sensors (FOS) rely on the principle of changing the properties of light that propagate in the fiber due to the effect of a specific physical or chemical parameter. We demonstrate the potentialities of this sensing concept to assess pressure in biomedical and biomechanical applications. FOSs are introduced after an overview of conventional sensors that are being used in the field. Pointing out their limitations, particularly as minimally invasive sensors, is also the starting point to argue FOSs are an alternative or a substitution technology. Even so, this technology will be more or less effective depending on the efforts to present more affordable turnkey solutions and peer-reviewed papers reporting in vivo experiments and clinical trials.

  4. Embedded optical fiber Bragg grating sensors for the measurement of crack-bridging forces in composites

    Science.gov (United States)

    Studer, Michel; Peters, Kara J.; Botsis, John

    2002-07-01

    Fiber reinforced composites offer increased resistance to fracture as compared to isotropic materials. In addition, they have demonstrated great potential to support embedded sensor systems. However, to develop a truly reliable, embedded sensor for composites, the failure modes of such materials, including the influence of the embedded fiber sensor, must be known. Crack bridging by intact fibers is considered to be one of the most efficient mechanisms to slow down transverse crack propagation in a fiber reinforced composite. This paper presents non-invasive, direct measurements of bridging fiber stresses in a model epoxy/glass composite, using long gage length optical fiber Bragg gratings. Several central crack specimens, containing artificially bridged cracks, were fabricated and tested. The Bragg grating gage length of 12 mm permitted measurement of the force distribution in the reinforcing fiber extending from the crack surface to the far field region. A T-matrix simulation was used to model the grating response. Results from specimens involving both a strong and mixed interface are presented. The measured strain distribution in the bridging fibers compared well with previous analytical models. Discussion of the application of these results to structurally embedded sensors for damage detection is also presented.

  5. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    Science.gov (United States)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  6. Measurements of longitudinal gamma ray distribution using a multichannel fiber-optic Cerenkov radiation sensor

    Science.gov (United States)

    Shin, S. H.; Jeon, D.; Kim, J. S.; Jang, J. S.; Jang, K. W.; Yoo, W. J.; Moon, J. H.; Park, B. G.; Kim, S.; Lee, B.

    2014-11-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, Cerenkov radiation can also be generated due to the fiber’s dielectric components. Accordingly, the radiation-induced light signals can be obtained using the optical fibers without any scintillating material. In this study, we fabricated a multichannel, fiber-optic Cerenkov radiation sensor (FOCRS) system using silica optical fibers (SOFs), plastic optical fibers (POFs), an optical spectrometer, multi-anode photomultiplier tubes (MA-PMTs) and a scanning system to measure the light intensities of Cerenkov radiation induced by gamma rays. To evaluate the fading effects in optical fibers, the spectra of Cerenkov radiation generated in the SOFs and POFs were measured based on the irradiation time by using an optical spectrometer. In addition, we measured the longitudinal distribution of gamma rays emitted from the cylindrical type Co-60 source by using MA-PMTs. The result was also compared with the distribution of the electron flux calculated by using the Monte Carlo N-particle transport code (MCNPX).

  7. Hybrid optical fiber sensor system based on fiber Bragg gratings and plastic optical fibers for health monitoring of engineering structures

    Science.gov (United States)

    Kuang, K. S. C.; Maalej, M.; Quek, S. T.

    2006-03-01

    In this paper, packaged fibre Bragg grating (PFBG) sensors were fabricated by embedding them in 70mm x 10mm x 0.3mm carbon-fibre composites which were then surface-bonded to an aluminium beam and a steel I-beam to investigate their strain monitoring capability. Initially, the response of these packaged sensors under tensile loading was compared to bare FBGs and electrical strain gauges located in the vicinity. The effective calibration constant/ coefficient of the PFBG sensor was also compared with the non-packaged version. These PFBG sensors were then attached to an I-section steel beam to monitor their response under flexural loading conditions. These realistic structures provide a platform to assess the potential and reliability of the PFBG sensors when used in harsh environment. The results obtained in this study gave clear experimental evidence of the difference in performance between the coated and uncoated PFBG fabricated for the study. In another experimental set-up, bare FBG and POF vibration sensors were surface-bonded to the side-surface of a CFRPwrapped reinforced concrete beam which was then subjected to cyclic loading to assess their long-term survivability. Plain plastic optical fibre (POF) sensors were also attached to the side of the 2-meter concrete beam to monitor the progression of cracks developed during the cyclic loading. The results showed excellent long-term survivability by the FBG and POF vibration sensors and provided evidence of the potential of the plain POF sensor to detect and monitor the propagation of the crack developed during the test.

  8. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    Science.gov (United States)

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM.

  9. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Timothy T.-Y.; Chow, Jong H.; Shaddock, Daniel A.; Littler, Ian C. M.; Gagliardi, Gianluca; Gray, Malcolm B.; McClelland, David E.

    2010-07-20

    We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H{sup 13}C{sup 14}N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

  10. Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.

    Science.gov (United States)

    Zhang, Ziyi; Bao, Xiaoyi

    2008-07-07

    A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.

  11. Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring

    Directory of Open Access Journals (Sweden)

    Sabrina Grassini

    2014-12-01

    Full Text Available This paper describes an approach to develop and deploy low-cost plastic optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD. The interaction between the deposited layer and the gas alters the fiber’s capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber muon detector of the Compact Muon Solenoid (CMS experiment at CERN in Geneva.

  12. Continuous Fuel Level Sensor Based on Spiral Side-Emitting Optical Fiber

    Directory of Open Access Journals (Sweden)

    Chengrui Zhao

    2012-01-01

    Full Text Available A continuous fuel level sensor using a side-emitting optical fiber is introduced in this paper. This sensor operates on the modulation of the light intensity in fiber, which is caused by the cladding’s acceptance angle change when it is immersed in fuel. The fiber is bent as a spiral shape to increase the sensor’s sensitivity by increasing the attenuation coefficient and fiber’s submerged length compared to liquid level. The attenuation coefficients of fiber with different bent radiuses in the air and water are acquired through experiments. The fiber is designed as a spiral shape with a steadily changing slope, and its response to water level is simulated. The experimental results taken in water and aviation kerosene demonstrate a performance of 0.9 m range and 10 mm resolution.

  13. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  14. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed.

  15. A Fiber Optic Ammonia Sensor Using a Universal pH Indicator

    Directory of Open Access Journals (Sweden)

    Adolfo J. Rodríguez

    2014-02-01

    Full Text Available A universal pH indicator is used to fabricate a fiber optic ammonia sensor. The advantage of this pH indicator is that it exhibits sensitivity to ammonia over a broad wavelength range. This provides a differential response, with a valley around 500 nm and a peak around 650 nm, which allows us to perform ratiometric measurements. The ratiometric measurements provide not only an enhanced signal, but can also eliminate any external disturbance due to humidity or temperature fluctuations. In addition, the indicator is embedded in a hydrophobic and gas permeable polyurethane film named Tecoflex®. The film provides additional advantages to the sensor, such as operation in dry environments, efficient transport of the element to be measured to the sensitive area of the sensor, and prevent leakage or detachment of the indicator. The combination of the universal pH indicator and Tecoflex® film provides a reliable and robust fiber optic ammonia sensor.

  16. A fiber optic ammonia sensor using a universal pH indicator.

    Science.gov (United States)

    Rodríguez, Adolfo J; Zamarreño, Carlos R; Matías, Ignacio R; Arregui, Francisco J; Cruz, Rene F Domínguez; May-Arrioja, Daniel A

    2014-02-27

    A universal pH indicator is used to fabricate a fiber optic ammonia sensor. The advantage of this pH indicator is that it exhibits sensitivity to ammonia over a broad wavelength range. This provides a differential response, with a valley around 500 nm and a peak around 650 nm, which allows us to perform ratiometric measurements. The ratiometric measurements provide not only an enhanced signal, but can also eliminate any external disturbance due to humidity or temperature fluctuations. In addition, the indicator is embedded in a hydrophobic and gas permeable polyurethane film named Tecoflex®. The film provides additional advantages to the sensor, such as operation in dry environments, efficient transport of the element to be measured to the sensitive area of the sensor, and prevent leakage or detachment of the indicator. The combination of the universal pH indicator and Tecoflex® film provides a reliable and robust fiber optic ammonia sensor.

