WorldWideScience

Sample records for optical absorption spectra

  1. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  2. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    OpenAIRE

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Lihong V. Wang

    2012-01-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method...

  3. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    Science.gov (United States)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  4. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  5. UV optical absorption spectra analysis of beryl crystals from Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Isotani, Sadao, E-mail: sisotani@if.usp.b [Instituto de Fisica da Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo (Brazil); Regina Blak, Ana; Watanabe, Shigueo [Instituto de Fisica da Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo (Brazil)

    2010-03-15

    The spectral decomposition analysis was applied to the optical absorption spectra of green and colorless beryl crystals from the Brazilian Eastern Pegmatitic province in the natural state, submitted to heat treatment and irradiated with UV light. The attributions of the lines were made taking into account highly accurate quantum mechanical calculations. The deconvolution of the green beryl spectra revealed four lines, two of them around 12,000 cm{sup -1} (1.5 eV) and two of them around 34,000 cm{sup -1} (4.2 eV) attributed to Fe{sup 2+} and Fe{sup 3+}, respectively. The deconvolution of the colorless beryl spectra without any treatment, after heating and for the same heat treatment followed by UV light irradiation revealed five lines. The analysis of ratio relations showed that the lines at 36,400 cm{sup -1} (4.5 eV) and 41,400 cm{sup -1} (5.1 eV) belongs to a single defect attributed to a silicon dangling bond defect (=Si:). Discussions and comparison with reported defects in quartz have supported the allocation of the lines at 61,000 cm{sup -1} (7.6 eV) and 43,800 cm{sup -1} (5.4 eV) to diamagnetic oxygen vacancy defect (ident toSi-Siident to) and unrelaxed (ident toSi...Siident to) defect, respectively. Finally, the line at 39,100 cm{sup -1} (4.8 eV), quite polarized along the c-axis, was attributed to a (Fe{sup 2+}OH{sup -}) defect in the structural channels.

  6. Optical Absorption Spectra and Intraband Dynamics in Terahertz-Driven Semiconductor Superlattice

    Institute of Scientific and Technical Information of China (English)

    MI Xian-Wu

    2004-01-01

    @@ We have theoretically investigated the optical absorption spectrum and intraband dynamics by subjecting a superlattice to both a terahertz (THz)-frequency driving field and an optical pulse by using an excitonic basis.In the presence of a THz dc field, the satellite structures in the absorption spectra are presented. The satellite structure is a result from the THz nonlinear dynamics of Wannier-Stark ladder excitons. On the other hand, the coherent intraband polarization is investigated. We find that the excitonic Bloch oscillation is driven by the THz field and yields an intraband polarization that continues to oscillate at times much longer than the intraband dephasing time. The temporal evolution of the slowly varying components of the intraband polarization is dependent on the THz frequency.

  7. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.

    Science.gov (United States)

    Guo, Zijian; Hu, Song; Wang, Lihong V

    2010-06-15

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

  8. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    Science.gov (United States)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  9. Optical absorption spectra as a useful tool to find parameters of deep impurity centers in semiconductors.

    Science.gov (United States)

    Makhniy, Viktor P; Horley, Paul P; Kinzerskaya, Oksana V; Stets, Elena V

    2014-04-01

    We analyze physical models accounting for deep-level conduction band transitions to describe impurity absorption spectra in tetrahedral-structured semiconductors. The investigations were carried out for ZnSe crystals doped with transition metals (Ti, V, Cr, Mn, Fe, Co, Ni) from a vapor phase. It was shown that the impurities provide acceptor centers with ground state energy offset by 0.3-0.6 eV from the edge of the conduction band, forming long-wave bands in the absorption spectra of the materials studied.

  10. Determination of Optical Constants of Polystyrene Films from IR Reflection-Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Simion Jitian

    2010-09-01

    Full Text Available Determination of The transmittance values measured in IR reflectionabsorption (RA spectra were used to determine the optical constants of dielectric films laid on solid substrates. In order to obtain the optical constants of polystyrene films laid on steel we used dispersion analysis. In this case, the optical constants are obtained from IR spectrum recorded at a single incidence angle. The use of dispersion analysis offers the advantage of processing a large volume of data.

  11. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    Science.gov (United States)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  12. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time...

  13. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    Science.gov (United States)

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface.

  14. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  15. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  16. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    Science.gov (United States)

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  17. Absorption Spectra of Astaxanthin Aggregates

    CERN Document Server

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  18. Kramers-Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1996-07-20

    Spectral distortions that arise in evanescent-wave absorption spectra obtained with multimode step-index optical fibers are analyzed both theoretically and experimentally. Theoretical analysis is performed by the application of Kramers-Kronig relations to the real and the imaginary parts of the complex refractive index of an absorbing external medium. It is demonstrated that even when the extinction coefficient of the external medium is small, anomalous dispersion of that medium in the vicinity of an absorption band must be considered. Deviations from Beer's law, band distortions, and shifts in peak position are quantified theoretically as a function of the refractive index and the extinction coefficient of the external medium; the effect of bandwidth for both Lorentzian and Gaussian bands is also evaluated. Numerical simulations are performed for two types of sensing sections in commonly used plastic-clad silica optical fibers. These sensors include an unclad fiber in contact with a lower-index absorbing liquid and a fiber with the original cladding modified with an absorbing species. The numerical results compare favorably with those found experimentally with these types of sensing sections.

  19. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard

    2013-01-01

    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  20. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes: I. C60, C59N+ and C48N12

    Energy Technology Data Exchange (ETDEWEB)

    Xie, R; Bryant, G W; Sun, G; C.Nicklaus, M; Heringer, D; Frauenheim, T; Manaa, M R; Smith, Jr., V H; Araki, Y; Ito, O

    2003-10-02

    Low-energy excitations and optical absorption spectrum of C{sub 60} are computed by using time-dependent (TD) Hartree-Fock (HF), TD-density functional theory (TD-DFT), TD-DFT-based tight-binding (TD-DFT-TB) and a semiempirical ZINDO method. A detailed comparison of experiment and theory for the excitation energies, optical gap and absorption spectrum of C{sub 60} is presented. It is found that electron correlations and collective effects of exciton pairs play important roles in assigning accurately the spectral features of C{sub 60} and the TD-DFT method with non-hybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C{sub 60} justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C{sub 59}N{sup +} exhibits distinguishing spectral features different from C{sub 60}: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C{sub 59}N{sup +} characterize and explain well our measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C{sub 59}N][Ag(CB{sub 11}H{sub 6}Cl{sub 6}){sub 2}]. For the most stable isomer of C{sub 48}N{sub 12}, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C{sub 60}, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314 and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C{sub 48}N{sub 12} isomers is helpful in distinguishing the isomer structures required for applications in molecular electronics. For C{sub 59}N{sup +} and C{sub 48}N

  1. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    CERN Document Server

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  2. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  3. Absorption spectra of AA-stacked graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail: fl.shyu@msa.hinet.ne, E-mail: mflin@mail.ncku.edu.t [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)

    2010-08-15

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  4. Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from IR to UV using single-crystal absorption spectra

    CERN Document Server

    Hofmeister, A M; Goncharov, A F; Speck, A K

    2009-01-01

    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal stuctures of silicon carbide (SiC) are presented from 1200--35,000 cm$^{-1}$ ($\\lambda \\sim$ 8--0.28 $\\mu$m) and used to improve the accuracy of optical functions ($n$ and $k$) from the infrared (IR) to the ultraviolet (UV). Comparison with previous $\\lambda \\sim$ 6--20 $\\mu$m thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for $k$ in the IR region. We extract $n$ and $k$ needed for radiative transfer models using a new ``difference method'', which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral re...

  5. The X-ray spectra of optically selected Seyfert 2 galaxies. Are there any Sy2 galaxies with no absorption?

    CERN Document Server

    Pappa, A; Stewart, G C; Zezas, A L

    2001-01-01

    We present an X-ray spectral analysis of a sample of 8 bona-fide Seyfert 2 galaxies, selected on the basis of their high $[OIII]\\lambda5007$ flux, from the Ho et al. (1997) spectroscopic sample of nearby galaxies. We find that, in general, the X-ray spectra of our Seyfert 2 galaxies are complex, with some our objects having spectra different from the 'typical' spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC3147 and NGC4698) show no evidence for intrinsic absorption. We suggest this is due to the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our asca data alone cannot discriminate whether low absorption objects are Compton-thick AGN with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC4698. Its spectrum could be explained by eith...

  6. Structure-Related Optical Fingerprints in the Absorption Spectra of Colloidal Quantum Dots: Random Alloy vs. Core/Shell Systems

    CERN Document Server

    Mourad, Daniel

    2016-01-01

    We argue that the experimentally easily accessible optical absorption spectrum can often be used to distinguish between a random alloy phase and a stoichiometrically equivalent core/shell realization of ensembles of monodisperse colloidal semiconductor quantum dots without the need for more advanced structural characterization tools. Our proof-of-concept is performed by conceptually straightforward exact-disorder tight-binding calculations. The underlying stochastical tight-binding scheme only parametrizes bulk band structure properties and does not employ additional free parameters to calculate the optical absorption spectrum, which is an easily accessible experimental property. The method is applied to selected realizations of type-I Cd(Se,S) and type-II (Zn,Cd)(Se,S) alloyed quantum dots with an underlying zincblende crystal structure and the corresponding core/shell counterparts.

  7. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    In a recent work (Knapp-Mohammady, M.; Jalkanen, K. J.; Nardi, F.; Wade, R. C.; Suhai, S. Chem Phys 1999, 240, 63-77) the structures of the zwitterionic species Of L-alanyI-L-alanine (LALA) in aqueous solution using a combination of molecular mechanics (MM) and density functional theory (DFT) have...... been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported...... pattern could be reproduced with the DIFT atomic axial tensors calculated for the LALA plus explicit water molecules. The continuum treatment of the solvent for the calculation of these tensors appeirs to be a secondary effect. The ROA spectra are not well reproduced due to the failure to take...

  8. Optical absorption and photoluminescence spectra of the ordered defect compound CuIn{sub 3}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, C [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Wasim, S M [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Marin, G [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Delgado, J M [Centro Nacional de Difraccion de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 40, La Hechicera, Merida 5101 (Venezuela); Petroff, P M [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2003-05-21

    The optical properties of the ordered defect compound CuIn{sub 3}Te{sub 5} which crystallizes in a chalcopyrite-related structure have been studied by absorption and photoluminescence (PL) techniques. Optical absorption measurements show that the band gap energy E{sub G} varies from 1.078 to 1.040 eV between 10 and 300 K. It is found that the variation of E{sub G} with temperature is mainly due to the contribution of optical phonons with a characteristic energy of about 16 meV. The PL measurements, carried out between 4 and 100 K with laser excitation intensities in the range from 1 to 400 mW, reveal that the main PL band is due to a donor-acceptor recombination between donor and acceptor defect levels that have activation energies of 60 and 30 meV, respectively. These donor and acceptor states are tentatively assigned as originating from indium atoms on copper sites and copper vacancies, respectively.

  9. Thermal bleaching of optical absorption and photoluminescence spectra of γ-irradiated CaF_2:Dy:Pb:Na single crystals

    Institute of Scientific and Technical Information of China (English)

    S.M.; Moses; Kennedy

    2010-01-01

    The variation of the optical absorption (OA) and photoluminescence (PL) spectra with temperature was studied on γ-irradiated CaF2:Dy:Pb:Na single crystals. The OA spectrum showed bands around 2.05, 3.20, 3.82 and 6.20 eV which could be attributed to different sodium associated (SA) colour centres (CCs) such as MNa and RA+ . Heating the crystal indicated the annihilation and formation of different SACCs. The excitation spectrum for the characteristic Dy3+ emission at 2.14 eV immediately after irradiation was...

  10. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  11. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    Science.gov (United States)

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-04-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  12. The effect of temperature and pressure on optical absorption spectra of transition zone minerals - Implications for the radiative conductivity of the Earth's interior

    Science.gov (United States)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Goncharov, A. F.; Frost, D. J.; McCammon, C. A.

    2010-12-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivities of the Earth’s interior [e.g., 1]. Recent high-pressure studies imply that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually might contribute to the heat flow in the Earth’s interior [2]. However, experimental results on temperature effects on radiative heat transfer are not available. We studied the effect of both, pressure and temperature, on the optical absorption of hydrous Fe-bearing ringwoodite, γ-(Mg,Fe)2SiO4, and hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, which are the main components of the Earth’s transition zone. Gem-quality single-crystals were synthesized at 18 GPa and 1400 °C in a 5000t multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For optical absorption measurements in the IR - VIS - UV spectral range (400 - 50000 cm-1) 50 µm sized single-crystals of ringwoodite and wadsleyite were double polished to thicknesses of 13 µm and 18 µm, respectively, and loaded in resistively heated diamond-anvil cells with argon as pressure medium. After taking measurements at high pressure and room temperature, ringwoodite was studied at 26 GPa up to 650 °C and wadsleyite spectra were recorded at 16 GPa up to 450 °C. At ambient pressure the absorption spectrum of ringwoodite reveals a crystal field band (Fe2+) at 12075 cm-1, an intervalence charge transfer band (Fe2+ to Fe3+) at 16491 cm-1, and an absorption edge due to ligand-metal charge transfer close to 30000 cm-1. The wadsleyite spectrum is characterized by a similar absorption edge in the VIS-UV range

  13. Quasar absorption spectra and the structure of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.

    1984-03-01

    Analysis of the spacing between absorption-line systems in quasar spectra and comparison against deep optical survey data for the separation between superclusters of galaxies indicates that the absorption originates in the superclusters. Supported by analogous data on the absorbing gas in the galactic and Magellanic Cloud halos, this inference sharpens theoretical conclusions as to the properties of superclusters. The problem of the unidentified quasar absorption lines is discussed.

  14. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  15. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    Science.gov (United States)

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  16. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  17. X-ray absorption spectra of plasmas

    Institute of Scientific and Technical Information of China (English)

    PENG; Yonglun彭永伦; HAN; Xiaoying韩小英; LI; Jiaming李家明; DING; Yaonan丁耀南; YANG; Jiamin杨家敏; ZHENG; Zhijian郑志坚

    2002-01-01

    In this paper we present a theoretical method to calculate the absorption spectra of hot dense plasmas. Based on our fully relativistic treatment incorporated with the quantum defect theory to handle the huge number of transition arrays from many configurations with high principal quantum number, we can calculate the absorption spectra for any element or multi-element plasmas with little computational efforts. We calculate the absorption spectra of C10H1605 plasmas, which are in good agreement with the experimental spectra. We can then provide diagnostic analysis for plasmas in relevant inertial confinement fusion (lCF) experiments; namely not only to determine plasmas' temperatures and densities, but also to provide the population densities of various ionic stages. Our theoretical method verified by "benchmark experiments" will be a basic tool to provide "precise" opacity data for the ICF research.``

  18. OPTICAL SPECTRA OF LOW-DIMENSIONAL SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    Fu Y Chiragwandi Z; G(o..)thberg P; Willander M

    2003-01-01

    We have studied the optical spectra of low-dimensional semiconductor systems by calculating all possible optical transitions between electronic states. Optical absorption and emission have been obtained under different carrier population conditions and in different photon wavelengths. The line-shapes of the peaks in the optical spectrum are determined by the density of electronic states of the system, and the symmetries and intensities of these peaks can be improved by reducing the dimensionality of the system. Optical gain requires in general a population inversion, whereas for a quantum-dot system, there exists a threshold value of the population inversion.

  19. Absorption spectra of alkali-C₆₀ nanoclusters.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-28

    We investigate the absorption spectra of alkali-doped C60 nanoclusters, namely C60Nan, C60Kn, and C60Lin, with n = 1, 2, 6, 12, in the framework of the time-dependent density-functional theory (TDDFT). We study the dependence of the absorption spectra on the nature of the alkali. We show that in few cases the absorption spectra depend on the arrangement of the alkali atoms over the fullerene, though sometimes the absorption spectra do not allow us to distinguish between different configurations. When only one or two alkali atoms are adsorbed on the fullerene, the optical response of alkali-doped C60 is similar to that of the anion C60(-) with a strong response in the UV domain. In contrast, for higher concentration of alkali, a strong optical response is predicted in the visible range, particularly when metal-metal bonds are formed. The weak optical response of the I(h)-symmetry C60Li12 is proposed to be used as a signature of its structure.

  20. Assessment of the coherent potential approximation for the absorption spectra of a one-dimensional Frenkel exciton system with a Gaussian distribution of fluctuations in the optical transition frequency

    Science.gov (United States)

    Boukahil, A.; Avgin, I.; Huber, D. L.

