WorldWideScience

Sample records for optical beam steering

  1. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  2. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  3. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  4. Optical resonators for true-time-delay beam steering

    Science.gov (United States)

    Gesell, Leslie H.; Evanko, Stephen M.

    1996-06-01

    Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.

  5. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  6. GMTIFS: the adaptive optics beam steering mirror for the GMT integral-field spectrograph

    Science.gov (United States)

    Davies, J.; Bloxham, G.; Boz, R.; Bundy, D.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Sharp, R.; Vaccarella, A.; Vest, C.; Young, P. J.

    2016-07-01

    To achieve the high adaptive optics sky coverage necessary to allow the GMT Integral-Field Spectrograph (GMTIFS) to access key scientific targets, the on-instrument adaptive-optics wavefront-sensing (OIWFS) system must patrol the full 180 arcsecond diameter guide field passed to the instrument. The OIWFS uses a diffraction limited guide star as the fundamental pointing reference for the instrument. During an observation the offset between the science target and the guide star will change due to sources such as flexure, differential refraction and non-sidereal tracking rates. GMTIFS uses a beam steering mirror to set the initial offset between science target and guide star and also to correct for changes in offset. In order to reduce image motion from beam steering errors to those comparable to the AO system in the most stringent case, the beam steering mirror is set a requirement of less than 1 milliarcsecond RMS. This corresponds to a dynamic range for both actuators and sensors of better than 1/180,000. The GMTIFS beam steering mirror uses piezo-walk actuators and a combination of eddy current sensors and interferometric sensors to achieve this dynamic range and control. While the sensors are rated for cryogenic operation, the actuators are not. We report on the results of prototype testing of single actuators, with the sensors, on the bench and in a cryogenic environment. Specific failures of the system are explained and suspected reasons for them. A modified test jig is used to investigate the option of heating the actuator and we report the improved results. In addition to individual component testing, we built and tested a complete beam steering mirror assembly. Testing was conducted with a point source microscope, however controlling environmental conditions to less than 1 micron was challenging. The assembly testing investigated acquisition accuracy and if there was any un-sensed hysteresis in the system. Finally we present the revised beam steering mirror

  7. Beam steering performance of compressed Luneburg lens based on transformation optics

    Science.gov (United States)

    Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun

    2018-06-01

    In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.

  8. Optical true-time-delay microwave beam-steering with 1 Gb/s wireless transmission for in-building networks

    NARCIS (Netherlands)

    Cao, Z.; Li, F.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2013-01-01

    An optical true time delay based microwave beam-steering (OTTD-MBS) scheme integrated with a radio-over-fibre system is demonstrated. Properties of 1Gb/s data wireless transmission with OTTD-MBS are studied.

  9. Holographic memory using beam steering

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2006-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) or Micro-Electro-Mechanical Systems (MEMS) mirrors steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  10. Indoor optical wireless communication system using beam-steering by cascaded diffractive optical elements

    NARCIS (Netherlands)

    Oh, C.W.; Tangdiongga, E.; Koonen, A.M.J.; García-Blanco, S.M.; Boller, Kl.J.; Sefunc, M.A.; Geuzebroek, D.

    2014-01-01

    While the radio spectrum continues to struggle with a soaring bandwidth demand, the optical spectrum promises virtually unlimited license-free bandwidth. We report the feasibility of high-capacity point-to-point links for indoor optical wireless communication with cascaded diffractive optical

  11. Near-Infrared and Optical Beam Steering and Frequency Splitting in Air-Holes-in-Silicon Inverse Photonic Crystals

    Science.gov (United States)

    2017-01-01

    We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime. PMID:29541653

  12. Automated beam steering using optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. K. (Christopher K.)

    2004-01-01

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  13. Beam Steering Devices Reduce Payload Weight

    Science.gov (United States)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  14. Bi-directional 35-Gbit/s 2D beam steered optical wireless downlink and 5-Gbit/s localized 60-GHz communication uplink for hybrid indoor wireless systems

    NARCIS (Netherlands)

    Khalid, A.M.; Baltus, P.G.M.; Dommele, A.R.; Mekonnen, K.A.; Cao, Z.; Oh, C.W.; Matters, M.K.; Koonen, A.M.J.

    2017-01-01

    We present a full-duplex dynamic indoor optical wireless system using 2D passive optical beam steering for downlink and 60-GHz communication for upstream transmission. We demonstrate 35-Gb/s NRZ-OOK downstream multicasting and 5-Gb/s NRZ-ASK upstream communication.

  15. "Intelligent" Automatic Beam Steering and Shaping

    CERN Document Server

    Jansson, A

    2000-01-01

    The strategy for Automated Beam Steering and Shaping (ABS) in the PS complex is to use theoretical response matrices calculated from an optics database. The main reason for this is that it enforces a certain understanding of the machine optics. A drawback is that the validation of such a matrix can be a lengthy process. However, every time a correction is made using an ABS program, a partial measurement of the response matrix is effectively performed. Since the ABS programs are very frequently used, the full matrices could thus be measured on an almost daily basis, provided this information is retained. The information can be used in two ways. Either the program passively logs the data to be analysed off­line, or the information is directly fed back to the matrix, which makes the program 'learn' as it executes. The data logging provides a powerful machine debugging tool, since deviations between the measured and theoretical matrices can be traced back to incorrect optical parameters. The 'learning' mode ensu...

  16. Beam steered millimeter-wave fiber-wireless system for 5G indoor coverage

    NARCIS (Netherlands)

    Cao, Z.; Wang, Q.; Tessema, N.M.; Leijtens, X.J.M.; Soares, F.M.; Koonen, A.M.J.

    2016-01-01

    A 38GHz beam steered fiber-wireless system, enabled by a novel integrated optical tunable delay line, is demonstrated for 5G indoor coverage. The beam steering gains 14dBm spatial power focusing and 6 times EVM improvement.

  17. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  18. A hybrid system for beam steering and wavefront control

    Science.gov (United States)

    Nikulin, Vladimir V.

    2004-06-01

    Performance of long-range mobile laser systems operating within Earth's atmosphere is generally limited by several factors. Movement of the communicating platforms, such as aircraft, terrain vehicles, etc., complemented by mechanical vibrations, is the main cause of pointing errors. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path that lead to phase distortions (aberrations), thus creating random redistribution of optical energy in the spatial domain. The combined effect of these factors leads to an increased bit-error probability under adverse operation conditions. While traditional approaches provide separate treatment of these problems, suggesting the development of high-bandwidth beam steering systems to perform tracking and jitter rejection, and wavefront control for the mitigation of atmospheric effects, the two tasks could be integrated. In this paper we present a hybrid laser beam steering/wavefront control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount platform. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while the purpose of the SLM is twofold: it performs wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using the decentralized approach that provides independent access to the azimuth and declination channels, while the algorithm for calculating the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the both systems and the simulation results.

  19. Advanced Optics for the Remote Steering ITER ECRH Upper Launcher

    International Nuclear Information System (INIS)

    Bruschi, A; Cirant, S; Moro, A; Platania, P; Sozzi, C

    2005-01-01

    The optics of the ECRH Upper Launcher in ITER based on the Remote Steering concept needs special attention, since any focussing element in front of the waveguide has combined effects on the range of steering angles achievable and the beam width in the plasma region. The effects are studied in detail for a setup composed by 8 beams per port (three ports), for a spherical and a hyperbolic mirror surface. Gaussian beam analysis is compared to beam pattern calculations with the optical physics code GRASP, in order to verify the validity of gaussian optics approximation. The standard description with simply astigmatic beams, not adequate in more complex systems as the proposed two-mirror set-up, requires approximations, which are compared with the generalized astigmatic beam description. The ohmic losses at the end mirrors and the related localized heating due to the very large power density cause deformations that depends on the design of the cooling circuit. The distortion of the beam shape has been evaluated in a realistic case of mirror cooling with a small-channel system. The quantification of the effect depends on the precise evaluation ohmic losses and their enhancement in the long term due to the surface deterioration

  20. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  1. Phase shifter for antenna beam steering

    International Nuclear Information System (INIS)

    Jindal, Ravi; Razban, Tchanguiz

    2016-01-01

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  2. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  3. Calculation of the beam injector steering system using Helmholtz coils

    International Nuclear Information System (INIS)

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  4. Workshop on automated beam steering and shaping (ABS). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, M [ed.

    1999-09-10

    A workshop on Automated Beam Steering and Shaping (ABS) was held at CERN in December 1998. This was the first workshop dedicated to this subject. The workshop had two major goals: to review the present status of ABS algorithms and systems around the world and to create a worldwide ABS community. These proceedings contain summary reports from all sessions, contributions from several presentations held at the workshop, and a complete set of abstracts for all presentations. (orig.)

  5. Optimum steering of photon beam lines in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Fong, B.; Lee, M.; Ziemann, V.

    1993-04-01

    A common operational requirement for many synchrotron light sources is to maintain steered photon beamlines with minimum corrector strength values. To solve this problem for SPEAR, we employed the Singular Value Decomposition (SVD) matrix-inversion technique to minimize corrector strengths while constraining the photon beamlines to remain on target. The result was a reduction in corrector strengths, yielding increased overhead for the photon-beam position feedback systems

  6. Workshop on automated beam steering and shaping (ABS). Proceedings

    International Nuclear Information System (INIS)

    Lindroos, M.

    1999-01-01

    A workshop on Automated Beam Steering and Shaping (ABS) was held at CERN in December 1998. This was the first workshop dedicated to this subject. The workshop had two major goals: to review the present status of ABS algorithms and systems around the world and to create a worldwide ABS community. These proceedings contain summary reports from all sessions, contributions from several presentations held at the workshop, and a complete set of abstracts for all presentations. (orig.)

  7. Fusion of adaptive beam steering and optimization-based wavefront control for laser communications in atmosphere

    Science.gov (United States)

    Nikulin, Vladimir V.

    2005-10-01

    The performance of mobile laser communication systems operating within Earth's atmosphere is generally limited by the pointing errors due to movement of the platforms and mechanical vibrations. In addition, atmospheric turbulence causes changes of the refractive index along the propagation path, creating random redistribution of the optical energy in the spatial domain. Under adverse conditions these effects lead to increased bit error rate. While traditional approaches provide separate treatment of these problems, suggesting high-bandwidth beam steering systems for tracking and wavefront control for the mitigation of atmospheric effects, the two tasks can be integrated. This paper presents a hybrid laser beam-steering-wavefront-control system comprising an electrically addressed spatial light modulator (SLM) installed on the Omni-Wrist sensor mount. The function of the Omni-Wrist is to provide coarse steering over a wide range of pointing angles, while that of the SLM is twofold: wavefront correction and fine steering. The control law for the Omni-Wrist is synthesized using a decentralized approach that provides independent access to the azimuth and declination channels; calculation of the required phase profile for the SLM is optimization-based. This paper presents the control algorithms, the approach to coordinating the operation of the two systems, and the results.

  8. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  9. Ultra-compact laser beam steering device using holographically formed two dimensional photonic crystal.

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T

    2010-03-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.

  10. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  11. Beam steering for circular switched parasitic arrays using a combinational approach

    CSIR Research Space (South Africa)

    Mofolo, ROM

    2011-09-01

    Full Text Available In this paper, the authors present a method of electronic beam steering for circular switched parasitic array (SPA) antennas. In circular SPA antennas, one achieves azimuth beam steering by open-circuiting and short-circuiting different parasitic...

  12. Monolithic beam steering in a mid-infrared, surface-emitting, photonic integrated circuit.

    Science.gov (United States)

    Slivken, Steven; Wu, Donghai; Razeghi, Manijeh

    2017-08-16

    The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function.

  13. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...... the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so...

  14. Refractive waveguide non-mechanical beam steering (NMBS) in the MWIR

    Science.gov (United States)

    Myers, Jason D.; Frantz, Jesse A.; Spillmann, Christopher M.; Bekele, Robel Y.; Kolacz, Jakub; Gotjen, Henry; Naciri, Jawad; Shaw, Brandon; Sanghera, Jas S.

    2018-02-01

    Beam steering is a crucial technology for a number of applications, including chemical sensing/mapping and light detection and ranging (LIDAR). Traditional beam steering approaches rely on mechanical movement, such as the realignment of mirrors in gimbal mounts. The mechanical approach to steering has several drawbacks, including large size, weight and power usage (SWAP), and frequent mechanical failures. Recently, alternative non-mechanical approaches have been proposed and developed, but these technologies do not meet the demanding requirements for many beam steering applications. Here, we highlight the development efforts into a particular non-mechanical beam steering (NMBS) approach, refractive waveguides, for application in the MWIR. These waveguides are based on an Ulrich-coupled slab waveguide with a liquid crystal (LC) top cladding; by selectively applying an electric field across the liquid crystal through a prismatic electrode, steering is achieved by creating refraction at prismatic interfaces as light propagates through the device. For applications in the MWIR, we describe a versatile waveguide architecture based on chalcogenide glasses that have a wide range of refractive indices, transmission windows, and dispersion properties. We have further developed robust shadow-masking methods to taper the subcladding layers in the coupling region. We have demonstrated devices with >10° of steering in the MWIR and a number of advantageous properties for beam steering applications, including low-power operation, compact size, and fast point-to-point steering.

  15. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks

    Science.gov (United States)

    Armstrong, Seiji; Wang, Meng; Teh, Run Yan; Gong, Qihuang; He, Qiongyi; Janousek, Jiri; Bachor, Hans-Albert; Reid, Margaret D.; Lam, Ping Koy

    2015-02-01

    Einstein, Podolsky and Rosen (EPR) pointed out in their famous paradox that two quantum-entangled particles can have perfectly correlated positions and momenta. Such correlations give evidence for the nonlocality of quantum mechanics and form the basis for quantum cryptography and teleportation. EPR steering is the nonlocality associated with the EPR paradox and has traditionally been investigated between only two parties. Using optical networks and efficient detection, we present experimental observations of multiparty EPR steering and of the genuine entanglement of three intense optical beams. We entangle the quadrature phase amplitudes of distinct fields, in analogy to the position-momentum entanglement of the original paradox. Our experiments complement tests of quantum mechanics that have entangled small systems or have demonstrated tripartite inseparability. Our methods establish principles for the development of multiparty quantum communication protocols with asymmetric observers, and can be extended to qubits, whether photonic, atomic, superconducting, or otherwise.

  16. Acousto-Optic Beam Steering Study

    Science.gov (United States)

    1994-08-01

    S25 2.500000 PRIVATE CATALOG PWL 830.00 ’THIN’ 1.010000 PWL 830.00 ’ TEO2 ’ 2.200000 REFRACTIVE INDICES GLASS CODE 830.00 SF57 SCHOTT 1.821707 SF11...10.000000 PRIVATE CATALOG PWL 830.00 ’ TEO2 ’ 2.200000 REFRACT IVE :NDICES GLASS CODE 830.00 BK7 SCHCTT 1.510206 ’ TEO2 ’ 2.200000 39 Table 4.2.2-3. Mid...4.1-2 Acoustic Material Figure-of-Merit Trade 11 4.1-3 Degenerate Response in On-Axis TeO 2 12 4. 1-4 Rotated AO Interaction in TeO2 : High-Band Mode 13

  17. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  18. Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks.

    Science.gov (United States)

    Wang, Meng; Gong, Qihuang; He, Qiongyi

    2014-12-01

    Collective multipartite Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation shared among N parties, where the EPR paradox of one party can only be realized by performing local measurements on all the remaining N-1 parties. We formalize the collective tripartite steering in terms of local hidden state model and give the steering inequalities that act as signatures and suggest how to optimize collective tripartite steering in specific optical schemes. The special entangled states with property of collective multipartite steering may have potential applications in ultra-secure multiuser communication networks where the issue of trust is critical.

  19. Fast-steering solutions for cubesat-scale optical communications

    Science.gov (United States)

    Kingsbury, R. W.; Nguyen, T.; Riesing, K.; Cahoy, K.

    2017-11-01

    We describe the design of a compact free-space optical communications module for use on a nanosatellite and present results from a detailed trade study to select an optical fine steering mechanism compatible with our stringent size, weight and power (SWaP) constraints. This mechanism is an integral component of the compact free-space optical communications system that is under development at the MIT Space Systems Laboratory [1]. The overall goal of this project is to develop a laser communications (lasercom) payload that fits within the SWaP constraints of a typical ``3U'' CubeSat. The SWaP constraints for the entire lasercom payload are 5 cm × 10 cm × 10 cm, 600 g and 10W. Although other efforts are underway to qualify MEMS deformable mirrors for use in CubeSats [2], there has been very little work towards qualifying tip-tilt MEMS mirrors [3]. Sec. II provides additional information on how the fast steering mechanism is used in our lasercom system. Performance requirements and desirable traits of the mechanism are given. In Sec. III we describe the various types of compact tip-tilt mirrors that are commercially available as well as the justification for selecting a MEMS-based device for our application. Sec. IV presents an analysis of the device's transfer function characteristics and ways of predicting this behavior that are suitable for use in the control processor. This analysis is based upon manufacturer-provided test data which was collected at standard room conditions. In the final section, we describe on-going work to build a testbed that will be used to measure device performance in a thermal chamber.

  20. An automatic beam steering system for the NSLS X-17T beam line using closed orbit feedback

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Ma, Li; Rarback, H.M.; Singh, O.V.; Yu, L.H.

    1987-01-01

    Initial observations of motion of the undulator radiation in the NSLS X-17T beam line clearly indicated that the beam had to be stabilized in both directions to be usable for the planned soft x-ray imaging experiments. The low frequency spectra of beam motion contained peaks in the range from dc to 60 Hz and at higher frequencies. A beam steering system employing closed orbit feedback has been designed and installed to stabilize the beam in both planes. In each plane of motion, beam position is measured with a beam position detector and a correction signal is fed back to a local four magnet orbit bump to dynamically control the angle of the radiation at the source. This paper describes the design and performance of the beam steering system

  1. A broadband beam-steered fiber mm-wave link with high energy-spectral-spatial efficiency for 5G coverage

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Jiao, Y.; Deng, X.; Tessema, N.; Raz, O.; Koonen, A.M.J.

    2017-01-01

    Utilizing an integrated optical-tunable-delay-line, reversely-modulated single sideband modulation, and Nyquist subcarrier modulation, we demonstrate an 8 Gbps mm-wave beam steered link with a spatial-spectral efficiency of 16 bits/s/Hz.

  2. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif; Sharawi, Mohammad Said

    2017-01-01

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  3. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  4. Millimeter wave beam steered fiber wireless systems for 5G indoor coverage : Integrated circuits and systems

    NARCIS (Netherlands)

    Cao, Zizheng; Zhang, Xuebing; Zhao, Xinran; Shen, Longfei; Deng, Xiong; Yin, Xin; Koonen, Ton

    2017-01-01

    In this talk, we review our recent progress and on-going research on millimeter wave beam steered fiber wireless systems for 5G indoor coverage enabled by the advanced photonic integrated circuit and well-designed fiber-wireless networks.

  5. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    Science.gov (United States)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  6. Verification and application of beam steering Phased Array UT technique for complex structures

    International Nuclear Information System (INIS)

    Yamamoto, Setsu; Miura, Takahiro; Semboshi, Jun; Ochiai, Makoto; Mitsuhashi, Tadahiro; Adachi, Hiroyuki; Yamamoto, Satoshi

    2013-01-01

    Phased Array Ultrasonic Testing (PAUT) techniques for complex geometries are greatly progressing. We developed an immersion PAUT which is suitable for complex surface profiles such as nozzles and deformed welded areas. Furthermore, we have developed a shape adaptive beam steering technique for 3D complex surface structures with conventional array probe and flexible coupling gel which makes the immersion beam forming technique usable under dry conditions. This system consists of 3 steps. Step1 is surface profile measurement which based on 3D Synthesis Aperture Focusing Technique (SAFT), Step2 is delay law calculation which could take into account the measured 3D surface profiles and steer a shape adjusted ultrasonic beam, Step3 is shape adjusted B-scope construction. In this paper, verification results of property of this PAUT system using R60 curved specimen and nozzle shaped specimen which simulated actual BWR structure. (author)

  7. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  8. Toward automated beam optics control

    International Nuclear Information System (INIS)

    Silbar, R.R.; Schultz, D.E.

    1987-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a ''mouseable'' representation of a typical beam line. This responds actively to changes entered from the mouse or keyboard, giving an updated display of the beam line itself, its optical properties, and the instrumentation and control devices as seen by the operater. We have incorporated TRANSPORT, written in Fortran but running as a callable procedure in the LISP environment, for simulation of the beam-line optics. This paper describes the experience gained in meeting our first goal and discusses plans to extend the work so that it is usable, in realtime, on an operating beam line. 11 refs

  9. Frequency Invariant Beam Steering for Short-Pulse Systems with a Rotman Lens

    Directory of Open Access Journals (Sweden)

    Andreas Lambrecht

    2010-01-01

    Full Text Available A promising approach for beam steering of high-voltage transient signals for HPEM-systems (High Power Electro Magnetic is presented. The inherent capability of the Rotman lens to provide true time delays is used to develop a prototype beam steering device for an antielectronics HPEM system in the frequency range from 350 MHz to 5 GHz. Results of analytical calculations, simulations, and measurements from a hardware prototype are presented. The detailed mechanical setup of the Rotman lens is presented. Additionally the output pulses are investigated when inputting a Gaussian-like transient signal. Then time domain measures of quality (full width at half maximum, ringing, delay spread, maximum of transfer function are investigated for these output transients, and the simulation and measurement results are compared. A concluding analysis of the realizable time domain array pattern shows the radiated pulse form.