  17. Fabrication and characterization of micro fluidic based fiber optic refractive index sensor

    Directory of Open Access Journals (Sweden)

    I.S.L. Abdul Hamid

    2017-04-01

    Full Text Available A refractive index sensor was proposed by using 3 dimension (3D grayscale lithography technique. Optical fiber with taper diameter of 12 μm was embedded in a closed microfluidic channel. Taper area of optical fiber is in floating condition at the center of micro channel. Grayscale variation range used for this sensor was 70%–74% and thickness variation 430 μm–694 μm was achieved. The dimension of the sensor was 7.5 cm in length and 2 cm in width. Fabricated sensor was characterized with air condition and solution concentration from 0.1 M to 1 M. A sensitivity of 1457 nm/RIU is achieved. The measured results show a good repeatability and low temperature cross-sensitivity.

  18. Fiber Optic Humidity Sensor Based on Self-Assembled Polyelectrolyte Multilayers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ray photoelectron spectroscopy. The multilayer thin films containing hydrophilic side-groups possessed are affinity for water molecules. The adsorption and desorption of free water vapor gave rise to the changes in the refractive index and in the reflectance of the thin films. A multilayer thin film based fiber optic humidity sensor with an LED light source of 0.85 μm was designed. Under certain conditions, the reflected light intensity of the thin film sensor was a function of the humidity of air. About 30 bilayers was optimal for the multilayer thin film sensor working at wavelength of 0.85 μm. This sensor can work over almost the whole relative humidity range with very good sensitivity.

  19. Optical fiber sensor of partial discharges in High Voltage DC experiments

    Science.gov (United States)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  20. Inner strain determination of three-dimensional braided preforms with co-braided optical fiber sensors

    Institute of Scientific and Technical Information of China (English)

    Xianghua LI; Xiaohui LIU; Shenfang YUAN

    2008-01-01

    The experimental characterization of three-dimensional (3-D) braided composites is extremely important for their design and analysis. Because of their desirable attributes and outstanding performance, optical fiber sensors (OFSs) can be embedded to mon-itor mechanical properties of textile composites. This paper discusses two techniques to incorporate different OFSs into 3-D braided composite preforms. The oper-ating principle of various sensor systems is first con-ducted. Experiments using Michelson interferometers, FBG sensors, and micro-bend sensors are performed to verify the concept of the proposed method. Strain curves of various OFSs tests are finally compared, and they all exhibit good linearity.

  1. Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration.

    Science.gov (United States)

    Sun, Changsen

    2003-06-15

    A new multiplexing method demonstrating the separation of two series of geometrically arranged fiber-optic distributed sensors in a Michelson interferometer (MI) configuration has been developed. This method can acquire data from two sensors, then propagate the data into one channel, and finally separate the data by determining their working point, which is essential for some remote measurements. The working point of one sensor was deflected from the normal MI by introduction of two reference arms. The deflection was extracted electrically and employed to label the sensor. Verification with commercial piezoelectric transducers proves the efficiency of the method.

  2. Fiber-optic sensor-based remote acoustic emission measurement of composites

    Science.gov (United States)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  3. Fiber optic sensor for the measurement of the respiratory chest circumference changes

    Science.gov (United States)

    Babchenko, Anatoly; Khanokh, Boris; Shomer, Yoseph; Nitzan, Meir

    1999-04-01

    A fiber optic sensor for the measurement of the respiratory depth has been developed. The sensor is composed of a bent optic fiber which is connected to an elastic section of a chest belt, so that its radius of curvature changes during respiration due to the respiratory chest circumference changes (RCCC). The measurement of light transmission through the bent fiber provides information on its curvature changes, since a higher fraction of light escapes through the core-cladding surface of a fiber bent to a lower radius of curvature. The sensor can quantitatively measure the RCCC, though in relative terms, and it is sensitive enough to detect the changes of the chest circumference due to the heart belt. Measurements of the RCCC were simultaneously performed with photoplethysmography (PPG)--the measurement by light absorption of the cardiac induced blood volume changes in the tissue--and significant correlation was found between the RCCC and some parameters of PPG signal. The fiber optic respiratory depth sensor enables the quantitative assessment of the respiratory induced changes in the cardiovascular parameters.

  4. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  5. Fiber Optic Pressure Sensor of 0–0.36 psi by Multimode Interference Technique

    Directory of Open Access Journals (Sweden)

    A.R. Mejia-Aranda

    2013-10-01

    Full Text Available This paper presents the design, development and tests made to a fiber optic pressure sensor using the multimodal interference methodology (MMI thus, we propose an alternative sensor to the ones available which are limited by high robust environments where the use of them is a potential hazard (explosive gases, corrosion and even electromagnetic fields. The range of work for this sensor is 0 to 0.36 psi, the arrangement used is formed by a laser diode, a sensing element, an electronic amplifying circuit, a data acquisition board and a computer. The sensing element used is a SMS fiber optic structure (singlemode–multimode–singlemode, where a multimode fiber is embedded between two singlemode fibers placed within the contact surface (diaphragm made of a polymeric material; the body of the sensor was made of nylamid. The bending produced in the diaphragm by the pressure inside the body of the sensor generates changes in the transmitted power response carried inside the fiber.

  6. Fiber optic strain twin-sensor-array for smart structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    赵士刚; 苑立波

    2008-01-01

    A multiplexed white light interferometric fiber optic twin-sensor-array was designed to monitor the structural health of large buildings. In this sensing system, based on a Michelson interferometer, an optical path matching technique is used to demodulate each twin-sensor. Each twin-sensor-array consists of a 2×N sensing element linked by a 3 dB coupler. When one of the twin-sensor is used to measure strain, variations caused by temperature can be compensated for by referencing the other twin-sensor. The multiplexing capacity of the sensing scheme has been analyzed and experimental results with a 2×3 twin-sensor-array are given.

  7. Multipoint refractive index and temperature fiber optic sensor based on cascaded no core fiber-fiber Bragg grating structures

    Science.gov (United States)

    Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun

    2017-02-01

    A multipoint fiber optic sensor based on two cascaded multimode interferometer (MMI) and fiber Bragg grating (FBG) structures is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. The MMI is fabricated by splicing a section of no-core fiber (NCF) with two single-mode fibers. The suitable NCF lengths of 19.1 and 38.8 mm are selected by simulations to achieve wavelength division multiplexing. The two MMIs are sensitive to RI and temperature with the maximal RI sensitivities of 429.42228 and 399.20718 nm/RIU in the range of 1.333 to 1.419 and the temperature sensitivities of 10.05 and 10.22 pm/°C in the range of 26.4°C to 100°C, respectively. However, the FBGs are only sensitive to the latter with the sensitivities of 10.4 and 10.73 pm/°C. Therefore, dual-parameter measurement is obtained and cross-sensitivity issue can be solved. The distance between the two sensing heads is up to 12 km, which demonstrates the feasibility of long-distance measurement. During measurement, there is no mutual interference to each sensing head. The experimental results show that the average errors of RI are 7.61×10-4 RIU and 6.81×10-4 RIU and the average errors of temperature are 0.017°C and 0.012°C, respectively. This sensor exhibits the advantages of high RI sensitivity, dual-parameter and long-distance measurement, low cost, and easy and repeatable fabrication.

  8. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Directory of Open Access Journals (Sweden)

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  9. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Science.gov (United States)

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  10. Design of a triangulation based fiber optical distance sensor for application in large rotating machines

    Science.gov (United States)

    Willsch, Michael; Villnow, Michael; Bosselmann, Thomas

    2015-09-01

    Commercial distance sensors basing on the triangulation principle are highly accurate and reliable. However due to their contained electronics and optoelectronics they cannot be used in harsh environments such as high temperatures and strong electromagnetic fields. An all fiber optical triangulation sensor principle is presented here which can be used for tip clearance measurements of rotors of large engines such as power generators and turbines.

  11. Market potential for optical fiber sensors in the energy sector

    Science.gov (United States)

    Bosselmann, T.

    2007-07-01

    For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.

  12. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimod...

  13. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis

    Science.gov (United States)

    Nöther, Nils; Wosniok, Aleksander; Krebber, Katerina; Thiele, Elke

    2008-03-01

    We report on the development of a complete system for spatially resolved detection of critical soil displacement in river embankments. The system uses Brillouin frequency domain analysis (BOFDA) for distributed measurement of strain in silica optical fibers. Our development consists of the measurement unit, an adequate coating for the optical fibers and a technique to integrate the coated optical fibers into geotextiles as they are commonly used in dike construction. We present several laboratory and field tests that prove the capability of the system to detect areas of soil displacement as small as 2 meters. These are the first tests of truly distributed strain measurements on optical fibers embedded into geosynthetics.

  14. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    Science.gov (United States)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  15. Fiber optical sensor system for shape and haptics for flexible instruments in minimally invasive surgery: overview and status quo

    Science.gov (United States)

    Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz

    2014-05-01

    In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.