    2015-01-01

    We investigate the accuracy of the coherent potential approximation (CPA) for the optical absorption spectra of a one-dimensional Frenkel exciton system with nearest-neighbor interactions and a Gaussian distribution of fluctuations in the optical transition frequency (diagonal Gaussian disorder). Our earlier studies have established that the CPA gives highly accurate results for the integral of the density of states of this system. In this paper we compare the CPA results for the normalized optical absorption with the finite-array calculations of Schreiber and Toyozawa and Schreiber for the same model. It is found that the CPA results for the absorption are in good agreement with their findings. It is pointed out that an expansion of the density of states in terms of the eigenstates of the ideal (no disorder) array contains a term proportional to the normalized absorption. Since the density of states is accurately approximated by the CPA, the presence of this term explains the success of the CPA in reproducing the absorption spectra. Our findings support the use of the Gaussian disorder model to interpret the absorption spectra of one and quasi-one dimensional exciton systems.

  1. Absorption spectra of C60 and C70 thin films

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 钱生法; 周棠; 赵日安; 王刚; 钱露茜; 李文治

    1996-01-01

    The spectra of Cm and Cm thin films over a wide energy range (0.6 to 6.5eV) are measured by transmission spectroscopy and photothermal deflection spectroscopy (PDS), and the optical absorption coefficients are obtained. The optical transitions for the Cm and Cw thin films are analyzed according to the molecular orbital model. The weak absorption spectra of the fullerenes are similar to that of amorphous silicon. The optical energy gaps are given by Tauc’s plots as 1.75 and 1.65eV for C60 and C70 thin films, respectively. The disorders in the fullerene films, which resulted in band-tail state or defect state, are indicated by Urbach edge and sub-gap absorption. It is the disorder that brought the difficulty in determination of the energy gap for fullerenes. The effects of the deflection medium and substrate on the weak absorption spectra of fullerene films are also discussed.

  2. Optical spectra analysis for breast cancer diagnostics

    Science.gov (United States)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  3. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  4. Optical and FT Infrared Absorption Spectra of 3d Transition Metal Ions Doped in NaF-CaF2-B2O3 Glass and Effects of Gamma Irradiation

    Directory of Open Access Journals (Sweden)

    F. H. A. Elbatal

    2014-01-01

    Full Text Available Combined optical and FTIR spectroscopy has been employed to investigate the undoped NaF-CaF2-B2O3 glass together with samples containing 0.2% dopant of 3d TM ions before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two peaks which are related to unavoidable trace iron impurity within the raw materials. Upon gamma irradiation, an induced visible broad band centered at 500 nm is resolved and is related to B-O hole center or nonbridging oxygen hole center. TMs-doped samples exhibit characteristic absorption due to each respective TM ion but with faint colors. Gamma irradiation of TMs-doped samples reveals the same induced visible band at 500–510 nm in most samples except CuO and Cr2O3-doped glasses. Infrared absorption spectra reveal characteristic vibrational bands due to triangular and tetrahedral borate groups. The introduction of NaF and CaF2 modifies the borate network forming BO3F tetrahedra. The introduction of 3d TMs as dopants did not make any obvious changes in the FTIR spectra due to their low content (0.2%. Gamma irradiation causes only minor variations in the intensities of the characteristic IR borate bands while the bands at about 1640 cm−1 and 3450 cm−1 reveal distinct growth in most samples.

  5. Thermal annealing and UV irradiation effects on structure, morphology, photoluminescence and optical absorption spectra of EDTA-capped ZnS nanoparticles

    Science.gov (United States)

    Osman, M. A.; Othman, A. A.; El-Said, Waleed A.; Abd-Elrahim, A. G.; Abu-sehly, A. A.

    2016-02-01

    Monodispersed ZnS nanoparticles (NPs) were prepared by the chemical precipitation method. Thermally induced structural, morphological and optical changes have been investigated using x-ray diffraction, high-resolution transmission electron microscopy, optical absorption, photoluminescence (PL), and Fourier transform infrared and Raman spectroscopy. It was found that D increases with increasing annealing temperature (T a). The onset of the ZnS phase transition from cubic to hexagonal structure takes place at 400 °C, while cubic ZnS transforms into hexagonal ZnO via thermal oxidation in air at 600 °C. It is also noted that increasing T a results in the red shift of the optical band gap (E\\text{g}\\text{opt} ) and the thermal bleaching of exciton absorption. The PL spectrum of as-prepared ZnS nanopowder shows UV emission bands at 363 and 395 nm and blue and green emission at 438 and 515 nm, respectively. With increasing T a up to 500 °C, these bands were quenched and red-shifted. In addition, the UV irradiation effects on colloidal ZnS NPs were investigated. UV irradiation at a dose  <13 J cm-2 leads to a decrease in D, the blue shift of E\\text{g}\\text{opt} and the enhancement of PL intensity. This behavior was explained in terms of surface modification by photopolymerization, the formation of a ZnSO4 passivation layer, as well as the reduction of D by photocorrosion. At a UV irradiation dose  <13 J cm-2 both E\\text{g}\\text{opt} and D did not change and PL intensity was quenched, which were caused by the creation of nonradiative surface states by the photodegradation of the capping agent and photopassivated layer. The mechanism of the PL emission process in ZnS NPs was discussed and an energy band diagram was proposed.

  6. HI absorption spectra for Supernova Remnants in the VGPS survey

    CERN Document Server

    Leahy, Denis

    2016-01-01

    The set of supernova remnants (SNR) from Green's SNR catalog which are found in the VLA Galactic Plane Survey (VGPS) are the objects considered in this study. For these SNR, we extract and analyse HI absorption spectra in a uniform way and construct a catalogue of absorption spectra and distance determinations.

  7. Visible absorption spectra of radiation exposed SIRAD dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Butson, Martin J [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Cheung Tsang [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Yu, Peter K N [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)

    2006-12-07

    SIRAD badge dosimeters are a new type of personal dosimeter designed to measure radiation exposure up to 200 R and give a visual qualitative measurement of exposure. This is performed using the active dosimeter window, which contains a radiochromic material amalgamated in the badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Measurements have been performed to analyse the absorption spectra of the active window, and results show that the window automatically turns a blue colour upon irradiation and produces two peaks in the absorption spectra located at 617 nm and 567 nm. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 at 50 R exposure and 0.31 at 200 R exposure when irradiated with a 6 MV x-ray energy beam. When compared to the calibration colour strips at 6 MV x-ray energy the film's OD response matches relatively well within 3.5%. An approximate 8% reduction in measured OD to exposure was seen for 250 kVp x-rays compared to 6 MV x-rays. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0 to 200 R. (note)

  8. Single metal nanoparticle absorption spectroscopy and optical characterization

    Science.gov (United States)

    Muskens, O. L.; Del Fatti, N.; Vallée, F.; Huntzinger, J. R.; Billaud, P.; Broyer, M.

    2006-02-01

    Optical absorption spectra of small single metal nanoparticles are measured using a far-field technique combining a spatial modulation microscope with a broadband light source. Quantitative determination of the spectral and polarization dependencies of the absorption cross section of individual gold nanoparticles permits precise determination of their geometrical properties in excellent agreement with transmission electron microscopy measurements.

  9. Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra

    Science.gov (United States)

    van Stokkum, Ivo H. M.; Jumper, Chanelle C.; Snellenburg, Joris J.; Scholes, Gregory D.; van Grondelle, Rienk; Malý, Pavel

    2016-11-01

    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a methodology to resolve simultaneously the contributions of the different electronically and vibrationally excited states from the complete data. The evolution of the excited states is described with a superposition of damped oscillations. The amplitude of a damped oscillation cos(ωnt)exp(-γnt) as a function of the detection wavelength constitutes a damped oscillation associated spectrum DOASn(λ) with an accompanying phase characteristic φn(λ). In a case study, the cryptophyte photosynthetic antenna complex PC612 which contains eight bilin chromophores was excited by a broadband optical pulse. Difference absorption spectra from 525 to 715 nm were measured until 1 ns. The population dynamics is described by four lifetimes, with interchromophore equilibration in 0.8 and 7.5 ps. We have resolved 24 DOAS with frequencies between 130 and 1649 cm-1 and with damping rates between 0.9 and 12 ps-1. In addition, 11 more DOAS with faster damping rates were necessary to describe the "coherent artefact." The DOAS contains both ground and excited state features. Their interpretation is aided by DOAS analysis of simulated transient absorption signals resulting from stimulated emission and ground state bleach.

  10. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    Science.gov (United States)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  11. Ultraviolet absorption and epidermal-transmittance spectra in foliage

    Energy Technology Data Exchange (ETDEWEB)

    Day, T.A.; Howells, B.W.; Rice, W.J. (Dept. of Biology, West Virginia Univ., Morgantown, WV (United States))

    1994-01-01

    We examined the UV absorption spectra and the epidermal-transmittance spectra (280-350 nm) of foliage from 42 plant species. Sun foliage was sampled from naturally growing individuals of seven species in each of six life forms comprising two evergreen groups (gymnosperms and angiosperms) and four deciduous angiosperm groups (trees, shrubs and vines, herbaceous dicotyledons and grasses). There were large differences in absorption spectra of whole-leaf extracts among species. While absorbance declined with increasing wavelength in most woody species, there was a through in absorbance around 300 nm in many herbaceous species. Absorption spectra were negatively correlated with epidermal-transmittance spectra in 31 of the 42 species. Relationships between absorbance and transmittance did not follow the theoretical exponential function. Species rankings of UV-screening effectiveness were similar when we assessed it by using epidermal transmittance at single wavelengths (300 or 320 nm) or different UV-action spectra to weight epidermal-transmittance spectra and estimate the levels of biologically effective UV reaching the mesophyll. Thus, differences in absolute epidermal transmittance among species appeared to overshadow spectral differences. Nevertheless, the differences we found in the internal UV spectral regime in foliage suggest that whole-plant action spectra will differ among species. While species rankings of UV-screening effectiveness were similar when different action spectra were used, the absolute amounts of biologically effective UV reaching the mesophyll of species varied considerably when different action spectra were used. (au) (46 refs.)

  12. Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene

    Science.gov (United States)

    Chiu, Chih-Wei; Chen, Rong-Bin

    2016-06-01

    The tight-binding model and gradient approximation are, respectively, used to calculate the band structures and the absorption spectra of AAB-stacked trilayer graphene (AAB-TLG). AAB stacking, the lowest symmetric geometric structure in trilayer systems, induces the most atomic interactions, and thus, complicates the energy dispersions and the joint density of states. AAB stacking enriches the optical absorption spectra [A(ω)], which dictate the characteristics of the electronic structure. A(ω) are changed by the static electric field, such as the intensity, frequency, and number of absorption structures. These results contrast sharply with those for TLG in other stacking configurations.

  13. Measurement and feature analysis of absorption spectra of four algal species

    Science.gov (United States)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  14. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  15. THEORETICAL STUDY OF THE ABSORPTION SPECTRA OF TRIAMTERENE

    Directory of Open Access Journals (Sweden)

    M. Ramegowda

    2013-03-01

    Full Text Available ABSTRACT: Time dependent density functional theory (TDDFT calculations have been carried out to study the electronic structure and the UV absorption spectra of Triamterene. The UV spectra have been investigated with inclusion of solvent effect. The B3LYP functional with a 6-31G(d, p basis sets have been used to compute absorption energies. The solvent effects have been described within the polarizable continuum model (PCM. The geometries are optimized using density functional theory (DFT with B3LYP functional combined with 6-31G(d, p basis sets. The vertical absorption energies both in gas phase and in polar solvents such as ethanol, methanol and water were computed. Red-shift of the absorption maximum in the polar solvents is discussed in terms of electrostatic interaction energy, oscillator strength and dipole moment.

  16. Metal Absorption Systems in Spectra of Pairs of QSOs

    CERN Document Server

    Tytler, David; Melis, Carl; Chapman, Angela; Kirkman, David; Lubin, Dan; Paschos, Pascal; Jena, Tridivesh; Crotts, Arlin P S

    2007-01-01

    We present the first large sample of absorption systems in paired QSOs consisting of 691 absorption systems in the spectra of 310 QSOs including 170 pairings. All these absorption systems have metal lines, usually C IV or Mg II. We see 17 cases of absorption in one line-of-sight within 200kms (1 Mpc) of absorption in the paired line-of-sight with the probability at least approx 50% at 100kpc, declining rapidly to 23% at 100 - 200kpc. We detect clustering on 0.5Mpc scales and see a hint of the "fingers of God" redshift-space distortion. The distribution matches absorbers arising in galaxies at z=2 with a normal correlation function and systematic infall velocities but unusually low random pair-wise velocity differences. Absorption in gas flowing out from galaxies at a mean velocity of 250kms would produce vastly more elongation than we see. The UV absorption from fast winds that Adelberger et al. 2005 see in spectra of LBGs is not representative of the absorption that we see. Either the winds are confined to L...

  17. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Khaled, E-mail: kafarah@gmail.com [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); ISTLS, University of Sousse (Tunisia); Hosni, Faouzi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Academie Militaire de Fondouk Jedid, 8012 Nabeul (Tunisia); Mejri, Arbi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Boizot, Bruno [Laboratoire des Solides Irradiés, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Hamzaoui, Ahmed Hichem [Centre National de Recherche en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences, University of Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia)

    2014-03-15

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO{sub 3} and NaNO{sub 3} with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

  18. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Science.gov (United States)

    Farah, Khaled; Hosni, Faouzi; Mejri, Arbi; Boizot, Bruno; Hamzaoui, Ahmed Hichem; Ben Ouada, Hafedh

    2014-03-01

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO3 and NaNO3 with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1-250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV-Vis range of the Ag-Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

  19. Optical Spectra of Hemoglobin Taken from Alcohol Dependent Humans

    OpenAIRE

    Dudok K.; Dudok T.; Vlokh I.; Vlokh R.

    2005-01-01

    Optical spectra of CNMetHb and CNMetHb-Coomassi G-250, taken from the blood of humans with alcohol dependence, are studied in the spectral range of 450–750nm. The shifts in the spectral absorption maxima of CNMetHb-Coomassi G-250 complexes are observed for the diseased persons with alcohol dependence. The obtained results show that the hemoglobin structure of alcohol dependent humans is changed.

  20. Optical Properties of β-RDX Thin Films Deposited on Gold and Stainless Steel Substrates Calculated from Reflection-Absorption Infrared Spectra.

    Science.gov (United States)

    Ruiz-Caballero, José L; Aparicio-Bolaño, Joaquín A; Figueroa-Navedo, Amanda M; Pacheco-Londoño, Leonardo C; Hernandez-Rivera, Samuel P

    2017-08-01

    The optical properties for crystalline films of the highly energetic material (HEM) hexahydro-1,3,5-trinitro-s-triazine, which is also known as RDX, deposited on gold (Au) and stainless steel (SS) substrates are presented. RDX has two important stable conformational polymorphs at room temperature: α-RDX and β-RDX. The optical properties obtained in the present work correspond to thin film samples of predominantly β-RDX polymorph. The infrared spectroscopic intensities measured showed significant differences in the β-RDX crystalline films deposited on the two substrates with respect to the calculated real part of refractive index. The β-RDX/Au crystalline films have a high dynamic response, which is characterized by the asymmetric stretching mode of the axial nitro groups, whereas for the β-RDX/SS crystalline films, the dynamic response was mediated by the -N-NO2 symmetric stretch mode. This result provides an idea of how the electric field vector propagates through the β-RDX crystalline films deposited on the two substrates.

  1. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    Science.gov (United States)

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  2. Cavity-enhanced absorption for optical refrigeration

    CERN Document Server

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  3. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  4. Rich magneto-absorption spectra in AAB-stacked trilayer graphene

    CERN Document Server

    Do, Thi-Nga; Chang, Cheng-Pong; Lin, Chiun-Yan; Lin, Ming-Fa

    2015-01-01

    The generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich the magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit the single- or twin-peak structures which are determined by the quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anticrosings. AAB, AAA, ABA, and ABC stackings quite differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configur...

  5. Absorption spectra of crystalline limestones experimentally deformed or tectonised

    Science.gov (United States)

    Cervelle, B.; ChayéD'Albissin, M.; Gouet, G.; Visocekas, R.