  10. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  11. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  12. Optical tractor Bessel polarized beams

    Science.gov (United States)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  13. Optical tractor Bessel polarized beams

    International Nuclear Information System (INIS)

    Mitri, F.G.; Li, R.X.; Guo, L.X.; Ding, C.Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α_0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications. - Highlights: • Optical tractor Bessel polarized beams are

  14. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  15. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    Energy Technology Data Exchange (ETDEWEB)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of the reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.

  16. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  17. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  18. Beam steering in superconducting quarter-wave resonators: An analytical approach

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2011-07-01

    Full Text Available Beam steering in superconducting quarter-wave resonators (QWRs, which is mainly caused by magnetic fields, has been pointed out in 2001 in an early work [A. Facco and V. Zviagintsev, in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, p. 1095], where an analytical formula describing it was proposed and the influence of cavity geometry was discussed. Since then, the importance of this effect was recognized and effective correction techniques have been found [P. N. Ostroumov and K. W. Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.110101]. This phenomenon was further studied in the following years, mainly with numerical methods. In this paper we intend to go back to the original approach and, using well established approximations, derive a simple analytical expression for QWR steering which includes correction methods and reproduces the data starting from a few calculable geometrical constants which characterize every cavity. This expression, of the type of the Panofski equation, can be a useful tool in the design of superconducting quarter-wave resonators and in the definition of their limits of application with different beams.

  19. Performance analysis for W-band antenna alignment using accurate mechanical beam steering

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    This article presents a study of antenna alignment impact on bit error rate for a wireless link between two directive W-band horn antennas where one of them is mechanically steered by a Stewart platform. Such a technique is applied to find the optimal alignment between transmitter and receiver...... with an accuracy of 18 both in azimuth and elevation angles. The maximum degree of misalignment which can be tolerated is also reported for different values of optical power in the generation of W-band signals by photonic up-conversion. (C) 2017 Wiley Periodicals, Inc....

  20. BeamOptics. A program for analytical beam optics

    International Nuclear Information System (INIS)

    Autin, B.; Carli, C.; D'Amico, T.; Groebner, O.; Martini, M.; Wildner, E.

    1998-01-01

    Analytical beam optics deals with the basic properties of the magnetic modules which compose particle accelerators in the same way as light optics was developed for telescopes, microscopes, or other instruments. The difference between photon and charged-particle optics lies in the nature of the field which acts upon the particle. The magnets of accelerators do not have the rotational symmetry of glass lenses and the computational problems are much more difficult. For this reason, the symbolic program BeamOptics has been written to assist the user in finding the parameters of systems whose complexity is better treated by computer than by hand. Symbolic results may be hard to interpret. Thin-lens models have been adopted because their description is algebraic and emphasis has been put on the existence of solutions, the number of solutions, and simple yet unknown special schemes. The program can also be applied to real machines with long elements. In that case, it works with numerical data but the results are accessible through continuous functions which provide the machine parameters at arbitrary positions along the reference orbit. The code is organized to be implemented in accelerator controls and has functions to correct all the first-order perturbations using a universal procedure. (orig.)

  1. Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    D. Mandal

    2016-12-01

    Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.

  2. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  3. High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Clement, Carlos; Park, Sung-Yong, E-mail: mpeps@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, 117576 (Singapore)

    2016-05-09

    A high degree of beam steering is demonstrated using an electrowetting-driven liquid prism. While prism devices have typically relied on complex and expensive laboratory setups, such as high-vacuum facilities for fabrication of dielectric layers, this work utilizes a simple dip-coating method to provide an ion gel layer as a dielectric, offering 2 or 3 orders higher specific capacitance (c ≈ 10 μF/cm{sup 2}) than that of conventional dielectrics. Analytical studies present the effects of liquid selection and arrangement on overall prism performance. For experimental demonstrations of high-performance beam steering, we not only selected two immiscible liquids of water and 1-bromonaphthalene (1-BN) oil which provide the large refractive index difference (n{sub water} = 1.33 and n{sub 1-BN} = 1.65 at λ = 532 nm) between them, but also utilized a double-stacked prism configuration which increases the number of interfaces for incoming light to be steered. At a prism apex angle of φ = 27°, we were able to achieve significantly large beam steering of up to β = 19.06°, which is the highest beam steering performance ever demonstrated using electrowetting technology.

  4. Simulation and experimental study of a remote steering system for ECRH/ECCD antenna beams

    International Nuclear Information System (INIS)

    Chirkov, A.V.; Denisov, G.G.; Kasparek, W.; Wagner, D.; Gantenbein, G.; Haug, M.; Hollmann, F.

    2001-01-01

    The present design for the ITER electron cyclotron wave launcher is based on individual circular corrugated waveguides running up to the vacuum vessel. At each waveguide end near to the plasma, a pair of movable mitre bends provides steering of the beam between 0 deg. and 40 deg. An alternative to this concept could be corrugated square or rectangular waveguides. These waveguides show imaging characteristics, which can be used for remote scanning of the beam, thus avoiding movable parts near to the plasma. To obtain a safe data base for the realisation of this concept, theoretical and experimental studies were carried out. The calculations show that a scanning range of more than ±10 deg. is possible with negligible loss into side lobes. Furthermore, concepts to improve the scanning range can be derived from the calculations. Measurements of amplitude and phase distribution in the output plane of the waveguide and in the far-field show very good agreement with theory for a beam polarisation perpendicular to the scanning direction. For beams polarised parallel to the scanning direction, where the propagation in the waveguide is determined mainly by the grooved walls, a reduced beam quality is measured, which can be attributed to imperfect machining of the grooves. The results show also, that the imaging characteristics are in principle maintained after the introduction of a pair of mitre bends with the bending plane perpendicular to the scanning plane. Finally, the application to ITER is discussed and concepts to improve the scanning range are given

  5. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  6. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Directory of Open Access Journals (Sweden)

    Wu-Jung Lee

    2017-12-01

    Full Text Available Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  7. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    Science.gov (United States)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and

  8. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  9. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    Science.gov (United States)

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-04

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

  10. 38-GHz millimeter wave beam steered fiber wireless systems for 5G indoor coverage: architectures, devices, and links

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Soares, F.M.; Tessema, N.M.; Koonen, A.M.J.

    2017-01-01

    Millimeter wave (mm-wave) beam steering is a key technique for the next generation (5G) wireless communication. The 28 and 38-GHz bands are widely considered as the candidates for 5G. In the context of indoor coverage, fiber-wireless systems with multiple simplified remote antenna sites are

  11. Advanced Integration Techniques on Broadband Millimeter-Wave Beam Steering for 5G Wireless Networks and Beyond

    NARCIS (Netherlands)

    Cao, Zizheng; Ma, Qian; Smolders, Bart; Jiao, Yuqing; Wale, Mike; Oh, Joanne; wu, hequan; Koonen, Ton

    2015-01-01

    Recently, the desired very high throughput of 5G wireless networks drives millimeter-wave (mm-wave) communication into practical applications. A phased array technique is required to increase the effective antenna aperture at mm-wave frequency. Integrated solutions of beamforming/beam steering are

  12. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  13. Improving beam set-up using an online beam optics tool

    International Nuclear Information System (INIS)

    Richter, S.; Barth, W.; Franczak, B.; Scheeler, U.; Wilms, D.

    2004-01-01

    The GSI accelerator facility [1] consists of the Universal Linear Accelerator (Unilac), the heavy ion synchrotron SIS, and the Experimental Storage Ring (ESR). Two Unilac injectors with three ion source terminals provide ion species from the lightest such as hydrogen up to uranium. The High Current Injector (HSI) for low charge state ion beams provides mostly high intense but short pulses, whereas the High Charge State Injector (HLI) supplies long pulses with a high duty factor of up to 27%. Before entering the Alvarez section of the Unilac the ion beam from the HSI is stripped in a supersonic gas jet. Up to three different ion species can be accelerated for up to five experiments in a time-sharing mode. Frequent changes of beam energy and intensity during a single beam time period may result in time consuming set-up and tuning especially of the beam transport lines. To shorten these changeover times an online optics tool (MIRKO EXPERT) had been developed. Based on online emittance measurements at well-defined locations the beam envelopes are calculated using the actual magnet settings. With this input improved calculated magnet settings can be directly sent to the magnet power supplies. The program reads profile grid measurements, such that an atomized beam alignment is established and that steering times are minimized. Experiences on this tool will be reported. At the Unilac a special focus is put on high current operation with short but intense beam pulses. Limitations like missing non-destructive beam diagnostics, insufficient longitudinal beam diagnostics, insufficient longitudinal beam matching, and influence of the hard edged model for magnetic fields will be discussed. Special attention will be put on the limits due to high current effects with bunched beams. (author)

  14. Beam-Steering Performance of Flat Luneburg Lens at 60 GHz for Future Wireless Communications

    Directory of Open Access Journals (Sweden)

    Robert Foster

    2017-01-01

    Full Text Available The beam-steering capabilities of a simplified flat Luneburg lens are reported at 60 GHz. The design of the lens is first described, using transformation electromagnetics, before discussion of the fabrication of the lens using casting of ceramic composites. The simulated beam-steering performance is shown, demonstrating that the lens, with only six layers and a highest permittivity of 12, achieves scan angles of ±30° with gains of at least 18 dBi over a bandwidth from 57 to 66 GHz. To verify the simulations and further demonstrate the broadband nature of the lens, raw high definition video was transmitted over a wireless link at scan angles up to 36°.

  15. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.

  16. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  17. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  18. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  19. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  20. Optical fiber designs for beam shaping

    Science.gov (United States)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  1. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Brown, N.A.; Babcock, R.C.; Martono, H.; Carey, D.C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab. copyright 1997 American Institute of Physics

  2. The Particle Beam Optics Interactive Computer Laboratory

    International Nuclear Information System (INIS)

    Gillespie, George H.; Hill, Barrey W.; Brown, Nathan A.; Babcock, R. Chris; Martono, Hendy; Carey, David C.

    1997-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) is an educational software concept to aid students and professionals in learning about charged particle beams and particle beam optical systems. The PBO Lab is being developed as a cross-platform application and includes four key elements. The first is a graphic user interface shell that provides for a highly interactive learning session. The second is a knowledge database containing information on electric and magnetic optics transport elements. The knowledge database provides interactive tutorials on the fundamental physics of charged particle optics and on the technology used in particle optics hardware. The third element is a graphical construction kit that provides tools for students to interactively and visually construct optical beamlines. The final element is a set of charged particle optics computational engines that compute trajectories, transport beam envelopes, fit parameters to optical constraints and carry out similar calculations for the student designed beamlines. The primary computational engine is provided by the third-order TRANSPORT code. Augmenting TRANSPORT is the multiple ray tracing program TURTLE and a first-order matrix program that includes a space charge model and support for calculating single particle trajectories in the presence of the beam space charge. This paper describes progress on the development of the PBO Lab

  3. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering

    Science.gov (United States)

    Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young

    2018-03-01

    The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.

  4. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  5. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  6. Geometrical and wave optics of paraxial beams.

    Science.gov (United States)

    Meron, M; Viccaro, P J; Lin, B

    1999-06-01

    Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.

  7. Self-tracking optical beam monitor

    International Nuclear Information System (INIS)

    Miyahara, T.; Mitsuhashi, T.

    1992-01-01

    A new optical beam monitor with a self-tracking system was constructed and tested at an undulator beam line of the Photon Factory. The monitor has a feedback system to receive a constant part of the radiation and gives a large range of linearity. The beam position is read out through a linear encoder to detect the self-tracking movement of a pair of photocathodes. The monitor except the feedback system is totally bakeable and UHV compatible and can be installed at a VUV or a soft x-ray beam line

  8. Optical beam diagnostics on PEP

    International Nuclear Information System (INIS)

    Sabersky, A.P.

    1981-02-01

    In designing the PEP optical diagnostics we have been able to build on the experience gained with SPEAR. Most of the problems at SPEAR could be traced to the optical diagnostic system being inside the tunnel. A machine shutdown is required for any maintenance or modification. This implies that in order to make such an instrument successful, a large engineering effort must be mounted to ensure 100% operation at startup. The functions that do not work at startup may never be made to work; this has happened at several machines. Experimental setups are likewise risky and time consuming. A point which has been borne out in both SPEAR and PEP is that the mechanical part of the instrument, the special vacuum chamber, the optical mounts, the alignment and adjustments, require approximately 60% of the effort and cost of the optical diagnostics. It is far better to economize on detectors and electronics than on mechanical and optical essentials

  9. Phase space treatment of optical beams

    International Nuclear Information System (INIS)

    Nemes, G.; Teodorescu, I.E.; Nemes, M.

    1984-01-01

    The lecture reveals the possibility of treating optical beams and systems using the PS concept. In the first part some well-known concepts and results of charged particle optics are applied to optical beam and systems. Attention is paid to the PSE concept as to beina a beam invariant according to Liouville's theorem. In the second part some simple optical sources, their PSE and their transforms through simple optical elements are theoretically presented. An experimental method and a device for PSE measurements are presented in the third part. In the fourth part the main problems of the linear system theory which were applied to electrical circuits in the time (or freo.uency) domain and to optical systems in the bidimensional space of spatial coordinates (or spatial frequencies) are applied to stigmatic optical systems in the bidimensional PS (spatial coordinate, angle). Some examples of applying PS concepts in optics are presented in the fifth part. The lecture is mainly based on original results some of them being previously unpublished. (authors)

  10. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    to form a linear phased array in the edge region (top-side) on a mobile phone PCB. The simulated results show that the antenna has the reflection coefficient (S11) less than -10 dB in the frequency range of 27.4 to 28.6 GHz. The proposed phased array antenna has good gain, efficiency, and 3D beam steering...... characteristics in the entire operation band, which makes it suitable for millimeter-wave 5G communications. In addition, the performance of the antenna in the vicinity of user’s hand has been investigated in this study....

  11. Individual addressing of trapped {sup 171}Yb{sup +} ion qubits using a microelectromechanical systems-based beam steering system

    Energy Technology Data Exchange (ETDEWEB)

    Crain, S.; Mount, E.; Baek, S.; Kim, J., E-mail: jungsang@duke.edu [Electrical and Computer Engineering Department, Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708 (United States)

    2014-11-03

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple {sup 171}Yb{sup +} qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10{sup −4}), and switching speed comparable to typical single qubit gate times (<2 μs)

  12. Design of optical axis jitter control system for multi beam lasers based on FPGA

    Science.gov (United States)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  13. Annular beam shaping and optical trepanning

    Science.gov (United States)

    Zeng, Danyong

    Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an x-y galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer

  14. Beam splitter phase shifts: Wave optics approach

    Science.gov (United States)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  15. Beam profile measurements using nonimaging gamma optics

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Lam, R.; Reed, L.; Yang, X.F.; Spencer, J.

    1995-01-01

    High energy photons produced from bremsstrahlung foils, Compton scattering or beamstrahlung from high energy e + e - collisions can be used to measure beam profiles using nonimaging optics. We describe the method and its limitations (resolution, backgrounds etc.), as well as the apparatus required to implement it. Data from a low energy test run is described as well as other possible applications, such as a 250+250 GeV linear collider and possible experiments with existing beams. (orig.)

  16. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Lutenberg, Ariel; Perez-Quintian, Fernando; Rebollo, Maria A.

    2008-01-01

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  17. JET neutral beam duct Optical Interlock

    Energy Technology Data Exchange (ETDEWEB)

    Ash, A.D.; Jones, T.T.C.; Surrey, E.; Ćirić, D.; Hall, S.I.; Young, D.; Afzal, M.; Hackett, L.; Day, I.E.; King, R.

    2015-10-15

    Highlights: • Optical Interlocks were installed on the JET NBI system as part of the EP2 upgrade. • The system protects the JET tokamak and NBI systems from thermal load damage. • Balmer-α beam emission is used to monitor the neutral beam-line pressure. • We demonstrate an improved trip delay of 2 ms compared to 50 ms before EP2. - Abstract: The JET Neutral Beam Injection (NBI) system is the most powerful neutral beam plasma heating system currently operating. Optical Interlocks were installed on the beam lines in 2011 for the JET Enhancement Project 2 (EP2), when the heating power was increased from 23 MW to 34 MW. JET NBI has two beam lines. Each has eight positive ion injectors operating in deuterium at 80 kV–125 kV (accelerator voltage) and up to 65 A (beam current). Heating power is delivered through two ducts where the central power density can be more than 100 MW/m{sup 2}. In order to deliver this safely, the beam line pressure should be below 2 × 10{sup −5} mbar otherwise the power load on the duct from the re-ionised fraction of the beam is excessive. The new Optical Interlock monitors the duct pressure by measuring the Balmer-α beam emission (656 nm). This is proportional to the instantaneous beam flux and the duct pressure. Light is collected from a diagnostic window and focused into 1-mm diameter fibres. The Doppler shifted signal is selected using an angle-tuned interference filter. The light is measured by a photo-multiplier module with a logarithmic amplifier. The interlock activation time of 2 ms is sufficient to protect the system from a fully re-ionised beam—a significant improvement on the previous interlock. The dynamic range is sufficient to see bremsstrahlung emission from JET plasma and not saturate during plasma disruptions. For high neutron flux operations the optical fibres within the biological shield can be annealed to 350 °C. A self-test is possible by illuminating the diagnostic window with a test lamp and measuring

  18. Quantum optics of lossy asymmetric beam splitters

    NARCIS (Netherlands)

    Uppu, Ravitej; Wolterink, Tom; Tentrup, Tristan Bernhard Horst; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering

  19. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    Mc

    2013-04-01

    Full Text Available stream_source_info McLaren1_2013.pdf.txt stream_content_type text/plain stream_size 2236 Content-Encoding UTF-8 stream_name McLaren1_2013.pdf.txt Content-Type text/plain; charset=UTF-8 JT2A.34.pdf Optics in the Life... Sciences Congress Technical Digest © 2013 The Optical Society (OSA) Optical trapping with Super-Gaussian beams Melanie McLaren, Thulile Khanyile, Patience Mthunzi and Andrew Forbes* National Laser Centre, Council for Scientific and Industrial Research...

  20. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  1. Beam optics on the Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Colman, R.A.; Allan, G.L.; Legge, G.J.F.

    1985-01-01

    This review paper summarises results of ion optics development work conducted on the Melbourne Proton Microprobe and the associated Pelletron accelerator. The properties of a field ionization ion source have been investigated with the aim of replacing the existing R.F. ion source in the accelerator in order to obtain a brighter beam for the microprobe. The electrostatic emitter lens in the terminal of the accelerator has also been investigated with the aim of improving the focus of the accelerated beam. Finally, the aberrations of the probe forming lens system have been studied and it is shown how some of these may be corrected with an octupole lens

  2. Method of achieving ultra-wideband true-time-delay beam steering for active electronically scanned arrays

    Energy Technology Data Exchange (ETDEWEB)

    Loui, Hung; Brock, Billy C.

    2016-10-25

    The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.

  3. Beam steering application for W-band data links with moving targets in 5G wireless networks

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    to this problem, RoF (Radio-over-Fiber) architectures have been proposed as low-latency, cost-effective candidates. Two elements are introduced to extend the RoF approach. First, the carrier frequency is raised into the W-band (75–110 GHz) to increase the available capacity. Second, a mechanical beam......-steering solution based on a Stewart platform is adopted for the transmitter antenna to allow it to follow a moving receiver along a known path, thereby enhancing the coverage area. The performance of a system transmitting a 2.5 Gbit/s non-return-to-zero signal generated by photonic up-conversion over a wireless...

  4. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  5. SLC polarized beam source electron optics design

    International Nuclear Information System (INIS)

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2 1/2-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs

  6. Interferometric optical fiber microcantilever beam biosensor

    Science.gov (United States)

    Wavering, Thomas A.; Meller, Scott A.; Evans, Mishell K.; Pennington, Charles; Jones, Mark E.; VanTassell, Roger; Murphy, Kent A.; Velander, William H.; Valdes, E.

    2000-12-01

    With the proliferation of biological weapons, the outbreak of food poisoning occurrences, and the spread of antibiotic resistant strains of pathogenic bacteria, the demand has arisen for portable systems capable of rapid, specific, and quantitative target detection. The ability to detect minute quantities of targets will provide the means to quickly assess a health hazardous situation so that the appropriate response can be orchestrated. Conventional test results generally require hours or even several days to be reported, and there is no change for real-time feedback. An interferometric optical fiber microcantilever beam biosensor has successfully demonstrated real time detection of target molecules. The microcantilever biosensor effectively combines advanced technology from silicon micromachining, optical fiber sensor, and biochemistry to create a novel detection device. This approach utilizes affinity coatings on micromachiend cantilever beams to attract target molecules. The presence of the target molecule causes bending in the cantilever beam, which is monitored using an optical displacement system. Dose-response trials have shown measured responses at nanogram/ml concentrations of target molecules. Sensitivity is expected to extend from the nanogram to the picogram range of total captured mass as the microcantilever sensors are optimized.

  7. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  8. Experimental temporal quantum steering

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, Antonín; Lemr, K.; Miranowicz, A.; Nori, F.

    2016-01-01

    Roč. 6, Nov (2016), 1-8, č. článku 38076. ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : temporal quantum steering * EPR steering Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016

  9. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  10. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  11. Analogue computer display of accelerator beam optics

    International Nuclear Information System (INIS)

    Brand, K.