  16. EXPERIMENTAL COMPARISON OF HOMODYNE DEMODULATION ALGORITHMS FOR PHASE FIBER-OPTIC SENSOR

    Directory of Open Access Journals (Sweden)

    M. N. Belikin

    2015-11-01

    Full Text Available Subject of Research. The paper presents the results of experimental comparative analysis of homodyne demodulation algorithms based on differential cross multiplying method and on arctangent method under the same conditions. The dependencies of parameters for the output signals on the optical radiation intensity are studied for the considered demodulation algorithms. Method. The prototype of single fiber optic phase interferometric sensor has been used for experimental comparison of signal demodulation algorithms. Main Results. We have found that homodyne demodulation based on arctangent method provides greater (by 7 dB at average signal-to-noise ratio of output signals over the frequency band of acoustic impact from 100 Hz to 500 Hz as compared to differential cross multiplying algorithms. We have demonstrated that no change in the output signal amplitude occurs for the studied range of values of the optical pulses amplitudes. Obtained results indicate that the homodyne demodulation based on arctangent method is most suitable for application in the phase fiber-optic sensors. It provides higher repeatability of their characteristics than the differential cross multiplying algorithm. Practical Significance. Algorithms of interferometric signals demodulation are widely used in phase fiber-optic sensors. Improvement of their characteristics has a positive effect on the performance of such sensors.

  17. Femtosecond laser aided processing of optical sensor fibers for 3D medical navigation and tracking (FiberNavi)

    Science.gov (United States)

    Waltermann, Christian; Koch, Jan; Angelmahr, Martin; Schade, Wolfgang; Witte, Michael; Kohn, Nils; Wilhelm, Dirk; Schneider, Armin; Reiser, Silvano; Feußner, Hubertus

    2014-05-01

    A new concept for fiber-optical 3D shape sensing applying femtosecond laser technology for highprecision direct writing of Bragg gratings within the core and the cladding of single core standard telecom fibers is presented. This new technology enables a cost-efficient and real-time 3D shape sensing and navigation of medical catheters or endoscopes only by means of passive optical sensor elements. First prototypes showed the possibility to achieve absolute navigation accuracy of four mm per meter and have successfully been tested in clinical environment.

  18. Fiber optic macro-bend based sensor for detection of metal loss

    Science.gov (United States)

    Li, Weijie; Ho, Siu Chun Michael; Luo, Mingzhang; Huynh, Quyen; Song, Gangbing

    2017-04-01

    Metal loss in metallic structures, often as a result of corrosion, is a severe problem across multiple industries. Catastrophic consequence of structural failure due to such loss of structural metal requires an accurate determination and assessment of corrosion. Widely used electrochemical methods can only suggest the likelihood of the metal loss due to corrosion while failing to provide a quantitative measure of the accumulated amount of corrosion. Due to its unique advantages such as small size, light weight, resistance to electromagnetic interference and corrosion, fiber optic sensing technique has been emerging as a promising alternative for most sensing applications. In this paper, a novel type of ferromagnetic distance-based metal loss sensor is proposed based on the principle of fiber optic macro-bend loss. The proposed sensor is composed of the bended optical fiber, the magnet and a spring. The magnet is connected to the spring and the fiber bend is attached to the spring in such a way that the movement of the magnet will induce a change in bending radius of the optical fiber. Metal loss in the monitored sample increases the distance between the magnet and the metal surface and thereby reducing the magnetic force. A change in magnetic force will lead to the variation in light intensity loss of the fiber optic macro-bend, thus metal loss, such as in the form of corrosion pits, can be detected by the proposed metal loss sensor. The practicality of the proposed distance sensor for metal loss measurement is validated through scanning the fabricated corrosion samples.

  19. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    Science.gov (United States)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  20. A new demodulation technique for optical fiber interferometric sensors with [3×3] directional couplers

    Institute of Scientific and Technical Information of China (English)

    Tingting Liu; Jie Cui; Desheng Chen; Ling Xiao; Dexing Sun

    2008-01-01

    2Optical fiber interferometric sensors based on [3 × 3] couplers have been used in many fields. A new technique is proposed to demodulate output signals of this kind of sensors. The technique recovers the signal of interest by fitting coefficients of elliptic (Lissajous) curves between each fiber pair. Different from other approaches, this technique eliminates the dependence on the idealization of [3 × 3] coupler, provides enhanced tolerance to the variance of photoelectric converters, and is anti-polarization in a certain extent. The main algorithm has been successfully demonstrated both by numerical simulation and experimental result.

  1. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    Science.gov (United States)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  2. Fuel level sensor based on polymer optical fiber Bragg gratings for aircraft applications

    Science.gov (United States)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2016-04-01

    Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination - often bacterial - on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

  3. An optical fiber Fabry-Perot pressure sensor using corrugated diaphragm and angle polished fiber

    Science.gov (United States)

    Zhu, Jiali; Wang, Ming; Chen, Lu; Ni, Xiaoqi; Ni, Haibin

    2017-03-01

    In this paper, a Fabry-Perot pressure sensor using a corrugated diaphragm and angle polished fiber is proposed. A SU-8 structure using two step of lithography is formed to fix the polished fiber, which helps control the cavity length precisely. The fabrication process is described. The characteristics of both pressure and temperature are tested. Also the temperature compensation is realized. Experimental results show that the sensor has high sensitivity and good linearity over the pressure range of 0-0.1 MPa. The sensitivity (change in cavity/loaded pressure) is 705.64 μm/MPa.

  4. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  5. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    OpenAIRE

    Mohd Zubir Bin MatJafri; Ahmad Fairuz Bin Omar

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentr...

  6. Towards events recognition in a distributed fiber-optic sensor system: Kolmogorov-Zurbenko filtering

    CERN Document Server

    Fedorov, Aleksey; Zhirnov, Andrey; Nesterov, Evgeniy; Namiot, Dmitry; Pnev, Alexey; Karasik, Valery

    2015-01-01

    The paper is about de-noising procedures aimed on events recognition in signals from a distributed fiber-optic vibration sensor system based on the phase-sensitive optical time-domain reflectometry. We report experimental results on recognition of several classes of events in a seismic background. A de-noising procedure uses the framework of the time-series analysis and Kolmogorov-Zurbenko filtering. We demonstrate that this approach allows revealing signatures of several classes of events.

  7. Hydrogel/fiber optic sensor for distributed measurement of humidity and pH value

    Science.gov (United States)

    MacLean, Alistair; Michie, W. Craig; Pierce, S. Gareth; Thursby, Graham; Culshaw, Brian; Moran, Chris; Graham, Neil B.

    1998-07-01

    The combination of chemically sensitive, swellable polymer materials with novel optical fiber cable designs to transduce the swelling activity into microbend loss enables a simple yet powerful sensor to be produced. Interrogating such cables with standard optical time domain reflectoctrometry (OTDR) instruments allows particular chemicals of interest to be detected and located along a cable which may extend to several kilometers. We report here on a sensor cable which uses a water swellable material, a hydrogel, to detect positions of water ingress, relative humidity level or pH value. In direct water ingress tests, wet sensor lengths as small as 5 cm in several hundreds of meters have been detected using conventional OTDRs. Following a review of the sensor design, we present the results of an investigation of the mechanical interaction between the hydrogel polymer and the optical fiber within the sensor. The behavior of the sensor is then characterized within environments of different relative humidity levels from 70 percent to 100 percent at temperatures ranging from 0 to 60 degrees C. The sensor was initially designed for applications within civil engineering but can be applied to a much broader range of measurement requirements, for example soil moisture measurement. We will report details on experimental observations on concrete cure within reinforcing tendon ducts and soil humidity measurements within different soil types.

  8. Structural health monitoring using fiber optic distributed sensors for vacuum-assisted resin transfer molding

    Science.gov (United States)

    Eum, S. H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Kobayashi, S.; Igawa, H.; Shirai, T.

    2007-12-01

    In this study we implemented manufacturing process and strain monitoring of a composite structure by optical fiber sensors for vacuum-assisted resin transfer molding (VaRTM). Optical fibers with fiber Bragg gratings were embedded into a glass fiber reinforced plastic specimen made by VaRTM and the applicability of structural health monitoring with fiber Bragg grating (FBG) sensors based on optical frequency domain reflectometry (OFDR) was investigated. In this study, long-gage FBGs which are 10 times longer than ordinary FBGs (which are about 10 mm long) were employed for distributed sensing. We can easily map the strain or temperature profile along gratings by OFDR and the spatial resolution of this sensing technique is about 1 mm. The resin flow process in VaRTM could be monitored by measuring the difference in temperature between the resin and preform. Then, the shrinkage of resin could be also monitored during the curing process. The specimen was then subjected to a bending load in a three-point bending test and the strain distributions along the FBGs were measured. From these results we could show the applicability of distributed sensors to quality assurance of a composite structure made by VaRTM and assessment of the structural integrity of in-service composite structures.