    1982-11-01

    Diffuse-reflectance spectra have been measured for a series of samples of Carrara marble experimentally deformed under different cylindrical stress ( P = 0, 100, 250, 500, 980 bars). The creation of point defects that results has been shown up classically by irradiation with β rays (40 krads), thus producing a typical blue coloration linked with the formation of colour centres. The diffuse-reflectance spectra, measured on powders with a microscope-spectrometer in the visible range (400-800 nm), allow the determination of the absorption spectra by means of the Kubelka-Munk function. These absorption spectra have been measured for each of the deformed samples, as well as for different fractions of a very deformed specimen subsequently heated at temperatures between 100 and 500° C for a fixed time. In the same way, tectonised crystalline limestones, of various origins, were studied without any other treatment than the irradiation with β rays. From this study the following preliminary conclusions have been drawn: (1) The absorption spectrum of an undeformed but merely irradiated specimen of crystalline limestone is practically monotonous, but in the deformed specimens a broad band of absorption appears, having a maximum at 620 nm with several shoulders, the chief of which is at 520 nm. (2) This absorption band shows the existence of colour centres, the density of which can be estimated relatively by means of the chromaticity coordinates x and y of the C.I.E. obtained from the diffuse-reflectance spectra (C.I.E. = Commission Internationale de l'Éclairage). (3) An overgrinding of calcite generates defects that have the same spectra as those produced during the experimental deformation. Consequently, in obtaining the powders of grain size 50-80 μm needed for the diffuse spectrometry, great care must be exercised. (4) For a given confining pressure, the defect density is proportional to the deformation rate. (5) One can calibrate the effect of the annealing of

  6. Resonant Optical Absorption in Semiconductor Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    YU Li-Yuan; CAO Jun-Cheng

    2004-01-01

    @@ We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.

  7. Absorption spectra and linear dichroism of some amphibian photoreceptors.

    Science.gov (United States)

    Hárosi, F I

    1975-09-01

    Absorption spectra and linear dichroism of dark-adapted, isolated photoreceptors of mudpuppies, larval and adult tiger salamanders, and tropical toads were measured microspectrophotometrically. Spectral half-band width, dichroic ratio, and transverse specific density were determined using averaged polarized absorptance spectra and photomicrographs of seven types of rod outer segments. Two classes of cells were found, one with higher specific density and dichroic ratio, associable with the presence of rhodopsins, the other, lower in both quantities, associable with porphyropsins. Relationships were derived to calculate the product of molar concentration and extinction coefficient (CEmax) from specific density and dichroic ratio. By utilizing the hypothesis of invariance of oscillator strengths and measured half-band widths, Emax values were independently determined, permitting the calculation of C. The pigment concentration for all cells tested was about 3.5 mM. The broadness of green rod pigment spectra is correlated with reduced molar absorptivity and reduced cellular specific density. Estimation of physiological spectral sensitivities is discussed. Based on dichroic ratio considerations, a model is proposed for the orientation of retinals in situ which could account for the apparent degree of alignment of transition moments. In the chosen orientation, the ring portion of conjugation becomes primarily responsible for axial extinction. Reduced dichroism of dehydroretinal-bearing cells can thus result from the extended ring conjugation of chromophores. Some inferences derivable from the model are discussed.

  8. Implications for High Energy Blazar Spectra from Intergalactic Absorption Calculations

    Science.gov (United States)

    Stecker, F

    2008-01-01

    Given a knowledge of the density spectra intergalactic low energy photons as a function of redshift, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. Stecker, Baring & Summerlin have found some evidence hinting that TeV blazars with harder spectra have higher intrinsic TeV gamma-ray luminosities and indicating that there may be a correlation of spectral hardness and luminosity with redshift. Further work along these lines, treating recent observations of the blazers lES02291+200 and 3C279 in the TeV and sub-TeV energy ranges, has recently been explored by Stecker & Scully. GLAST will observe and investigate many blazars in the GeV energy range and will be sensitive to blazers at higher redshifts. I examine the implications high redshift gamma-ray absorption for both theoretical and observational blazer studies.

  9. Electric modulation of optical absorption in nanowires

    Science.gov (United States)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  10. High optical absorption in graphene

    CERN Document Server

    Apell, S P; Hägglund, C

    2012-01-01

    A simple analysis is performed for the absorption properties of graphene; sandwiched between two media. For a proper choice of media and graphene doping/gating one can approach 50-100% absorption in the GHz-THz range for the one atom thick material. This absorption is controlled by a characteristic chemical potential which depends only on carrier life-time and the indexes of refraction of the dielectric embedding.

  11. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  12. Terahertz-Induced Changes of Optical Spectra in GaAs Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    MI Xian-Wu; CAO Jun-Cheng

    2004-01-01

    @@ We have theoretically investigated optical absorption spectra in GaAs quantum well (QW) driven by both a strong terahertz (THz) field and a near-infrared field within the theory of density matrix. In presence of a strong THz field, the optical transitions in the QW subbands are altered by the THz field. The alteration has a direct impact on the optical absorption and results in the Autler-Townes splitting and the sidebands generation, which is in agreement with the experiments.

  13. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.;

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans...... and cis isomers of cyano methoxy azobenzene. In addition, the trans --> cis quantum efficiency is measured, and hence the combined experimental and theoretical work allows one to determine the essential molecular properties, including magnitude and anisotropy of the absorption cross section and various...

  14. Low level optical absorption measurements on organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stella, M.; Rojas, F.; Escarre, J.; Asensi, J.M.; Bertomeu, J.; Andreu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona. Av. Diagonal 647, 08028 Barcelona (Spain); Voz, C.; Puigdollers, J.; Fonrodona, M. [Micro and Nano Technology Group (MNT), Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord - Modul C4, 08034 Barcelona (Spain)

    2006-06-15

    The optical absorption of n-type (C{sub 60} and PTCDA) and p-type (CuPc and pentacene) organic semiconductors is investigated by optical transmission and photothermal deflection spectroscopy. The usual absorption bands related to HOMO-LUMO transitions are observed in the high absorption region of transmission spectra. Photothermal deflection spectroscopy also evidences exponential absorption shoulders with characteristic energies 47meV for CuPc, 38meV for pentacene, 50 meV for PTCDA and 87meV for C{sub 60}. In addition, broad bands in the low absorption level are observed for C{sub 60} and PTCDA. These bands have been attributed to contamination due to air exposure. On the other hand, in CuPc a clear absorption peak at 1.12eV is observed with smaller features at 1.04eV, 1.20eV and 1.33eV. These peaks are attributed to transitions between the Pc levels of CuPc ions. Finally, the optical absorption expected in blends of organic semiconductors is estimated by an effective media approximation. (author)

  15. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  16. Absorption spectra of tiny gold and silver objects

    Energy Technology Data Exchange (ETDEWEB)

    Scaffardi, Lucia B. [CIOp - CONICET-CIC, CC 124, 1900 La Plata (Argentina); Area de Ciencias Basicas, Facultad de Ingenieria, UNLP (Argentina); Tocho, Jorge O. [CIOp - CONICET-CIC, CC 124, 1900 La Plata (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas, UNLP (Argentina)], E-mail: jorget@ciop.unlp.edu.ar

    2008-05-15

    Optical properties of very small metallic objects are discussed. Extinction spectra in the visible and near IR are performed for sizing tiny metallic objects. Both free and bound electrons contributions to dielectric function and its dependence with size are considered to explain the experimental results. Calculations for structured objects like core-coat spherical particles and bimetallic alloys are discussed and compared with recent experimental results.

  17. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  18. Effects of compositional variation on absorption spectra of lunar pyroxenes

    Science.gov (United States)

    Hazen, R. M.; Bell, P. M.; Mao, H. K.

    1978-01-01

    Polarized absorption spectra of lunar pyroxenes with a range of iron, calcium, magnesium, titanium and chromium contents were measured on polished, oriented single crystals; spectral data on pure synthetic FeSiO3 were also recorded. The bands at 1 and 2 microns were found to vary significantly in position with composition within the pyroxene quadrilateral; wavelengths increased with increasing calcium and iron. In the visible region, a weak band at 640 nm correlates in intensity with Cr2O3, but not with titanium as had been previously suggested. The 505-nm ferrous iron peak is a sharp doublet in most low-calcium pyroxenes but a singlet in augites. A peak at 475 nm and an intense absorption edge below 700 nm correlated with titanium content.

  19. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  20. Spectral dependences of extrinsic optical absorption in sillenite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kisteneva, M G; Khudyakova, E S; Shandarov, S M; Akrestina, A S; Dyu, V G [Tomsk State University of Control Systems and Radioelectronics, Tomsk (Russian Federation); Kargin, Yu F [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-07-31

    The influence of laser irradiation at wavelengths of 532 and 655 nm and annealing in air at temperatures from 200 to 370 °C on optical absorption spectra of undoped bismuth silicon oxide and bismuth germanium oxide and aluminium-doped bismuth titanium oxide crystals has been studied experimentally. The experimental data have been interpreted in terms of a model for extrinsic absorption that takes into account not only the contribution of the photoexcitation of electrons from deep donor centres with a normal distribution of their concentration with respect to ionisation energy but also that of intracentre transitions. (laser applications and other topics in quantum electronics)

  1. Picosecond kinetics and Sn absorption spectra of retinoids and carotenoids

    Science.gov (United States)

    Bondarev, Stanislav L.; Tikhomirov, S. A.; Bachilo, Sergei M.

    1991-05-01

    Light energy absorption, as well as the subsequent photochemical and photophysical processes of cis -+trans isomerisation (vision and bacteriorhodopsin photosynthesis) and energy transfer (photosynthesis in green plants and micro organisms) take place in a pigment-protein complex including polyene chromophors, retinoids and carotenoids. Picosecond and subpicosecond studies of the spectral and kinetic characteristics of these processes are carried out in both complex photoreceptor and photosynthetic ms'2 and model systems with the use of solutions of retinoids and carotenoids.36 The lifetimes of the lower singlet-exited states S (21A; ) ofsome carotenoids in toluene at room temperature have been measured by the method of picosecond photolysis and amount to 8.6+/- 0.5 for all-trans-fl -carotene1 and 5.2 0.6 PS for canthaxanthin.5 /3 -carotene fluorescence at room temperature is practically absent, its yield being less than iO (Ref. 7). /1 -carotene fluorescence at 77 and 4.2 K in isopentane discovered by us8 is characterized by yields of (4+/-2) .iO and (8+/-3) . i0- and lifetimes of(4+/-2) .iO' and (8+/-3) .iO' and is due to the transitions from the higher S(1' B) state. The picosecond transient S -S absorption of/I - carotene in different solvents at 293 K is characterized by spectra in the 550-600 nm range.8 For retinoids, there is one work (Ref. 4) which gives the S, +-Si absorption spectrum of the Schiff base (aldimine) of retinal with amaz 465 mn in n-hexane at 290 K. The duration of transient absorption was 21 5 ps, although the fluorescence kinetics measured in this work (Ref. 4) at 298 K were characterized by two-component decay with r1 = 22 and r2 = 265 ps. The transient picosecond absorption spectra for retinal are absent in the literature and the lifetimes of its singlet-excited state at room temperature, measured by absorption and fluorescence, amount to 20+/-10 Ps in n-hexane3 and 17 Ps in ethanol,'9 respectively.

  2. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I., E-mail: boe@astro.ia.uz.zgora.pl [Institute of Astronomy, University of Zielona Gora, Szafrana 2, 65-516 Zielona Gora (Poland)

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  3. Synthesis of rare earth sulfides and their UV-vis absorption spectra

    Institute of Scientific and Technical Information of China (English)

    YUAN Haibin; ZHANG Jianhui; YU Ruijin; SU Qiang

    2009-01-01

    Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appropriate sulfurization conditions were studied. For the rare earth sulfides with the same crystal structure, the sulfurization temperature showed increasing tendency with the decrease of rare earth element atomic radii. The UV-vis absorption spectra of rare earth sulfides did not depend on the crystal structure of rare earth sulfides, but on the 4f electronic structure of rare earth element. The data showed that the optical band gaps of rare earth sulfides were irregular, and the values ranged from 1.65 to 3.75 eV.

  4. VARIABILITY IN OPTICAL SPECTRA OF {epsilon} ORIONIS

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Gregory B. [Department of Physics, Adrian College, Adrian, MI 49221 (United States); Morrison, Nancy D., E-mail: gthompson@adrian.edu, E-mail: nmorris@utnet.utoledo.edu [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States)

    2013-04-15

    We present the results of a time series analysis of 130 echelle spectra of {epsilon} Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of H{alpha} (net) and He I {lambda}5876 were measured and radial velocities were obtained from the central absorption of He I {lambda}5876. Temporal variance spectra (TVS) revealed significant wind variability in both H{alpha} and He I {lambda}5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both H{alpha} and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  5. Optical Spectra and Color Nature of Lithium Amphiboles

    Directory of Open Access Journals (Sweden)

    S.I. Konovalenko

    2016-03-01

    Full Text Available Optical absorption spectra of two lithium amphiboles of the pedrisite group from rare-metal peg-matites of the Sangilen rare-metal province in the southeastern part of Tyva have been studied. One of them – a limit magnesian fluoro-sodium pedrisite of yellow-green color – was taken from the rocks hosting pegmatites, and another one – fluoro-sodium ferro-pedrisite of violet-blue color – was taken from pegmatites as such. It has been demonstrated that the color of the yellow-green mineral is associated with absorption bands of Cr3+ ions in the octahedral coordination. Absorption bands of Cr3+ ions in the spectrum of fluoro-sodium pedrisite are formed by a transmission window in the yellow-green region of the spectrum. Therefore, the color of this sample is yellow-green. The color of violet-blue pedrisite is de-fined by intensive absorption bands of charge transfer Fe2+ → Fe3+ 550, 680 nm. Very strong absorption bands of 550 and 680 nm are formed by a transmission window in the violet-blue region of the spectrum. Thus, the color of ferro-pedrisite is violet-blue.

  6. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  7. Theoretical simulations for vibrationally-resolved absorption spectra of naphthalenediimide cyclophane derivatives

    Science.gov (United States)

    Song, Ce; Li, Li; Duan, Sai; Luo, Yi; Tian, Guangjun

    2017-08-01

    In the present work we systematically investigated the vibrationally-resolved absorption spectra of three core substituted naphthalenediimide cyclophane derivatives. It has been performed by time-dependent density functional theory calculations using three different exchange-correlation functionals, including the conventional B3LYP functional and two long-range corrected functionals: CAM-B3LYP and ωB97XD. The solvent effects were also considered with the polarizable continuum model. Calculation results showed that long range corrections are needed to correctly describe the optical properties of the three molecules because of the strong charge transfer characteristic of the excited states. The core substitution induced red shift to the first absorption band is nicely explained by the theoretical calculations. It is found that this band mainly involves the transitions within the core substituted naphthalenediimide chromophore. The high energy absorption band, on the other hand, is generated mainly from the un-substituted chromophore. These characters result in different substitution dependence for those two main absorption bands. Furthermore, the simulated vibrational profiles of the first two absorption bands nicely reproduce the observed vibrational features in the measured spectra. The accuracy of the calculated results from different functionals and basis sets has been discussed.

  8. Mid-infrared spectra of optically selected type 2 quasars

    CERN Document Server

    Zakamska, Nadia L; Strauss, Michael A; Krolik, Julian H

    2008-01-01

    Type 2 quasars are luminous Active Galactic Nuclei whose central engines are seen through large amounts of gas and dust. We present Spitzer spectra of twelve type 2 quasars selected on the basis of their optical emission line properties. Within this sample, we find a surprising diversity of spectra, from those that are featureless to those showing strong PAH emission, deep silicate absorption at 10 micron, hydrocarbon absorption, high-ionization emission lines and H_2 rotational emission lines. About half of the objects in the sample are likely Compton-thick, including the two with the deepest Si absorption. The median star-formation luminosity of the objects in our sample measured from the strength of the PAH features is 5x10^11 L_sun, much higher than for field galaxies or for any other AGN sample, but similar to other samples of type 2 quasars. This suggests an evolutionary link between obscured quasars and peak star formation activity in the host galaxy. Despite the high level of star formation, the bolom...

  9. The high resolution vacuum ultraviolet absorption spectra of the group VI dihydrides and deuterides Rydberg series

    CERN Document Server

    Mayhew, C A

    1984-01-01

    The high resolution absorption spectra of the important group VI dihydrides and deuterides in the vacuum ultraviolet below, and up to, their first ionisation potentials are presented. These spectra were recorded using synchrotron radiation as the background light source in conjunction with a 3m normal incidence vacuum spectrograph, equipped with holographic gratings. Due to the nature of the originating orbital for the majority of optical transitions in the VUV well developed Rydberg series are observed. One particular series can be followed up to fairly high n, so that accurate values of the first ionisation potential are determined. The identifications of the Rydberg series are made from arguments relating to their oscillator strengths, quantum defects, symmetries and from comparisons with the spectra of the corresponding united atoms i.e. the inert gases. Examples of the symmetry assignments for Rydberg series from rotational band contour analyses of the lower Rydberg members for the H sub 2 S, H sub 2 Se ...

  10. Qualitative Analysis of Liquid Hydrocarbon Mixtures by Absorption Spectra of Their Vapors

    Science.gov (United States)

    Vesnin, V. L.