    1984-01-01

    Analogue computers have been used years ago by several authors for the design of magnetic beam handling systems. At Bochum a small analogue/hybrid computer was combined with a particular analogue expansion and logic control unit for beam transport work. This apparatus was very successful in the design and setup of the beam handling system of the tandem accelerator. The center of the stripper canal was the object point for the calculations, instead of the high energy acceleration tube a drift length was inserted into the program neglecting the weak focusing action of the tube. In the course of the installation of a second injector for heavy ions it became necessary to do better calculations. A simple method was found to represent accelerating sections on the computer and a particular way to simulate thin lenses was adopted. The analogue computer system proved its usefulness in the design and in studies of the characteristics of different accelerator installations over many years. The results of the calculations are in very good agreement with real accelerator data. The apparatus is the ideal tool to demonstrate beam optics to students and accelerator operators since the effect of a change of any of the parameters is immediately visible on the oscilloscope

  12. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    Science.gov (United States)

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  13. Rovibrational optical pumping of a molecular beam

    Science.gov (United States)

    Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.

    2018-03-01

    The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.

  14. High-order beam optics - an overview

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1989-01-01

    Beam-transport codes have been around for as long as thirty years and high order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. The author will describe some of the main design tools available today, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs., 1 tab

  15. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    Science.gov (United States)

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  16. Canonical formalism for coupled beam optics

    International Nuclear Information System (INIS)

    Kheifets, S.A.

    1989-09-01

    Beam optics of a lattice with an inter-plane coupling is treated using canonical Hamiltonian formalism. The method developed is equally applicable both to a circular (periodic) machine and to an open transport line. A solution of the equation of a particle motion (and correspondingly transfer matrix between two arbitrary points of the lattice) are described in terms of two amplitude functions (and their derivatives and corresponding phases of oscillations) and four coupling functions, defined by a solution of the system of the first-order nonlinear differential equations derived in the paper. Thus total number of independent parameters is equal to ten. 8 refs

  17. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  18. Multipass Steering: A Reference Implementation

    Science.gov (United States)

    Hennessey, Michael; Tiefenback, Michael

    2015-10-01

    We introduce a reference implementation of a protocol to compute corrections that bring all beams in one of the CEBAF linear accelerators (linac) to axis, including, with a larger tolerance, the lowest energy pass using measured beam trajectory data. This method relies on linear optics as representation of the system; we treat beamline perturbations as magnetic field errors localized to regions between cryomodules, providing the same transverse momentum kick to each beam. We produce a vector of measured beam position data with which we left-multiply the pseudo-inverse of a coefficient array, A, that describes the transport of the beam through the linac using parameters that include the magnetic offsets of the quadrupole magnets, the instrumental offsets of the BPMs, and the beam initial conditions. This process is repeated using a reduced array to produce values that can be applied to the available correcting magnets and beam initial conditions. We show that this method is effective in steering the beam to a straight axis along the linac by using our values in elegant, the accelerator simulation program, on a model of the linac in question. The algorithms in this reference implementation provide a tool for systematic diagnosis and cataloging of perturbations in the beam line. Supported by Jefferson Lab, Old Dominion University, NSF, DOE.

  19. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed; Chen, Pai Yen; Guenneau, Sebastien; Bagci, Hakan

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed

  20. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  1. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  2. Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer

    Science.gov (United States)

    Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.

  3. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  4. Method to evaluate steering and alignment algorithms for controlling emittance growth

    International Nuclear Information System (INIS)

    Adolphsen, C.; Raubenheimer, T.

    1993-04-01

    Future linear colliders will likely use sophisticated beam-based alignment and/or steering algorithms to control the growth of the beam emittance in the linac. In this paper, a mathematical framework is presented which simplifies the evaluation of the effectiveness of these algorithms. As an application, a quad alignment that uses beam data taken with the nominal linac optics, and with a scaled optics, is evaluated in terms of the dispersive emittance growth remaining after alignment

  5. Dynamics of optical beams with finite beam width

    International Nuclear Information System (INIS)

    Deng Ximing

    1993-01-01

    A postulation of the pseudo-polarization energy was introduced to the electromagnetic field in the free space. The angular momentum, velocity of the energy flow, static mass density, diffracted divergence, generalization of the principle of Fermat etc. of the electromagnetic field can be described satisfactorily by using this postulation. In the authors research on the transmission of optical beams for more than ten years, the movement of the electromagnetic field has been divided to an orbital motion and an intrinsic motion, and these motions have been described by only a single cartesian coordinate and its first-order partial differential. In this paper, on the basis of past results, the author uses the energy density of the field to replace the single cartesian coordinate component to make the description more precise and complete. On the other hand, as a basic postulation, a pseudo-polarization energy density is introduced to make the description and analysis of the field movement more abstract, deeper, and clearer. 3 refs

  6. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R. [Southwestern Institute of Physics, Chengdu, 610041 (China)

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  7. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.

    Science.gov (United States)

    Zou, G Q; Lei, G J; Cao, J Y; Duan, X R

    2012-07-01

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  8. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  9. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    International Nuclear Information System (INIS)

    Pavlovic, M.

    1995-12-01

    Ion optics considerations on the granty-like beam delivery system for light-ion cancer therapy are presented. A low-angle active beam scanning in two directions is included in the preliminary gantry design. The optical properties of several gantry modifications are discussed. (orig.)

  10. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    charge is increased, the area where destructive interference at the centre increases thereby enlarging the light ring. The propagation along the optical axis follows a conical ray of light where the concentration of high intensities is maintained at the outskirts of the conical beam where constructive...... with an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis. Unlike LG...... beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  11. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  12. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  13. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  14. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...

  15. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  16. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P. [Image Processing Systems Institute, 151 Molodogvardeiskaya St., 443001 Samara (Russian Federation); Department of Technical cybernetics, Samara State Aerospace University, Samara 443086 (Russian Federation)

    2016-07-14

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  17. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Pierluigi, E-mail: pierluigi.veltri@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy); INFN—Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, Padova (Italy)

    2016-06-15

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment.

  18. The influence of grid positioning on the beam optics in the neutral beam injectors for ITER

    International Nuclear Information System (INIS)

    Veltri, Pierluigi; Agostinetti, Piero; Marcuzzi, Diego; Sartori, Emanuele; Serianni, Gianluigi

    2016-01-01

    Neutral beam injectors are routinely used to increase the ion temperature in magnetically confined plasmas. Typically, the beam is produced by neutralizing a bundle of hundreds of ion beamlets, energized in a multi-grid multi-stage accelerator. Precise aiming of each beamlet is required in order to focus the full beam to the plasma, avoiding any interception with beamline surfaces and with the beam duct. This paper describes the effects of grid in-plane and out-of-plane displacements (mispositioning, thermal expansion, grid tilting, etc…) in the case of the MITICA electrostatic accelerator, which is the full scale prototype of the ITER heating neutral beam injector. Various simulations have been carried out with the OPERA 3D code, by self-consistently simulating the beam charged particles travelling in an externally applied electric and magnetic field. The accelerator grids act like a series of electrostatic lenses, and produce a net deflection of the particles when one or more grids are offset. The numerical simulations were used to evaluate the “steering constant” of each grid and also showed that the linear superposition of effects was applicable, multiple causes of mispositioning are combined and used to quantify the overall effect in terms of beam misalignment

  19. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  20. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  1. Analysis of contour images using optics of spiral beams

    Science.gov (United States)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  2. More twists on optical twisters: of helico-conical beams, superpositions and combinations

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    We have previously demonstrated so-called optical twisters that can steer microparticles along spiral trajectories during optical micromanipulation. These optical twisters may be created using Fourier holograms ofthe helicoconical form, exp[ i l 8 (K- r/r0)], which is characterized by non...

  3. Review on structured optical field generated from array beams

    Science.gov (United States)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  4. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  5. Continuous all-optical deceleration of molecular beams

    Science.gov (United States)

    Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley

    2014-05-01

    A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.

  6. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.

  7. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... written waveguides and in an injection molded polymer chip with grooves for optical fibers. (C) 2016 The Japan Society of Applied Physics....

  8. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  9. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.

    Science.gov (United States)

    Choudhry, Netan; Golding, John; Manry, Matthew W; Rao, Rajesh C

    2016-06-01

    To describe the spectral-domain optical coherence tomography (SD OCT) features of peripheral retinal findings using an ultra-widefield (UWF) steering technique to image the retinal periphery. Observational study. A total of 68 patients (68 eyes) with 19 peripheral retinal features. Spectral-domain OCT-based structural features. Nineteen peripheral retinal features, including vortex vein, congenital hypertrophy of the retinal pigment epithelium, pars plana, ora serrata pearl, typical cystoid degeneration (TCD), cystic retinal tuft, meridional fold, lattice and cobblestone degeneration, retinal hole, retinal tear, rhegmatogenous retinal detachment, typical degenerative senile retinoschisis, peripheral laser coagulation scars, ora tooth, cryopexy scars (retinal tear and treated retinoblastoma scar), bone spicules, white without pressure, and peripheral drusen, were identified by peripheral clinical examination. Near-infrared scanning laser ophthalmoscopy images and SD OCT of these entities were registered to UWF color photographs. Spectral-domain OCT resolved structural features of all peripheral findings. Dilated hyporeflective tubular structures within the choroid were observed in the vortex vein. Loss of retinal lamination, neural retinal attenuation, retinal pigment epithelium loss, or hypertrophy was seen in several entities, including congenital hypertrophy of the retinal pigment epithelium, ora serrata pearl, TCD, cystic retinal tuft, meridional fold, lattice, and cobblestone degenerations. Hyporeflective intraretinal spaces, indicating cystoid or schitic fluid, were seen in ora serrata pearl, ora tooth, TCD, cystic retinal tuft, meridional fold, retinal hole, and typical degenerative senile retinoschisis. The vitreoretinal interface, which often consisted of lamellae-like structures of the condensed cortical vitreous near or adherent to the neural retina, appeared clearly in most peripheral findings, confirming its association with many low-risk and vision

  10. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  11. Quantum steering in cascaded four-wave mixing processes.

    Science.gov (United States)

    Wang, Li; Lv, Shuchao; Jing, Jietai

    2017-07-24

    Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

  12. Steering handbook

    CERN Document Server

    Pfeffer, Peter

    2017-01-01

    This edited volume presents basic principles as well as advanced concepts of the computational modeling of steering systems. Moreover, the book includes the components and functionalities of modern steering system, which are presented comprehensively and in a practical way. The book is written by more than 15 leading experts from the automotive industry and its components suppliers. The target audience primarily comprises practicing engineers, developers, researchers as well as graduate students who want to specialize in this field.

  13. Beam Optics Measurements Through Turn by Turn Beam Position Data in the SLS

    CERN Document Server

    Zisopoulos, P; Streun, A; Ziemann, v

    2013-01-01

    Refined Fourier analysis of turn-by-turn (TBT) transverse position data measurements can be used for determining several beam properties of a ring, such as transverse tunes, optics functions, phases, chromatic properties and coupling. In particular, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm is used to analyse TBT data from the Swiss Light Source (SLS) storage ring in order to estimate on and off-momentum beam characteristics. Of particular interest is the potential of using the full position information within one turn in order to measure beam optics properties.

  14. Engineering of automated assembly of beam-shaping optics

    Science.gov (United States)

    Haag, Sebastian; Sinhoff, Volker; Müller, Tobias; Brecher, Christian

    2014-03-01

    Beam-shaping is essential for any kind of laser application. Assembly technologies for beam-shaping subassemblies are subject to intense research and development activities and their technical feasibility has been proven in recent years while economic viability requires more efficient engineering tools for process planning and production ramp up of complex assembly tasks for micro-optical systems. The work presented in this paper aims for significant reduction of process development and production ramp up times for the automated assembly of micro-optical subassemblies for beam-collimation and beam-tilting. The approach proposed bridges the gap between the product development phase and the realization of automation control through integration of established software tools such as optics simulation and CAD modeling as well as through introduction of novel software tools and methods to efficiently describe active alignment strategies. The focus of the paper is put on the methodological approach regarding the engineering of assembly processes for beam-shaping micro-optics and the formal representation of assembly objectives similar to representation in mechanical assemblies. Main topic of the paper is the engineering methodology for active alignment processes based on the classification of optical functions for beam-shaping optics and corresponding standardized measurement setups including adaptable alignment algorithms. The concepts are applied to industrial use-cases: (1) integrated collimation module for fast- and slow-axis and (2) beam-tilting subassembly consisting of a fast-axis collimator and micro-lens array. The paper concludes with an overview of current limitations as well as an outlook on the next development steps considering adhesive bonding processes.

  15. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  16. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  17. Optics of beam recirculation in the CEBAF [Continuous Electron Beam Accelerator Facility] cw linac

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1986-01-01

    The use of recirculation in linear accelerator designs requires beam transport systems that will not degrade beam quality. We present a design for the transport lines to be used during recirculation in the CEBAF accelerator. These beam lines are designed to avoid beam degradation through synchrotron radiation excitation or betatron motion mismatch, are insensitive to errors commonly encountered during beam transport, and are optimized for electron beams with energies of 0.5 to 6.0 GeV. Optically, they are linearly isochronous second order achromats based on a ''missing magnet'' FODO structure. We give lattice specifications for, and results of analytic estimates and numerical simulations of the performance of, the beam transport system

  18. Optical two-beam trap in a polymer microfluidic chip

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Catak, Darmin; Marie, Rodolphe

    2016-01-01

    An optical two-beam trap, composed from two counter propagating laser beams, is an interesting setup due to the ability of the system to trap, hold, and stretch soft biological objects like vesicles or single cells. Because of this functionality, the system was also named "the optical stretcher...... wish to trap, thereby preventing too many cells to flow below the line of focus of the two counter propagating laser beams that are positioned perpendicular to the direction of flow of the cells. Results will be compared to that from other designs from previous work in the group......." by Jochen Guck, Josep Käs and co-workers some 15 years ago. In a favorable setup, the two opposing laser beams meet with equal intensities in the middle of a fluidic channel in which cells may flow past, be trapped, stretched, and allowed to move on, giving the promise of a high throughput device. Yet...

  19. Electron beams, lenses, and optics. Volume 2

    International Nuclear Information System (INIS)

    El-Kareh, A.B.; El-Kareh, J.C.J.

    1970-01-01

    This volume presents a systematic coverage of aberrations. It analyzes the geometrical aberrations and treats the spherical and chromatic aberrations in great detail. The coefficients of spherical and chromatic aberration have been computed for a series of electrostatic and magnetic lenses and are listed in table form. The book also covers space charge and its effect on highly focused electron beams

  20. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  1. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  2. Electron-Beam Produced Air Plasma: Optical and Electrical Diagnostics

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    High energy electron impact excitation is used to stimulate optical emissions that quantify the measurement of electron beam current. A 100 keV 10-ma electron beam source is used to produce air plasma in a test cell at a pressure between 1 mTorr and 760 Torr. Optical emissions originating from the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm are observed. Details on calibration using signals from an isolated transmission window and a Faraday plate are discussed. Results using this technique and other electrical signal are presented.

  3. Applications of capillary optics for focused ion beams

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2014-01-01

    This article introduces applications of focused ion beams (∼1 μm) with glass capillaries systems. A first report on the interaction between ion beams and glass capillaries was published in 1996. The guiding capabilities of glass capillaries were discovered due to ion reflection from inner wall of glass surfaces. Meanwhile, the similar optics have been already realized in focusing X-rays using glass capillaries. The basic technology of X-rays optics using glass capillaries had been developed in the 1980's and 1900's. Also, low energy atom scattering spectroscopy for insulator material analysis will be mentioned. (author)

  4. A magic mirror - quantum applications of the optical beam splitter

    International Nuclear Information System (INIS)

    Bachor, H.A.

    2000-01-01

    Mirrors are some of the simplest optical components, and their use in optical imaging is well known. They have many other applications, such as the control of laser beams or in optical communication. Indeed they can be found in most optical instruments. It is the partially reflecting mirror, better known as the beam splitter, that is of particular interest to us. It lies at the centre of a number of recent scientific discoveries and technical developments that go beyond the limits of classical optics and make use of the quantum properties of light. In this area Australian and New Zealand researchers have made major contributions in the last two decades. In this paper, the author discusses how a mirror modifies the light itself and the information that can be sent by a beam, and summarise the recent scientific achievements. It combines the idea of photons, where the idea of quantisation is immediately obvious, with the idea of modulating continuous laser beams, which is practical and similar to the engineering description of radio communication

  5. Optical guiding and beam bending in free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations

  6. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  7. Multimode laser beam analyzer instrument using electrically programmable optics.

    Science.gov (United States)

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  8. Overnight non-contact continuous vital signs monitoring using an intelligent automatic beam-steering Doppler sensor at 2.4 GHz.

    Science.gov (United States)

    Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C

    2017-07-01

    Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.

  9. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  10. Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.

  11. The beam steering system of the cyclotron U-120K; Sistema razvodki puchkov tsiklotrona U-120K

    Energy Technology Data Exchange (ETDEWEB)

    Borkova, A; Ivan, J; Trejbal, Z; Dmitrievskij, V P; Pavlov, D V; Chesnov, A F; Chesnova, S I

    1991-12-31

    The calculation of the beam transport system of the isochronous cyclotron U-120K is presented. This system realizes the beam transport with given parameters to six distant targets specializing in the production of radioactive isotopes, the biomedicine investigation, the experimental nuclear physics. At chosen parameters of lenses and bending magnets the beam size is {<=} 1x1 cm and the energy resolution in the monoenergetic line is less than 0.1%. 4 refs.; 6 figs.; 1 tab.

  12. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  13. X-ray pencil beam facility for optics characterization

    Science.gov (United States)

    Krumrey, Michael; Cibik, Levent; Müller, Peter; Bavdaz, Marcos; Wille, Eric; Ackermann, Marcelo; Collon, Maximilien J.

    2010-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has used synchrotron radiation for the characterization of optics and detectors for astrophysical X-ray telescopes for more than 20 years. At a dedicated beamline at BESSY II, a monochromatic pencil beam is used by ESA and cosine Research since the end of 2005 for the characterization of novel silicon pore optics, currently under development for the International X-ray Observatory (IXO). At this beamline, a photon energy of 2.8 keV is selected by a Si channel-cut monochromator. Two apertures at distances of 12.2 m and 30.5 m from the dipole source form a pencil beam with a typical diameter of 100 μm and a divergence below 1". The optics to be investigated is placed in a vacuum chamber on a hexapod, the angular positioning is controlled by means of autocollimators to below 1". The reflected beam is registered at 5 m distance from the optics with a CCD-based camera system. This contribution presents design and performance of the upgrade of this beamline to cope with the updated design for IXO. The distance between optics and detector can now be 20 m. For double reflection from an X-ray Optical Unit (XOU) and incidence angles up to 1.4°, this corresponds to a vertical translation of the camera by 2 m. To achieve high reflectance at this angle even with uncoated silicon, a lower photon energy of 1 keV is available from a pair of W/B4C multilayers. For coated optics, a high energy option can provide a pencil beam of 7.6 keV radiation.

  14. Micromachining structured optical fibers using focused ion beam milling

    NARCIS (Netherlands)

    Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S.

    2007-01-01

    A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber. © 2007 Optical Society of America.

  15. Optical components of adaptive systems for improving laser beam quality

    Science.gov (United States)

    Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.

    2008-10-01

    The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.

  16. Extending electro-optic detection to ultrashort electron beams

    Directory of Open Access Journals (Sweden)

    M. H. Helle

    2012-05-01

    Full Text Available We propose a technique to extend noninvasive electro-optic detection of relativistic electron beams to bunch lengths of ≃10  fs. This is made possible by detecting the frequency mixing that occurs between the optical probe and the space charge fields of the beam, while simultaneously time resolving the resulting mixed frequency signal. The necessary formalism to describe this technique is developed and numerical solutions for various possible experimental conditions are made. These solutions are then compared to simulation results for consistency. Finally, the method to reconstruct the original bunch profile from the proposed diagnostic is discussed and an example showing a 15 fs test beam reconstructed to within an accuracy of 15% is given.

  17. A simple multipurpose double-beam optical image analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, A., E-mail: adam.popowicz@polsl.pl [Institute of Automatic Control, Silesian University of Technology, Akademicka Str. 16, 44-100 Gliwice (Poland); Blachowicz, T. [Institute of Physics - Center for Science and Education, Silesian University of Technology, S. Konarskiego 22B Str., 44-100 Gliwice (Poland)

    2016-07-15

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing can be carried out. The optical system is straightforward and easily implementable as it consists of only three lenses and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located at different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  18. In vivo endoscopic multi-beam optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex [Deptartment of Medical Biophysics, University of Toronto, Toronto (Canada); Lee, Kenneth K C; Yang, Victor X D [Ontario Cancer Institute/University Health Network, Toronto (Canada)], E-mail: standish@ee.ryerson.ca

    2010-02-07

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 {mu}m full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  19. In vivo endoscopic multi-beam optical coherence tomography

    International Nuclear Information System (INIS)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex; Lee, Kenneth K C; Yang, Victor X D

    2010-01-01

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 μm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  20. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  1. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA

    International Nuclear Information System (INIS)

    Zander, Sven

    2013-10-01

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  2. Optical trapping and manipulation of Mie particles with Airy beam

    International Nuclear Information System (INIS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-01-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences. (paper)

  3. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  4. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  5. Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.