  9. Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors

    CERN Document Server

    Moya, David

    2012-01-01

    Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

  10. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure

    Directory of Open Access Journals (Sweden)

    Cunguang Zhu

    2016-07-01

    Full Text Available A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  11. DISTRIBUTED OPTICAL FIBER SENSOR FOR LONG-DISTANCE OIL PIPELINE HEALTH

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor. The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering,or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter. Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.

  12. Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.

    Science.gov (United States)

    Du, Yuhuan; Guo, Yingqing

    2016-07-15

    In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.

  13. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  14. Protection of critical infrastructure using fiber optic sensors embedded in technical textiles

    Science.gov (United States)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-04-01

    Terrorists and criminals more and more attack and destroy important infrastructures like routes, railways, bridges, tunnels, dikes and dams, important buildings. Therefore, reliable on-line and long-term monitoring systems are required to protect such critical infrastructures. Fiber optic sensors are well-suited for that. They can be installed over many kilometers and are able to measure continuously distributed strain, pressure, temperature and further mechanical and physical quantities. The very tiny optical fibers can be integrated into structures and materials and can provide information about any significant changes or damages of the structures. These so-called smart materials and smart structures are able to monitor itself or its environment. Particularly smart technical textiles with embedded fiber optic sensors have become very attractive because of their high importance for the structural health monitoring of geotechnical and masonry infrastructures. Such textiles are usually used for reinforcement of the structures; the embedded fiber optic sensors provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, critical infrastructures can be preventively protected. The paper will introduce this innovative field and will present the results achieved within several German and European projects.

  15. Analysis of errors induced by λ/4 wave plate in fiber-optic current sensor system

    Institute of Scientific and Technical Information of China (English)

    杨瑞峰

    2008-01-01

    1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.

  16. A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection

    Science.gov (United States)

    Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter

    2009-01-01

    A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594

  17. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring

    Science.gov (United States)

    Schenato, Luca; Aneesh, Rajendran; Palmieri, Luca; Galtarossa, Andrea; Pasuto, Alessandro

    2016-08-01

    An optical fiber sensor for the simultaneous measurement of hydrostatic pressure and temperature in soil embankments is presented. It exploits the differential strain induced on a fiber in a dual-chamber case, constituting the sensor body. The strain, either induced by the pressure or by the temperature, is optically measured by means of coherent frequency domain reflectometry and variations induced by the two physical phenomena are discriminated because of the different behavior of the two chambers. Characterization of the sensor is presented and discussed. The prototype shows promising performance: temperature and pressure sensitivities are approximately -7 GHz/°C and -3.2 GHz/kPa, respectively, with accuracies of 0.5 °C and 0.3 kPa.

  18. An optical fiber MEMS pressure sensor using microwave photonics filtering technique

    Science.gov (United States)

    Wang, Yiping; Wang, Ming; Ni, Xiaoqi; Xia, Wei; Guo, Dongmei; Hao, Hui; Ma, Qingyu; Zhuang, Wei

    2017-04-01

    A fiber-optic micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filtering technique is firstly proposed and experimentally demonstrated. A single-bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure sensor has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4MPa.

  19. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    Science.gov (United States)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  20. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    Science.gov (United States)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  1. Magnetostriction measuring device based on an optical fiber sensor with an annular photodiode.

    Science.gov (United States)

    de Manuel, V; Del Real, R P; Alonso, J; Guerrero, H

    2007-09-01

    A new simple and sensitive dilatometer to measure magnetostriction of ribbons has been developed, based on an optical fiber sensor using an annular photodiode. The optical fiber is used bidirectionally, both for emission and detection of light, simplifying the access to the ribbon under test. The working principle is based on the measurement by reflection of the longitudinal displacement of the ribbon end. For a Vitroperm amorphous ribbon of 100 mm length, 21 microm thickness, and 8.3 mm width, a displacement of 2.571 microm with a maximum uncertainty of 8 nm has been obtained.

  2. Development and Application of Fiber-Optic Sensors in Environmental and Life Sciences

    DEFF Research Database (Denmark)

    Rickelt, Lars Fledelius

    of sensing materials includes imbedded luminescent dyes and all O2 fiber-optic sensors are based on O2 quenching of a luminophore. The mechanisms of luminescence and O2 quenching are described. A new procedure for etching a recess in the tip of multimode graded index optical glass fibers was used to improve....... A simple ratiometric intensity based O2 imaging protocol was developed using a conventional digital camera and the O2 distribution images were compared to life-time images obtained using a monochrome fast gate-able CCD camera. The method was applied to a biofilm growth incubator incubated with bacteria...

  3. An analog modulation and demodulation method employing LVDT signal conditioner for fiber-optic interferometric sensors

    Science.gov (United States)

    Zhou, Kejiang; Rao, Qi; Zhang, Minjie; Hu, Keke; Ruan, Yefeng

    2017-09-01

    An analog method to modulate and demodulate fiber-optic interferometric sensors employing a linear variable differential transformer signal conditioner to generate sine modulation wave and demodulate phase-modulated signal from the photodetector’s output is presented in this letter. No external lock-in amplifiers or digital components are used in this design. All the necessary components for signal processing are integrated in a single analog electronic microchip AD698, which reduces the system’s complexity significantly. After implementation on an interferometric fiber-optic gyroscope as an example, this method demonstrates a bias stability of 0.063 deg h-1 (i.e. 0.220 µrad).

  4. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  5. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end

    Science.gov (United States)

    Wu, Binqing; Zhao, Chunliu; Kang, Juan; Wang, Dongning

    2017-03-01

    In this paper, characteristic of volatile organic compounds (VOCs) optical fiber sensor with zeolite thin film-coated spherical end were investigated detailedly. The zeolite film and spherical end constituted an arc-shaped inline Fabry-Perot (F-P) cavity, and VOCs were measured by monitoring the wavelength shift of F-P interference which induced by the VOCs molecule adsorption of the zeolite film. The responses of the optical fiber sensor for monitoring isopropanol and formaldehyde were observed and especially observing the response of the optical fiber sensor in the mixed VOCs state. Experimental results show that the sensitivities of the optical fiber sensor for monitoring isopropanol and formaldehyde are 281.9 pm/ppm and 4.99 pm/ppm, respectively. The optical fiber sensor is more suitable for isopropanol measurement than formaldehyde. In the mixed VOCs state, the characteristic of the optical fiber sensor for isopropanol measurement is slightly changed when the air chamber is mixed with low concentration of formaldehyde, but the optical fiber sensor is still effective for isopropanol measurement.

  6. A transflective nano-wire grid polarizer based fiber-optic sensor.

    Science.gov (United States)

    Feng, Jing; Zhao, Yun; Lin, Xiao-Wen; Hu, Wei; Xu, Fei; Lu, Yan-Qing

    2011-01-01

    A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  7. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    Directory of Open Access Journals (Sweden)

    Yan-Qing Lu

    2011-02-01

    Full Text Available A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  8. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    Science.gov (United States)

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  9. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    Science.gov (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  10. A fiber-optic pH sensor based on polyelectrolyte multilayers embedded with gold nanoparticles

    Science.gov (United States)

    Tou, Z. Q.; Chan, C. C.; Leong, Stephanie

    2014-07-01

    We report the fabrication and characterization of an optical fiber pH sensor based on localized surface plasmon resonance. Gold nanoparticles (AuNPs) are embedded in a polyelectrolyte multilayer (PEM) consisting of chitosan and poly(sodium 4-styrenesulfonate). The absorbance and scattering properties of the AuNPs are affected by the pH-dependent swell state of the PEM. Both transmission- and reflection-based sensors are investigated and the measured transmittance/reflectance pH response can be closely fitted with the extended Henderson-Hasselbach equation. The reflection-based sensor can potentially be used for in vivo applications.

  11. Investigation of temperature characteristic of MEMS-based optical fiber pressure sensor

    Science.gov (United States)

    Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Pu, Yi; Yin, Jishou; Qin, Zunqi; Zou, Shengliang

    2013-12-01

    We fabricated MEMS-based optical fiber pressure sensor with anodic bonding. The vacuum-sealed microcavity with a thin silicon diaphragm is used as sensing element and its deformation characteristics determine the pressure measurement performance. Considering residual gas inside Fabry-Perot cavity and the thermal properties of material, we established a sensor's temperature response mathematical model based on ideal gas equation and elastic theory. Temperature experiment of this sensor was carried out under vacuum. This work will provide a guide of temperature compensation process for achieving high precision pressure measurement.