    2016-11-01

    Absorption spectra of saturated vapors of hydrocarbons and their mixtures were studied near their first overtones. Absorption spectra of hydrocarbons in the liquid and vapor states were compared. The ability to analyze qualitatively the compositions of liquid hydrocarbon mixtures using absorption spectra of their vapors was demonstrated. Indirect evidence suggested that the nonlinear absorption as a function of concentration that was seen in liquid hydrocarbon mixtures was negligible in their vapors.

  11. Electromagnetically Induced Absorption and Transparency Spectra of Degenerate TwoLevel Systems with a Strong Coupling Field in Cs Vapour

    Institute of Scientific and Technical Information of China (English)

    赵延霆; 赵建明; 肖连团; 尹王保; 贾锁堂

    2004-01-01

    The electromagnetically induced absorption and electromagnetically induced transparency spectra of degenerate two-level systems with a strong coupling laser were observed. The frequency detuning and intensity effect of the coupling laser were demonstrated simultaneously. A dispersion-like spectrum can be obtained when the coupling laser is situated at blue-side detuning. The absorption inversion was realized when the coupling laser intensity is small. The coherent resonance has a linewidth much narrower than the natural linewidth of the optical transitions.

  12. Spectra extraction for wavelength-modulation spectroscopy of intra-cavity absorption gas sensor

    Science.gov (United States)

    Han, Wennian; Wang, Yan; Liu, Kun; Jia, Dagong; Liu, Tiegen

    2010-11-01

    Low-frequency wavelength modulation is introduced to increase sensitivity of intra-cavity absorption gas sensor (ICAGS) system. ICAGS system including erbium-doped fiber amplifier (EDFA), pump laser, tunable fiber Fabry-Perot (F-P) optical filter and gas cell is set up. Using virtual instrument technique, modulation function is generated by LabVIEW software and outputted through the AO ports of data acquisition card to tune the driving voltage of optical filter. The AI ports collect the laser power signals in a synchronous mode. Harmonic spectra can be computed by adopting the method of the Discrete Fourier Transform (DFT). According to the characteristics of different order harmonic, even harmonics and odd harmonics are analyzed respectively. Here, second harmonic is used to determine the spectral intensity, and third harmonic is mainly used to locate the position of spectral lines. With optimum 10 Hz frequency modulation, acetylene absorption experiments were carried out. The pump current of EDFA is 60 mA and the acetylene concentration in the gas cell is 1%. After spectra extraction, in the 1526 nm to 1537 nm wavelength range, 17 absorption lines of acetylene were achieved. The results indicated that the error of wavelength position is less than 0.1 nm and the minimum detection limit of acetylene is about 120x10-6. It is possible to realize the recognition of measured gas type and multi-component gas detection for ICAGS system.

  13. High Resolution Optical and NIR Spectra of HBC 722

    CERN Document Server

    Lee, Jeong-Eun; Green, Joel D; Cochran, William D; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il

    2015-01-01

    We present the results of high resolution (R$\\ge$30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in optical/near-IR with the BOES, HET-HRS, and IGRINS spectrographs, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first two years. The Half-Width at Half-Depth (HWHD) of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitt...

  14. Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers.

    Science.gov (United States)

    Mosquera, Martín A; Jackson, Nicholas E; Fauvell, Thomas J; Kelley, Matthew S; Chen, Lin X; Schatz, George C; Ratner, Mark A

    2017-03-15

    The theoretical description of the time-evolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further developments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.

  15. Optical absorption and Faraday rotation in spin doped Cd1-xHgxSe : Mn crystals

    NARCIS (Netherlands)

    Savchuk, AI; Paranchich, SY; Paranchich, LD; Romanyuk, OS; Andriychuk, MD; Nikitin, PI; Tomlinson, RD; Hill, AE; Pilkington, RD

    1998-01-01

    Optical absorption spectra and the Faraday effect in crystals of Cd1-xHgxSe : Mn have been studied. The studied samples have been characterized abrupt absorption edge and transparency region with high transmission coefficient. The measured values of Verdet constant were considerably larger than in I

  16. Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas.

    Science.gov (United States)

    Pan, Zeyu; Guo, Junpeng

    2013-12-30

    Resonance behaviors of the fundamental resonance mode of diabolo metal bar optical antennas are investigated by using finite-difference time-domain (FDTD) numerical simulations and a dipole oscillator model. It is found that as the waist of the diabolo metal bar optical antenna is reduced, optical energy absorption cross section and near field enhancement at resonance increase significantly. Also reduction of the diabolo waist width causes red-shift of the resonant wavelengths in the spectra of absorption cross-section, scattering cross-section, and the near electric field. A dipole oscillator model including the self-inductance force is used to fit the FDTD numerical simulation results. The dipole oscillator model characterizes well the resonance behaviors of narrow waist diabolo metal bar optical antennas.

  17. Microstructure and optical absorption of Au-MgF2 nanoparticle cermet films

    Institute of Scientific and Technical Information of China (English)

    Sun Zhao-Qi; Cai Qi; Song Xue-Ping

    2006-01-01

    The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied.The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm.Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm.With increasing Au content,absorption peak intensity increases,profile narrows and location redshifts.Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.

  18. Optical absorption analysis and optimization of gold nanoshells.

    Science.gov (United States)

    Tuersun, Paerhatijiang; Han, Xiang'e

    2013-02-20

    Gold nanoshells, consisting of a nanoscale dielectric core coated with an ultrathin gold shell, have wide biomedical applications due to their strong optical absorption properties. Gold nanoshells with high absorption efficiencies can help to improve these applications. We investigate the effects of the core material, surrounding medium, core radius, and shell thickness on the absorption spectra of gold nanoshells by using the light-scattering theory of a coated sphere. Our results show that the position and intensity of the absorption peak can be tuned over a wide range by manipulating the above-mentioned parameters. We also obtain the optimal absorption efficiencies and structures of hollow gold nanoshells and gold-coated SiO(2) nanoshells embedded in water at wavelengths of 800, 820, and 1064 nm. The results show that hollow gold nanoshells possess the maximum absorption efficiency (5.42) at a wavelength of 800 nm; the corresponding shell thickness and core radius are 4.8 and 38.9 nm, respectively. They can be used as the ideal photothermal conversation particles for biomedical applications.

  19. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  20. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  1. Efficient Calculation of Electronic Absorption Spectra by Means of Intensity-Selected TD-DFTB

    CERN Document Server

    Rüger, Robert; Lu, You; Frenzel, Johannes; Heine, Thomas; Visscher, Lucas

    2014-01-01

    During the last two decades density functional based linear response approaches have become the de facto standard for the calculation of optical properties of small and medium-sized molecules. At the heart of these methods is the solution of an eigenvalue equation in the space of single-orbital transitions, whose quickly increasing number makes such calculations costly if not infeasible for larger molecules. This is especially true for time-dependent density functional tight binding (TD-DFTB), where the evaluation of the matrix elements is sufficiently cheap so that relatively large systems can be studied. We propose to do an oscillator strength based truncation of the single-orbital transition space to reduce the computational effort of TD-DFTB based absorption spectra calculations. We show that even a sizeable truncation does not destroy the principal features of the absorption spectrum, while naturally avoiding the unnecessary calculation of excitations with small oscillator strengths. We argue that the re...

  2. Electro-optic and Many-body Effects on Optical Absorption of Twisted Bilayer Graphene

    Science.gov (United States)

    Lee, Kan-Heng; Huang, Lujie; Kim, Cheol-Joo; Park, Jiwoong

    2015-03-01

    In twisted bilayer graphene (tBLG), the interlayer rotation angle between the two graphene layers induces additional angle-dependent van Hove singularities (vHSs) in its band structure where the two Dirac cones from each layer intersect. These vHSs introduce extra angle-dependent absorption peaks in the optical absorption spectra of tBLG. Here, we experimentally investigate the effects of the overall doping and the interlayer potential on these interlayer absorption features at various angles. We independently tune the doping concentration of each layer with a newly-developed, optically transparent, dual-gate transistor geometry to perform simultaneous optical and electrical measurements. Our data show strong electro-optic phenomena in the optical absorption of tBLG: the peak energy and width of the interlayer resonance feature sensitively depends on the overall doping and interlayer potential. We explain our observation using a simple band picture as well as many-body effects. Our study provides a powerful experimental platform for studying more complicated structures such as rotated tri- and multi-layer graphene systems in the future. Moreover, the understanding of electro-optic and many-body effects in these materials opens up a way for novel electrochromic devices.

  3. Mg II Absorption Systems in SDSS QSO Spectra

    CERN Document Server

    Nestor, D B; Rao, S M

    2004-01-01

    We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3\\AA and redshifts $0.366 \\le z \\le 2.269$ were identified and measured. We find that the $\\lambda2796$ rest equivalent width ($W_0^{\\lambda2796}$) distribution is described very well by an exponential function $\\partial N/\\partial W_0^{\\lambda2796} = \\frac{N^*}{W^*} e^{-\\frac{W_0}{W^*}}$, with $N^*=1.187\\pm0.052$ and $W^*=0.702\\pm0.017$\\AA. Previously reported power law fits drastically over-predict the number of strong lines. Extrapolating our exponential fit under-predicts the number of $W_0 \\le 0.3$\\AA systems, indicating a transition in $dN/dW_0$ near $W_0 \\simeq 0.3$\\AA. A combination of two exponentials reproduces the observed distribution well, suggesting that MgII absorbers are the superposition of at least two physically distinct populations of absorbing clouds. We also derive a new redshift parameterization for the number density of $W_0^{\\lambd...

  4. Correcting METIS spectra for telluric absorption to maximize spectral fidelity

    CERN Document Server

    Uttenthaler, Stefan; Seifahrt, Andreas; Kendrew, Sarah; Blommaert, Joris A D L; Pantin, Eric J; Brandl, Bernhard R; Molster, Frank J; Venema, Lars; Lenzen, Rainer; Parr-Burman, Phil; Siebenmorgen, Ralf; 10.1117/12.856697

    2010-01-01

    METIS is a mid-infrared instrument proposed for the European Extremely Large Telescope (E-ELT). It is designed to provide imaging and spectroscopic capabilities in the 3 - 14 micron region up to a spectral resolution of 100000. One of the novel concepts of METIS is that of a high-resolution integral field spectrograph (IFS) for a diffraction-limited mid-IR instrument. While this concept has many scientific and operational advantages over a long-slit spectrograph, one drawback is that the spectral resolution changes over the field of view. This has an impact on the procedures to correct for telluric absorption lines imprinted on the science spectra. They are a major obstacle in the quest to maximize spectral fidelity, the ability to distinguish a weak spectral feature from the continuum. The classical technique of division by a standard star spectrum, observed in a single IFS spaxel, cannot simply be applied to all spaxels, because the spectral resolution changes from spaxel to spaxel. Here we present and disc...

  5. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Science.gov (United States)

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  6. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  7. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  8. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    CERN Document Server

    Fesen, Robert A; Hoeflich, Peter A; Hamilton, Andrew J

    2016-01-01

    We present optical and ultraviolet spectra of SN 1885 (S And), visible in absorption against the bulge of the Andromeda galaxy (M31), using the Hubble Space Telescope's STIS spectrograph to probe the three dimensional arrangement of the supernova debris. Spectra covering 2900-5700 A taken using six 0.2"slit positions in two orientations show broad Ca II absorption with blue and red radial velocities out to at least 11,500 km/s, consistent with HST Ca II images of S And. Enhanced Ca II absorption is seen between 2000-5000 km/s suggestive of a Ca II-rich shell. The spectra also show strong, asymmetric Ca I 4227 A absorption extending out to +12,400 km/s, along with weak Fe I 3720 A absorption in a shell with velocities between 2000 and 9000 km/s. Ultraviolet spectra obtained revealed weak broad absorption shortward of 3000 A consistent with model predictions. The STIS spectra, together with previous HST images, show a layered structure with a well defined Ca-rich outer edge indicative of a delayed detonation ph...

  9. The influence of thermolysis time on the absorption spectra of polyvinyl chloride in acetophenone

    Science.gov (United States)

    Rasmagin, S. I.; Krasovskii, V. I.; Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtoba, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The influence of thermolysis time on the absorption spectra of partially thermally dehydrochlorinated polyvinyl chloride in acetophenone solution is studied. Strong increase in the optical density Dλ of the dehydrochlorinated PVC samples is caused by the increasing amount N-C=C- and the length of chains of conjugated double bonds of carbon -C = C-. It is noted that the optical density Dλ first increases linearly with dehydrochlorination time and then reaches saturation. The estimation of amount of double conjugated carbon bonds in 1ml versus thermolysis time t is given, which varies between N-C=C- = 4.1017 - 7.4.1018 for t from 40 to 420 minutes. The effective capture cross section of a photon on conjugated double bonds of carbon for dehydrochlorinated PVC solution in acetophenone is estimated, which was about 10-17 cm2 . The analysis is done of the absorption curves «red» shift to longer wavelengths with growth of N-C=C- upon increase of thermolysis time. It is noted that the dependence of the optical density on the wavelength in this range is well described by a simple exponential function.

  10. Optical absorption and scattering spectroscopies of single nano-objects.

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  11. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  12. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  13. Identification of Metal Absorption Lines on Quasar Spectra of SDSS DR9

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Cheng-Yu Su; Mu-Sheng Li; Wei-Rong Huang

    2014-09-01

    Absorption lines are an important tool for probing the gas in the Universe. Our group aim to identify the metal absorption lines imprinted on the quasar spectra of the BOSS. In this work, we show the metal absorption lines identified in the spectrum of SDSS J160032.95+323638.7.

  14. Universal Zero Conductivity Condition for Optical Absorption

    CERN Document Server

    Guo, Yu; Jacob, Zubin

    2016-01-01

    Harnessing information and energy from light within a nanoscale mode volume is a fundamental challenge for nanophotonic applications ranging from solar photovoltaics to single photon detectors. Here, we show the existence of a universal condition in materials that sheds light on fundamental limits of electromagnetic to matter energy conversion (transduction). We show that the upper limit of absorption rate (transduction rate) in any nanoscale absorber converting light to matter degrees of freedom is revealed by the zero of optical conductivity at complex frequencies ($\\sigma(\\omega^\\prime + i\\omega^{\\prime\\prime})= 0$). We trace the origin of this universal zero conductivity condition to causality requirements on any passive linear response function and propose an experiment of absorption resonances using plasmonic nanoparticles to experimentally verify this universal zero conductivity condition. Our work is widely applicable to linear systems across the electromagnetic spectrum and allows for systematic opti...

  15. The nonlinear spectra of transneptunian objects: Evidence for organic absorption bands

    Science.gov (United States)

    Fraser, W.; Brown, M.; Emery, J.

    2014-07-01

    The reflectance spectra of small (D≲250 km) transneptunian objects (TNOs) are generally quite simple. Water-ice absorption is the only feature firmly detected on the majority of TNOs (Brown et al. 2012). Tentative detections of other materials have been presented (e.g., Barucci et al. 2011), but generally speaking, the spectra of small TNOs are nearly linear in the optical (0.5 Martin et al. 2002, Alvarez-Candal et al. 2008, Fornasier 2009, Hainaut and Delsanti 2012). An interesting candidate for the upward curvature is complex C- and N-bearing hydrocarbons. These organic materials exhibit a broad absorption centered in the UV which is caused by a valence-conduction energy gap (see Moroz et al. 1998). The specific shape of the feature depends on the molecular structure of the organic material, with longer hydrocarbons generally producing wider absorptions. The assertion that the optical spectra of small TNOs are influenced by this hydrocarbon feature is reasonable as the feature is the general result of irradiation of simple organic H-, C-, and N-bearing materials, not dissimilar to that expected to occur on young TNOs (Brunetto et al. 2006). The interpretation of this feature as an absorption due to organics is compatible with the conclusions of Fraser and Brown (2012) who found that the small dynamically excited Kuiper-belt objects exhibit two different compositional classes. They assert that the difference between the neutral and red classes are the result of mixing of a non-icy (likely silicate) material component with two different organic components, one for each class of object. Brown et al. (2011) argue that because there is no quantitative difference between the colors of Centaurs and more distant TNOs, the two separate organic components are not the result of recent surface evolution, but rather is caused by early, post-formation volatile loss from the TNOs. Irradiation then rapidly drove evolution along two separate chemical pathways between those

  16. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  17. NOVEL SPECTRUM ABSORPTION OPTICAL FIBER METHANE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Wang Shutao; Che Rensheng

    2005-01-01

    Based on spectrum principle and analyzing the infrared absorption spectrum of methane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributed feedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology is used to carry out harmonic wave detecting the concentration of methane. The sensitivity can arrive at 10-5.Experiments results show that the performance targets of the sensor such as sensitivity can basically satisfy the requests of methane detection.

  18. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Science.gov (United States)

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  19. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2014-09-10

    We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.