    Science.gov (United States)

    Mathew, Jose V; Bhattacharjee, Sudeep

    2011-01-01

    Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.

  6. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  7. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  8. An embeddable optical strain gauge based on a buckled beam.

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  9. An embeddable optical strain gauge based on a buckled beam

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  10. Method to render second order beam optics programs symplectic

    International Nuclear Information System (INIS)

    Douglas, D.; Servranckx, R.V.

    1984-10-01

    We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs

  11. Optical and mechanical design of beam-target coupling sensor

    International Nuclear Information System (INIS)

    Wang Liquan; Li Tian'en; Feng Bin; Xiang Yong; Li Keyu; Zhong Wei; Liu Guodong

    2012-01-01

    A sensor based on conjugate principle has been designed for matching the light beams and the target in inertial confinement fusion. It can avoid the direct illumination of the simulation collimating light on the target under test in targeting processes. This paper introduces the optical and mechanical design of the sensor, according to its design functions and working principle. The resolution of the optical images obtained in experiments reaches 6 μm and the beam-target matching accuracy is 8.8 μm. The sensor has been successfully applied to the Shenguang-Ⅲ facility. Statistical analyses of the four-hole CH target images derived with pinhole camera shows that the targeting accuracy of the facility is better than 25 μm, satisfying the design requirements. (authors)

  12. Optical forces in a non-diffracting vortex beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2013-01-01

    Roč. 126, September (2013), s. 78-83 ISSN 0022-4073 R&D Projects: GA ČR GPP205/12/P868; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : dielectric microparticle * non-diffracting vortex beam Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.288, year: 2013

  13. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    Bambade, P.S.

    1987-06-01

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  14. HIE-ISOLDE HEBT beam optics studies with MADX

    CERN Document Server

    Parfenova, A; Fraser, M A; Goddard, B; Martino, M; Voulot, D; CERN. Geneva. ATS Department

    2014-01-01

    Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1, 2] have been carried out in MADX [3], and benchmarked against TRACE 3-D results [4, 5, 6]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. Errors of different types have been considered and their effects on the machine have been corrected [7]. As a result, the tolerances for the various error contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical apertures were validated. The baseline layout contains three identical branch lines as presented in Fig. 1. The detailed beam optics study with MADX was carried out for the beam line XT01. The large energy range from 0.3 to 10 MeV/u requested for the experiments sets a number of chal...

  15. Optical force exerted on a Rayleigh particle by a vector arbitrary-order Bessel beam

    International Nuclear Information System (INIS)

    Yang, Ruiping; Li, Renxian

    2016-01-01

    An analytical description of optical force on a Rayleigh particle by a vector Bessel beam is investigated. Linearly, radially, azimuthally, and circularly polarized Bessel beams are considered. The radial, azimuthal, and axial forces by a vector Bessel beam are numerically simulated. The effect of polarization, order of beams, and half-cone angle to the optical force are mainly discussed. For Bessel beams of larger half-cone angle, the non-paraxiality of beams plays an important role in optical forces. Numerical calculations show that optical forces, especially azimuthal forces, are very sensitive to the polarization of beams. - Highlights: • Optical force exerted on a Rayleigh particle by a vector Bessel beam is analytically derived. • Radial, azimuthal, and axial forces are numerically analyzed. • The effect of polarization, order of beam, and non-paraxiality is analyzed.

  16. Fiber-optic coupling based on nonimaging expanded-beam optics.

    Science.gov (United States)

    Moslehi, B; Ng, J; Kasimoff, I; Jannson, T

    1989-12-01

    We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments.

  17. Improving fiber-optic laser beam delivery by incorporating GRADIUM optics

    International Nuclear Information System (INIS)

    Hunter, B.V.; Leong, K.H.

    1997-01-01

    The performance of a fiber-optic laser beam delivery system strongly depends on the fiber and the optics used to image the fiber face on the workpiece. We have compared off-the-shelf homogenous (BK7) and GRADIUM (axial-gradient) singlets to determine what improvement the GRADIUM offers in practice to the typical laser user. The realized benefit for this application, although significant, is much smaller than would be realized by a conventional imaging application. The figure of merit for laser-based materials processing is the 86% energy-enclosure radius, which is not directly supported by commerical ray-tracing software. Therefore empirical rules of thumb are presented to understand when GRADIUM (or any other well-corrected optics) will yield meaningful improvement to the beam delivery system. copyright 1997 Optical Society of America

  18. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  19. Optical breakdown of helium in Bessel laser radiation beams

    International Nuclear Information System (INIS)

    Andreev, N E; Pleshanov, I V; Margolin, L Ya; Pyatnitskii, Lev N

    1998-01-01

    Numerical simulation is used to investigate the dynamics of formation of a helium plasma in Bessel beams, shaped by an axicon and a phase converter from a laser radiation pulse with Gaussian temporal and radial intensity profiles. The beam intensities at the breakdown threshold are determined as a function of the pulse duration for various radial field distributions in a beam characterised by Bessel functions of order m (m = 0 - 5). It is shown that in the investigated range of parameters the threshold intensity is independent of m. The temporal and spatial evolution of the resultant plasma, and the dependence of the plasma characteristics on the pulse parameters are considered. Conditions are found for the formation of tubular plasma channels in beams of orders m≥1. The adopted model of the optical breakdown of helium is shown to be satisfactory because of a good agreement between the results of calculations of the moment of breakdown in a zeroth-order Bessel beam and experimental results. (interaction of laser radiation with matter. laser plasma)

  20. Novel optics for conditioning neutron beams. II Focussing neutrons with a 'lobster-eye' optic

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Griffin, S.L.; Klein, A.G.; Nugent, K.A.

    1998-01-01

    Square-channel capillary, or 'Lobster-eye' arrays have been shown to be the optimum geometry for array optics. This configuration leads to a novel class of conditioning devices for X-ray and neutron beams. We present the first results of the focussing of neutrons with a Pb glass square-channel array. (authors)

  1. Laser beam soldering of micro-optical components

    Science.gov (United States)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  2. Irradiation Effects of Electron Beam on Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of); Choi, Hong Gu; Oh, Kyung Hwan [Yonsei University, Seoul (Korea, Republic of); Cho, Ho Jin [Nucron Co. Ltd., Seoul (Korea, Republic of)

    2009-10-15

    The surveillance or monitoring systems used in space station, nuclear power plant and nuclear waste repository, are often equipped with optical fibers to remotely locating expensive camera systems so as to protect them from direct irradiation. Especially in nuclear power plant and nuclear waste repository, irradiation by gamma-ray and beta-ray are most concerned. The effective life-time of such surveillance system may depend on the soundness of the optical fiber because it is the component to be exposed the high intensity of radiation field by purpose. Though the degradation of mechanical properties such as hardness and elasticity may occur but the degradation of the optical property such as spectral transmittance is the most possible cause of the effective life-time limitation. Generally 30 % reduction of light signal transmittance is considered as the life-time threshold point of such optical systems. In this paper, we studied irradiation effects on spectral transparency of various commonly-used optical fibers with high energy electron beam to conveniently simulate the both gamma-ray and beta-ray irradiation situation.

  3. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna

    International Nuclear Information System (INIS)

    Pacheco-Peña, V.; Torres, V.; Orazbayev, B.; Beruete, M.; Sorolla, M.; Navarro-Cía, M.; Engheta, N.

    2014-01-01

    An all-metallic steerable beam antenna composed of an ε-near-zero (ENZ) metamaterial lens is experimentally demonstrated at 144 GHz (λ 0  = 2.083 mm). The ENZ lens is realized by an array of narrow hollow rectangular waveguides working just near and above the cut-off of the TE 10 mode. The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and compared with experimental results demonstrating good agreement. Next, a flange-ended WR-6.5 waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain scan loss below 3 dB is achieved for angles up to ±15°

  4. Beam Optics for FCC-ee Collider Ring

    CERN Document Server

    Oide, Katsunobu; Aumon, S; Benedikt, M; Blondel, A; Bogomyagkov, A V; Boscolo, M; Burkhardt, H; Cai, Y; Doblhammer, A; Haerer, B; Holzer, B; Koop, I; Koratzinos, M; Jowett, John M; Levichev, E B; Medina, L; Ohmi, K; Papaphilippou, Y; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Sullivan, M; Wenninger, J; Wienands, U; Zhou, D; Zimmermann, F

    2017-01-01

    A beam optics scheme has been designed [ 1 ] for the Future Circular Collider- e + e − (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [ 2 ] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So- called “tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [ 3 ] as clos...

  5. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  6. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  7. Applications for a general purpose optical beam propagation code

    International Nuclear Information System (INIS)

    Munroe, J.L.; Wallace, N.W.

    1987-01-01

    Real world beam propagation and diffraction problems can rarely be solved by the analytical expressions commonly found in optics and lasers textbooks. These equations are typically valid only for paraxial geometries, for specific boundary conditions (e.g., infinite apertures), or for special assumptions (e.g., at focus). Numerical techniques must be used to solve the equations for the general case. LOTS, a public domain numerical beam propagation software package developed for this purpose, is a widely used and proven tool. The graphical presentation of results combined with a well designed command language make LOTS particularly user-friendly, and the recent implementation of LOTS on the IBM PC/XT family of desktop computes will make this capability available to a much larger group of users. This paper surveys several applications demonstrating the need for such a capability

  8. Beam Optics Analysis - An Advanced 3D Trajectory Code

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented

  9. MIA analysis of FPGA BPMs and beam optics at APS

    Science.gov (United States)

    Ji, Da-Heng; Wang, Chun-Xi; Qin, Qing

    2012-11-01

    Model independent analysis, which was developed for high precision and fast beam dynamics analysis, is a promising diagnostic tool for modern accelerators. We implemented a series of methods to analyze the turn-by-turn BPM data. Green's functions corresponding to the local transfer matrix elements R12 or R34 are extracted from BPM data and fitted with the model lattice using least-square fitting. Here, we report experimental results obtained from analyzing the transverse motion of a beam in the storage ring at the Advanced Photon Source. BPM gains and uncoupled optics parameters are successfully determined. Quadrupole strengths are adjusted for fitting but can not be uniquely determined in general due to an insufficient number of BPMs.

  10. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  11. Brillouin optical correlation domain analysis in composite material beams

    DEFF Research Database (Denmark)

    Stern, Yonatan; London, Yosef; Preter, Eyal

    2017-01-01

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained...... with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K...... or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b...

  12. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  13. Brillouin Optical Correlation Domain Analysis in Composite Material Beams

    Directory of Open Access Journals (Sweden)

    Yonatan Stern

    2017-10-01

    Full Text Available Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both, however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a monitoring the production and curing of a composite beam over 60 h; (b estimating the stiffness and Young’s modulus of a composite beam; and (c distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  14. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    Science.gov (United States)

    Azim M., Osama A.

    2007-02-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a `real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  15. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    International Nuclear Information System (INIS)

    Azim M, Osama A.

    2007-01-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A

  16. Brillouin Optical Correlation Domain Analysis in Composite Material Beams.

    Science.gov (United States)

    Stern, Yonatan; London, Yosef; Preter, Eyal; Antman, Yair; Diamandi, Hilel Hagai; Silbiger, Maayan; Adler, Gadi; Levenberg, Eyal; Shalev, Doron; Zadok, Avi

    2017-10-02

    Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young's modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites.

  17. Beam optics simulation of rare-RI ring at RI beam factory in RIKEN

    International Nuclear Information System (INIS)

    Arai, I.; Ozawa, A.; Yasuda, Y.

    2009-01-01

    The cyclotron-like storage ring dedicated to Rare-RI Ring project consists of 6 magnetic sectors and 6 straight sections, having a circumference of 56.13 m. The magnetic sector works for both bending and focusing. The total circulation is assumed to be 1,000 turns. Over the momentum range from -1% to +1% in ∆p/p, the required isochronicity is 10 -6 while the beam emittance is several tens of π mm-mrad. To examine the design of cyclotron-like storage ring and fix its parameters, we have developed a high precision beam optics simulation. To achieve the precision as high as possible within a feasible computational time, we have adopted a geometrical tracking assuming a circular orbit for a small spatial segment. For that purpose, it is enough that the magnetic sector is divided into 150 sub-sectors in calculation. In each sub-sector, the magnetic field is given as a function of radial position but uniform around the vicinity of beam trajectory. The beam trajectory is evaluated in 4th order Runge-Kutta algorithm. Finally, we have achieved a precision of 10 -9 in ∆T/T and a computational time of 1.8 sec on a typical PC server for ray tracing of single particle undergoing a circulation of 1,000 turns. (author)

  18. Optical encoder based on a nondiffractive beam III

    Energy Technology Data Exchange (ETDEWEB)

    Lutenberg, Ariel; Perez-Quintian, Fernando

    2009-09-20

    In two preceding works (Appl. Opt.47, 2201-2206, 2008APOPAI0003-693510.1364/AO.47.002201; Appl. Opt.48, 414-424, 2009APOPAI0003-693510.1364/AO.48.000414) we introduced the design of an optical encoder based on a nondiffractive beam and studied the dependence of its performance on its parameters (e.g., grating pitch, photodetector size). In those works we proposed different optimization criteria and concluded that the proposed design provides an output sinusoidal signal with high contrast and very low harmonic distortion, while having remarkable tolerance to variations in its parameters and to mechanical perturbations. In this work we (1) study how to improve the system performance by means of selecting appropriate photodetector geometry, (2) study the system performance for different nondiffractive beam geometries, and (3) quantify the output signal tolerance to vertical and lateral misalignment between the centers of the nondiffractive beam and the photodetector. As a consequence, we obtain new sets of optimal parameters that significantly improve the system performance and enhance its tolerance to mechanical perturbations and fabrication errors.

  19. Giga-bit optical data transmission module for Beam Instrumentation

    CERN Document Server

    Roedne, L T; Cenkeramaddi, L R; Jiao, L

    Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...

  20. Observation of an optical vortex beam from a helical undulator in the XUV region.

    Science.gov (United States)

    Kaneyasu, Tatsuo; Hikosaka, Yasumasa; Fujimoto, Masaki; Iwayama, Hiroshi; Hosaka, Masahito; Shigemasa, Eiji; Katoh, Masahiro

    2017-09-01

    The observation of an optical vortex beam at 60 nm wavelength, produced as the second-harmonic radiation from a helical undulator, is reported. The helical wavefront of the optical vortex beam was verified by measuring the interference pattern between the vortex beam from a helical undulator and a normal beam from another undulator. Although the interference patterns were slightly blurred owing to the relatively large electron beam emittance, it was possible to observe the interference features thanks to the helical wavefront of the vortex beam. The experimental results were well reproduced by simulation.

  1. Comparative study of structural and electro-optical properties of ZnO:Ga films grown by steered cathodic arc plasma evaporation and sputtering on plastic and their application on polymer-based organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao, E-mail: dataman888@hotmail.com [R& D Division, Walsin Technology Corporation, Kaohsiung, Taiwan (China); Hsiao, Yu-Jen [National Nano Device Laboratories, National Applied Research Laboratories, Tainan, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2016-08-01

    Ga-doped ZnO (GZO) films with various thicknesses (105–490 nm) were deposited on PET substrates at a low temperature of 90 °C by a steered cathodic arc plasma evaporation (steered CAPE), and a GZO film with a thickness of 400 nm was deposited at 90 °C by a magnetron sputtering (MS) for comparison. The comparative analysis of the microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, and doping efficiency of the films produced by the steered CAPE and MS processes was performed, and the effect of thickness on the CAPE-grown GZO films was investigated in detail. The results showed that the GZO films grown by steered CAPE exhibited higher crystallinity and lower internal stress than those deposited by MS. The transmittance and electrical properties were also enhanced for the steered CAPE-grown films. The figure of merit (Φ = T{sup 10}/R{sub s}, where T is the transmittance and R{sub s} is the sheet resistance in Ω/□). was used to evaluate the performance of the electro-optical properties. The GZO films with a thickness of 400 nm deposited by CAPE had the highest Φ value, 1.94 × 10{sup −2} Ω{sup −1}, a corresponding average visible transmittance of 88.8% and resistivity of 6.29 × 10{sup −4} Ω·cm. In contrast, the Φ value of MS-deposited GZO film with a thickness of 400 nm is only 1.1 × 10{sup −3} Ω{sup −1}. This can be attributed to the increase in crystalline size, [0001] preferred orientation, decrease in stacking faults density and Ar contamination in steered CAPE-grown films, leading to increases in the Hall mobility and carrier density. In addition, the power conversion efficiency (PCE) of organic solar cells was significantly improved by using the CAPE-grown GZO electrode, and the PCE values were 1.2% and 1.7% for the devices with MS-grown and CAPE-grown GZO electrodes, respectively. - Highlights: • ZnO:Ga (GZO) films were grown on PET by steered cathodic arc plasma evaporation (CAPE

  2. Steering straight

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Jacqueline

    2011-12-15

    Baker Hughes Inc. has developed a deep azimuthal resistivity measurement tool for subsurface navigation when drilling oil and gas wells. This tool, named AziTrak, has measurement-while-drilling and logging-while-drilling capabilities and data are sent in real time to the surface via mud pulse or wired pipe telemetry. This technology helps the operator detect and visualize bed boundaries in real time, thanks to 3D imagery and a 360 degree view of the subsurface. The AziTrak system makes it possible to steer proactively and to stay within the pay zone at all times to maximize production; the tool had excellent results in field applications. Although this tool is 5 times more expensive than conventional technologies, its use results in a more economic wellbore thanks to its great utility. If the operator puts a high degree of involvement into it, the AziTrak deep azimuthal resistivity measurement tool will allow him to stay in the pay zone at all times.

  3. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

    Science.gov (United States)

    Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L

    2012-10-01

    We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

  4. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  5. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  6. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  7. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  8. Nonparaxial propagation of Lorentz-Gauss beams in uniaxial crystal orthogonal to the optical axis.

    Science.gov (United States)

    Wang, Xun; Liu, Zhirong; Zhao, Daomu

    2014-04-01

    Analytical expressions for the three components of nonparaxial propagation of a polarized Lorentz-Gauss beam in uniaxial crystal orthogonal to the optical axis are derived and used to investigate its propagation properties in uniaxial crystal. The influences of the initial beam parameters and the parameters of the uniaxial crystal on the evolution of the beam-intensity distribution in the uniaxial crystal are examined in detail. Results show that the statistical properties of a nonparaxial Lorentz-Gauss beam in a uniaxial crystal orthogonal to the optical axis are closely determined by the initial beam's parameters and the parameters of the crystal: the beam waist sizes-w(0), w(0x), and w(0y)-not only affect the size and shape of the beam profile in uniaxial crystal but also determine the nonparaxial effect of a Lorentz-Gauss beam; the beam profile of a Lorentz-Gauss beam in uniaxial crystal is elongated in the x or y direction, which is determined by the ratio of the extraordinary refractive index to the ordinary refractive index; with increasing deviation of the ratio from unity, the extension of the beam profile augments. The results indicate that uniaxial crystal provides an effective and convenient method for modulating the Lorentz-Gauss beams. Our results may be valuable in some fields, such as optical trapping and nonlinear optics, where a light beam with a special profile and polarization is required.

  9. Ion beam induced defects in solids studied by optical techniques

    International Nuclear Information System (INIS)

    Comins, J.D.; Amolo, G.O.; Derry, T.E.; Connell, S.H.; Erasmus, R.M.; Witcomb, M.J.

    2009-01-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 x 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I 3 - structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I 3 - and I 5 - aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 x 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 x 10 15 to 250 x 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show

  10. Ion beam induced defects in solids studied by optical techniques

    Science.gov (United States)

    Comins, J. D.; Amolo, G. O.; Derry, T. E.; Connell, S. H.; Erasmus, R. M.; Witcomb, M. J.

    2009-08-01

    Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems. X- and Y-cut LiNbO 3 crystals implanted with 8 MeV Au 3+ ions with a fluence of 1 × 10 17 ions/cm 2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold. Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the I3- structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of I3- and I5- aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed. The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 10 17 ions/cm 2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering. Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 10 15 to 250 × 10 15 ions/cm -2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show

  11. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  12. Iron free permanent magnet systems for charged particle beam optics

    International Nuclear Information System (INIS)

    Lund, S.M.; Halbach, K.

    1995-01-01

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability

  13. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  14. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  15. Novel adaptive fiber-optics collimator for coherent beam combination.

    Science.gov (United States)

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  16. Mutually incoherent beam combining through optical parametric amplification

    International Nuclear Information System (INIS)

    Tropheme, B.

    2012-01-01

    This work deals with a technique of combination of coherent beams: Optical Parametric Amplification (OPA) with Multiple Pumps. This technique is used to instantly transfer the energy of several pumps on one beam, without energy storage and thus avoiding thermal effects in the amplifying media. It can be useful to combine energy of numerous fiber lasers and to amplify with a high repetition rate very high energy lasers or broadband pulses. With a numerical and experimental study using BBO and LBO as nonlinear crystal, we determine how to dispose the pumps around the signal and the corresponding angular tolerances of such set up. Then we focus our attention on recombining mechanisms between a pump and a non-corresponding idler. We demonstrate experimentally that these cascading effects may decrease the spatial and spectral quality of the amplified signal, and that these phenomena can be avoided with a minimum angle between the different pumps. A novel modelling of multi-pumps OPA links these cascading effects to the gratings generated by the interaction between the pumps. The last part presents a 5 pump OPA experiment. We achieve a pump-to-signal efficiency of 27% and so that a signal more powerful than each pump is obtained. (author) [fr

  17. Topological transformation of fractional optical vortex beams using computer generated holograms

    Science.gov (United States)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  18. The optics of the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Irwin, J.; Brown, K.; Bulos, F.; Burke, D.; Helm, R.; Roy, G.; Ruth, R.; Yamamoto, N.; Oide, K.