  12. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber preform.

    Science.gov (United States)

    Wang, Jian; Wang, Lili

    2010-10-01

    In this Letter, we report a carbon dioxide gas sensor having 547 pieces of thin-film modified capillaries, which are derived from a microstructured polymer optical fiber preform. Compared with the conventional absorption-based sensor, the monolithic polymer capillary waveguide arrays have better sensitivity, because the huge sensing surfaces, composed of 547 pieces of dye-indicator-doped porous ethyl cellulose layers, interact directly with the gas molecules. As far as we know, a gas sensor based on multichannel capillary waveguide arrays has not been reported before.

  13. Optic fiber hydrogen sensor based on high-low reflectivity Bragg gratings and WO3-Pd-Pt multilayer films

    Science.gov (United States)

    Dai, Jixiang; Yang, Minghong; Li, Zhi; Wang, Gaopeng; Huang, Chujia; Qi, Chongjie; Dai, Yutang; Wen, Xiaoyan; Cheng, Cheng; Guo, Huiyong

    2015-09-01

    A novel optic fiber hydrogen sensor is proposed in this paper. Two Bragg gratings with different reflectivity were written in single mode fiber with phase mask method by 248 nm excimer laser. The end-face of singe mode fiber was deposited with WO3-Pd-Pt multilayer films as sensing element. The peak intensity of low reflectivity FBG is employed for hydrogen characterization, while that of high reflectivity FBG is used as reference. The experimental results show the hydrogen sensor still has good repeatability when the optic intensity in the fiber is only 1/3 of its initial value. The hydrogen sensor has great potential in measurement of hydrogen concentration.

  14. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yonggang Jiang

    2016-10-01

    Full Text Available Single-crystal silicon carbide (SiC-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale at room temperature.

  15. Vibration active control of smart structures incorporating ER actuators and fiber optic vibration sensors based on speckle detection

    Science.gov (United States)

    Leng, Jinsong; Asundi, Anand K.

    1999-06-01

    A smart structures system based on the fiber optic sensors and ER fluids actuators have been developed to used active vibration control in this paper. There are many advantages of this optical sensor such as high accurate, simple construction and low cost. A method of sensing vibration using the detection of changes in the spatial distribution of energy in the output of a multi-mode optic fiber has been demonstrated. A multi-mode optical fiber whose diameter is 200/230 micrometers is used in the present experiment. A multi- mode optical fiber vibration sensor based on the detection of the spatial speckle has been made. The experimental test have been finished. It has been found that this fiber optic sensor has higher sensitivity and better dynamic and static properties. At the meantime, the electrorheological (ER) fluids have been used as actuator to vibration control because of it's fast strong reversible change of the rheological properties under external electric field. A smart composite beam embedded ER fluids and fiber optic vibration sensor have been made in this paper. Finally, the experiment of structural vibration active control of smart structure incorporating the ER fluids and fiber optic vibration sensor have been finished.

  16. Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring

    Directory of Open Access Journals (Sweden)

    Jean-Marie Henault

    2010-01-01

    Full Text Available Although optical fiber sensors have been developed for 30 years, there is a gap between lab experiments and field applications. This article focuses on specific methods developed to evaluate the whole sensing chain, with an emphasis on (i commercially-available optoelectronic instruments and (ii sensing cable. A number of additional considerations for a successful pairing of these two must be taken into account for successful field applications. These considerations are further developed within this article and illustrated with practical applications of water leakage detection in dikes and concrete structures monitoring, making use of distributed temperature and strain sensing based on Rayleigh, Raman, and Brillouin scattering in optical fibers. They include an adequate choice of working wavelengths, dedicated localization processes, choices of connector type, and further include a useful selection of traditional reference sensors to be installed nearby the optical fiber sensors, as well as temperature compensation in case of strain sensing.

  17. Development of a fiber optic sensor based on gold island plasmon resonance

    Science.gov (United States)

    Meriaudeau, Fabrice; Downey, Todd R.; Passian, A.; Wig, A. G.; Mangeant, S.; Crilly, P. B.; Ferrell, Trinidad L.

    1998-12-01

    We present an optical fiber chemical sensor based on gold- island surface plasmon excitation. The sensing part of the fiber is a one inch portion on which cladding has been removed and onto which a thin layer of gold (40 angstroms) has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an absorbance near 535 nm when the only medium residing outside the surface is air. A range of wavelengths provided by a white light source and monochromator is launched through the optical fiber. The transmitted spectra display shifts in the resonance absorption due to any changes in the medium surrounding, or adsorbed onto the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics. Furthermore, the model assumes the particles are isolated oblate spheroids with a distribution of eccentricities.

  18. Detection of wavelengths in the visible range using fiber optic sensors

    Science.gov (United States)

    Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.

    2013-11-01

    This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.

  19. Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jesus [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2016-01-01

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well, detecting multiple CO2 releases, in real time, at varying depths. Early CO2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.

  20. Using a validated transmission model for the optimization of bundled fiber optic displacement sensors.

    Science.gov (United States)

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2011-12-10

    A variety of intensity-modulated optical displacement sensor architectures have been proposed for use in noncontacting sensing applications, with one of the most widely implemented architectures being the bundled displacement sensor. To the best of the authors' knowledge, the arrangement of measurement fibers in previously reported bundled displacement sensors has not been configured with the use of a validated optical transmission model. Such a model has utility in accurately describing the sensor's performance a priori and thereby guides the arrangement of the fibers within the bundle to meet application-specific performance needs. In this paper, a recently validated transmission model is used for these purposes, and an optimization approach that employs a genetic algorithm efficiently explores the design space of the proposed bundle sensor architecture. From the converged output of the optimization routine, a bundled displacement sensor configuration is designed and experimentally tested, offering linear performance with a sensitivity of -0.066 μm(-1) and displacement measurement error of 223 μm over the axial displacement range of 6-8 mm. It is shown that this optimization approach may be generalized to determine optimized bundle configurations that offer high-sensitivity performance, with an acceptable error level, over a variety of axial displacement ranges. This document has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 11-03413). © 2011 Optical Society of America

  1. Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating

    Institute of Scientific and Technical Information of China (English)

    Yong Chen; Rongsheng Zheng; Yonghua Lu; Pei Wang; Hai Ming

    2011-01-01

    A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.%A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied.The fiber-optic SPR sensor is investigated theoretically,specifically the influence of the dielectric protecting layer,using a four-layer model.The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation.The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40.The best sensitivity of 4 464 nm/RIU is achieved in the experiment.The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor,but also protect the silver film from oxidation.Surface plasmon resonance (SPR) is a kind of coherent oscillation between the free electrons at a metal/dielectric interface and the optical wave.The hybridized excitation,called surface plasmon polariton (SPP),is the electromagnetic excitation that propagates along the interface as a longitudinal wave.At a given wavelength and angle that satisfy the wave-vector matching condition,the incident light will be intensively absorbed.Due to its high sensitivity to the refractive index (RI) of the adjacent material,the SPR phenomenon was firstly applied to gas detection in 1983[1].The SPR sensing technology has been widely used in the detection of biological and chemical analytes

  2. Casing pipe damage detection with optical fiber sensors: a case study in oil well constructions

    Science.gov (United States)

    Zhou, Zhi; He, Jianping; Huang, Minghua; He, Jun; Ou, Jinping; Chen, Genda

    2010-04-01

    Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR) and the discrete fiber Bragg grating (FBG) measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber reinforced polymer (FRP) rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In-situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain in tact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multi-pole array acoustic instrument.

  3. Casing Pipe Damage Detection with Optical Fiber Sensors: A Case Study in Oil Well Constructions

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2010-01-01

    Full Text Available Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR and the discrete fiber Bragg grating (FBG measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber-reinforced polymer (FRP rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain intact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multipole array acoustic instrument.

  4. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  5. Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors

    Science.gov (United States)

    Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.

    2015-01-01

    This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.