  20. Absorption Spectra of CuGaSe 2 and CuInSe 2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  1. Optical pumping effect in absorption imaging of F=1 atomic gases

    CERN Document Server

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  2. Microstructural and Optical Absorption Properties of Cu-MgF2 Nanoparticle Cermet Film

    Institute of Scientific and Technical Information of China (English)

    孙兆奇; 孙大明; 阮图南

    2002-01-01

    We examine the microstructural and optical absorption spectra of 10-30 vol% Cu-MgF2 nanoparticle cermet films prepared by co-evaporation in vacuum. The results show that the Cu-MgF2 cermet films are mainly composed of the amorphous MgF2 matrix with embedded fcc Cu nanoparticles of average size 12-24 nm. The results also show that the optical absorption of the films decreases as the wavelength increases in the range of 200-800nm. The surface plasmon resonance absorption peaks of Cu nanoparticles in 10, 20 and 30 vo1% Cu-MgF2 films appear at 578, 588 and 606nm, respectively. The interband transition absorption of Cu starts from 590nm downwards.Based on the Maxwell-Garnett theory, the experimental optical absorption properties of the films have been quantitatively evaluated.

  3. Determining neutrino absorption spectra at Ultra-High Energies

    CERN Document Server

    Scholten, Olaf

    2008-01-01

    The Low-Frequency Array (LOFAR), which will be available in the near future, will have an un-precedented sensitivity to measure the flux of Ultra-high energy (UHE) neutrinos. As such it promises to be ultimately suited for determining absorption lines in the neutrino spectrum as predicted by the absorption on the low-energy relic anti-neutrino background through the Z-boson resonance. The position of this absorption peak is sensitive to the neutrino mass and the redshift of the source. The most sensitive way to measure UHE neutrinos is via emitted radio waves when they impact on the moon. In this work we investigate the sensitivity of this detection method to the predicted absorption structures in the neutrino spectrum. A new generation of low-frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  4. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    Science.gov (United States)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  5. Optical spectra of phthalocyanines and related compounds a guide for beginners

    CERN Document Server

    Isago, Hiroaki

    2015-01-01

    This book displays how optical (absorption, emission, and magnetic circular dichroism) spectra of phthalocyanines and related macrocyclic dyes can be varied from their prototypical ones depending on conditions. As these compounds can be involved in colorful chemistry (which might be driven by impurities in solvents), their spectra behave like the sea-god Proteus in their mutability. Therefore, those who have been engaged with phthalocyanines for the first time, including even educated professional researchers and engineers, may have been embarrassed by the deceptive behavior of their compounds and could have, in the worst cases, given up their projects. This book is aimed not merely at reviewing the optical spectra, but also at helping such people, particularly beginners, to figure them out by showing some examples of their prototypical spectra and their variations in several situations. For the purpose of better understanding, the book also provides an introduction to their theoretical backgrounds as graphic...

  6. Optical Absorption of Poly(thiophene vinylene) Conjugated Polymers. Experiment and First Principle Theory

    CERN Document Server

    Gavrilenko, A V; Bonner, C E; Sun, S -S; Zhang, C; Gavrilenko, V I

    2008-01-01

    Optical absorption spectra of poly(thiophene vinylene) (PTV) conjugated polymers have been studied at room temperature in the spectral range of 450 to 800 nm. A dominant peak located at 577 nm and a prominent shoulder at 619 nm are observed. Another shoulder located at 685 nm is observed at high concentration and after additional treatment (heat, sonification) only. Equilibrium atomic geometries and optical absorption of PTV conjugated polymers have also been studied by first principles density functional theory (DFT). For PTV in solvent, the theoretical calculations predict two equilibrium geometries with different interchain distances. By comparative analysis of the experimental and theoretical data, it is demonstrated that the new measured long-wavelength optical absorption shoulder is consistent with new optical absorption peak predicted for most energetically favorable PTV phase in the solvent. This shoulder is interpreted as a direct indication of increased interchain interaction in the solvent which ha...

  7. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Indian Academy of Sciences (India)

    Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan

    2004-09-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|| > 15°) Galactic latitudes. The Declination coverage of the present survey is ≳ -45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.

  8. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  9. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  10. Optical absorption of small copper clusters in neon: Cu(n), (n = 1-9).

    Science.gov (United States)

    Lecoultre, S; Rydlo, A; Félix, C; Buttet, J; Gilb, S; Harbich, W

    2011-02-21

    We present optical absorption spectra in the UV-visible range (1.6 eV neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu(3) and Cu(9) are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better.

  11. [Absorption spectra analysis in the degradation process of quinoline in aqueous solution by VUV lights].

    Science.gov (United States)

    Zhu, Da-Zhang; Sun, Dong-Mei; Wang, Shi-Long; Sun, Xiao-Yu; Ni, Ya-Ming

    2009-07-01

    The feasibility of monitoring the degradation progress on line by UV-Vis absorption spectra in the degradation process of quinoline in aqueous solution using the low-pressure quartz mercury lamp as vacuum ultraviolet source was evaluated by the monitoring and protracting of the UV-Vis absorption spectra at different time. The characteristic and mechanism of the change in the UV absorption spectra were analyzed by monitoring the concentration of the substrate, COD (chemical oxygen demand), TOC (total organic carbon) and pH value of the solution. It was showed that quinoline occurs in different forms under different pH conditions and consequently causes different UV-Vis absorption spectra due to the N atom in the pyridine ring. In the degradation progress, the UV-Vis absorption spectra were impacted by the degradation rate of the substrates, the production rate of the intermediates and the pH value of the solution. Proton acids were produced as intermediates and make quinoline occur in the form of its conjugated acid. When the increase in the absorption produced by the protonation was equal to the decrease induced by the degradation, the curve of the absorption at 313 nm, the characteristic absorption peak of quinoline, showed a flat in the duration of 1-3 min and then decayed continuously. In addition, the absorption at 254 nm reached a maximum at 5 min and then decayed continuously to nearly 0 at 30 min, when the absorption of the system only occurred in the region of wavelength shorter than 220 nm, indicating that the substrate was degraded completely. The research revealed that UV absorption spectra could be used to monitor the degradation process of quinoline in aqueous solution by VUV lights.

  12. Stochastic approach to phonon-assisted optical absorption

    OpenAIRE

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-01-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon us...

  13. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    Science.gov (United States)

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  14. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra

    2013-01-14

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  15. Optical humidity detection based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Zhang, Keke; Liu, Shixuan; Chen, Shizhe; Zhao, Qiang; Zhang, Lijuan; Li, Xuanqun; Wang, Wenyan; Wu, Yushang

    2017-02-01

    Humidity is an important environmental parameter, which is difficult to be measured accurately and quickly using traditional measurement methods. Under the environment of low temperature or high humidity, traditional humidity and temperature sensor has shortages in humidity measurement accuracy, corresponding time and wet fade speed. To solve these problems, this paper proposes a method to measure the environmental humidity with wavelength modulation technology and harmonic detection technology based on tunable diode laser absorption spectroscopy. H2O molecular absorption line near 1392 nm is selected as the characteristic spectra. The effects of temperature, pressure and water concentration on the absorption spectrum width, the wavelength modulation coefficient and the amplitude of the harmonic signal are analyzed. Humidity and temperature sensor is modified using temperature and pressure compensation model, and the influence of the water concentration variation is eliminated by the iterative algorithm. The new humidity and temperature sensor prototype is developed, and the structure of the optical system is simple, which is easy to be adjusted. The response frequency of the humidity detection is 40 Hz. The experiment was carried out for 3 months at Qingdao national basic weather station. Experimental results show that the consistency of the humidity and temperature data is very good, which can proves the validity of the humidity measurement technology.

  16. Data processing of absorption spectra from photoionized plasma experiments at Z

    Energy Technology Data Exchange (ETDEWEB)

    Hall, I. M.; Durmaz, T.; Mancini, R. C. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Bailey, J. E.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  17. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  18. Resonance spectra of diabolo optical antenna arrays

    Science.gov (United States)

    Guo, Hong; Simpkins, Blake; Caldwell, Joshua D.; Guo, Junpeng

    2015-10-01

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  19. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  20. The Extragalactic Background Light and Absorption in Gamma Ray Spectra

    Science.gov (United States)

    Gilmore, Rudy C.

    2008-03-01

    Recent state-of-the-art semi-analytic models (SAMs) can now accurately model the history of galaxy formation and evolution. These SAMs utilize a 'forward evolution' approach and include all of the important processes for determining photon emission from galaxies, such as cooling and shock heating of gas, galaxy mergers, star formation and aging, supernova and AGN feedback, and the reprocessing of light by dust. I will be presenting our group's latest prediction of the extra-galactic background light based on this work and will discuss the implications for the attenuation of VHE gamma rays from distant sources due to pair-production. These results will be compared to recent limits placed on the EBL by observations of GeV and TeV blazar spectra by experiments such as H.E.S.S., MAGIC and VERITAS. The implications for reconstructing the intrinsic spectra of distant blazars will be addressed.

  1. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  2. On the nitrogen-induced far-infrared absorption spectra

    Science.gov (United States)

    Dore, P.; Filabozzi, A.

    1987-01-01

    The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. Thus, a simple procedure is derived that allows the prediction of the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, a procedure to compute the far-infrared spectrum of the N2-Ar gaseous mixture is also proposed. The good agreement between computed and experimental N2-Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.

  3. Study on the Absorption Spectra and Stability of Theaflavin Pigment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Theaflavin(TF) was extracted and purified from black broken tea.The purified TF possessed an absorption peak at the 363nm wavelength,and the solutions of TF remained stable under the conditions of pH3-6,below 80℃ within 60 minutes, as well as in 1%-4% Vc and 0. 05-0.5mmol /L Na2SO3 solutions. Fading occurred in 0. 05mol/L H2O2 solution.

  4. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    CERN Document Server

    Misawa, Toru; Eracleous, Michael

    2014-01-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 years (1-3.5 years in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems nor in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable broad absorption lines. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density $\\sim$ 10$^3$-10$^5$ cm$^{-3}$ and upper limits on the distance of the absorbers from the central engine of order a few kpc. Motivate...

  5. Optical Spectra and Color of Silver Colloids

    Directory of Open Access Journals (Sweden)

    N.L. Dmitruk

    2013-10-01

    Full Text Available In present work, the color features of the aqueous silver suspensions were investigated. Color systems CIE XYZ and CIELAB are considered. In the case of low concentrations of nanoparticles chromaticity coordinates were determined from the transmission spectra of the colloids. For high concentrations of nanoparticles, when the multiple scattering effects play a key role and the medium turns to be turbid, the color of nanoparticles was found using the Kubelka-Munk relation. Experimental data is compared with that calculated from the Mie theory. Color features of a planar array of non-interacting silver nanoparticles are discussed for the first time.

  6. Ultraviolet-visible absorption spectra of solid hydrogen sulphide under high pressure

    CERN Document Server

    Kume, T; Sasaki, S; Shimizu, H

    2002-01-01

    Ultraviolet-visible absorption spectra of solid hydrogen sulphide (H sub 2 S) were measured at various pressures from 0.3 to 29 GPa. The absorption edge observed around 4.8 eV at 0.3 GPa indicated a red-shift with increasing pressure, and positioned below 3 eV at 29 GPa. On the basis of the spectra obtained, the energy gap was determined as a function of pressure. The transition to phase IV at 11 GPa was found to lead to a small jump in its pressure dependence and to yield an Urbach tail in the absorption edge.

  7. Fourier Transform and Photoacoustic Absorption Spectra of Ethylene within 6035–6210 cm-1: Comparative Measurements

    Directory of Open Access Journals (Sweden)

    Venedikt A. Kapitanov

    2010-01-01

    Full Text Available Measurements of ethylene absorption spectra with Fourier Transform (FT and Photoacoustic (PA spectrometers within 6035–6210 cm−1 are described. The methodology used for building the frequency scale for both spectrometers is presented. The methane absorption spectrum, included into the HITRAN database, was used in both cases to calibrate the frequency scale. Ethylene absorption spectra were obtained with the two recording methods; a coincidence of the measured line center positions was obtained with an accuracy of 0.0005 cm−1.

  8. Optical vibronic spectra of aggregates in Eu sup 2 sup + -doped KCl and KBr crystals

    CERN Document Server

    Pérez, S R; Aceves, R; Rodríguez, R; Barboza, M

    2003-01-01

    The vibronic structure on the optical absorption, emission, and excitation spectra of aggregates in Eu sup 2 sup + -doped KCl and KBr crystals has been obtained. The crystals were annealed at 435 K. During the aggregation process, four groups of narrow bands were found in KCl: Eu sup 2 sup + and two in KBr: Eu sup 2 sup + ,which were considered as the signature of different Eu sup 2 sup + -ion aggregated phases. The vibration frequency for each group is very similar. (Author)

  9. Measurement of XUV-absorption spectra of ZnS radiatively heated foils

    CERN Document Server

    Kontogiannopoulmos, Nikolaos; Thais, Frédéric; Chenais-Popovics, Claude; Sauvan, Pascal; Schott, R; Fölsner, Wolfgang; Arnault, Philippe; Poirier, Michel; Blenski, Thomas

    2008-01-01

    Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range has been measured. Thin foils in conditions close to local thermodynamic equilibrium were heated by radiation from laser-irradiated gold spherical cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based on the detailed atomic calculations of its absorption spectra, showed that the cavity emitted flux that heated the absorption foils corresponds to a radiation temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra with calculations based on a superconfiguration approach identified the presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the radiative source simulations, experimental spectra were then compared to calculations performed by post-processing the radiative hydrodynamic simulations of ZnS. Satisfying agreement is found when temperature gradients are accounted for.

  10. Femtosecond Transient Absorption Spectra and Relaxation Dynamics of SWNT in SDS Micellar Solutions

    Science.gov (United States)

    Nadtochenko, V. A.; Lobach, A. S.; Gostev, F. E.; Tcherbinin, D. O.; Sobennikov, A.; Sarkisov, O. M.

    2005-09-01

    Transient absorption spectra and relaxation dynamics of excited SWNT were studied by femtosecond absorption spectroscopy as a function of: the energy of excitation quanta (ℏω = 2 eV, 2.5 eV, 4 eV); the density of the excitation energy; polarizations of the pump and probe pulses. The transient absorption spectra were monitored by white supercontinuum light pulse in the spectral region of ˜ 1.2 ÷ 3.6 eV. The induced transient absorption spectra of SWNT are considered as filling of the size-quantized energy bands with nonequilibrium carriers; renormalization of the one-dimensional energy bands at high density of the induced plasma; quantum confined Stark effect and screening of excitons. The anisotropic relaxation rate is observed.

  11. Resonance spectra of diabolo optical antenna arrays

    Directory of Open Access Journals (Sweden)

    Hong Guo

    2015-10-01

    Full Text Available A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  12. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  13. Electron-Vibration Structure of Absorption Spectra of Resazurine

    Directory of Open Access Journals (Sweden)

    T.N. Sakun

    2011-01-01

    Full Text Available In the work the experimental and theoretical investigation of the spectral characteristics of a resazurin molecule are carried out. Comparison of results of experimental and theoretical researches has allowed showing, that the spectrum of absorption in the visible region is formed by quantum transitions between electronic states of the molecule, and also by the electron-vibration interaction. In the work the method of reception of theoretical results with the control of molecule symmetry is offered. It has allowed to receive the completely coordinated theoretical and experimental results both by position and by size of the extinction factor and to find out the nature of all quantum transitions and oscillatory frequencies. It is shown, that strips of absorption in the visible region of the spectrum are formed at participation of the totally symmetrical vibrations of the molecule among which the greatest participation stand out vibrations with frequencies in the region of 478 cm – 1, 1467 cm – 1, and also by group of oscillatory frequencies in the region of 1800-2000 cm – 1 which were less than found theoretically for the basic state of the molecule because the degree of loosening of the bonds that responsible for specified vibrations, increases at excitation of the molecule.

  14. Synthesis, DFT calculations, electronic structure, electronic absorption spectra, natural bond orbital (NBO) and nonlinear optical (NLO) analysis of the novel 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6] naphthyridine-6(5H),8-dione (MBCND)

    Science.gov (United States)

    Halim, Shimaa Abdel; Ibrahim, Magdy A.