    1991-05-01

    The Final Focus Test Beam (FFTB), currently under construction at the end of the SLAC Linac, is being built by an international collaboration as a test bed for ideas and methods required in the design and construction of final focus systems for next generation e + e - linear colliders. The FFTB lattice is based on the previously developed principle of using sextupole pairs in a dispersive region to compensate chromaticity. The linear lattice was optimized for length, and implementation of diagnostic procedures. The transformations between sextupole pairs (CCX and CCY) are exactly -I, the matrix for the intermediate transformer (BX) is exactly diagonal, and the dispersion function has zero slope at the sextupoles and is thus zero at the minimum of the β x function in the intermediate transformer. The introduction of sextupoles in final focus systems leads to the presence of additional optical aberrations, and synchrotron radiation in the dipoles also enlarges the final spot size. The important fourth-order optical aberrations which determine the main features of the design have been identified. Additional lower order aberrations arise in the implementation of these designs, since the real system is not the ideal design. We concentrate on these aberrations and describe strategies for their diagnosis and correction

  19. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    Science.gov (United States)

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  20. Obstacle evasion in free-space optical communications utilizing Airy beams

    Science.gov (United States)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  1. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    Science.gov (United States)

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.

  2. Using the particle beam optics lab. (PBO LABtm) for beamline design and analysis

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Hill, B.W.; Martono, H.; Moore, J.M.; Lampel, M.C.; Brown, N.A.

    1999-01-01

    The Particle Beam Optics Interactive Computer Laboratory (PBO Lab) represents a new approach to providing software for particle beam optics modeling. The PBO Lab includes four key elements: a graphic user interface shell; a graphic beamline construction kit for users to interactively and visually construct optical beam lines; a knowledge database on the physics and technology of optical elements, and various charged particle optics computational engines. A first-order matrix code, including a space charge model, can be used to produce scaled images of beamlines together with overlays of single trajectories and beam envelopes. The qualitative results of graphically sliding beamline components, or adjusting bend angles, can be explored interactively. Quantitative computational engines currently include the third-order TRANSPORT code and the multi-particle ray tracing program TURTLE. The use of the PBO Lab for designing and analyzing a second order achromatic bend is illustrated with the Windows 95/NT version of the software. (authors)

  3. Low-frequency acousto-optic backscattering of Bessel light beams

    Science.gov (United States)

    Khilo, Nikolai A.; Belyi, Vladimir N.; Khilo, Petr A.; Kazak, Nikolai S.

    2018-05-01

    The use of Bessel light beams, as well as Bessel acoustic beams, substantially enhances the capabilities of acousto-optic methods for control of optical field. We present a theoretical study of the process of optical Bessel beams conversion by means of backward acousto-optic scattering on a Bessel acoustic field in a transversely isotropic crystal. It is shown that, with an appropriate choice of Bessel beams parameters, the backscattering in visible spectral range can be realized at relatively low acoustic frequencies less than one gigahertz. Under conditions of phase matching and transverse spatial synchronism, the efficiency of backscattering is sufficiently high, which is interesting, for example, for construction of acousto-optic spectral analyzers.

  4. Alternative modes for optical trapping and manipulation using counter-propagating shaped beams

    International Nuclear Information System (INIS)

    Palima, D; Tauro, S; Glückstad, J; Lindballe, T B; Kristensen, M V; Stapelfeldt, H; Keiding, S R

    2011-01-01

    Counter-propagating beams have enabled the first stable three-dimensional optical trapping of microparticles and this procedure has been enhanced and developed over the years to achieve independent and interactive manipulation of multiple particles. In this work, we analyse counter-propagating shaped-beam traps that depart from the conventional geometry based on symmetric, coaxial counter-propagating beams. We show that projecting shaped beams with separation distances previously considered axially unstable can, in fact, enhance the axial and transverse trapping stiffnesses. We also show that deviating from using perfectly counter-propagating beams to use oblique beams can improve the axial stability of the traps and improve the axial trapping stiffness. These alternative geometries can be particularly useful for handling larger particles. These results hint at a rich potential for light shaping for optical trapping and manipulation using patterned counter-propagating beams, which still remains to be fully tapped

  5. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams.

    Science.gov (United States)

    Bekshaev, A Ya; Soskin, M S; Vasnetsov, M V

    2003-08-01

    Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam's orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.

  6. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    International Nuclear Information System (INIS)

    Piquero, Gemma; Vargas-Balbuena, Javier

    2004-01-01

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given

  7. Three dimensional iterative beam propagation method for optical waveguide devices

    Science.gov (United States)

    Ma, Changbao; Van Keuren, Edward

    2006-10-01

    The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.

  8. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  9. Beam Divergence from an SMF-28 Optical Fiber

    National Research Council Canada - National Science Library

    Kowalevicz, Jr., Andrew M; Bucholtz, Frank

    2006-01-01

    ...) operating near 1550 nm wavelength. The analysis shows some pitfalls for a common imaging technique for determining beam width and shows good agreement with theory when the beam width measurement is performed using either a knife-edge...

  10. Sub-μrad laser beam tracking

    Science.gov (United States)

    Buske, Ivo; Riede, Wolfgang

    2006-09-01

    We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.

  11. Remarks on the differential algebraic approach to particle beam optics by M. Berz

    International Nuclear Information System (INIS)

    Garczynski, V.

    1992-01-01

    The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given

  12. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  13. Computer controlling of writing beam in laser microfabrication of diffractive optics

    OpenAIRE

    Korolkov, V.; Shimansky, R.; Cherkashin, V.; Denk, D.

    2003-01-01

    Laser microfabrication of diffractive optics with continuous relief is based on the direct local action of focused laser radiation on the recording material. Control of writing beam parameters (beam power, spot size, waist position) is one of the main tasks in microfabrication using laser writing systems. Method of the control defines the correspondence between the fabricated microrelief of the diffractive optical element and a designed one. Complexity of this task consists in the necessity t...

  14. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  15. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  16. Computer codes for automatic tuning of the beam transport at the UNILAC

    International Nuclear Information System (INIS)

    Dahl, L.; Ehrich, A.

    1984-01-01

    For application in routine operation fully automatic computer controlled algorithms are developed for tuning of beam transport elements at the Unilac. Computations, based on emittance measurements, simulate the beam behaviour and evaluate quadrupole settings, in order to produce defined beam properties at specified positions along the accelerator. The interactive program is controlled using a graphic display on which the beam emittances and envelopes are plotted. To align the beam onto the ion-optical axis of the accelerator two automatic computer controlled procedures have been developed. The misalignment of the beam is determined by variation of quadrupole or steering magnet settings with simultaneous measurement of the beam distribution on profile grids. According to the result a pair of steering magnet settings are adjusted to bend the beam on the axis. The effects of computer controlled tuning on beam quality and operation are reported

  17. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  18. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  19. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  20. Beam density equalization in a channel with nonlinear optics

    International Nuclear Information System (INIS)

    Batygin, Yu.K.; Kushin, V.V.; Nesterov, N.A.; Plotnikov, S.V.

    1993-01-01

    Simulation of beam density equalization in 2.85 m length transport channel covering two quadrupole lenses and two octupole lenses was carried out to obtain irradiation homogeneous field of track membrane materials. 0.3 MeV/nucleon energy and 1/8 electron-charge-mass ratio ion beam was supplied to the system inlet. Equalization of beam density function equal to about 80% was obtained. 4 refs., 1 fig

  1. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  2. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn; Wang, Mu, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-06-27

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  3. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  4. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling

    NARCIS (Netherlands)

    Veerman, J.A.; Otter, A.M.; Kuipers, L.; van Hulst, N.F.

    1998-01-01

    We have improved the optical characteristics of aluminum-coated fiber probes used in near-field scanning optical microscopy by milling with a focused ion beam. This treatment produces a flat-end face free of aluminum grains, containing a well- defined circularly-symmetric aperture with controllable

  5. Optical vault: a reconfigurable bottle beam based on conical refraction of light.

    Science.gov (United States)

    Turpin, A; Shvedov, V; Hnatovsky, C; Loiko, Yu V; Mompart, J; Krolikowski, W

    2013-11-04

    We employ conical refraction of light in a biaxial crystal to create an optical bottle for photophoretic trapping and manipulation of particles in gaseous media. We show that by only varying the polarization state of the input light beam the optical bottle can be opened and closed in order to load and unload particles in a highly controllable manner.

  6. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams

    International Nuclear Information System (INIS)

    Mitri, F.G.; Li, R.X.; Yang, R.P.; Guo, L.X.; Ding, C.Y.

    2016-01-01

    The optical radiation force induced by Bessel (vortex) beams on a magneto-dielectric subwavelength sphere is investigated with particular emphasis on the beam polarization and order l (or topological charge). The analysis is focused on identifying the regions and some of the conditions to achieve retrograde motion of the sphere centered on the axis of wave propagation of the incident beam, or shifted off-axially. Exact non-paraxial analytical solutions are established, and computations for linear, circular, radial, azimuthal and mixed polarizations of the individual plane wave components forming the Bessel (vortex) beams by means of the angular spectrum decomposition method (ASDM) illustrate the theory with particular emphasis on the tractor (i.e. reversal) behavior of the force. This effect results in the pulling of the magneto-dielectric sphere against the forward linear momentum density flux associated with the incoming waves. Should some conditions related to the choice of the beam parameters as well as the permittivity and permeability of the sphere be met, the optical force vanishes and reverses sign. Moreover, the beam polarization is shown to affect differently the axial negative pulling force for either the zeroth- or the first-order Bessel beam. When the sphere is centered on the beam′s axis, the axial force component is always negative for the zeroth-order Bessel beam except for the radial and azimuthal polarization configurations. Nonetheless, for the first-order Bessel beam, the axial force is negative for the radial polarization case only. Additional tractor beam effects arise when the sphere departs from the center of the beam. It is also demonstrated that the tractor beam effect arises from the force component originating from the cross-interaction between the electric and magnetic dipoles. Potential applications are in particle manipulation, optical levitation, tractor beam tweezers, and other emergent technologies using polarized Bessel beams on

  7. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  8. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    International Nuclear Information System (INIS)

    Petkov, T.; Yang, M.; Ren, K.F.; Pouligny, B.; Loudet, J.-C.

    2017-01-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the “primary” oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods. - Highlights: • Spheroids in two-laser beam geometry may stabilize in asymmetric configurations. • Particles undergo different types of oscillations, in polar and azimuthal angles. • Polar angle oscillations and asymmetric equilibriums are predicted by ray-optics. • The basic levitation force decreases with particle aspect ratio. • Experiments, simple ray optics and MLFMA calculations show similar tendencies.

  9. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  10. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  11. A beam intensity monitor for the evaluation beamline for soft x-ray optical elements

    International Nuclear Information System (INIS)

    Imazono, Takashi; Moriya, Naoji; Harada, Yoshihisa; Sano, Kazuo; Koike, Masato

    2012-01-01

    Evaluation Beamline for Soft X-Ray Optical Elements (BL-11) at the SR Center of Ritsumeikan University has been operated to measure the wavelength and angular characteristics of soft x-ray optical components in a wavelength range of 0.65-25 nm using a reflecto-diffractometer (RD). The beam intensity monitor that has been equipped in BL-11 has observed the signal of the zero-th order light. For the purpose of more accurate evaluation of the performance of optical components, a new beam intensity monitor to measure the intensity of the first order light from the monochromator in BL-11 has been developed and installed in just front of RD. The strong positive correlation between the signal of the beam monitor and a detector equipped in the RD is shown. It is successful that the beam intensity of the first order light can be monitored in real time.

  12. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  13. Multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers.

    Science.gov (United States)

    Chen, Jing-Heng; Chen, Kun-Huang; Lin, Jiun-You; Hsieh, Hsiang-Yung

    2010-03-10

    Optical circulators are necessary passive devices applied in optical communication systems. In the design of optical circulators, the implementation of the function of spatial walk-off polarizers is a key technique that significantly influences the performance and cost of a device. This paper proposes a design of a multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers. To show the feasibility of the design, a prototype of a six-port optical circulator was fabricated. The insertion losses are 0.94-1.49 dB, the isolations are 25-51 dB, and return losses are 27.72 dB.

  14. Preliminary results of spatially resolved ECR ion beam profile investigations

    International Nuclear Information System (INIS)

    Panitzsch, L.; Stalder, M.; Wimmer-Schweingruber, R.F.

    2012-01-01

    The profile of an ion beam produced in an Electron Cyclotron Resonance Ion Source (ECRIS) can vary greatly depending on the source settings and the ion-optical tuning. Strongly focussed ion beams form circular structures (hollow beams) as predicted by simulations and observed in experiments. Each of the rings is predicted to be dominated by ions with same or at least similar m/q-ratios due to ion-optical effects. To check this we performed a series of preliminary investigations to test the required tuning capabilities of our ion source. This includes beam focussing (A) and beam steering (B) using a 3D-movable extraction. Having tuned the source to deliver a beam of strongly focussed ions of different ion species and having steered this beam to match the transmittance area of the sector magnet we also recorded the ion charge state distribution of the strongly focussed beam profile at different, spatially limited positions (C). The preliminary results will be introduced within this paper: it appears that our 3D-movable extraction is very efficient to steer and to focus the beam strongly. The paper is followed by the slides of the presentation. (authors)

  15. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    Science.gov (United States)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  16. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  17. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    International Nuclear Information System (INIS)

    Dekker, K H; Battista, J J; Jordan, K J

    2017-01-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations. (paper)

  18. Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures

    International Nuclear Information System (INIS)

    Lombard, E; Genet, C; Ebbesen, T W; Drezet, A

    2010-01-01

    We demonstrate experimentally a simple method for preparing non-diffractive vectorial optical beams that can display wave-front helicity. This method is based on space-variant modifications of the polarization of an optical beam transmitted through subwavelength annular rings perforating opaque metal films. We show how the description of the optical properties of such structures must account for the vectorial character of the polarization and how, in turn, these properties can be controlled by straightforward sequences of preparation and analysis of polarization states.

  19. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  20. Optical forces induced behavior of a particle in a non-diffracting vortex beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Jákl, Petr; Brzobohatý, Oto; Zemánek, Pavel

    2012-01-01

    Roč. 20, č. 22 (2012), s. 24304-24319 ISSN 1094-4087 R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01; GA MŠk LH12018 Institutional support: RVO:68081731 Keywords : optical vortex beam * tweezers * optical forces Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.546, year: 2012

  1. Radiation optic neuropathy after external beam radiation therapy for acromegaly: report of two cases

    International Nuclear Information System (INIS)

    Bergh, Alfons C.M. van den; Hoving, Marjanke A.; Links, Thera P.; Dullaart, Robin P.F.; Ranchor, Adelita V.; Weeme, Cees A. ter; Canrinus, Alof A.; Szabo, Ben G.; Pott, Jan-Willem R.

    2003-01-01

    For diagnosing radiation optic neuropathy (RON) ophthalmological and imaging data were evaluated from 63 acromegalic patients, irradiated between 1967 and 1998. Two patients developed RON: one patient in one optic nerve 10 years and another patient in both optic nerves 5 months after radiation therapy. RON is a rare complication after external beam radiation therapy for acromegaly, which can occur after a considerable latency period

  2. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  3. Optical superimposed vortex beams generated by integrated holographic plates with blazed grating

    Science.gov (United States)

    Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-08-01

    In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.

  4. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  5. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.

    Science.gov (United States)

    Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan

    2012-02-15

    Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.

  6. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.

    2012-01-01

    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...... is capable of loading 90 of a magneto-optical trap (MOT) in less than 7 s while maintaining a low vacuum pressure of 10 -11 Torr. The transverse velocity components of the atomic beam are measured to be within typical capture velocities of a rubidium MOT. Finally, we show that the atomic beam can be turned...

  7. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  8. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    International Nuclear Information System (INIS)

    Lambert, Jamil; Yin Yongbai; McKenzie, David R.; Law, Sue; Suchowerska, Natalka

    2009-01-01

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  9. Steering smog prediction

    NARCIS (Netherlands)

    R. van Liere (Robert); J.J. van Wijk (Jack)

    1997-01-01

    textabstractThe use of computational steering for smog prediction is described. This application is representative for many underlying issues found in steering high performance applications: high computing times, large data sets, and many different input parameters. After a short description of the

  10. Steering and evasion assist

    NARCIS (Netherlands)

    Dang, T.; Desens, J.; Franke, U.; Gavrila, D.; Schäfers, L.; Ziegler, W.; Eskandarian, A.

    2012-01-01

    Steering and evasion assistance defines a new and future class of driver assistance systems to avoid an impending collision with other traffic participants. Dynamic and kinematic considerations reveal that an evasive steering maneuver has high potential for collision avoidance in many driving

  11. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    International Nuclear Information System (INIS)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-01-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts

  12. Minimal-effort planning of active alignment processes for beam-shaping optics

    Science.gov (United States)

    Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen

    2015-03-01

    In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.

  13. Chiral particles in the dual-beam optical trap

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Hernández, R.J.; Simpson, Stephen Hugh; Mazzulla, A.; Cipparrone, G.; Zemánek, Pavel

    2016-01-01

    Roč. 24, č. 23 (2016), 26382:1-10 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA ČR(CZ) GA14-16195S; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical tweezers * optical manipulation * liquid crystals * chiral media Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.307, year: 2016

  14. Methods and Devices for Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  15. On beam propagation methods for modelling in integrated optics

    NARCIS (Netherlands)

    Hoekstra, Hugo

    1997-01-01

    In this paper the main features of the Fourier transform and finite difference beam propagation methods are summarized. Limitations and improvements, related to the paraxial approximation, finite differencing and tilted structures are discussed.

  16. A novel approach to beam optics design for particle accelerators

    International Nuclear Information System (INIS)

    Szilagyi, M.

    1981-01-01

    A new computational method is proposed for optimal design of beam lines. The method is based on a dynamic-programming recursive algorithm that minimizes an additively or multiplicatively expressed function of the desired parameters. (author)

  17. A Frictionless Steering Mechanism for the Front Steering ECCD ITER Upper Port Launcher

    International Nuclear Information System (INIS)

    Chavan, R; Henderson, M A; Sanchez, F

    2005-01-01

    A FS launcher is being designed for the ITER upper port, which offers enhanced physics performance over the RS launcher. A two mirror system is used to decouple the focusing and steering aspects of the launcher and provide a relatively small beam waist ( 1.6 m from the steering mirror). The resulting NTM stabilization efficiency (maximum CD density divided by the local bootstrap current >1.6) is above marginal for the q = 2 and 3/2 rational flux surfaces of the relevant ITER equilibria (scenarios 2, 3a and 5) and a factor of ∼3 relative to an equivalent RS launcher. The performance of the FS launcher strongly depends on the reliability of the steering mechanism, which is used to rotate the plasma facing steering mirror. CRPP has designed a frictionless steering mechanism assembled in a compact cartridge capable of up to ±10 deg. rotation (corresponding to a poloidal steering range of up to ±20 deg. for the microwave beam around a fixed axis of rotation) that offers a high operation reliability despite the close proximity to the thermal and neutron flux coming from the ITER plasma

  18. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  19. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  20. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  1. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  2. Vehicle steering by side stick: optimising steering characteristics

    NARCIS (Netherlands)

    Zuurbier, J.; Hogema, J.H.; Brekelmans, J.A.W.J.

    2000-01-01

    This paper describes a study that was conducted to investigate the possibilities for optimizing task performance when driving a side stick-steered vehicle. Using steer-by-wire technology, a conventional steering system was mimicked, thus yielding the possibility to modify the steering

  3. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  4. A novel optical beam splitter based on photonic crystal with hybrid lattices

    International Nuclear Information System (INIS)

    Zhu Qing-Yi; Fu Yong-Qi; Zhang Zhi-Min; Hu De-Qing

    2012-01-01

    A novel optical beam splitter constructed on the basis of photonic crystal (PC) with hybrid lattices is proposed in this paper. The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams. Triangular-lattice graded-index PCs are combined for focusing each branch. Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design. The waveguide is unnecessary in the design. Thus the device has functions of both splitting and focusing beams. Size of the divided beam at site of full-width at half-maximum is of the order of λ/2. The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  6. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  7. Correction of Magnetic Optics and Beam Trajectory Using LOCO Based Algorithm with Expanded Experimental Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.; Edstrom, D.; Emanov, F. A.; Koop, I. A.; Perevedentsev, E. A.; Rogovsky, Yu. A.; Shwartz, D. B.; Valishev, A.

    2017-03-28

    Precise beam based measurement and correction of magnetic optics is essential for the successful operation of accelerators. The LOCO algorithm is a proven and reliable tool, which in some situations can be improved by using a broader class of experimental data. The standard data sets for LOCO include the closed orbit responses to dipole corrector variation, dispersion, and betatron tunes. This paper discusses the benefits from augmenting the data with four additional classes of experimental data: the beam shape measured with beam profile monitors; responses of closed orbit bumps to focusing field variations; betatron tune responses to focusing field variations; BPM-to-BPM betatron phase advances and beta functions in BPMs from turn-by-turn coordinates of kicked beam. All of the described features were implemented in the Sixdsimulation software that was used to correct the optics of the VEPP-2000 collider, the VEPP-5 injector booster ring, and the FAST linac.