  6. A curvature based approach using long-gage fiber optic sensors

    Science.gov (United States)

    Kliewer, Kaitlyn; Glisic, Branko

    2016-04-01

    Fiber Bragg grating (FBG) sensors offer a significant advantage for structural health monitoring due to their ability to simultaneously monitor both static and dynamic strain while being durable, lightweight, capable of multiplexing, and immune to electro-magnetic interference. Drawing upon the benefits of FBG sensors, this research explores the use of a series of long-gage fiber optic sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. Typically structural monitoring relies upon detecting structural changes through frequency and acceleration based analysis. However, curvature and strain based analysis may be a more reliable means for structural monitoring as they show more sensitivity to damage compared to modal parameters such as displacement mode shapes and natural frequency. Additionally, long gage FBG strain sensors offer a promising alternative to traditional dynamic measurement methods as the curvature can be computed directly from the FBG strain measurements without the need for numerical differentiation. Small scale experimental testing was performed using an aluminum beam instrumented with a series of FBG optical fiber sensors. Dynamic strain measurements were obtained as the aluminum beam was subjected to various loading and support conditions. From this, a novel normalized parameter based on the curvature from the dynamic strain measurements has been identified as a potential damage sensitive feature. Theoretical predictions and experimental data were compared and conclusions carried out. The results demonstrated the potential of the novel normalized parameter to facilitate dynamic monitoring at both the local and global scale, thus allowing assessment of the structures health.

  7. Distributed Fiber Optic Sensors For The Monitoring Of A Tunnel Crossing A Landslide

    Science.gov (United States)

    Minardo, Aldo; Picarelli, Luciano; Zeni, Giovanni; Catalano, Ester; Coscetta, Agnese; Zhang, Lei; DiMaio, Caterina; Vassallo, Roberto; Coviello, Roberto; Macchia, Giuseppe Nicola Paolo; Zeni, Luigi

    2017-04-01

    Optical fiber distributed sensors have recently gained great attention in structural and environmental monitoring due to specific advantages because they share all the classical advantages common to all optical fiber sensors such as immunity to electromagnetic interferences, high sensitivity, small size and possibility to be embedded into the structures, multiplexing and remote interrogation capabilities [1], but also offer the unique feature of allowing the exploitation of a telecommunication grade optical fiber cable as the sensing element to measure deformation and temperature profiles over long distances, without any added devices. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering through the so-called Brillouin Optical Time Domain Analysis (BOTDA), allow to measure strain and temperature profiles up to tens of kilometers with a strain accuracy of ±10µɛ and a temperature accuracy of ±1°C. These sensors have already been employed in static and dynamic monitoring of a variety of structures resulting able to identify and localize many kind of failures [2,3,4]. This paper deals with the application of BOTDA to the monitoring of the deformations of a railway tunnel (200 m long) constructed in the accumulation of Varco d'Izzo earthflow, Potenza city, in the Southern Italian Apennine. The earthflow, which occurs in the tectonized clay shale formation called Varicoloured Clays, although very slow, causes continuous damage to buildings and infrastructures built upon or across it. The railway tunnel itself had to be re-constructed in 1992. Since then, the Italian National Railway monitored the structure by means of localized fissure-meters. Recently, thanks to a collaboration with the rail Infrastructure Manager (RFI), monitoring of various zones of the landslide including the tunnel is based on advanced systems, among which the optical fiber distributed sensors. First results show how the sensing optical fiber cable is able

  8. VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor.

    Science.gov (United States)

    Guo, Tuan; Liu, Fu; Du, Fa; Zhang, Zhaochuan; Li, Chunjie; Guan, Bai-Ou; Albert, Jacques

    2013-08-12

    A compact fiber-optic vector rotation sensor in which a short section of polarization-maintaining (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single mode fiber without any lateral offset is proposed and experimentally demonstrated. Due to the intrinsic birefringence of the PM fiber, two well-defined resonances (i.e. orthogonally polarized FBG core modes) with wavelength separation of 0.5 nm have been achieved in reflection, and they exhibit a high sensitivity to fiber rotation. Both the orientation and the angle of rotation can be determined unambiguously via simple power detection of the relative amplitudes of the orthogonal core reflections. Meanwhile, instead of using a broadband source (BBS), the sensor is powered by a commercial vertical cavity surface emitting laser (VCSEL) with the laser wavelength matched to the PM-FBG core modes, which enables the sensor to work at much higher power levels (~15 dB better than BBS). This improves the signal-to-noise ratio considerably (~50 dB), and makes a demodulation filter unnecessary. Vector rotation measurement with a sensitivity of 0.09 dB/deg has been achieved via cost-effective single detector real time power measurement, and the unwanted power fluctuations and temperature perturbations can be effectively referenced out.

  9. Optical sensors from electrohydrodynamic jetted polymer fiber resonators

    DEFF Research Database (Denmark)

    Laye, Fabrice; Kraemmer, Sarah; Castillo, Alejandro;

    2016-01-01

    Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol....

  10. Fiber Optic Sensor System for Cryogenic Fuel Measurement Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will address the feasibility of using a fiber Bragg grating array as a means of detecting liquid and slush hydrogen in gravity and zero...

  11. Optical sensors from electrohydrodynamic jetted polymer fiber resonators

    DEFF Research Database (Denmark)

    Laye, Fabrice; Kraemmer, Sarah; Castillo, Alejandro

    2016-01-01

    Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol.......Electrohydrodynamic jetting is used to manufacture dye-doped polymer fiber resonators. We present comb-like laser emission from different polymer/dye combinations and report the use of these structures as sensitive detection of ethanol and methanol....

  12. Location of lightning stroke on OPGW by use of distributed optical fiber sensor

    Science.gov (United States)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Hao; Zhang, Xuping

    2014-12-01

    A new method based on a distributed optical fiber sensor (DOFS) to locate the position of lightning stroke on the optical fiber ground wire (OPGW) is proposed and experimentally demonstrated. In the method, the lightning stroke process is considered to be a heat release process at the lightning stroke position, so Brillouin optical time domain reflectometry (BOTDR) with spatial resolution of 2m is used as the distributed temperature sensor. To simulate the lightning stroke process, an electric anode with high pulsed current and a negative electrode (the OPGW) are adopted to form a lightning impulse system with duration time of 200ms. In the experiment, lightning strokes with the quantity of electric discharge of 100 Coul and 200 Coul are generated respectively, and the DOFS can sensitively capture the temperature change of the lightning stroke position in the transient electric discharging process. Experimental results show that DOFS is a feasible instrument to locate the lightning stroke on the OPGW and it has excellent potential for the maintenance of electric power transmission line. Additionally, as the range of lightning stroke is usually within 10cm and the spatial resolution of a typical DOFS is beyond 1m, the temperature characteristics in a small area cannot be accurately represented by a DOFS with a large spatial resolution. Therefore, for further application of distributed optical fiber temperature sensors for lightning stroke location on OPGW, such as BOTDR and ROTDR, it is important to enhance the spatial resolution.

  13. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Banshi D. Gupta

    2016-08-01

    Full Text Available Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms.

  14. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor

    Institute of Scientific and Technical Information of China (English)

    Deming LIU; Shuang LIU; Hairong LIU

    2009-01-01

    A wavelength division multiplexer (WDM) was used to extract the Raman scattering signal from a data fiber. The temperature performance of Raman scattering spectrum was studied theoretically and experimentally. On the base of this study, a distributed fiber-optic temperature sensor (DFTS) system was developed. The sensing distance was 4 km. The temperature accuracy and the distance resolution reached to ±1℃ and ±1 m, respec-tively. The system is stable and adequate for commercial usage, such as the power industry, the underground tunnel, the subway, and the pipe laying, and also for the mission applications, such as the warship and the airplane.

  15. ON-LINE WEAR DETECTION OF MILLING TOOLS USING A DISPLACEMENT FIBER OPTIC SENSOR

    Directory of Open Access Journals (Sweden)

    E. Castillo-Castañeda

    2003-07-01

    Full Text Available A cost-effective technique for on-line wear monitoring of a milling tool is presented. The tool wear is estimateddirectly from a fiber optic sensor with high resolution and high bandwidth characteristics. This sensor providesa distance measurement between its probe and the tool profile. The contribution of this work is the applicationof this sensor to sense on-line wear of a milling tool. Since the light emitted by this sensor comes from aphotodiode, it does not produce eye damage, this is safer than laser displacement sensors. This techniquesenses the tool wear in real time, while the tool is rotating, with an accuracy less than 1 micron. Experimentalresults are also presented for a four-flank cutting tool rotating at 300 rpm.