    2017-02-01

    New derivative of heteroannulated chromone identified as 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6]naphthyridine-6(5H),8-dione (5, MBCND) was easily and efficiently synthesized from DBU catalyzed condensation reaction of 2-aminochromone-3-carboxaldehyde (1) with 4-hydroxy-1-methylquinolin-2(1H)-one (2). The same product 5 was isolated from condensation reaction of aldeyde 1 with 3-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid (3) or ethyl 4-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-2,4-dioxobutanoate (4). Structure of compound (5, MBCND) was deduced based on their elemental analyses and spectral data (IR, 1H NMR and mass spectra). Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory have been carried out to investigate the equilibrium geometry of the novel compound (5, MBCND). Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, the dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural bonding orbital (NBO) analysis and orientation have been performed and discussed. Also the electronic absorption spectra were measured in polar (methanol) as well as non polar (dioxane) solvents and the assignment of the observed bands has been discussed by TD-DFT calculations. The correspondences between calculated and experimental transitions energies are satisfactory.

  15. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas the abs...

  16. Anisotropy of optical absorption and luminescent properties of CaMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya., E-mail: zakharko@electronics.wups.lviv.u [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Luchechko, A. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Syvorotka, I.; Stryganyuk, G.; Solskii, I. [Institute for Materials, SRC ' Carat' , 202 Stryjska St., 79031 Lviv (Ukraine)

    2010-03-15

    Optical absorption, excitation and emission spectra, as well as photoluminescence decay time of CaMoO{sub 4} single crystals have been measured. It has been revealed that annealing of crystals in oxygen atmosphere leads to the disappearance of their anisotropic behavior in optical absorption, as well as in X-ray luminescence and decay time. Moreover, it has been found that annealing can significantly affect the value of the decay time. The relative intensity of the long-wavelength emission band increases under excitation in the region of indirect band-to-band transitions.

  17. Optical Spectra and Light Curves of Supernovae

    CERN Document Server

    Filippenko, A V

    2003-01-01

    I review recent optical observations of supernovae (SNe) conducted by my group. The Lick Observatory Supernova Search with the 0.76-m Katzman Automatic Imaging Telescope is currently the world's most successful search for nearby SNe. We also use this telescope to obtain multicolor light curves of SNe. One of the more interesting SNe we discovered is SN 2000cx, which differs from all previously observed SNe Ia. Another very strange SN Ia that we studied is SN 2002cx, many of whose properties are opposite those of SN 2000cx. Extensive data on SNe II-P 1999em and 1999gi were used to derive distances with the expanding photosphere method. Results from spectropolarimetry suggest that the deeper we peer into the ejecta of core-collapse SNe, the greater the asphericity. We are using Hubble Space Telescope data to identify, or set limits on, the progenitors of core-collapse SNe.

  18. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1·m2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report.Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.

  19. Interface phonon effect on optical spectra of quantum nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, Alexander Yu., E-mail: maslov.ton@mail.ioffe.r [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation); Proshina, Olga V.; Rusina, Anastasia N. [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation)

    2009-12-15

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  20. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    Science.gov (United States)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  1. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    Science.gov (United States)

    Fesen, Robert; Hoeflich, Peter; Hamilton, Andrew

    2016-06-01

    The remnant of Supernova 1885 (S And), a probable Type Ia supernova, can be seen in absorption against the bulge of the Andromeda galaxy, M31. Here we present Hubble Space Telescope optical and ultraviolet STIS spectra of S And taken in order to investigate the remnant's three dimensional structure. Optical spectra covering 2900 - 5700 ˚A, taken using six 0.2” wide slit positions in two orientations, show broad Ca II H&K absorption extending out to at least 11,500 km s-1 consistent with previous HST narrow passband Ca II images of S And. We find enhancement of Ca II absorption between expansion velocities of 2,000 and 5,000 km s-1 suggestive of a lumpy Ca-rich shell. These spectra, together with previous HST images, indicate a remnant with less than a 10 percent departure from purely spherical expansion, a layered abundance structure indicative of a detonation phase, and a clumpy and plume-like Fe distribution suggestive of Rayleigh-Taylor instabilities although significantly less than expected from hydrodynamic simulations.

  2. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  3. Demonstrations of Optical Spectra with a Video Camera

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    The use of a video camera may markedly improve demonstrations of optical spectra. First, the output electrical signal from the camera, which provides full information about a picture to be transmitted, can be used for observing the radiant power spectrum on the screen of a common oscilloscope. Second, increasing the magnification by the camera…

  4. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    Science.gov (United States)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  5. Vibrational Energy-Spectra and Infrared Absorption of α-Helical Protein Molecules

    Institute of Scientific and Technical Information of China (English)

    庞晓峰; 陈相容

    2002-01-01

    The quantum energy spectra, including high excited states, of vibrational amide-I or of intramolecular excitations in a-helical protein molecules, are calculated by the discrete nonlinear Schrodinger equation together with the parameters appropriate to the systems. The distribution of energy levels obtained is basically consistent with the experimental values obtained by infrared absorption and Raman scattering. Utilizing the energy spectra we explain the laser Raman spectrum from metabolically active escherichia coli and we present some further features of the infrared absorption of the protein molecules.

  6. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Ole Green

    2010-11-01

    Full Text Available A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA, was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  7. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    Science.gov (United States)

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  8. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av...of this project is to determine the multi-photon absorption spectrum of organic compounds, in order to establish its correlation with the molecular

  9. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    Directory of Open Access Journals (Sweden)

    N. Utry

    2014-09-01

    Full Text Available Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite, oxides (quartz, hematite and rutile, and carbonate (limestone were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  10. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Computer programming for nucleic acid studies. III. Calculated ultraviolet absorption spectra of protected oligodeoxyribonucleotides.

    Science.gov (United States)

    Kan, L; Kettell, R W; Miller, P S

    1981-01-01

    A computer program called UV. FOR was written in FORTRAN. This program primarily utilizes the digitized UV absorption spectra of 8 protected deoxyribonucleosides in 95% ethanol solution to compose the UV spectrum of a oligodeoxynucleotide of any sequence. Both calculated and observed UV spectra of 2 protected oligodeoxynucleotides are carefully compared. The results show that the calculated UV spectrum is virtually identical to the observed spectrum. Thus, the calculated spectra provide rapid confirmation of oligonucleotide compositions during the course of oligonucleotide synthesis by the phosphotriester method.

  12. ESTIMATE OF PARTICLE SIZE DISTRIBUTION GOLD KINETIC REACTIONS ULTRAFAST, USING LIGHT ABSORPTION SPECTRA

    OpenAIRE

    Briano, Julio; Universidad de Puerto Rico, Puerto Rico; Irizarry, Roberto; Dupont Electronics - USA; Vicuña Galindo, Eder; Facultad de Qúmica e lng. Química, Universidad Nacional Mayor de San Marcos, Lima Perú

    2014-01-01

    Light absorption spectra were used to estímate gold particles growing kinetics following a gold salt (HAuCl4) reduction by sulfite in aqueous solution. Due this process is extremely fast, e.g. part1cles reach 150nm s1ze in less a second, a special equipment denorninated Stopped Flow Reactor (AFR) was used. Light spectra was modeled using Mie theory for monodisperse particles with1n 30-250nm range size, and tor minor sizes experimental spectra of commercial colloids were used, due to uncertain...

  13. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  14. Optical absorption and refraction index change of a confined exciton in a spherical quantum dot nanostructure

    Science.gov (United States)

    Mathan Kumar, K.; John Peter, A.; Lee, C. W.

    2011-12-01

    Electronic energies of an exciton confined in a strained Zn1- x Cd x Se/ZnSe quantum dot have been computed as a function of dot radius with various Cd content. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption coefficients and the refractive index changes between the ground state ( L = 0) and the first excited state ( L = 1) are investigated. It is found that the optical properties in the strained ZnCdSe/ZnSe quantum dot are strongly affected by the confinement potentials and the dot radii. The intensity of the total absorption spectra increases for the transition between higher levels. The obtained optical nonlinearity brings out the fact that it should be considered in calculating the optical properties in low dimensional semiconductors especially in quantum dots.

  15. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Heera, Pawan, E-mail: sramanb70@mailcity.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Govt. College Amb, Himachal Pradesh, INDIA,177203 (India); Kumar, Anup, E-mail: kumar.anup.sml@gmail.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Physics Department, Govt. College, Kullu, H. P., INDIA, 175101 (India); Sharma, Raman, E-mail: pawanheera@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India)

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  16. Absorption spectra of new synthesized electroluminescent materials of poly-N-vinylcarbazole derivatives

    NARCIS (Netherlands)

    Makowska-Janusik, M.; Sanetra, J.; Palmers, H.; Bogdal, D.; Gondek, E.; Kityk, I.V.

    2004-01-01

    Absorption spectra in the new synthesized poly-N-vinylcarbazole (PNVK) materials are investigated both theoretically as well as experimentally. The investigated materials were modified by substitution of the backside groups by electron acceptors Cl, Br, I and by donor methoxy in the position 3,6 of

  17. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Science.gov (United States)

    2010-07-01

    ... applied to measure the absorption spectra. (b) Method—(1)(i) Introduction, purpose, scope, relevance... organic solvent should be used (methanol preferred). (3) The acid medium should have a pH of less than 2...) Milazzo, G., Caroli, S., Palumbo-Doretti, M., Violante, N., Analytical Chemistry, 49: 711 (1977)....

  18. Oxygen K-edge absorption spectra of small molecules in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  19. Modelling the In Situ Infrared Reflection-Absorption Spectra of the Diffuse Layer

    Science.gov (United States)

    1989-05-01

    Absorption Spectra of the Diffuse Layer by P.W. Faguy, S. McCullough and W.R. Fawcett Prepared for Presentation at The Electrochemical Society Meeting Los...Research 800 N. Quincy Arlington, VA 22217-5000 ,a. IL bgm. Nme Prepared for Presentation at: The- Electrochemical Society Meeting, Los Angeles, CA, May

  20. Absorption spectra of mixed two-dimensional cyanine aggregates on silver halide substrates

    NARCIS (Netherlands)

    Bakalis, Lisette D.; Rubtsov, Igor; Knoester, Jasper

    2002-01-01

    Using the coherent potential approximation (CPA), we study the absorption spectra of two-dimensional molecular aggregates formed from binary random molecular mixtures. In addition to the substitutional randomness, we include Gaussian randomness in the transition frequencies within each of the two cl

  1. On high-redshift quasar absorption spectra and the Riemannian geometry of the Universe

    CERN Document Server

    Palle, D

    2001-01-01

    We study the observed small deviations of high-redshift absorption spectra that are interpreted as a possible evidence for a variable fine structure constant. On the contrary, we claim that the effect could be completely attributed to the small amount of cosmic shear beyond the standard Friedmann expanding Universe.

  2. Absorption and dichroism spectra of cylindrical J aggregates and chlorosomes of green bacteria

    NARCIS (Netherlands)

    Didraga, Cătălin; Knoester, Jasper

    We study the absorption and linear and circular dichroism spectra of molecular aggregates having the shape of a cylinder. Examples are the chlorosomes of green bacteria and recently synthesized cyanine J aggregates, called amphipipes. We use a Frenkel exciton model and exploit the cylinder symmetry

  3. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    Science.gov (United States)

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  4. Optical filters with fractal transmission spectra based on diffractive optics.

    Science.gov (United States)

    Mendoza-Yero, Omel; Mínguez-Vega, Gladys; Fernández-Alonso, Mercedes; Lancis, Jesús; Tajahuerce, Enrique; Climent, Vicent; Monsoriu, Juan A

    2009-03-01

    The duality between the axial irradiance distribution originated by any circularly symmetric diffracting aperture under monochromatic illumination and its diffracted spectral intensity at a fixed on-axis point under broadband illumination is highlighted and experimentally investigated. Two applications are derived from this basic result. On the one hand, we suggest the use of a broadband source and a spectrometer for a single-shot measurement of the axial response of pupil filters. Second, we implement a spectral filter having a transmission spectrum with a fractal structure of frequencies. Experimental results and potential applications in synthetic spectra designs are provided.

  5. First principles electron-correlated calculations of optical absorption in magnesium clusters

    CERN Document Server

    Shinde, Ravindra

    2015-01-01

    In this paper we report the calculations of linear optical absorption spectra of various isomers of magnesium clusters Mg$_{n}$ (n=2--5) involving valence transitions, performed using the large-scale all-electron configuration interaction (CI) methodology. First, geometries of several low-lying isomers of each cluster were optimized at the coupled-cluster singles doubles (CCSD) level of theory. These geometries were subsequently employed to perform ground and excited state calculations on these systems using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. Resultant CI wave functions were used to compute the optical absorption spectra within the electric-dipole approximation. Our results on magnesium dimer (Mg$_{2}$) isomer are in excellent agreement with the experiments as far as oscillator strengths, and excitation energies are concerned. Owing to a better description of electron-correlation effects, these ...

  6. Velocity anisotropy effect in pump-probe spectra of cesium in a micrometric thickness optical cell

    Science.gov (United States)

    Ghosh, P. N.; Mitra, S.; Ray, B.; Krasteva, A.; Slavov, D.; Todorov, P.; Cartaleva, S.

    2015-01-01

    The pump-probe spectra in a cell of micrometric thickness containing cesium vapor are reported. The line shape and nonlinear features observed in the case of fluorescence in the direction parallel to the cell windows and the transmission spectra observed along the propagation direction of the probe beam show considerable differences in the spectral profiles. We observed Electromagnetically Induced Transparency (EIT) and enhanced Velocity Selective Optical Pumping (VSOP) signals. Atoms moving nearly parallel to the windows and perpendicular to the collinear pump and probe beams will see much lower Doppler shift of incident frequencies and hence will lead to considerable narrowing of the Doppler background in the fluorescence spectra. The coherence decay rate is also low for such atoms as they do not meet with the cell walls. A theoretical model based on five level optical Bloch equations is used to simulate the spectra. The Doppler convolution includes all possible orientation of atomic velocities with respect to the laser beam direction. The simulated curves reproduce the observed sharp EIT peaks and enhanced broad VSOP signals for the closed probe transition in the fluorescence and absorption spectra. The observed effect of the light intensity and temperature change on the non-linear features is reproduced by the simulation.

  7. Calculation of Electronic Absorption Spectra with Account of Thermal Geometry Fluctuations

    Science.gov (United States)

    Guzha, Maris V.; Svitenkov, Andrew I.

    2016-08-01

    An influence of thermal fluctuations of molecule's geometry on calculated electronic-absorption Vis/Uv spectra is considered. Paper presents the quantum chemical modeling of the electronic-absorption spectra for the collection of graphene samples (44, 56, 60, 68 atoms). The calculations were performed by time dependent density functional theory (TDDFT) method in combination with molecular dynamics (MD) simulation at T=300 K. The noticeable changing of spectra relative to single point TDDFT calculation was discovered for two of four structures. We associate achieved results with perturbation of hydrogen and carbon atoms on the edges of the structures. We believe that suggested methodology will be useful in application engineering researches of novel molecules and molecular complexes.

  8. Transient Intersubband Optical Absorption in Double Quantum Well Structure

    Institute of Scientific and Technical Information of China (English)

    WU Bin-He

    2005-01-01

    The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.

  9. Fluorescence spectra of atomic ensembles in a magneto-optical trap as an optical lattice

    CERN Document Server

    Yoon, Seokchan; Kang, Sungsam; Kim, Wook-Rae; Kim, Jung-Ryul; An, Kyungwon

    2015-01-01

    We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting heterodyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.

  10. Optical transmission spectra in quasiperiodic multilayered photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, F F de [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E L [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M S [Departamento de Ciencias Exatas, Centro Federal de Educacao Tecnologica do Maranhao, 65025-001 Sao LuIs-MA (Brazil)

    2006-10-10

    Optical transmission spectra in quasiperiodic multilayered photonic structures, composed of both positive (SiO{sub 2}) and negative refractive index materials, are calculated by using a theoretical model based on the transfer matrix approach for normal incidence geometry. The quasiperiodic structures are substitutional sequences, characterized by the nature of their Fourier spectrum, which can be dense pure point (e.g. Fibonacci sequence) or singular continuous (e.g. Thue-Morse and double-period sequences). The transmission spectra for the case where both refractive indices can be approximated by a different constant show a unique mirror symmetrical profile, with no counterpart for the positive refractive index case, as well as a striking self-similar behaviour related to the Fibonacci sequence. For a more realistic frequency-dependent refractive index, the transmission spectra are characterized by a rich transmission profile of Bragg peaks with no more self-similarity or mirror symmetry.

  11. Optical transmission spectra in quasiperiodic multilayered photonic structure

    Science.gov (United States)

    de Medeiros, F. F.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-10-01

    Optical transmission spectra in quasiperiodic multilayered photonic structures, composed of both positive (SiO2) and negative refractive index materials, are calculated by using a theoretical model based on the transfer matrix approach for normal incidence geometry. The quasiperiodic structures are substitutional sequences, characterized by the nature of their Fourier spectrum, which can be dense pure point (e.g. Fibonacci sequence) or singular continuous (e.g. Thue-Morse and double-period sequences). The transmission spectra for the case where both refractive indices can be approximated by a different constant show a unique mirror symmetrical profile, with no counterpart for the positive refractive index case, as well as a striking self-similar behaviour related to the Fibonacci sequence. For a more realistic frequency-dependent refractive index, the transmission spectra are characterized by a rich transmission profile of Bragg peaks with no more self-similarity or mirror symmetry.