  8. New directions for ion beam processing of optical materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C W; Budai, J D; Zhu, J G; Withrow, S P [Oak Ridge National Lab., TN (United States)

    1997-03-01

    Recent developments in the use of ion implantation to modify the properties of optical materials are summarized. The use of ion implantation to form nanocrystal and quantum dots is emphasized. (author)

  9. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  10. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  11. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.

    Science.gov (United States)

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-08-01

    Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.

  12. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  13. Beam profile measurements on the advanced test accelerator using optical techniques

    International Nuclear Information System (INIS)

    Chong, Y.P.; Kalibjian, R.; Cornish, J.P.; Kallman, J.S.; Donnelly, D.

    1986-01-01

    Beam current density profiles of ATA have been measured both spatially and temporally using a number of diagnostics. An extremely important technique involves measuring optical emissions from either a target foil inserted into the beam path or gas atoms and molecules excited by beam electrons. This paper describes the detection of the optical emission. A 2-D gated television camera with a single or dual micro-channel-plate (MCP) detector for high gain provides excellent spatial and temporal resolution. Measurements are routinely made with resolutions of 1 mm and 5 ns respectively. The optical line of sight allows splitting part of the signal to a streak camera or photometer for even higher time resolution

  14. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  15. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  16. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1996-01-01

    We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....

  17. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-01-01

    Roč. 331, JUL (2014), s. 157-162 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  18. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Science.gov (United States)

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  19. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  20. A technique for aligning sextupole systems using beam optics

    International Nuclear Information System (INIS)

    Chao, Yu-Chiu.

    1992-03-01

    A technique for beam based alignment of sextupole system is developed exploiting the enhancement effect of orbit differences by the sextupoles. This technique can in principle be applied to sextupole or sextupole strings with controlled orbit pattern and BPM configurations. This paper will discuss the theoretical basis, special optimization considerations and expected accuracy. Application to the SLC final focus is also discussed

  1. Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    creased sufficiently with respect to the beam edge to balance the effect of ... discharge to control the plasma profile [23], and (iii) using the ponderomotive ... intensity radial profile, the density profile that evolves is peaked on the axis and falls ...

  2. Imaging RF Phased Array Receivers using Optically-Coherent Up-conversion for High Beam-Bandwidth Processing

    Science.gov (United States)

    2017-03-01

    It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that

  3. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection

    International Nuclear Information System (INIS)

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Schardt, Dieter; Rietzel, Eike

    2010-01-01

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to ±28 mm on degrader were performed which resulted in a range adaptation of up to ±15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  4. Analysis method of beam pointing stability based on optical transmission matrix

    Science.gov (United States)

    Wang, Chuanchuan; Huang, PingXian; Li, Xiaotong; Cen, Zhaofen

    2016-10-01

    Quite a lot of factors will make effects on beam pointing stability of an optical system, Among them, the element tolerance is one of the most important and common factors. In some large laser systems, it will make final micro beams spot on the image plane deviate obviously. So it is essential for us to achieve effective and accurate analysis theoretically on element tolerance. In order to make the analysis of beam pointing stability convenient and theoretical, we consider transmission of a single chief ray rather than beams approximately to stand for the whole spot deviation. According to optical matrix, we also simplify this complex process of light transmission to multiplication of many matrices. So that we can set up element tolerance model, namely having mathematical expression to illustrate spot deviation in an optical system with element tolerance. In this way, we can realize quantitative analysis of beam pointing stability theoretically. In second half of the paper, we design an experiment to get the spot deviation in a multipass optical system caused by element tolerance, then we adjust the tolerance step by step and compare the results with the datum got from tolerance model, finally prove the correction of tolerance model successfully.

  5. Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter.

    Science.gov (United States)

    Tilsch, Markus; Hendrix, Karen

    2008-05-01

    A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.

  6. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  7. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant, E-mail: vasant@physics.iisc.ernet.in

    2016-08-26

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on. - Highlights: • Getter-source loaded magneto-optic trap (MOT). • Cold atomic beam generated by deflection from the MOT. • Use of two inclined beams for deflection.

  8. Polarizing Beam Splitter: A New Approach Based on Transformation Optics

    Science.gov (United States)

    Mueller, Jonhatan; Wegener, Martin

    Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.

  9. Development of an optical beam system for deep sea data acquisition

    International Nuclear Information System (INIS)

    Shibata, Yozo

    1994-01-01

    Remotely Operated Vehicles (ROV) are an ideal method for acquiring data from instruments located on the seabed. Electrical, acoustic or optical signals can be used to communicate with the data acquisition system. While optical signals have high capacity, the power of the optical beam decreases rapidly with distance in sea water; however, the ROV's ability to approach the instruments eliminates this problem. To investigate a feasibility of an optical beam system for underwater data acquisition, the author has developed and manufactured a prototype data acquisition instrument which the ROV can control. Based on the communication test results, he concludes that such a system is a practical means of short-range underwater data acquisition

  10. Data and Analysis from a Time-Resolved Tomographic Optical Beam Diagnostic

    International Nuclear Information System (INIS)

    Frayer, Daniel K.; Johnson, Douglas; Ekdahl, Carl

    2010-01-01

    An optical tomographic diagnostic instrument developed for the acquisition of high-speed time-resolved images has been fielded at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory. The instrument was developed for the creation of time histories of electron-beam cross section through the collection of Cerenkov light. Four optical lines of sight optically collapse an image and relay projections via an optical fiber relay to recording instruments; a tomographic reconstruction algorithm creates the time history. Because the instrument may be operated in an adverse environment, it may be operated, adjusted, and calibrated remotely. The instrument was operated over the course of various activities during and after DARHT commissioning, and tomographic reconstructions reported verifiable beam characteristics. Results from the collected data and reconstructions and analysis of the data are discussed.

  11. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured...

  12. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  13. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  14. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  15. Transverse energy circulation and the edge diffraction of an optical vortex beam.

    Science.gov (United States)

    Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A

    2014-04-01

    Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.

  16. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  17. A computer code 'BEAM' for the ion optics calculation of the JAERI tandem accelerator system

    International Nuclear Information System (INIS)

    Kikuchi, Shiroh; Takeuchi, Suehiro

    1987-11-01

    The computer code BEAM is described, together with an outline of the formalism used for the ion optics calculation. The purpose of the code is to obtain the optimum parameters of devices, with which the ion beam is transported through the system without losses. The procedures of the calculation, especially those of searching for the parameters of quadrupole lenses, are discussed in detail. The flow of the code is illustrated as a whole and its constituent subroutines are explained individually. A few resultant beam trajectories and the parameters used to obtain them are shown as examples. (author)

  18. Operational experience with model-based steering in the SLC linac

    International Nuclear Information System (INIS)

    Thompson, K.A.; Himel, T.; Moore, S.; Sanchez-Chopitea, L.; Shoaee, H.

    1989-03-01

    Operational experience with model-driven steering in the linac of the Stanford Linear Collider is discussed. Important issues include two-beam steering, sensitivity of algorithms to faulty components, sources of disagreement with the model, and the effects of the finite resolution of beam position monitors. Methods developed to make the steering algorithms more robust in the presence of such complications are also presented. 5 refs., 1 fig

  19. Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators

    International Nuclear Information System (INIS)

    Smith, Arlee V.; Bowers, Mark S.

    2001-01-01

    We show by computer simulation that high beam quality can be achieved in high-energy, nanosecond optical parametric oscillators by use of image-rotating resonators. Lateral walk-off between the signal and the idler beams in a nonlinear crystal creates correlations across the beams in the walk off direction, or equivalently, creates a restricted acceptance angle. These correlations can improve the beam quality in the walk-off plane. We show that image rotation or reflection can be used to improve beam quality in both planes. The lateral walk-off can be due to birefringent walk-off in type II mixing or to noncollinear mixing in type I or type II mixing

  20. Optics calculations and beam line design for the JANNuS facility in Orsay

    International Nuclear Information System (INIS)

    Chauvin, N.; Henry, S.; Flocard, H.; Fortuna, F.; Kaitasov, O.; Pariset, P.; Pellegrino, S.; Ruault, M.O.; Serruys, Y.; Trocelier, P.

    2007-01-01

    JANNuS (Joint Accelerators for Nano-Science and Nuclear Simulation) will be a unique user facility in Europe dedicated to material modification by ion beam implantation and irradiation. The main originality of the project is that it will be possible to perform implantation and irradiation with simultaneous multiple ions beams and in situ characterization by transmission electron microscopy (TEM) observation or ion beam analysis. This facility will be composed of two experimental platforms located in two sites: the CEA-SRMP in Saclay and the CNRS-CSNSM in Orsay. This paper will focus on the design of two new transport beam lines for the Orsay site. One of the most challenging parts of the JANNuS project (Orsay site) is to design two new beam lines in order to inject, into a 200 kV TEM, two different ion beams (low and medium energy) coming from two existing pieces of equipment: a 2 MV Tandem accelerator and a 190 kV ion implanter. For these new beam lines, first order beam calculations have been done using transfer matrix formalism. A genetic algorithm has been written and adapted to perform the optimization of the beam line parameters. Then, using the SIMION code, field maps of the electrostatic elements (quadrupoles, spherical sectors) have been calculated and ion trajectories have been simulated. We studied specifically the optical aberrations induced by the electrostatic spherical deflectors. Finally, the results of the first order calculations and the field map simulations show a good agreement

  1. Beam optics of the AmPS extraction line

    International Nuclear Information System (INIS)

    Hoekstra, R.

    1991-01-01

    The design of the Amsterdam Pulse Stretcher includes a feasibility study of part of the extraction trajectory. The latter includes some proposed curves projected through the hall of the beam switch yard. Since extraction is performed in the north line of the ring and the connection to the trajectory of the spectrometers is planned in a trajectory parallel to the east line of the ring the curves contain bending magnets for bending 90 degrees either by only two magnets or by making use of ring bending magnets in the same way as the ring curves are constructed. The bending through 90 degrees has optimal imaging properties of a unit cell much the same as the curves in the ring. This one-to-one (or one-to-minus-one) property is intended to shift the known required beam dimensions stream upwards from a defined point in the trajectory of the spectrometers to be able to create the dimensions at this shifted point by means of a so called beam transformer, placed in between the extraction point and this position. This report deals with the further developments with respect to the extraction trajectory. (author). 5 refs.; 9 figs.; 3 tabs

  2. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.

    Science.gov (United States)

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike

    2016-09-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques. Copyright © 2016. Published by Elsevier GmbH.

  3. Space-qualified optical thin films by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Hsiao, C.N.; Chen, H.P.; Chiu, P.K.; Lin, Y.W.; Chen, F.Z.; Tsai, D.P.

    2013-01-01

    Optical interference coatings designed for use in a space-grade multispectral assembly in a complementary metal-oxide‐semiconductor sensor were deposited on glass by ion-beam-assisted deposition for a Cassegrain-type space-based remote-sensing platform. The patterned multispectral assembly containing blue, green, red, near infrared, and panchromatic multilayer high/low alternated dielectric band-pass filter arrays in a single chip was fabricated by a mechanical mask and the photolithography process. The corresponding properties of the films were investigated by in situ optical monitoring and spectrometry. It was found that the optical properties were significantly improved by employing ion-beam-assisted deposition. The average transmittances were above 88% for the multispectral assembly, with a rejection transmittance of less than 1% in the spectral range 350–1100 nm. To estimate the optical stability of optical coatings for aerospace applications, a space environment assuming a satellite orbiting the Earth at an altitude of near 800 km was simulated by a Co 60 gamma (γ) radiation test. - Highlights: ►Parameters of optical filters were optimized by using admittance loci analysis. ►Higher index of refraction of films prepared by ion beam assisted deposition. ►The dielectric filters have acceptable resistance after γ radiation exposure

  4. Optical cage generated by azimuthal- and radial-variant vector beams.

    Science.gov (United States)

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  5. Efficient generation of optical twisters using helico-conical beams

    DEFF Research Database (Denmark)

    Daria, Vincent Ricardo Mancao; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    of theoretical, experimental and technical issues associated with this vibrant and exciting field. The volume is an authoritative reference for academic researchers and graduate students engaged in theoretical or experimental study of optical angular momentum and its applications. It will also benefit...

  6. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    International Nuclear Information System (INIS)

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-01-01

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source

  7. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Soldner, A; Liu, H; Kassaee, A; Zhu, T; Finlay, J [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depth dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.

  8. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  9. 'Diffraction-free' optical beams in inverse free electron laser accelerators

    International Nuclear Information System (INIS)

    Cai, S.Y.; Bhattacharjee, A.; Marshall, T.C.

    1988-01-01

    'Diffraction-free' optical beams correspond to exact solutions of the wave equation in free space with the remarkable property that they propagate with negligible transverse spreading for distances much larger than the Rayleigh range. The requirement for this to occur is a large aperture. Using a 2D computer code, we find that these optical beams will also propagate with negligible diffraction even when perturbed by the electron beam in an IFEL; indeed they match well the FEL requirement for the accelerator. The numerical simulations are performed for the proposed facility at Brookhaven in which λ s =10 μm, B=1.5 T (linearly tapered l w =1.31-6.28 cm) and the optical beam power is either 8x10 11 W or 2.3x10 10 W. Approximately 70% of the electrons constituting a beam of current 5 mA or 15 A, radius 0.14 mm and initial energy of 50 MeV is accelerated at 50 MeV/m. (orig.)

  10. A noble refractive optical scanner with linear response

    Science.gov (United States)

    Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.

    2013-03-01

    Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.

  11. High-voltage scanning ion microscope: Beam optics and design

    Energy Technology Data Exchange (ETDEWEB)

    Magilin, D., E-mail: dmitrymagilin@gmail.com; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  12. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  13. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  14. The holographic optical micro-manipulation system based on counter-propagating beams

    Czech Academy of Sciences Publication Activity Database

    Čižmár, T.; Brzobohatý, Oto; Dholakia, K.; Zemánek, Pavel

    2011-01-01

    Roč. 8, č. 1 (2011), s. 50-56 ISSN 1612-2011 R&D Projects: GA ČR GA202/09/0348; GA MŠk(CZ) LC06007; GA MŠk OC08034; GA MŠk ED0017/01/01 Grant - others:EC(XE) COST MP0604 Institutional research plan: CEZ:AV0Z20650511 Keywords : holographic optical trapping * dual beam trap * spatial light modulator * optical rotator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 9.970, year: 2011

  15. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  16. Spectral resolution control of acousto-optical cells operating with collimated and divergent beams

    Science.gov (United States)

    Voloshinov, Vitaly B.; Mishin, Dimitry D.

    1994-01-01

    The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.

  17. Beam splitter coupled CdSe optical parametric oscillator

    International Nuclear Information System (INIS)

    Levinos, N.J.; Arnold, G.P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation

  18. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  19. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  20. Evaluation of Optic Canal and Surrounding Structures Using Cone Beam Computed Tomography: Considerations for Maxillofacial Surgery.

    Science.gov (United States)

    Sinanoglu, Alper; Orhan, Kaan; Kursun, Sebnem; Inceoglu, Beste; Oztas, Bengi

    2016-07-01

    The optic canal connects the anterior cranial fossa and the orbit and maintains the optic nerve and the ophthalmic artery. Within the extent of the surgical approach of the region, risk of iatrogenic injury of the neural and vascular structures increases. The aim of this retrospective morphometric study is to investigate the radiological anatomy of orbita, optic canal, and its surrounding using cone beam computed tomography (CBCT) scans in a group of Turkish population.Cone beam computed tomography images of a total of 182 patients were evaluated by 2 observers. Anatomical parameters regarding optic canal and orbita were measured for all patients from axial, sagittal, and three-dimensional reconstructed images. To assess intraobserver reliability, the Wilcoxon matched-pairs test was used. Pearson χ test and Student t test were performed for statistical analysis of differences, sex, localization, and measurements (P  0.05). The orbita width and height were larger for the males than females (P  0.05). Examination CBCT scans revealed that the shape of the optic canal was 70% funnel and 28% Hourglass shape, 2% amorph type round.These results provide detailed knowledge of the anatomical characteristics in the orbital area which may be of assistance for surgeons preoperatively. Cone beam computed tomography scans can be an alternative modality for multislice computed tomography with submillimeter resolution and lower dose in preoperative imaging of the orbit.

  1. Ion beam induced luminescence of germano-silicate optical fiber preform

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Youngwoong; Han, Wontaek [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Markovic, Nikola; Jaksic, Milko [Ruder Boskovic Institute, Zagred (Croatia)

    2014-05-15

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives.

  2. Ion beam induced luminescence of germano-silicate optical fiber preform

    International Nuclear Information System (INIS)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho; Kim, Youngwoong; Han, Wontaek; Markovic, Nikola; Jaksic, Milko

    2014-01-01

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives

  3. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams

    International Nuclear Information System (INIS)

    Beddar, A.S.; Mackie, T.R.; Attix, F.H.

    1992-01-01

    The use of a small plastic scintillator coupled to an optical fibre bundle light pipe for the dosimetry of radiotherapy x-ray or electron beams in a phantom has been studied. Under such conditions, some light is generated by the direct action of the radiation on the optical fibres themselves, and this 'background' signal must be correctly accounted for. Electron beams were incident on fused silica optical fibres and other light pipes made of polymethylmethacrylate (PMMA), polystyrene and water. The observed light signal generated in all cases was found to depend strongly on the angle between the electron direction and the light pipe axis, and to correlate well with the angular characteristics uniquely associated with Cerenkov radiation. The use of a parallel fibre bundle light pipe, identical to the one that carries light from the scintillator, offers a suitable means of generating a similar background Cerenkov light signal that can be subtracted to obtain output from the scintillation dosimeter alone. (author)

  4. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  5. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory

    International Nuclear Information System (INIS)

    Ma Mingying; Wang Xiangzhao; Wang Fan

    2006-01-01

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy

  6. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.

    Science.gov (United States)

    Ma, Mingying; Wang, Xiangzhao; Wang, Fan

    2006-11-10

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.

  7. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  8. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Tilborg, J. van; Matlis, N. H.; Plateau, G. R.; Leemans, W. P.

    2010-06-01

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  9. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  10. The optics of the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Irwin, J.; Brown, K.; Bulos, F.; Burke, D.; Helm, R.; Roy, G.; Ruth, R.; Yamamoto, N.; Oide, K.

    1991-01-01

    The Final Focus Test Beam (FFTB), currently under construction at the end of the SLAC Linac, is being built by an international collaboration as a test bed for ideas and methods required in the design and construction of final focus systems for next generation e + e - linear colliders. The FFTB lattice shown is based on the previously developed principle of using sextupole pairs in a dispersive region to compensate chromaticity. The linear lattice was optimized for length, and implementation of diagnostic procedures. The transformations between sextupole pairs (CCX and CCY) are exactly -I, the matrix for the intermediate transformer (BX) is exactly diagonal, and the dispersion function has zero slope at the sextupoles and is thus zero at the minimum of the β x function in the intermediate transformer

  11. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  12. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    Science.gov (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  13. Ion beam induced optical and surface modification in plasmonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai B., E-mail: udaibhansingh123@gmail.com; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-15

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm{sup −1} along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  14. Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

    International Nuclear Information System (INIS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Sluckin, T. J.; Cook, G.; Evans, D. R.

    2014-01-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters

  15. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  16. Beam-bending in spatially variant photonic crystals at telecommunications wavelengths

    Science.gov (United States)

    Digaum, Jennefir L.; Sharma, Rashi; Batista, Daniel; Pazos, Javier J.; Rumpf, Raymond C.; Kuebler, Stephen M.

    2016-03-01

    This work reports the fabrication of micron-scale spatially variant photonic crystals (SVPCs) and their use for steering light beams through turns with bending radius Rbend on the order of ten times the optical wavelength λ0. Devices based on conventional photonic crystals, metamaterials, plasmonics and transformation optics have all been explored for controlling light beams and steering them through tight turns. These devices offer promise for photonic interconnects, but they are based on exotic materials, including metals, that make them impractically lossy or difficult to fabricate. Waveguides can also be used to steer light using total internal reflection; however, Rbend of a waveguide must be hundreds of times λ0 to guide light efficiently, which limits their use in optical circuits. SVPCs are spatially variant 3D lattices which can be created in transparent, low-refractive-index media and used to control the propagation of light through the self-collimation effect. SVPCs were fabricated by multi-photon lithography using the commercially available photo-polymer IP-DIP. The SVPCs were structurally and optically characterized and found to be capable of bending light having λ0 = 1.55 μm through a 90-degree turn with Rbend = 10 μm. Curved waveguides with Rbend = 15 μm and 35 μm were also fabricated using IP-DIP and optically characterized. The SVPCs were able to steer the light beams through tighter turns than either waveguide and with higher efficiency.

  17. One-way EPR steering and genuine multipartite EPR steering

    Science.gov (United States)

    He, Qiongyi; Reid, Margaret D.

    2012-11-01

    We propose criteria and experimental strategies to realise the Einstein-Podolsky-Rosen (EPR) steering nonlocality. One-way steering can be obtained where there is asymmetry of thermal noise on each system. We also present EPR steering inequalities that act as signatures and suggest how to optimise EPR correlations in specific schemes so that the genuine multipartite EPR steering nonlocality (EPR paradox) can also possibly be realised. The results presented here also apply to the spatially separated macroscopic atomic ensembles.