  16. On the use of a compact optical fiber sensor system in aircraft structural health monitoring

    Science.gov (United States)

    Mrad, Nezih; Guo, Honglei; Xiao, Gaozhi; Rocha, Bruno; Sun, Zhigang

    2012-06-01

    Structural Health Monitoring (SHM) has been identified as an area of significant potential for advanced aircraft maintenance programs that ensure continued airworthiness, enhanced operational safety and reduced life cycle cost. Several sensors and sensory systems have been developed for the implementation of such health monitoring capability. Among a wide range of developed technologies, fiber optic sensor technology, in particular fiber Bragg grating based emerged as one of the most promising for aircraft structural applications. This paper is set to explore the suitability of using a new Fiber Bragg Grating sensor (FBG) system developed for operation in two modes, low and high speed sensing modes, respectively. The suitability of the system for potential use in aircraft load monitoring and damage detection applications has been demonstrated. Results from FBG sensor system were in good agreement with results from conventional resistive strain gauges, validating this capability for load monitoring. For damage detection, the FBG sensor system was able to detect acoustic waves generated 52 inches (1.32 m) away. The initial results, obtained in a full stale experimentation, demonstrate the potential of using FBG sensors for both load monitoring and damage detection in aircraft environment.

  17. Fiber-optical sensor with miniaturized probe head and nanometer accuracy based on spatially modulated low-coherence interferogram analysis.

    Science.gov (United States)

    Depiereux, Frank; Lehmann, Peter; Pfeifer, Tilo; Schmitt, Robert

    2007-06-10

    Fiber-optical sensors have some crucial advantages compared with rigid optical systems. They allow miniaturization and flexibility of system setups. Nevertheless, optical principles such as low-coherence interferometry can be realized by use of fiber optics. We developed and realized an approach for a fiber-optical sensor, which is based on the analysis of spatially modulated low-coherence interferograms. The system presented consists of three units, a miniaturized sensing probe, a broadband fiber-coupled light source, and an adapted Michelson interferometer, which is used as an optical receiver. Furthermore, the signal processing procedure, which was developed for the interferogram analysis in order to achieve nanometer measurement accuracy, is discussed. A system prototype has been validated thoroughly in different experiments. The results approve the accuracy of the sensor.

  18. A fiber optic PD sensor using a balanced Sagnac interferometer and an EDFA-based DOP tunable fiber ring laser.

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-05-12

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  19. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Lutang Wang

    2014-05-01

    Full Text Available A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR. Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.

  20. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  1. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc.; Thornburg, Jon A [Paulsson, Inc.; He, Ruiqing [Paulsson, Inc.

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  2. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors.

    Science.gov (United States)

    Chiavaioli, Francesco; Gouveia, Carlos A J; Jorge, Pedro A S; Baldini, Francesco

    2017-06-21

    A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.

  3. Fiber-optic temperature sensor using a liquid crystal film for laser-induced interstitial thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong-Soo; Tack, Gye-Rae; Chung, Soon-Cheol; Yi, Jeong-Han [Konkuk University, Chungju (Korea, Republic of); Kim, Sin [Cheju National University, Cheju (Korea, Republic of); Cho, Hyo-Sung [Yonsei University, Wonju (Korea, Republic of)

    2005-06-15

    In this paper, we describe the feasibility of developing a new fiber-optic temperature sensor using a thermo-sensitive liquid crystal (LC) film for laser-induced interstitial thermotherapy (LITT). The temperature change in the tissue or the tumor causes the color of the LC film in contacted with the tissue to change, and that change alters the reflectivity of the LC film. The light with a selected wavelength that is transmitted to the LC film and the optical power of the reflected light are measured using transmitting and receiving optical fibers, respectively. Also, the relationship between the temperature and the optical power of reflected light is determined using the characteristics of the LC films.

  4. Molecular-Resonance Fiber Optic Gas Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aspen systems proposes to develop an innovative and smart sensors to continuously monitor ambient air compositions by utilizing a resonating tunable micro-cavity...

  5. A novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis

    Science.gov (United States)

    Alemdar, Kubra; Likoglu, Sumeyra; Fidanboylu, Kemal; Toker, Onur

    2014-03-01

    This paper presents the design of a novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis. We report on several different designs based on textiles which have different loop periodicity and configuration of optical fiber types. In all experiments, the changes of textile elongation are measured during breathing movements. In order to demonstrate the superiority of the proposed sensor, experiments were done on a macrobending sensor constructed from 62.5-50-62.5 hetero-core fiber and a macrobending sensor constructed from 62.5/125 μm multi-mode fiber having different loops. Experimental results show that the sensitivity of the proposed macrobending sensor constructed using hetero-core optical fiber is much higher than the sensor constructed from plain multi-mode optical fiber. It is also shown that, the sensitivity of the sensor increases as the number of loops is increased. On the other hand, several experiments were performed for periodic macrobending sensors having different bending radius by changing the lengths of loops amplitude and period. We demonstrate that the sensors tested on different patients' morphology can successfully sense respiratory movements.

  6. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pickrell, Gary [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  7. Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design and Working Principle

    Directory of Open Access Journals (Sweden)

    Michal Borecki

    2007-03-01

    Full Text Available This paper presents the construction and working principles of an intelligent fiber-optic intensity sensor used for examining the concentration of a mixture in conjunction with water. It can find applications e.g. in waste-water treatment plant for selection of a treatment process. The sensor head is the end of a large core polymer optical fiber, which constitutes one arm of an asymmetrical coupler. The head works on the reflection intensity basis. The reflected signal level depends on the Fresnel reflection from the air and from the mixture examined when the head is immersed in it. The sensor head is mounted on a lift. For detection purposes the signal can be measured on head submerging, submersion, emerging and emergence. Therefore, the measured signal depends on the surface tension, viscosity, turbidity and refraction coefficient of the solution. The signal coming from the head is processed electrically in an opto-electronic interface. Then it is fed to a neural network. The novelty of the proposed sensor lies in that it contains an asymmetrical coupler and a neural network that works in the generalization mode. The sensor resolution depends on the efficiency of the asymmetrical coupler, the precision of the opto-electronic signal conversion and the learning accuracy of the neural network. Therefore, the number and quality of the points used for the learning process is very important. By way of example, the paper describes a sensor intended for examining the concentration of liquid soap in water.

  8. Development of a fiber-optic sensor for hydrogen leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from the ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.

  9. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Science.gov (United States)

    Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui

    2017-01-01

    This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed. PMID:28212268

  10. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-02-01

    Full Text Available This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  11. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect

    Science.gov (United States)

    Shao, Li-Yang; Luo, Yuan; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2015-02-01

    A novel fiber optic temperature sensor has been proposed and experimentally demonstrated with ~9 times sensitivity enhancement by using two cascaded Sagnac interferometers. These two Sagnac interferometers consist of the same type of polarization maintaining fibers with slightly different lengths. The working principle is analogous to a Vernier scale. One interferometer acts as filter, while the other is for temperature sensing. The envelope of the cascaded sensor shifts much more than single one with a certain enhancement factor, which related to the free space range difference between the filter and sensor interferometers. Experimental results show that the temperature sensitivity is enhanced from -1.46 nm/°C based on single Sagnac configuration to -13.36 nm/°C.

  12. High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique

    Science.gov (United States)

    Su, Z. H.; Gan, J.; Yu, Q. K.; Zhang, Q. H.; Liu, Z. H.; Bao, J. M.

    2013-04-01

    A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.

  13. Long term reliability and machine operation diagnosis with fiber optic sensors at large turbine generators

    Science.gov (United States)

    Bosselmann, T.; Strack, S.; Villnow, M.; Weidner, J. R.; Willsch, M.

    2013-05-01

    The increasing quantity of renewable energy in electric power generation leads to a higher flexibility in the operation of conventional power plants. The turbo generator has to face the influence of frequent start-stop-operation on thermal movement and vibration of the stator end windings. Large indirect cooled turbo generators have been equipped with FBG strain and temperature sensors to monitor the influence of peak load operation. Fiber optic accelerometers measure the vibration of the end windings at several turbine generators since many years of operation. The long term reliability of fiber optic vibration, temperature and strain sensors has been successfully proved during years of online operation. The analysis of these data in correlation to significant operation parameter lead to important diagnostic information.

  14. Multi-Purpose Anthropomorphic Robotic Hand Design for Extra-Vehicular Activity Manipulation Tasks using Embedded Fiber Optic Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS proposes to design and build fiber-optically sensorized robotic fingers that can sense force and, objects using only tactile feedback, similar to the skin on a...

  15. Piezoelectric film electro-deposition for optical fiber sensor with ZnO coating

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Ping Gu; Ya Zhou

    2008-01-01

    The piezoelectric film electro-deposition for optical fiber sensor with ZnO coating is studied. The zinc oxide plating film is made on the copper surface directly by cathodic electro-deposition in the Zn(NO3)2 single salt aqueous solution systems. The influences of main experimental conditions on the properties of ZnO thin film in the electro-deposition processes are analyzed and a stable, practical and economic technique is obtained.