  12. Optical spectra of UX Ari with BOOTES-2

    Science.gov (United States)

    Caballero-Garcia, M. D.; Castro-Tirado, A.; Jelinek, M.

    2014-07-01

    Following the detection and subsequent monitoring of the new outburst from the RS CVn UX Ari by SWIFT and MAXI (ATEL#5907, #6315 , #6319 ), the 0.6m TELMA robotic telescope at the BOOTES-2 astronomical station Malaga (Spain), obtained optical 4000-9000 A spectra starting at 2014-07-19, 01:32:24.382 UT and ending at 04:25:55.652 UT.

  13. Weak absorption test and defect analysis of optical coatings

    Institute of Scientific and Technical Information of China (English)

    HE Hong-bo; LI Xia; FAN Shu-hai; ZHAO Yuan-an; SHAO Jian-da; FAN Zheng-xiu

    2005-01-01

    Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10-7 weak absorption was tested in low-loss coating samples. For the sensitivity extreme of the system, 1×10-8 absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.

  14. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.

    2016-05-16

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  15. The UV/visible absorption spectra of shocked nitromethane - amine mixtures

    Science.gov (United States)

    Constantinou, C. P.; Gupta, Y. M.

    1994-07-01

    Time-resolved optical absorption spectroscopy has been used to examine the response of a mixture of nitromethane with ethylenediamine (0.1% by weight) to stepwise shock compression up to a pressure of 14 GPa. Unlike pure nitromethane, the mixture shows an irreversible time-dependent shift in the absorption edge of up to 100 nm towards longer wavelengths. This provides evidence for the chemical nature of the mechanism by which nitromethane is sensitized in the presence of amines.

  16. Interaction between guest AgI and host zeolite FAU studied by optical spectra and EXAFS

    Science.gov (United States)

    Kodaira, T.; Kubota, T.; Okamoto, Y.; Koshizaki, N.

    2005-07-01

    AgI molecules were dilutely adsorbed into nano-cages of Na{}^+, K{}+ and Cs{}+ type FAU zeolites in order to understand the interaction between host zeolite and guest AgI. This interaction was investigated using optical absorption spectroscopy and extended X-ray absorption fine structure (EXAFS). The optical spectra strongly depend on the type of the alkali cations. Compared with the lowest absorption band of AgI molecules in gas phase, the spectra of AgI molecules adsorbed in the zeolite cages shifts to higher energy in the order of Cs{}^+, K{}^+, and Na{}^+. On the contrary, Ag-I bond lengths of adsorbed AgI molecules obtained from EXAFS were independent of the type of the alkali-cations. The bond length was very close to gas phase AgI molecules. Therefore, the interaction between AgI molecules and the zeolite, whose magnitude is Na{}+ > K{}+ > Cs{}^+, is important in the photo-excited electronic state.

  17. Investigation of molecule properties from electronic absorption spectra of solid and liquid crystals

    Science.gov (United States)

    Klimusheva, G. V.

    2004-12-01

    Among the achievements of 20th century, there is the origin and violent development of the low-temperature technique and low-temperature spectroscopy of molecular crystals in the polarized light. Many obtained results became possible due to the close cooperation between experiment investigators and theorists. This short review traces the evolution of only one trend in the physics of molecular crystals, namely, the investigation of energetic and spatial structure of molecules from the analysis of electronic spectra of molecular crystals. First, for this purpose the possibilities of using the electronic spectra of molecular crystals at low temperatures benzene derivatives and the electronic spectra of liquid ionic crystals are considered. The results of investigations of the electronic absorption spectra for the new class of liquid crystals, namely, ionic metal-organic smectics are presented. Changes in the structure of doping molecules in the ionic liquid crystals under the influence of the dc electric field are analyzed.

  18. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    Science.gov (United States)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  19. Absorption spectroscopy measurements in optically dense explosive fireballs using a modeless broadband dye laser.

    Science.gov (United States)

    Glumac, Nick

    2009-09-01

    A modeless broadband dye laser is applied to probe inside optically dense fireballs generated by high explosives using single-shot, high resolution absorption spectroscopy. Despite attenuation of the main beam by 98%, high signal-to-noise ratio absorption spectra of Al, Ti, and AlO are readily obtained at resolutions of 0.007 nm, and luminosity from the fireball is strongly rejected. Detection limits for atomic species are less than 200 ppb. The method offers good time resolution of chemistry within the fireball, and scaling laws suggest that this technique should be valid in explosives tests at least up to the gram scale.

  20. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    Science.gov (United States)

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  1. Diffuse optical characterization of collagen absorption from 500 to 1700 nm

    Science.gov (United States)

    Sekar, Sanathana Konugolu Venkata; Bargigia, Ilaria; Mora, Alberto Dalla; Taroni, Paola; Ruggeri, Alessandro; Tosi, Alberto; Pifferi, Antonio; Farina, Andrea

    2017-01-01

    Reduction in scattering, high absorption, and spectral features of tissue constituents above 1000 nm could help in gaining higher spatial resolution, penetration depth, and specificity for in vivo studies, opening possibilities of near-infrared diffuse optics in tissue diagnosis. We present the characterization of collagen absorption over a broadband range (500 to 1700 nm) and compare it with spectra presented in the literature. Measurements were performed using a time-domain diffuse optical technique. The spectrum was extracted by carefully accounting for various spectral distortion effects, due to sample and system properties. The contribution of several tissue constituents (water, lipid, collagen, oxy, and deoxy-hemoglobin) to the absorption properties of a collagen-rich in vivo bone location, such as radius distal in the 500- to 1700-nm wavelength region, is also discussed, suggesting bone diagnostics as a potential area of interest.

  2. Optical pumping effect in absorption imaging of F =1 atomic gases

    Science.gov (United States)

    Kim, Sooshin; Seo, Sang Won; Noh, Heung-Ryoul; Shin, Y.

    2016-08-01

    We report our study of the optical pumping effect in absorption imaging of 23Na atoms in the F =1 hyperfine spin states. Solving a set of rate equations for the spin populations in the presence of a probe beam, we obtain an analytic expression for the optical signal of the F =1 absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of 23Na Bose-Einstein condensates prepared in various spin states with different probe-beam pulse durations. The analytic result can be used in the quantitative analysis of F =1 spinor condensate imaging and readily applied to other alkali-metal atoms with I =3 /2 nuclear spin such as 87Rb.

  3. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    Science.gov (United States)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  4. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    Science.gov (United States)

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications.

  5. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    Science.gov (United States)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  6. Stochastic Approach to Phonon-Assisted Optical Absorption

    Science.gov (United States)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  7. Intervening Mg II absorption systems from the SDSS DR12 quasar spectra

    CERN Document Server

    Raghunathan, Srinivasan; Campusano, Luis E; Söchting, Ilona K; Graham, Matthew J; Williger, Gerard M

    2016-01-01

    We present the catalogue of the Mg II absorption systems detected at a high significance level using an automated search algorithm in the spectra of quasars from the twelfth data release of the Sloan Digital Sky Survey. A total of 266,433 background quasars were searched for the presence of absorption systems in their spectra. The continuum modelling for the quasar spectra was performed using a mean filter. A pseudo-continuum derived using a median filter was used to trace the emission lines. The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.0$\\sigma$ level respectively for the two lines of the doublet. The catalogue was constrained to an absorption line redshift of 0.35 $\\le$ z$_{2796}$ $\\le$ 2.3. The rest-frame equivalent width of the $\\lambda$2796 line ranges between 0.2 $\\le$ W$_r$ $\\le$ 6.2 \\AA. Using Gaussian-noise only simulations we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the number density $\\partial N^{2796}/\\partial z$ of Mg II ab...

  8. Time variations of narrow absorption lines in high resolution quasar spectra

    CERN Document Server

    Boissé, P; Prochaska, J X; Péroux, C; York, D G

    2015-01-01

    Aims. We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of 5 distant sources have been assembled, for which 2 spectra - VLT/UVES or Keck/HIRES - taken several years apart are available. Methods. We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra, and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behavior of a broad variety of absorption line systems, sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lya systems, as well as neutral gas within our own Galaxy. Results. Absorption lines from MgII, FeII or proxy species with lines of lower opacity tracing the same kind of gas appear to be remarkably stable (1 sigma upper limits as low as 10 % for some components on scal...

  9. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  10. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  11. Suzaku discovery of iron absorption lines in outburst spectra of the X-ray transient 4U 1630-472

    CERN Document Server

    Kubota, A; Cottam, J; Kotani, T; Done, C; Ueda, Y; Fabian, A C; Yasuda, T; Takahashi, H; Fukazawa, Y; Yamaoka, K; Makishima, K; Yamada, S; Kohmura, T; Angelini, L; Kubota, Aya; Dotani, Tadayasu; Cottam, Jean; Kotani, Taro; Done, Chris; Ueda, Yoshihiro; Fabian, Andrew C.; Yasuda, Tomonori; Takahashi, Hiromitsu; Fukazawa, Yasushi; Yamaoka, Kazutaka; Makishima, Kazuo; Yamada, Shinya; Kohmura, Takayoshi; Angelini, Lorella

    2006-01-01

    We present the results of six Suzaku observations of the recurrent black hole transient 4U1630-472 during its decline from outburst from February 8 to March 23 in 2006. All observations show the typical high/soft state spectral shape in the 2-50keV band, roughly described by an optically thick disk spectrum in the soft energy band plus a weak power-law tail that becomes dominant only above \\~20keV. The disk temperature decreases from 1.4keV to 1.2keV as the flux decreases by a factor 2, consistent with a constant radius as expected for disk-dominated spectra. All the observations reveal significant absorption lines from highly ionized (H-like and He-like) iron Ka at 7.0keV and 6.7keV. The brightest datasets also show significant but weaker absorption structures between 7.8keV and 8.2keV, which we identify as a blend of iron Kb and nickel Ka absorption lines. The energies of these absorption lines suggest a blue shift with an outflow velocity of ~1000km/s.. The H-like iron Ka equivalent width remains approxima...

  12. Nonlinear optical absorption of photosynthetic pigment molecules in leaves.

    Science.gov (United States)

    Ye, Zi-Piao

    2012-04-01

    A mathematical formulation of the relationship between optical absorption coefficient of photosynthetic pigment molecules and light intensity was developed. It showed that physical parameters of photosynthetic pigment molecule (i.e., light absorption cross-section of photosynthetic pigment molecule, its average lifetime in the excited state, total photosynthetic pigment molecules, the statistical weight, or degeneracy of energy level of photosynthetic pigment molecules in the ground state and in the excited state) influenced on both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules. Moreover, it also showed that both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules were not constant, they decreased nonlinearly with light intensity increasing. The occupation numbers of photosynthetic pigment molecules in the excited states increased nonlinearly with light intensity increasing.

  13. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  14. Computational Study of Absorption Spectra of the Photoconvertible Fluorescent Protein EosFP in Different Protonation States.

    Science.gov (United States)

    Imhof, Petra

    2012-11-13

    Absorption spectra of the green-to-red convertible fluorescent protein EosFP have been computed in a hybrid quantum mechanical/molecular mechanical (QM/MM) framework. The experimentally observed absorption maximum at ∼390 nm is well reproduced by the protein with a neutral chromophore, and the anionic form is computed to absorb close to the experimentally determined maximum at ∼500 nm. Absorption of a zwitterionic form is calculated to lie in the same spectral region; however, this species cannot be unambiguously assigned to the experimental spectra. Variation of the protonation states of residues surrounding the chromophore do not have significant impact on the positions of the absorption maxima. In particular, protonation of Glu212 leaves the calculated spectra largely unaffected. This is consistent with the spectra of the E212Q mutant, which differ from the wild-type spectra only in the intensities but not in the positions of the absorption bands.

  15. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  16. Unraveling the absorption spectra of alkali metal atoms attached to helium nanodroplets.

    Science.gov (United States)

    Bünermann, Oliver; Droppelmann, Georg; Hernando, Alberto; Mayol, Ricardo; Stienkemeier, Frank

    2007-12-13

    The absorption spectra of the first electronic exited state of alkali metal atoms on helium nanodroplets formed of both 4He and 3He isotopes were studied experimentally as well as theoretically. In the experimental part new data on the 2palkali metal atoms with helium nanodroplets, a model calculation was performed. New helium density profiles as well as a refined model allowed us to achieve good agreement with the experimental findings. For the first time the red-shifted intensities in the lithium and sodium spectra are explained in terms of enhanced binding configurations in the excited state displaced spatially from the ground state configurations.

  17. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    frequencies within the IR and UV - visible ranges. The absorption spectrum corresponding to excitation states of SixOy-nH2O molecular clusters consisting of...Energies and IR Spectra……………………….......................….4 DFT Calculation of UV -Vis Spectra………………………………………………………….……5 Conclusion...calculation of approximate UV -Vis absorption spectra for SixOy molecular clusters, which uses time-dependent density functional theory (TD-DFT) as

  18. Intervening Mg II absorption systems from the SDSS DR12 quasar spectra

    Science.gov (United States)

    Raghunathan, Srinivasan; Clowes, Roger G.; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J.; Williger, Gerard M.

    2016-12-01

    We present the catalogue of the Mg II absorption systems detected at a high significance level using an automated search algorithm in the spectra of quasars from the 12th data release of the Sloan Digital Sky Survey. A total of 266,433 background quasars were searched for the presence of absorption systems in their spectra. The continuum modelling for the quasar spectra was performed using a mean filter. A pseudo-continuum derived using a median filter was used to trace the emission lines. The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.0σ level respectively for the two lines of the doublet. The catalogue was constrained to an absorption line redshift of 0.35 ≤ z2796 ≤ 2.3. The rest-frame equivalent width of the λ2796 line ranges between 0.2 ≤ Wr ≤ 6.2 Å. Using Gaussian noise-only simulations, we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the number density ∂N2796/∂z of Mg II absorbers and find evidence for steeper evolution of the systems with Wr ≥ 1.2 Å at low redshifts (z2796 ≤ 1.0), consistent with other earlier studies. A suite of null tests over the redshift range 0.5 ≤ z2796 ≤ 1.5 was used to study the presence of systematics and selection effects like the dependence of the number density evolution of the absorption systems on the properties of the background quasar spectra. The null tests do not indicate the presence of any selection effects in the absorption catalogue if the quasars with spectral signal-to-noise level less than 5.0 are removed. The resultant catalogue contains 36,981 absorption systems. The Mg II absorption catalogue is publicly available and can be downloaded from the link http://srini.ph.unimelb.edu.au/mgii.php.

  19. Optical absorption spectra of tourmaline crystals from Altay,China

    Institute of Scientific and Technical Information of China (English)

    Xueliang Liu; Xiqi Feng; Manliang Fan; Shouguo Guo

    2011-01-01

    @@ Tourmaline is an important functional and gem material.The current study examines pink,green,and brownish-green tourmalines from Altay deposit.Based on X-ray fluorescence(XRF) quantitative analyses and ultraviolet-visible-near-infrared(UV-VIS-NIR) spectral analyses in combination with annealing experiments,the color center of tourmaline is found to be related to the d一d transitions of ions or the d-d transitions of exchange coupled ions.Annealing treatment affects the color improvement of tourmaline crystals.%Tourmaline is an important functional and gem material. The current study examines pink, green, and brownish-green tourmalines from Altay deposit. Based on X-ray fluorescence (XRF) quantitative analyses and ultrariolet-visible-near-infrared (UV-VIS-NIR.) spectral analyses in combination with annealing experiments, the color center of tourmaline is found to be related to the d - d transitions of ions or the d - d transitions of exchange coupled ions. Annealing treatment affects the color improvement of tourmaline crystals.

  20. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of...complexes consisting of relatively small numbers of water molecules using DFT and TD- DFT. Calculation of excited state resonance structure using DFT and TD...absorption spectra. A significant aspect of using DFT and TD-DFT for the calculation of absorption spectra is that it adopts the perspective of computational

  1. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  2. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    Science.gov (United States)

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets.

  3. Determination of Metal Nanoparticles Size Distribution in Gold Hydrosols of Plasmonic Absorption Spectra

    Directory of Open Access Journals (Sweden)

    I.M. Bolesta

    2012-12-01

    Full Text Available Substantiated method determining the distribution of metal particle size on the optical absorption data for composites consisting of dielectric medium and metallic inclusions and tested this method on hydrosols of gold nanoparticles compared to the data obtained by microscopic examination.