  18. Fundamental X-mode electron cyclotron current drive using remote-steering symmetric direction antenna at larger steering angles

    International Nuclear Information System (INIS)

    Idei, H.; Hanada, K.; Zushi, H.; Sato, K.N.; Sakamoto, M.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ohkubo, K.; Kubo, S.; Shimozuma, T.; Ito, S.; Hasegawa, M.; Nakamura, K.; Notake, T.; Hoshika, H.; Maezono, N.; Nishi, S.; Nakashima, K.

    2005-01-01

    A remote steering antenna has been newly developed for Electron Cyclotron Heating and Current Drive (ECH/ECCD) experiments on the TRIAM-1M tokamak. It is a first application of the remote steering antenna to the ECH/ECCD experiments under the conditions relevant to International Thermonuclear Experimental Reactor. Our launcher is a symmetric direction antenna with extended steering capability. The larger steering angles of 8-19 degrees are available, in addition to that near 0 degree. The output beam from the antenna is the well-defined Gaussian beam with a correct steering angle. The Gaussian content and the steering angle accuracy are 0.85 and -0.3 degrees, respectively. Antenna transmission efficiency in the high power test is evaluated as 0.95. The efficiencies at the low and high power tests are consistent with those in the calculation with higher-order modes. The difference between plasma currents increased at co- and counter-steering injections [+/-19 degrees] is clearly observed in the superposition to the Lower Hybrid Current Driven (LHCD) plasma of the fundamental X-mode injection. (author)

  19. RadSensor: Xray Detection by Direct Modulation of an Optical Probe Beam

    International Nuclear Information System (INIS)

    Lowry, M E; Bennett, C V; Vernon, S P; Bond, T; Welty, R; Behymer, E; Petersen, H; Krey, A; Stewart, R; Kobayashi, N P; Sperry, V; Stephan, P; Reinhardt, C; Simpson, S; Stratton, P; Bionta, R; McKernan, M; Ables, E; Ott, L; Bond, S; Ayers, J.; Landen, O L; Bell, P M

    2003-01-01

    We present a new x-ray detection technique based on optical measurement of the effects of x-ray absorption and electron hole pair creation in a direct band-gap semiconductor. The electron-hole pairs create a frequency dependent shift in optical refractive index and absorption. This is sensed by simultaneously directing an optical carrier beam through the same volume of semiconducting medium that has experienced an xray induced modulation in the electron-hole population. If the operating wavelength of the optical carrier beam is chosen to be close to the semiconductor band-edge, the optical carrier will be modulated significantly in phase and amplitude. This approach should be simultaneously capable of very high sensitivity and excellent temporal response, even in the difficult high-energy xray regime. At xray photon energies near 10 keV and higher, we believe that sub-picosecond temporal responses are possible with near single xray photon sensitivity. The approach also allows for the convenient and EMI robust transport of high-bandwidth information via fiber optics. Furthermore, the technology can be scaled to imaging applications. The basic physics of the detector, implementation considerations, and preliminary experimental data are presented and discussed

  20. Methodologies for steering clocks

    Science.gov (United States)

    Chadsey, Harold

    1995-01-01

    One of the concerns of the PTTI community is the coordination of one time scale with another. This is accomplished through steering one clock system to another, with a goal of a zero or constant offset in time and frequency. In order to attain this goal, rate differences are calculated and allowed for by the steering algorithm. This paper will present several of these different methods of determining rate differences. Ideally, any change in rate should not cause the offset to change sign (overshoot) by any amount, but certainly not by as much as its previous absolute value. The advantages and disadvantages of each depend on the user's situation.

  1. Steering Your Mysterious Mind

    DEFF Research Database (Denmark)

    Prasad, Ramjee

    Steering the Mysterious Mind, describes a unique, novel concept for a way to gain control of your mind. The five basic elements of human life, that is; Creativity, Content­ment, Confidence, Calmness, and Concentration (C5) have been introduced in my previous book Unlock Your Personalization. Posi....... Compare it with going to the gym where you work on the physical body. In the same way as with arms and legs, the mind is a mus­cle which you exercise through C5 practice. Steering the mind on your personal goal will help you to be creative....

  2. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  3. Optical diagnosis system for intense electron beam diode plasma

    International Nuclear Information System (INIS)

    Yang Jie; Shu Ting; Zhang Jun; Fan Yuwei; Yang Jianhua; Liu Lie; Yin Yi; Luo Ling

    2012-01-01

    A nanosecond time-resolved imaging platform for diode plasmas diagnostics has been constructed based on the pulsed electron beam accelerator and high speed framing camera (HSFC). The accelerator can provide an electrical pulse with voltages of 200-500 kV, rise-time (from 10% to 90% amplitude) of 25 ns and duration of 110 ns. The diode currents up to kA level can be extracted. The trigger signal for camera was picked up by a water-resistor voltage divider after the main switch of the accelerator, which could avoid the disadvantageous influence of the time jitter caused by the breakdown of the gas gaps. Then the sampled negative electrical pulse was converted into a transistor-transistor logic (TTL) signal (5 V) with rise time of about 1.5 ns and time jitter less than 1 ns via a processor. And this signal was taken as the synchronization time base. According to the working characteristics of the camera, the synchronization scheme relying mainly on electrical pulse delay method supplemented by light signal delay method was determined to make sure that the camera can work synchronously with the light production and transportation from the diode plasma within the time scale of nanosecond. Moreover, shielding and filtering methods were used to restrain the interference on the measurement system from the accelerator. Finally, time resolved 2-D framing images of the diode plasma were acquired. (authors)

  4. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  5. Linac-beam characterizations at 600 MeV using optical transition radiation diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1998-05-27

    Selected optical diagnostics stations were upgraded in anticipation of low-emittance, bright electron beams from a thermionic rf gun or a photoelectric rf gun on the Advanced Photon Source (APS) injector linac. These upgrades include installation of optical transition radiation (OTR) screens, transport lines, and cameras for use in transverse beam size measurements and longitudinal profile measurements. Using beam from the standard thermionic gun, tests were done at 50 MeV and 400 to 650 MeV. Data were obtained on the limiting spatial ({sigma} {approximately} 200 {micro}m) and temporal resolution (300 ms) of the Chromox (Al{sub 2}O{sub 3} : Cr) screen (250-{micro}n thick) in comparison to the OTR screens. Both charge-coupled device (CCD) and charge-injection device (CID) video cameras were used as well as the Hamamatsu C5680 synchroscan streak camera operating at a vertical deflection rate of 119.0 MHz (the 24th subharmonic of the S-band 2856-MHz frequency). Beam transverse sizes as small as {sigma}{sub x} = 60 {micro}m for a 600-MeV beam and micropulse bunch lengths of {sigma}{sub {tau}}<3 ps have been recorded for macropulse-averaged behavior with charges of about 2 to 3 nC per macropulse. These techniques are applicable to linac-driven, fourth-generation light source R and D experiments including the APS's SASE FEL experiment.

  6. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  7. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  8. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    Science.gov (United States)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  9. Optical emission from a high-refractive-index waveguide excited by a traveling electron beam

    International Nuclear Information System (INIS)

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    An optical emission scheme was demonstrated, in which a high-refractive-index waveguide is excited by a traveling electron beam in a vacuum environment. The waveguide was made of Si-SiO 2 layers. The velocity of light propagating in the waveguide was slowed down to 1/3 of that in free space due to the high refractive index of Si. The light penetrated partly into the vacuum in the form of a surface wave. The electron beam was emitted from an electron gun and propagated along the surface of the waveguide. When the velocity of the electron coincided with that of the light, optical emission was observed. This emission is a type of Cherenkov radiation and is not conventional cathode luminescence from the waveguide materials because Si and SiO 2 are transparent to light at the emitted wavelength. This type of emission was observed in an optical wavelength range from 1.2 to 1.6 μm with an electron acceleration voltage of 32-42 kV. The characteristics of the emitted light, such as the polarization direction and the relation between the acceleration voltage of the electron beam and the optical wavelength, coincided well with the theoretical results. The coherent length of an electron wave in the vacuum was confirmed to be equal to the electron spacing, as found by measuring the spectral profile of the emitted light

  10. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  11. Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1980-01-01

    The propagating beam method utilizes discrete Fourier transforms for generating configuration-space solutions to optical waveguide problems without reference to modes. The propagating beam method can also give a complete description of the field in terms of modes by a Fourier analysis with respect to axial distance of the computed fields. Earlier work dealt with the accurate determination of mode propagation constants and group delays. In this paper the method is extended to the computation of mode eigenfunctions. The method is efficient, allowing generation of a large number of eigenfunctions from a single propagation run. Computations for parabolic-index profiles show excellent agreement between analytic and numerically generated eigenfunctions

  12. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    Science.gov (United States)

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  13. Superconducting resonators as beam splitters for linear-optics quantum computation.

    Science.gov (United States)

    Chirolli, Luca; Burkard, Guido; Kumar, Shwetank; Divincenzo, David P

    2010-06-11

    We propose and analyze a technique for producing a beam-splitting quantum gate between two modes of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave approximation; an exact calculation gives a fidelity of >0.9992. Our construction completes the toolkit for linear-optics quantum computing in circuit quantum electrodynamics.

  14. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  15. Beam-based alignment technique for the SLC [Stanford Linear Collider] linac

    International Nuclear Information System (INIS)

    Adolphsen, C.E.; Lavine, T.L.; Atwood, W.B.

    1989-03-01

    Misalignment of quadrupole magnets and beam position monitors (BPMs) in the linac of the SLAC Linear Collider (SLC) cause the electron and positron beams to be steered off-center in the disk-loaded waveguide accelerator structures. Off-center beams produce wakefields which limit the SLC performance at high beam intensities by causing emittance growth. Here, we present a general method for simultaneously determining quadrupole magnet and BPM offsets using beam trajectory measurements. Results from the application of the method to the SLC linac are described. The alignment precision achieved is approximately 100 μm, which is significantly better than that obtained using optical surveying techniques. 2 refs., 4 figs

  16. Optics measurements and transfer line matching for the SPS injection of the CERN Multi-Turn Extraction beam

    CERN Document Server

    Benedetto, E; Cettour Cave, S; Follin, F; Gilardoni, S; Giovannozzi, M; Roncarolo, F

    2010-01-01

    Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in the paper.

  17. 49 CFR 570.7 - Steering systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Steering systems. 570.7 Section 570.7... Pounds or Less § 570.7 Steering systems. (a) System play. Lash or free play in the steering system shall... in the steering system. Table 1—Steering System Free Play Values Steering wheel diameter (inches...

  18. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  19. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams

    International Nuclear Information System (INIS)

    Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.

    1990-01-01

    Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations

  20. Analysis and Characterization of an Acousto-Optic Beam Position Control System

    Science.gov (United States)

    2002-07-01

    glass or plastic. This device can be viewed as a medium where light interacts with sound yielding a diffracted light beam. Bragg cells can operate in...by “optical activity” is considered to be very small for TeO2 [2]. The birefringence is due to the fact the index of refraction in for the incident...equations describes behavior of the acousto-optic device. The acoustic velocity can be expressed as follows. azat vvv Θ+Θ= 22222 sincos For TeO2 vt=616 m

  1. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam

    International Nuclear Information System (INIS)

    Yuan, G H; Wang, Q; Tan, P S; Lin, J; Yuan, X-C

    2012-01-01

    A novel phase modulation method for dynamic manipulation of surface plasmon polaritons (SPPs) with a phase engineered optical vortex (OV) beam illuminating on nanoslits is experimentally demonstrated. Because of the unique helical phase carried by an OV beam, dynamic control of SPP multiple focusing and standing wave generation is realized by changing the OV beam’s topological charge constituent with the help of a liquid-crystal spatial light modulator. Measurement of SPP distributions with near-field scanning optical microscopy showed an excellent agreement with numerical predictions. The proposed phase modulation technique for manipulating SPPs features has seemingly dynamic and reconfigurable advantages, with profound potential for development of SPP coupling, routing, multiplexing and high-resolution imaging devices on plasmonic chips. (paper)

  2. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.

    2013-01-01

    estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...

  3. Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms

    Science.gov (United States)

    Long, Xueping; Jayich, Andrew; Campbell, Wesley

    2017-04-01

    Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.

  4. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    Science.gov (United States)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  5. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  6. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    International Nuclear Information System (INIS)

    Fattori, G.; Seregni, M.; Pella, A.; Riboldi, M.; Capasso, L.; Donetti, M.; Ciocca, M.; Giordanengo, S.; Pullia, M.; Marchetto, F.; Baroni, G.

    2016-01-01

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  7. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  8. Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.

    2017-03-01

    In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices.

  9. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Science.gov (United States)

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  10. The use of micro-computers in the simulation of ion beam optics

    International Nuclear Information System (INIS)

    Spaedtke, P.; Ivens, D.

    1989-01-01

    With computer simulation codes specific problems of the ion beam optics can be studied, which is useful in the design as in optimization of existing systems. Several such codes have been developed, unfortunately requiring substantial computer resources. Recent advances of mini- and micro-computers have now made it possible to develop simulation codes which can be run on these small computers also. In this paper, some of these codes will be presented and their computing time discussed. (author)

  11. Use of thin films obtained by electron beam evaporation as optical wave guide

    International Nuclear Information System (INIS)

    Nobre, S.A.A.; Oliveira, C.A.S. de; Freire, G.F.de O.

    1986-01-01

    Thin films evaporated by electron beam for the fabrication of planar optical waveguides were used. The tested materials were aluminium oxide (Al 2 O 3 ) and tantalum pentoxide (Ta 2 O 5 ). The effect of annealing conditions on the film absorption was investigated for Ta 2 O 5 . The Al 2 O 3 films were characterized by the method of guided modes, in terms of refractive index measurements and film thickness. Atenuation measurements were also carried out. (M.C.K.) [pt

  12. Gaps of free-space optics beams with the Beer-Lambert law.

    Science.gov (United States)

    Lacaze, Bernard

    2009-05-10

    Lasers used in free-space optics propagate a beam within a truncated cone. Because of this shape, the intensity cannot follow the Beer-Lambert law. In the case of a homogeneous atmosphere, we calculate the gap from the cylinder case. We will see that the gap exists but is generally very weak and, therefore, that the use of the Beer-Lambert law is a justified approximation.

  13. Nano-fabrication of diffractive optics for soft X-ray and atom beam focusing

    International Nuclear Information System (INIS)

    Rehbein, S.

    2002-01-01

    Nano-structuring processes are described for manufacturing diffractive optics for the condenser-monochromator set-up of the transmission X-ray microscope (TXM) and for the scanning transmission X-ray microscope (STXM) at the BESSY II electron storage ring in Berlin. Furthermore, a process for manufacturing free-standing nickel zone plates for helium atom beam focusing experiments is presented. (author)

  14. Composite optical vortices in noncollinear Laguerre–Gaussian beams and their propagation in free space

    International Nuclear Information System (INIS)

    Chen Ke; Liu Pusheng; Lü Baida

    2008-01-01

    Taking two Laguerre—Gaussian beams with topological charge l = ± 1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre—Gaussian beams with different phases, amplitudes, waist widths, off-axis distances, and their propagation in free space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β, amplitude ratio η, waist width ratio ζ, or off-axis distance ratio μ. The net topological charge l net is not always equal to the sum l sum of charges of the two component beams. The motion, creation and annihilation of composite vortices take place in the free-space propagation, and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane

  15. Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. [Sokendai, Tsukuba; Piot, P. [NIU, DeKalb; Sen, T. [Fermilab

    2018-04-12

    This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. We discuss how the electron beam distributions after the diamond crystal are affected by channeling. We discuss an X-ray detector system to avoid pile-up effects during high charge operations.

  16. Fabrication and optimization of a fiber-optic radiation sensor for proton beam dosimetry

    International Nuclear Information System (INIS)

    Jang, K.W.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Moon, J.; Park, J.-Y.; Hwang, E.J.; Shin, D.; Park, S.-Y.; Cho, H.-S.; Lee, B.

    2011-01-01

    In this study, we fabricated a fiber-optic radiation sensor for proton therapy dosimetry and measured the output and the peak-to-plateau ratio of scintillation light with various kinds of organic scintillators in order to select an organic scintillator appropriate for measuring the dose of a proton beam. For the optimization of an organic scintillator, the linearity between the light output and the stopping power of a proton beam was evaluated for two different diameters of the scintillator, and the angular dependency and standard deviation of the light pulses were investigated for four different scintillator lengths. We also evaluated the linearity between the light output and the dose rate and monitor units of a proton generator, respectively. The relative depth-dose curve of the proton beam was obtained and corrected using Birk's theory.

  17. High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators

    Science.gov (United States)

    Guo, Zhongyi; Zhu, Lie; Guo, Kai; Shen, Fei; Yin, Zhiping

    2017-08-01

    In this paper, a high-order dielectric metasurface based on silicon nanobrick array is proposed and investigated. By controlling the length and width of the nanobricks, the metasurfaces could supply two different incremental transmission phases for the X-linear-polarized (XLP) and Y-linear-polarized (YLP) light with extremely high efficiency over 88%. Based on the designed metasurface, two polarization beam splitters working in high-order diffraction modes have been designed successfully, which demonstrated a high transmitted efficiency. In addition, we have also designed two vortex-beam generators working in high-order diffraction modes to create vortex beams with the topological charges of 2 and 3. The employment of dielectric metasurfaces operating in high-order diffraction modes could pave the way for a variety of new ultra-efficient optical devices.

  18. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  19. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  20. Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Yu.

    2006-01-01

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed

  1. Recent developments with a prototype fan-beam optical CT scanner

    Science.gov (United States)

    Campbell, W. G.; Jirasek, A.; Wells, D.

    2013-06-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  2. Recent developments with a prototype fan-beam optical CT scanner

    International Nuclear Information System (INIS)

    Campbell, W G; Jirasek, A; Wells, D

    2013-01-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  3. Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics

    Science.gov (United States)

    Li, Nan; Chu, Xiuxiang; Zhang, Pengfei; Feng, Xiaoxing; Fan, ChengYu; Qiao, Chunhong

    2018-01-01

    A method which can be used to compensate for a distorted orbital angular momentum and wavefront of a beam in atmospheric turbulence, simultaneously, has been proposed. To confirm the validity of the method, an experimental setup for up-link propagation of a vortex beam in a turbulent atmosphere has been simulated. Simulation results show that both of the distorted orbital angular momentum and the distorted wavefront of a beam due to turbulence can be compensated by an adaptive optics system with the help of a cooperative beacon at satellite. However, when the number of the lenslet of wavefront sensor (WFS) and the actuators of the deform mirror (DM) is small, satisfactory results cannot be obtained.

  4. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Yu

    2006-07-28

    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new type of Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles the Magnus effect for optical vortices. Unlike the spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena are discussed.

  5. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-08

    Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.

  6. Radiation optic neuropathy after megavoltage external-beam irradiation: Analysis of time-dose factors

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1994-01-01

    To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 and 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of ≥ 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes ≥1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs

  7. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    Science.gov (United States)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  8. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    International Nuclear Information System (INIS)

    Trappe, Neil; Murphy, J Anthony; Withington, Stafford

    2003-01-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking - for comparison - examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration

  9. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer

    International Nuclear Information System (INIS)

    Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo

    2008-01-01

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near λ. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices

  10. Electron beam position stabilization with a piezo-electric optical correction system

    CERN Document Server

    Averett, T; McKeown, R D; Pitt, M

    1999-01-01

    A piezo-electrically controlled optical correction system was successfully used to reduce the helicity-correlated pulse-to-pulse position differences of a laser spot to better than +-100 nm at a pulse rate of 600 Hz. Using a simple feedback algorithm, average position differences of DELTA x-bar=-3.5+-4.2 nm and DELTA y-bar=2.6+-6.6 nm were obtained over a 6 h period. This optical correction system was successfully used in the polarized electron source at the Bates Linear Accelerator Center to stabilize the position of the electron beam during the recent SAMPLE experiment. Because this experiment measures a parity violating signal at the 10 sup - sup 6 level, it is sensitive to systematic effects which are correlated with the helicity of the incident electrons. One potentially large systematic effect is the helicity-correlated motion of the incident electron beam. By using this optical correction system, electron beam position differences at the location of the experiment were routinely kept well below +-100 n...

  11. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  12. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  13. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    International Nuclear Information System (INIS)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-01-01

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm 2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO 2 lasers

  14. A System for Measuring Defect Induced Beam Modulation on Inertial Confinement Fusion-class Laser Optics

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Hawley-Fedder, R; Widmayer, C; Williams, W; Weinzapfel, C; Roberts, D

    2005-10-18

    A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm{sup 2} and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO{sub 2} lasers.

  15. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  16. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  17. Propagation-invariant vectorial Bessel beams by use of sub wavelength quantized Pancharatnam-Berry phase optics

    International Nuclear Information System (INIS)

    Niv, A.; Biener, G.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Propagation-invariant scalar fields have been extensively studied both theoretically and experimentally, since they were proposed by Durnin et al. These fields were employed in applications such as optical tweezers and for transport and guiding of microspheres. Although there has recently been considerable theoretical interest in propagation-invariant vectorial beams, experimental studies of such beams have remained somewhat limited. One of the most interesting types of propagation-invariant vectorial beam is the linearly polarized axially symmetric beam (LPASB) [l]. Recently, we introduced and experimentally demonstrated propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized Pancharatnam-Berry phase optical elements (QPBOEs) [21 and an axicon. QP-BOEs utilize the geometric phase that accompanies space-variant polarization manipulations to achieve a desired phase modification [31. To test our approach we formed QPBOEs with different polarization orders as computer-generated space-variant sub wavelength gratings upon GaAs wafers for use with 10.6 micron laser radiation. The resultant beams were also transmitted through a polarizer that produced a unique propagation-invariant scalar beam. This beam has a propeller-shaped intensity pattern that can be rotated by simple rotation of the polarizer. We therefore have demonstrated the formation of a vectorial Bessel beam by using simple, lightweight thin elements and exploited that beam to perform a controlled rotation of a propeller-shaped intensity pattern that can be suitable for optical tweezers

  18. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    OpenAIRE

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in ...