  16. Wind Turbine Blade Monitoring with Brillouin-Based Fiber-Optic Sensors

    OpenAIRE

    Agnese Coscetta; Aldo Minardo; Lucio Olivares; Maurizio Mirabile; Mario Longo; Michele Damiano; Luigi Zeni

    2017-01-01

    Wind turbine (WT) blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have...

  17. Visibility in magnetostrictive fiber-optic interferometric sensors and its dependence on the input SOP

    Institute of Scientific and Technical Information of China (English)

    Changhai Shi; Jianping Chen; Xinwan Li; Ailun Ye; Junhe Zhou; Yi Zhang; Qing Xue; Lin Hong

    2006-01-01

    The visibility in magnetostrictive fiber-optic interferometric sensors using a Gaussian laser beam is analyzed. It is shown that the conventional Gaussian laser beam has little influence on the visibility. The visibility depends strongly on the input state of polarization (SOP). We implement a cylindrical transducer and build a measurement setup with a polarization controller. The visibility dependent on the SOP of input light is measured. The estimated values are similar to the experiment results, which verifies the analysis.

  18. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  19. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Repasky, Kevin [Montana State Univ., Bozeman, MT (United States)

    2014-02-01

    A fiber sensor array for sub-surface CO2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO2} absorption features where a transmission measurement is made allowing the CO2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO2/day began on July 10, 2012. The elevated subsurface CO2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project

  20. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures

    OpenAIRE

    Liquan Chen; Kai Tai Wan; Leung, Christopher K.Y.

    2008-01-01

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. ...

  1. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    Science.gov (United States)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  2. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Liquan Chen

    2008-03-01

    Full Text Available Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.

  3. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures.

    Science.gov (United States)

    Leung, Christopher K Y; Wan, Kai Tai; Chen, Liquan

    2008-03-20

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.

  4. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors

    CERN Document Server

    Dyer, Shellee D; Baek, Burm; Hadfield, Robert H; Nam, Sae Woo

    2011-01-01

    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

  5. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  6. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    Directory of Open Access Journals (Sweden)

    António Barrias

    2016-05-01

    Full Text Available The application of structural health monitoring (SHM systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  7. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2016-05-23

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  8. Damage detection and characterization using long-gauge and distributed fiber optic sensors

    Science.gov (United States)

    Glišić, Branko; Hubbell, David; Sigurdardottir, Dorotea Hoeg; Yao, Yao

    2013-08-01

    Fiber optic strain sensors have significantly evolved and have reached their market maturity during the last decade. Their widely recognized advantages are high precision, long-term stability, and durability. In addition to these benefits, fiber optic (FO) techniques allow for affordable instrumentation of large areas of civil structures and infrastructure enabling global large-scale monitoring based on long-gauge sensors, and integrity monitoring based on distributed sensors. The FO techniques that enable these two approaches are based on fiber Bragg-gratings and Brillouin optical time-domain analysis. The aim of this paper is to present both FO techniques and both structural assessment approaches, and to validate them through large-scale applications. Although many other currently applied methods fail to detect the damage in real, on-site conditions, the presented approaches were proven to be suitable for damage detection and characterization, i.e., damage localization and, to certain extent, quantification. This is illustrated by two applications presented in detail in this paper: the first on a post-tensioned concrete bridge and the second on segmented concrete pipeline.

  9. A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Sang-Jin Choi

    2014-07-01

    Full Text Available A self-referencing, intensity-based fiber optic sensor (FOS is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, , of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured  and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure.

  10. Optimal contrast function in the unbalanced fiber optic Michelson interferometer for dislocation sensor

    Science.gov (United States)

    Szustakowski, Mieczyslaw; Palka, Norbert; Ciurapinski, Wieslaw M.

    2004-09-01

    Theoretical description of a contrast in an unbalanced fiber optic Michelson's interferometer with a multimode laser was shown. Periodic contrast oscillations, which depend on a laser spectrum, occur if a measuring arm of the interferometer is elongated. Required characteristic features of the contrast for an elongation sensor were determined. Influences of laser spectrum parameters (wavelength, halfwidth and mode spacing) as well as laser mode amplitudes on the contrast were simulated. Optimal spectrum for the dislocation sensor was determined theoretically. A laser which parameters fulfilled the requirements was found and its spectrum was measured. The measured contrast function was very similar to the optimal theoretical plot what proves correctness of the calculations.

  11. Fabry-Perot Diaphragm Fiber Optic Sensor (DFOS for Acoustic Detection

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2007-10-01

    Full Text Available A diaphragm fiber optic sensor (DFOS solely based on Fabry-Perot multiple beam interference has been designed and fabricated with micro-electric mechanical system (MEMS technology. The silicon diaphragm with an embossed center was designed with an interference gap width kept accurately. The DFOS was verified to be a truly and purely Fabry-Perot device via a critical test. Parallel testing with a Piezoelectric (PZT sensor showed that the DFOS had high sensitivity. The Fabry-Perot DFOS also demonstrated excellent performance in on-line monitoring of Partial Discharge (PD in power transformers.

  12. Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.

    Science.gov (United States)

    Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro

    2016-09-01

    In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.

  13. Tapered Optical Fiber Humidity Sensor Coated with Nano-crystalline ZnO Doped with KCI

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-03-01

    Full Text Available In this research study we have targeted to fabricate a tapered optical fiber coated with zinc oxide doped with KCl to improve the humidity sensing capability of zinc oxide. The optical fiber was tapered through chemical etching method by HF acid (49.5%. The nano-crystalline Zinc Oxide (ZnO was synthesized using single molecular precursor method doped with KCl. The resulting material was characterized with Fourier Transform Infrared spectroscopy (FTIR, X-Ray Diffractometry (XRD and Scanning Electron Microscopy (SEM. The sensing mechanism of this sensor is based on the change of the optical properties of the coating when the relative humidity increases. The humidity sensing characteristic has been estimated by measuring the Optical Permeability (OP as a function of percentage of Relative Humidity (%RH in the ranging from 5 to 98% inside a closed chamber. The tapered optical fiber tested with an overlay coating at the optimal working point achieves better sensitivity. The experimental results show that the 5.7 wt% KCl doped ZnO nano-fibers hold super-rapid response and recovery than normal ZnO coating.

  14. Experimental research on the effect of Young's modulus on optical fiber microbend strain sensor

    Science.gov (United States)

    Tao, Ruichen; Li, Min

    2010-11-01

    By investigation of the theoretical model of fiber microbend sensor, and derivative of the basic function of microbend with respect to applied external force F then Young's modulus E, we get an expression of sensor's output signal as a function of E which shows that the output of the microbend sensor decreases with the Young's modulus of the gripper increasing, and the change is nonlinear. To verify the accuracy of the theoretical derivation, we design and make four optical fiber microbend grippers of different materials, including stainless steel, Polyvinyl Chloride (PVC), polypropylene (PPR) and bamboo, with the same geometric parameters of grippers such as a mechanical period derived for the maximal sensitivity from the well-known microbend interval equation, and carry out the demonstration experiments under the same initial testing conditions. The initial testing condition has been adjusted during the process of manufacturing and installing the fiber microbend gripper. The experimental data based on our design testing systems showed that the outputs of the microbend sensors match our theoretical simulation curves well to the applied external force F. The conclusion might be useful for future reference of microbend strain sensors design.

  15. Nonlinear effects of a modal domain optical fiber sensor in a vibration suppression control loop for a flexible structure

    Science.gov (United States)

    Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.

    1993-01-01

    Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.

  16. Noncontact Optical Fiber Sensor for Measuring the Refractive Index of Liquids

    Directory of Open Access Journals (Sweden)

    R. Selvas-Aguilar

    2016-01-01

    Full Text Available A noncontact optical fiber sensor for measuring the refractive index of transparent liquids is proposed. It operates by calculating the path of a focused laser beam at 635 nm that travels across the boundaries of a liquid sample. The optical power Fresnel reflections are detected and, subsequently, the refractive index is determined as the ratio between the traveled beam paths when the liquid is deposited versus a reference without the liquid sample. Additionally, a mathematical analysis of the geometrical case is included. The theoretical data from our sensor are in good agreement with the experimental results. The resolution achieved by the sensor is better than 10−3 RIU.

  17. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    Directory of Open Access Journals (Sweden)

    Ji Xia

    2015-07-01

    Full Text Available An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  18. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  19. A fiber optic sensor for detecting and monitoring cracks in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.

  20. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    Science.gov (United States)

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.