  19. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  20. General beam position controlling method for 3D optical systems based on the method of solving ray matrix equations

    Science.gov (United States)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Wang, Zhiguo; Li, Yingying

    2013-12-01

    A general beam position controlling method for 3D optical systems based on the method of solving ray matrix equations has been proposed in this paper. As a typical 3D optical system, nonplanar ring resonator of Zero-Lock Laser Gyroscopes has been chosen as an example to show its application. The total mismatching error induced by Faraday-wedge in nonplanar ring resonator has been defined and eliminated quite accurately with the error less than 1 μm. Compared with the method proposed in Ref. [14], the precision of the beam position controlling has been improved by two orders of magnitude. The novel method can be used to implement automatic beam position controlling in 3D optical systems with servo circuit. All those results have been confirmed by related alignment experiments. The results in this paper are important for beam controlling, ray tracing, cavity design and alignment in 3D optical systems.

  1. Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter

    KAUST Repository

    Lippok, Norman; Nielsen, Poul; Vanholsbeeck, Fré dé rique

    2011-01-01

    B, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance,compared to a traditional OCT configuration using a 50/50 beam splitter. © 2011 Optical Society of America.

  2. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  3. All-optical optoacoustic microscopy based on probe beam deflection technique.

    Science.gov (United States)

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  4. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  5. Optical design of beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Ieiri, M.; Noumi, H.; Minakawa, M.; Yamanoi, Y.; Kato, Y.; Ishii, H.; Suzuki, Y.; Takasaki, M.

    1995-01-01

    A new counter experimental hall [K.H. Tanaka et al., IEEE Trans. Magn. 28 (1992) 697] was designed and constructed at the KEK 12-GeV Proton Synchrotron (KEK-PS). The extracted proton beam from the KEK-PS is introduced to the new hall through the newly-prepared primary beam line, EP1, and hits two production targets in cascade. The upstream target provides secondary particles to the low momentum (0.4-0.6 GeV/c) separated beam line, K5, and the downstream target is connected to the medium momentum (0.6-2.0 GeV/c) separated beam line, K6. Several new ideas were employed in the beam optical designs of EP1, K5 and K6 in order to increase the number and the purity of the short-lived secondary particles, such as kaons and pions, under the limited energy and intensity of the primary protons provided by the KEK-PS. These new ideas are described in this paper as well as the first commissioning results. (orig.)

  6. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    Science.gov (United States)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  7. Output optics for Aurora: Beam separation, pulse stacking, and target focusing

    International Nuclear Information System (INIS)

    McLeod, J.

    1987-01-01

    An end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. The optical system has been designed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. During first-phase design, the system was conceived of as only an amplifier demonstration and not as an end-to-end system demonstration. The design concept for second-phase optics that provides demultiplexing and carries the laser light to target is presented

  8. Morphology, optical and ionic conductivity studies of electron beam irradiated polymer electrolyte film

    Science.gov (United States)

    Devendrappa, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.

    2018-04-01

    The effects of electron beam (EB) irradiation on morphology, optical properties and ionic conductivity of (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films. The FESEM image reveal increasing porous morphology with increasing EB dose confirms the polymer degradation as result more amorphousity. The optical absorbance was found to be increase with red shift in UV region and direct optical band gaps was found decreased upon EB dose from 3.70 eV to 2.65 eV. The ionic conductivity increases slowly in lower frequency, whereas rapidly increases at the high frequency and found about 8.28×10-4 S/cm at 120 kGy dose. The obtained results suggest that the physical properties of polymer electrolytes can be changed using EB irradiation as requirement.

  9. Modern reflective optics for material processing with high power CO/sub 2/-laser beams

    International Nuclear Information System (INIS)

    Juptner, W.P.O.; Sepold, G.; Rothe, R.R.

    1986-01-01

    The state of the art in diamond turning of parabolic mirrors allows to manufacture high quality surfaces at a reasonable low price. In this paper a report is given on mirror optics and systems which were developed with the following aims: Small losses of laser power in the system with a high efficiency of the laser beam processing system; Long lifetime of the mirrors under material processing conditions; High Standard of the optical quality; Flexibility for different applications. The requested qualities are guaranteed by the whole construction of the optics and the system. The theoretical works, the state of the art of the development and the future aspects of these laser working head systems are reported

  10. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  11. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas. - Highlights: • Optical nondiffracting nonparaxial fractional Bessel vortex beam is considered. • Negative spin torque on an absorptive dielectric Rayleigh sphere is predicted numerically. • Negative spin torque occurs as the sphere departs from the center of the beam.

  12. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    Science.gov (United States)

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  13. Low-crosstalk full-duplex all-optical indoor wireless transmission with carrier recovery

    NARCIS (Netherlands)

    Oh, C.W.; Cao, Z.; Mekonnen, K.A.; Tangdiongga, E.; Koonen, A.M.J.

    2017-01-01

    We propose and demonstrate a novel bi-directional free-space (FS) optical wireless communication system for indoor wireless networks. A 2-D infrared beam-steered system supporting full-duplex communication of at least 10 Gb/s capacity per wireless terminal with simple NRZ-OOK modulation format is

  14. Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers

    International Nuclear Information System (INIS)

    Zhou Zheng; Zhang Li-Juan; Zhu Bo

    2015-01-01

    We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)

  15. Progress on the ITER H&CD EC upper launcher steering-mirror control system

    NARCIS (Netherlands)

    Collazos, A.; Bertizzolo, R.; Chavan, R.; Dolizy, F.; Felici, F.; Goodman, T.P.; Henderson, M.A.; Landis, J.-D.; Sanchez, F.

    2010-01-01

    The ITER Heating and Current Drive Upper Launcher (H&CD EC UL) uses a pneumomechanical steering-mirror assembly (SMA) to steer the RF beams for their deposition in the appropriate location in the plasma to control magnetohydrodynamic activity (neoclassical tearing modes (NTMs) and sawtooth

  16. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  17. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  18. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    Liu, Chuyu

    2012-01-01

    difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation

  19. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter

    Science.gov (United States)

    Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  20. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter.

    Science.gov (United States)

    Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R

    2018-05-01

    We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.

  1. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation); Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G. [Tomsk State University of Control Systems and Radioelectronics (Russian Federation); Shidlovskiy, S. V. [Tomsk State University (Russian Federation); Shklyaev, V. A. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  2. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  3. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam

    Science.gov (United States)

    Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng

    2018-03-01

    Optical force and torque exerted on the Rayleigh particles by tightly focused circularly polarized circular Airy vortex beams (CAVB) in the far field are studied in this paper. The relation between parameters of circularly polarized CAVB and the trapping properties is numerically analyzed based on Rayleigh models and the Debye diffraction theory. The results show that both the high refractive index and low refractive index particles can be fully stably trapped in three dimensions by circularly polarized CAVB. The parameters of circularly polarized CAVB greatly affect the optical force. The longitudinal and transverse gradient force increase with the increase of decay factor and scaling factor, and decrease with the increase of the radius of the first primary ring and topological charges. The positions of the longitudinal stable equilibrium move toward the high numerical aperture lens when the scaling factor and the radius of the primary ring increase. The trapping range is broadened with the decrease of scaling factor. The optical orbital torque (OOT) of circularly polarized CAVB has circular symmetry and remains positive or negative. With the increase of topological charges, the peak value of OOT first increases and then decreases after reaches a maximum. These results are useful for optical trapping, optical levitation and particle acceleration.

  4. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    International Nuclear Information System (INIS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-01-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape

  5. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    Energy Technology Data Exchange (ETDEWEB)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth, E-mail: rsignorell@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland)

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  6. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  7. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  8. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  9. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  10. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  11. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  12. Beam line optics technologies series (7). Orthopedic treatment of sharp of light (reflecting mirror)

    International Nuclear Information System (INIS)

    Uruga, Tomoya; Nomura, Masaharu

    2006-01-01

    A reflecting mirror (mirror) is the most popular light device for orthopedic treatment of the shape of light. The paper explains the kinds of mirror for hard X-ray field and its applications in order to think the objects of mirror and how to adjust it when user experiment on the beam-line. The basic knowledge of reflection of X-ray, a use of mirror, the kinds of condenser mirror, the influence factors on the condenser size, arrangement of mirror in the hard X-ray beam-line, what kinds of mirror are necessary, evaluation of performance of mirror and adjustment, and troubles and measures are described. Layout in optics hutch at BL01B1 at SPring-8, refraction and total reflection of X-rays at surface, reflectivity of Rh and Pt with ideal surface as a function of photon energy, effects of surface roughness on reflectivity of Rh, calculated beam sizes for typical SPring-8 mirror as a function of magnification, schematic drawing of mirror, standard mirror system for vertical deflection in bending magnet beam-line, and observed and calculated reflectivity of Rh double mirror at BL01B1 at SPring-8 are illustrated. (S.Y)

  13. A novel approach to the sensing of liquid density using a plastic optical fibre cantilever beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is attached. Due to the apparent loss of the true weight of the displacer there is a deflection in the cantilever beam, which causes macro bending in the POF. The loss of intensity due to macro bending of the POF is a measure of the density of the liquid under test. The variation of weight loss with the density of different liquids showed that the weight loss is proportional to density. This sensor is capable of detecting the weight loss with respect to their densities even for liquids having close values of density like distilled water, tap water, and milk of various brands. The resolution of the sensor is observed to be 1.1 mg cm-3.

  14. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    Science.gov (United States)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  15. MeV ion-beam analysis of optical data storage films

    Science.gov (United States)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  16. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    Science.gov (United States)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  17. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  18. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.

    Science.gov (United States)

    Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-10-17

    The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.

  19. Use of an optical digital reader for establishing criterion of quality control in clinical beams

    International Nuclear Information System (INIS)

    Genis S, R.

    1998-01-01

    The goal of this work is to present a procedure for realizing the control of the clinical radiation fields through typical radiographic film of verification in radiotherapy and showing the results of the analysis carried out in the expositions of reference fields for photons and electrons using an optical digital reader of high resolution (600 x 1200 dpi) named scanner and a computer program for images edition. It was possible to obtain the quantification of the following parameters: alinement of the radiation beam with the luminous beam, homogeneity or levelling of the radiation field, and self symmetry with respect to the center of the luminous field. With the purpose to compare the results versus an usual method it was realized measurements of the same images with a luminous photo densitometer with 1 mm collimation window. (Author)

  20. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  1. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns

    Science.gov (United States)

    Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2017-11-01

    This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.

  2. Optimization of steering elements in the RIA driver linac

    International Nuclear Information System (INIS)

    Lessner, E. S.; Aseev, V. S.; Ostroumov, P. N.; Physics

    2005-01-01

    The driver linac of the projected RIA facility is a versatile accelerator, a 1.4-GV, CW superconducting (SC) linac designed to simultaneously accelerate several heavy-ion charge states, providing beams from proton to uranium at 400 MeV/u at power levels at a minimum of 100 kW and up to 400 kW for most beams. Acceleration of multiple-charge-state uranium beams places stringent requirements on the linac design. A steering algorithm was derived that fulfilled the driver's real estate requirements, such as placement of steering dipole coils on SC solenoids and of beam position monitors outside cryostats, and beam-dynamics requirements, such as coupling effects induced by the focusing solenoids. The algorithm has been fully integrated into the tracking code TRACK and it is used to study and optimize the number and position of steering elements that minimize the multiple-beam centroid oscillations and preserve the beam emittance under misalignments of accelerating and transverse focusing elements in the driver linac

  3. Direct UV-Written Integrated Optical Beam Combiner for Stellar Interferometry

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael; Jocou, L.

    2007-01-01

    In this paper, we report the fabrication of an optical-beam combiner for stellar interferometry by means of direct ultraviolet (UV) writing. The component is shown to have good performance (fringe contrast > 95%, total loss similar to 0.7, -40-dB crosstalk, broadband operation covering at least...... the range 1.49-1.65 mu m, and low differential chromatic dispersion). The overall performance exceeds that of similar components currently used for astronomical research. This result, combined with the fast-prototyping ability of UV writing, opens up new possibilities for the realization of highly optimized...

  4. Design and fabrication of continuous-profile diffractive micro-optical elements as a beam splitter.

    Science.gov (United States)

    Feng, Di; Yan, Yingbai; Jin, Guofan; Fan, Shoushan

    2004-10-10

    An optimization algorithm that combines a rigorous electromagnetic computation model with an effective iterative method is utilized to design diffractive micro-optical elements that exhibit fast convergence and better design quality. The design example is a two-dimensional 1-to-2 beam splitter that can symmetrically generate two focal lines separated by 80 microm at the observation plane with a small angle separation of +/- 16 degrees. Experimental results are presented for an element with continuous profiles fabricated into a monocrystalline silicon substrate that has a width of 160 microm and a focal length of 140 microm at a free-space wavelength of 10.6 microm.

  5. Demonstration of biased membrane static figure mapping by optical beam subpixel centroid shift

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Fabrizio, E-mail: fpinto@jazanu.edu.sa [Laboratory for Quantum Vacuum Applications, Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, Gizan 45142 (Saudi Arabia)

    2016-06-10

    The measurement of Casimir forces by means of condenser microphones has been shown to be quite promising since its early introduction almost half-a-century ago. However, unlike the remarkable progress achieved in characterizing the vibrating membrane in the dynamical case, the accurate determination of the membrane static figure under electrostatic bias remains a challenge. In this paper, we discuss our first data obtained by measuring the centroid shift of an optical beam with subpixel accuracy by charge coupled device (CCD) and by an extensive analysis of noise sources present in the experimental setup.

  6. Optimal design for the output sensitivity of a binary-optics beam splitter

    International Nuclear Information System (INIS)

    Chen Ran; Guo Yongkang; Yao Jun

    1998-01-01

    The authors use differential-integral algorithm for optimal design of the binary-optics beam splitter. Though the simulate result the authors can see, splitter designed by this method, when the shape and the intensity of the input changes, the output will keep relatively stable. The designed diffraction efficiency achieves 92.67%, and the nonuniformity of the intensity is less than 0.002%. When the input changes from a Gaussian to a paranormal Gaussian or a rectangular facula with tiny random undulation and a plane wave, the diffraction efficiency can reach 89.60% at least, and the highest nonuniformity of the intensity is 11.49%. Consider about both the diffraction efficiency and the nonuniformity of the intensity, this result is better than that has been reported. The scientists in the world show interest in the using of binary-optics device in ICF driver

  7. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  8. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    Science.gov (United States)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  9. Optical band gap of ZnO thin films deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Nadeem, M. Y.; Ali, S. L.; Wasiq, M. F.; Rana, A. M.

    2006-01-01

    Optical band gap of ZnO thin films deposited by electron beam evaporation at evaporation rates ranging 5 As/sup -1/ to 15 As /sup -1/ and thickness ranging 1000A to 3000A is presented. Deposited films were annealed at 573K for one and half hour. The variations in the optical band gap were observed and showed decreasing behavior from 3.15 eV, 3.05 eV, from 3.18 eV to 3.10 eV and from 3.19 eV to 3.18 eV for films with respective thickness 1000A, 2000 A, 3000 A on increasing the evaporation rate from 5 As/sup-1/ to As/sup -1/ by keeping thickness constant. (author)

  10. Steering Maps and Their Application to Dimension-Bounded Steering

    Science.gov (United States)

    Moroder, Tobias; Gittsovich, Oleg; Huber, Marcus; Uola, Roope; Gühne, Otfried

    2016-03-01

    The existence of quantum correlations that allow one party to steer the quantum state of another party is a counterintuitive quantum effect that was described at the beginning of the past century. Steering occurs if entanglement can be proven even though the description of the measurements on one party is not known, while the other side is characterized. We introduce the concept of steering maps, which allow us to unlock sophisticated techniques that were developed in regular entanglement detection and to use them for certifying steerability. As an application, we show that this allows us to go beyond even the canonical steering scenario; it enables a generalized dimension-bounded steering where one only assumes the Hilbert space dimension on the characterized side, with no description of the measurements. Surprisingly, this does not weaken the detection strength of very symmetric scenarios that have recently been carried out in experiments.

  11. A robust single-beam optical trap for a gram-scale mechanical oscillator.

    Science.gov (United States)

    Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E

    2017-11-06

    Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

  12. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M.P. [Cornell University, Ithaca, NY 14853 (United States); Flanagan, J.W. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Department of Accelerator Science, Graduate University for Advanced Studies (SOKENDAI), Tsukuba (Japan); Fontes, E. [Cornell University, Ithaca, NY 14853 (United States); Heltsley, B.K., E-mail: bkh2@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Lyndaker, A.; Peterson, D.P.; Rider, N.T.; Rubin, D.L.; Seeley, R.; Shanks, J. [Cornell University, Ithaca, NY 14853 (United States)

    2014-12-11

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e{sup +} and e{sup −} beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10–100μm on a turn-by-turn, bunch-by-bunch basis at e{sup ±} beam energies of ∼2–5GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances. - Highlights: • We characterize optical element performance of an e{sup ±} x-ray beam size monitor. • We standardize beam size resolving power measurements to reference conditions. • Standardized resolving power measurements compare favorably to model predictions. • Key model features include simulation of photon-counting statistics and image fitting. • Results validate a coded aperture design optimized for the x-ray spectrum encountered.

  13. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

    International Nuclear Information System (INIS)

    Cho, Yeong-Kwon; Kim, Ki-Hong

    2014-01-01

    The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

  14. Design of X-Y steering magnet for extraction beamline of K-500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Naser, Md. Zamal A.; Paul, S.; Bhunia, U.; Pradhan, J.; Dey, M.K.; Nandi, C.; Mallik, C.; Bhandari, R.K.

    2005-01-01

    The K-500 Superconducting Cyclotron is in the advanced stage of commissioning at VEC Centre, Kolkata. This accelerator is designed to accelerate up to maximum 80 MeV/nucleon energy. A X-Y steering magnet is essential to guide this high energy beam into the external high energy beam line. This paper describes the designing and the other related necessary aspects of such a steering magnet. (author)

  15. Optical beam classification using deep learning: a comparison with rule- and feature-based classification

    Science.gov (United States)

    Alom, Md. Zahangir; Awwal, Abdul A. S.; Lowe-Webb, Roger; Taha, Tarek M.

    2017-08-01

    Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deeplearning approach. NIF is the world's largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with picosecond temporal resolution. In the current operational configuration, four independent short-pulse ARC beams are created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The subaperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target. Small angular errors in the compressor gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with other machine-learning approaches, such as Deep Neural Network (DNN) and Support

  16. Developing and setting up optical methods to study the speckle patterns created by optical beam smoothing

    International Nuclear Information System (INIS)

    Surville, J.

    2005-12-01

    We have developed three main optical methods to study the speckles generated by a smoothed laser source. The first method addresses the measurement of the temporal and spatial correlation functions of the source, with a modified Michelson interferometer. The second one is a pump-probe technique created to shoot a picture of a speckle pattern generated at a set time. And the third one is an evolution of the second method dedicated to time-frequency coding, thanks to a frequency chirped probe pulse. Thus, the speckles can be followed in time and their motion can be described. According to these three methods, the average size and duration of the speckles can be measured. It is also possible to measure the size and the duration of each of them and mostly their velocity in a given direction. All the results obtained have been confronted to the different existing theories. We show that the statistical distributions of the measured speckles'size and speckles'intensity agree satisfactorily with theoretical values

  17. An optical design and simulation of LED low-beam headlamps

    International Nuclear Information System (INIS)

    Zhu Xiangbing; Chen Qiaoyun; Ni Jian

    2011-01-01

    The low-beam headlamp is an important component for the automobile safety. With the improvement of optical efficiency and heat dissipation' technology of white LEDs, it becomes feasible to design low-beam headlamps with LEDs. The principle of B-spline surfaces is used to construct the free-form surface reflector meeting the requirement. First, the initial B-spline surface reflector is established on the basis of the light source structure, emitting features and capability of light distribution. Optical simulation is carried out according to the principle of ray tracing. And then the simulation results will be compared with the standard of photometric characteristics. The segmented surfaces fine-tuning method and the method of trial and error are used to trim the part that failed to meet requirements gradually. The vector groups of surfaces are obtained. Finally,the desired free-form surface reflector meeting the ECE regulations is got. The experimental results can meet the standard of photometric characteristics. The impact of the technique showed in this paper in the field of LED illumination design seems to be a very promising topic.

  18. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    Science.gov (United States)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  19. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee

    1999-07-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 {mu}m in translation and 50 {mu}rad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 {mu}m) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm{sup 2} and is 15 x 15 mm{sup 2} for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  20. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    International Nuclear Information System (INIS)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S.

    1999-01-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 μm in translation and 50 μrad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 μm) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm 2 and is 15 x 15 mm 2 for the second. In both case it can be further increased to meet the experiment's requirement. (authors)