  4. Source brightness fluctuation correction of solar absorption Fourier Transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-01-01

    Full Text Available Solar absorption Fourier Transform infrared spectrometry is considered a precise and accurate method for the observation of trace gases in the atmosphere. The precision and accuracy of such measurements are dependent on the stability of the light source. Fluctuations in the source brightness reduce the precision and accuracy of the trace gas concentrations, but cannot always be avoided. Thus, a strong effort is made within the community to reduce the impact of source brightness fluctuations by applying a correction on the spectra following the measurements. So far, it could be shown that the precision and accuracy of CO2 total column concentrations could be improved by applying a source brightness fluctuation correction to spectra in the near infrared spectral region.

    The analysis of trace gas concentrations obtained from spectra in the mid infrared spectral region is fundamental. However, spectra below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents a source brightness fluctuation correction.

    Here, we show a method of source brightness fluctuation correction, which can be applied on spectra in the whole infrared spectral region including spectra measured with a MCT detector. We present a solution to remove the unknown offset in MCT interferograms allowing MCT spectra for an application of source brightness fluctuation correction. This gives an improvement in the quality of MCT spectra and we demonstrate an improvement in the retrieval of O3 profiles and total column concentrations.

    For a comparison with previous studies, we apply our source brightness fluctuation correction method on spectra in the near infrared spectral region and show an improvement in the retrieval of CO2 total column concentrations.

  5. Luminescence and optical absorption determination in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G., E-mail: u_nogal@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2012-10-15

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 {mu}m and 1-5 {omega}cm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  6. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    Science.gov (United States)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  7. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...

  8. Defects and the optical absorption in nanocrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sreetama [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chattopadhyay, Sanjay [Department of Physics, Taki Government College, Taki 743429 (India); Sutradhar, Manas [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sarkar, Anindya [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Jana, Debnarayan [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2007-06-13

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO.

  9. Study on the interaction between diphenhydramine and erythrosin by absorption, fluorescence and resonance Rayleigh scattering spectra

    Institute of Scientific and Technical Information of China (English)

    TANG XiaoLing; LIU ZhongFang; LIU ShaoPu; HU XiaoLi

    2007-01-01

    In pH 4.5 Britton-Robinson (BR) buffer solution, erythrosin (ET) can react with diphenhydramine (DP) to form a 1:1 ion-association complex, which not only results in the change of the absorption spectra, but also results in the great enhancement of resonance Rayleigh scattering (RRS) and the quenching of fluorescence. Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 580 nm.In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reaction and the properties of an analytical chemistry were investigated. A sensitive, simple and new method for the determination of DP by using erythrosin as a probe has been developed. The detection limits for DP were 0.0020 μg/mL for RRS method, 0.088 μg/mL for absorption method and 0.094 μg/mL for fluorophotometry. There was a linear relationship between the absorbance, RRS and fluorescence intensities and the drug concentration in the range of 0.0067-2.0, 0.29-6.4 and 0.31-3.2 μg/mL, respectively. The effects of the interaction of diphenhydramine and erythrosin on the absorption, fluorescence and resonance Rayleigh scattering spectra were discussed. In light polarization experiment, the polarization of RRS at maximum wavelength was measured to be P = 0.9779, and it revealed that the RRS spectrum of DP-ET complex consists mostly of resonance scattering and few resonance fluorescence. In this study, enthalpy of formation and mean polarizability were calculated by AM1 quantum chemistry method. In addition, the reaction mechanism and the reasons for the enhancement of scattering spectra and the energy transfer between absorption, fluorescence and RRS were discussed.

  10. Absorption spectra of gamma-irradiation TM-doped cabal glasses

    Science.gov (United States)

    Marzouk, Samir Y.; Elbatal, Fatma H.; Salem, A. M.; Abo-Naf, S. M.

    2007-07-01

    The UV-visible absorption spectra of nominally pure and transition metals-doped (Ti → Cu 0.1%) cabal glasses were measured from 200 to 1000 nm before and after successive gamma irradiation. The absorption spectra of the undoped glass exhibit charge transfer bands due to iron trace impurities which eventually affect the induced absorption due to some transition metals and that due to the host base glass in the UV region. The intensity of the radiation-induced bands depends on the number of intrinsic defects and the rate of formation of the different induced color centers. Also, the possible photochemical processes due to the effect of radiation on the transition metal ions are observed to affect the overall induced spectra. The growth behavior of the repetitive induced bands in the undoped and TM-doped glasses reveals a fast increase at first dose and the growth rate decreases or approaches saturation afterwards and different possible assumptions are given to interpret this behavior.

  11. The use of commercial glass as a potential gamma accidental dosimeter through the absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kharita, M.H., E-mail: prscientific1@aec.org.sy [Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Yousef, S.; Bakr, S. [Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic)

    2012-05-01

    Various types of commercial glass (ordinary windows, cathode ray tubes, glass kitchenware) have been studied as potential accidental radiation dosimeters. The proposed method utilizes the changes in the glasses' absorption spectra as a result of irradiation. A {sup 60}Co gamma irradiation cell has been used to irradiate samples with doses ranging from 5 to 200 Gy. The transmittance was measured using a photospectrometer (UV-visible spectrometry). The results demonstrate that the transmittance spectra of most of the glass samples change in linear proportion to the exposure dose. Moreover, the study considers the fading effect on the absorption spectra of the irradiated samples for fading times up to 100 days at room temperature. The results of this work demonstrate that several widely used types of glass can be used as high-dose accidental dosimeters for doses ranging between 8 and 200 Gy. A reasonable calibration line can be established for any irradiated glass sample by heating, re-irradiating with standard doses and measuring the related absorption coefficient. Further investigations are needed to decrease the minimum detectable dose of the proposed method and to study the effect of glass composition on radiation response.

  12. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    Science.gov (United States)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  13. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Institute of Scientific and Technical Information of China (English)

    Ya-hua Hu; Chen Zhen; Jing-hua Dai; Xiao-guo Zhou; Shi-lin Liu

    2008-01-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (v2=0-2) of the C~Ⅱu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode v4 of the C~Ⅱu state of acetylene. Additionally, the two components, 42 (μ1 Ⅱu) and 42(K1Ⅱu), are suggested to exhibit in the present absorption spectra, due to their Penner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  14. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Science.gov (United States)

    Hu, Ya-hua; Zhen, Chen; Dai, Jing-hua; Zhou, Xiao-guo; Liu, Shi-lin

    2008-10-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (u2 = 0-2) of the tilde C1 IIu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode u4 of the tilde C1 IIustate of acetylene. Additionally, the two components, 4o2(μ1IIu) and 4o2(κ1 IIuare suggested to exhibit in the present absorption spectra, due to their Renner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  15. Optical absorption of the blue fluorescent protein: a first-principles study.

    Science.gov (United States)

    Lopez, Xabier; Marques, Miguel A L; Castro, Alberto; Rubio, Angel

    2005-09-07

    An extensive study of the optical absorption spectra of the blue fluorescent protein (BFP) is presented. We investigate different protonation states of the chromophore (neutral, anionic, and cationic) and analyze the role of the protein environment and of thermal fluctuations. The role of the environment is 2-fold: (i) it induces structural modifications of the gas-phase chromophore, the most important being the torsion of the imida rings; and (ii) it makes a local-field modification of the external electromagnetic field. It turns out that the torsion of the imida rings shifts significantly the gas-phase spectra to lower energies, whereas the consistent inclusion of the closest residues field produces only minor modifications on the spectra. From all of the configurations studied, the neutral cis-HSD and the anionic HSA seem to be the most likely candidates to explain the experimental spectrum. Furthermore, the present results clearly rule out the presence of the cationic protonation state (HSP) of the chromophore. However, a better description of the measured experimental absorption data may be obtained when the temperature fluctuations of the floppy torsional motion of the two imida rings are included. Our results, together with previous work on the green fluorescent protein, demonstrate the power of combining time-dependent density functional calculations and optical absorption measurements to discern the relevant chemical information on the nature and state of chromopeptides.

  16. VO 2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques

    Science.gov (United States)

    Prakash, P. Giri; Rao, J. Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B 2O 3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO 2+ ions. The values of spin-Hamiltonian parameters indicate that the VO 2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C 4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V 2O 5 content and temperature but changing with ZnO content. The decrease in Δ g∥/Δ g⊥ value with increase in ZnO content indicates that the symmetry around VO 2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V 2O 5 is attributed to a fall in the ratio of the number of V 4+ ions ( N4) to the number of V 5+ ions ( N5). The number of spins ( N) participating in resonance was calculated as a function of temperature for VO 2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/ χ- T graph. The optical absorption spectra show single absorption band due to VO 2+ ions in tetragonally distorted octahedral sites.

  17. Infrared absorption spectra of transition metals-doped soda lime silica glasses

    Science.gov (United States)

    Khalil, E. M. A.; ElBatal, F. H.; Hamdy, Y. M.; Zidan, H. M.; Aziz, M. S.; Abdelghany, A. M.

    2010-03-01

    Infrared (IR) absorption spectra of some prepared undoped and transition metals-doped soda-lime-silicate glasses have been studied in the region of 400-4000 cm -1. IR spectra were analyzed to determine and differentiate the various vibrational modes by applying a deconvolution method to the IR spectra. Although the first sight reveals close similarity between the different transition metal- (TM) doped samples; careful inspection indicates some minor differences depending on the type of TM ions. These observed data are correlated with similar energy of the 3d orbitals of TM atoms in the neutral state and when the atoms are ionized, the 3d orbitals becomes more stable than the 4 s orbitals.

  18. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  19. Study on Optical Absorption Behavior of Dyestuff in Fabric

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-ying; ZHU Su-kang; ZUO Lei; ZHU Ping-ping; PAN Ning

    2008-01-01

    Fabric is a kind of turbid materials with strong light scattering,to which the Kubelka-Munk theory can be applied to describe it optical behavior.In this paper,the light absorption coefficients of dyestuff in fabrics are obtained by test and calculation thnmgh a special method proposed by the authors.Then the optical behaviours of dyestuff in fabric are studied.Results show that,the absorption coeffident of dye in fabric is non-scalable and exponential to dye concentrafion in fabric which is totally different from that of the dye in transparent medm like water.

  20. Differential optical absorption spectrometer for measurement of tropospheric pollutants.

    Science.gov (United States)

    Evangelisti, F; Baroncelli, A; Bonasoni, P; Giovanelli, G; Ravegnani, F

    1995-05-20

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO(2), NO(2), O(3), and HNO(2) averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  1. Semiconductor optical modulator by using electron depleting absorption control

    OpenAIRE

    Yamada, Minoru; Noda, Kazuhiro; Kuwamura, Yuji; Nakanishi, Hirohumi; Imai, Kiyohumi

    1992-01-01

    Operation of a newly proposed semiconductor optical modulator based on absorption control by electron depletion around a p-n junction is demonstrated, forming preliminary structures of waveguide-type as well as panel-type (or surface-illuminated type) devices. The optical absorption is occurred at the intrinsic energy levels in the band structure not at the extended state into the band-gap. Performance of 35 dB on-off extinction ratio for 4 V variation of the applied voltage was obtained in a...

  2. Probing iron spin state by optical absorption in laser-heated diamond anvil cell

    Science.gov (United States)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Lin, J. F.

    2015-12-01

    Pressure-induced spin-pairing transitions in iron-bearing minerals have been in the focus of geophysical studies1. Modern consensus is that iron spin state in the lower mantle is a complex function of crystal structure, composition, pressure, and temperature. Discontinuities in physical properties of lower mantle minerals have been revealed over the spin transition pressure range, but at room temperature. In this work, we have used a supercontinuum laser source and an intensified CCD camera to probe optical properties of siderite, FeCO3, and post-perovskite, Mg0.9Fe0.1SiO3, across the spin transition in laser-heated diamond anvil cell. Synchronously gating the CCD with the supercontinuum pulses (Fig. 1A) allowed diminishing thermal background to ~8.3*10-4. Utilizing the experimental setup we infer the spin state of ferrous iron in siderite at high pressure and temperature conditions (Fig. 1B). Similar behavior is observed for low spin ferric iron in post-perovskite at 130 GPa indicating that all iron in post-perovskite is high spin at lower mantle conditions. Also, our experimental setup holds promise for measuring radiative thermal conductivity of mantle minerals at relevant mantle conditions. Figure 1. (A) Timing of the optical absorption measurements at high temperature. (B) High temperature siderite absorption spectra at 45 GPa. Before heating and quenched after 1300 K spectra are shown in light and dark blue, respectively. Green and red curves are absorption spectra at 1200 K and 1300 K, respectively. Spectra shown in black represent room temperature absorption data on HS (43 GPa) and LS (45.5 GPa) siderite after Lobanov et al., 2015, shown for comparison.

  3. Vibrational circular dichroism and IR absorption spectra of amino acids: a density functional study.

    Science.gov (United States)

    Ji, Zhi; Santamaria, Rubén; Garzón, Ignacio L

    2010-03-18

    With density functional theory, vibrational circular dichroism (VCD) and infrared absorption (IR) spectra are obtained at the B3LYP/CC-pVTZ level of theory for 20 alpha-amino acids. The contribution of different vibration modes to the IR and VCD spectra is analyzed. Overall agreement between calculated results for amino acids in gas phase with the available experimental VCD data for matrix-assisted amino acid films is found. The analysis of the calculated IR and VCD spectra indicates that the functional groups in the backbones and side chains of amino acids contribute differently to the spectra line shape. It is obtained that molecular torsions are the characteristic vibrations of the amino acids at the low-frequency regime, whereas the bending of bond angles, the out-of-plane wagging of individual atoms, and some stretching modes dominate the intermediate frequency range. Specific modes like NH(2) scissoring, CO bond stretching, and the (symmetric and asymmetric) stretching of the hydrogen atoms in the NH(2) and OH groups characterize the high-frequency regime. A general trend emerging from these calculations indicates that the rho(OH) rocking and nu(C=O) stretching modes have the highest intensity in the VCD spectra of most amino acids.

  4. A Bloch equation approach to intensity dependent optical spectra of light harvesting complex II: excitation dependence of light harvesting complex II pump-probe spectra.

    Science.gov (United States)

    Richter, Marten; Renger, Thomas; Knorr, Andreas

    2008-01-01

    On the basis of the recent progress in the resolution of the structure of the antenna light harvesting complex II (LHC II) of the photosystem II, we propose a microscopically motivated theory to predict excitation intensity-dependent spectra. We show that optical Bloch equations provide the means to include all 2( N ) excited states of an oligomer complex of N coupled two-level systems and analyze the effects of Pauli Blocking and exciton-exciton annihilation on pump-probe spectra. We use LHC Bloch equations for 14 Coulomb coupled two-level systems, which describe the S (0) and S (1) level of every chlorophyll molecule. All parameter introduced into the Hamiltonian are based on microscopic structure and a quantum chemical model. The derived Bloch equations describe not only linear absorption but also the intensity dependence of optical spectra in a regime where the interplay of Pauli Blocking effects as well as exciton-exciton annihilation effects are important. As an example, pump-probe spectra are discussed. The observed saturation of the spectra for high intensities can be viewed as a relaxation channel blockade on short time scales due to Pauli blocking. The theoretical investigation is useful for the interpretation of the experimental data, if the experimental conditions exceed the low intensity pump limit and effects like strong Pauli Blocking and exciton-exciton annihilation need to be considered. These effects become important when multiple excitations are generated by the pump pulse in the complex.

  5. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  6. Pressure effects on the absorption spectra of Na doped in solid Ar

    Institute of Scientific and Technical Information of China (English)

    CUI Tian; HE Wenjiong; YIN Hongwei; MA Yanming; CHEN Changbo; ZOU Guangtian; WEI Mengfu; CHEN Changan

    2004-01-01

    In this work, the pressure influence on the absorption spectra of Na in solid Ar for various trapping sites is extensively investigated at T = 10 K and in the pressure range from 0 to 2.4 GPa by using Monte Carlo method with a constant pressure ensemble (NPT). For the trapping sites of nv = 1, 2, the absorption spectral widths increase progressively, the absorption peaks and the centroid spectral shift (CSS) tend to have a red shift with pressure increasing, even though there is no local structural symmetry change around Na atom caused by pressure. Highly symmetrical trapping site structure (nv = 1) determines a highly symmetrical triplet absorption feature at a low pressure. With the increase in pressure, the action from the Ar crystal field on the three energy levels of the 3p excited state of Na atom increases, resulting in the overlap of the three peaks. Low symmetrical trapping site structure (nv = 2) yields a low symmetrical triplet absorption pattern in which a large separation between the "single" and the "double" peaks exists at a low pressure. With the increase in pressure, the splitting between the singlet and the doublet increases, and the doublet merges as the pressure is larger than 2.4 GPa.

  7. Silver Nanoparticles with Broad Multiband Linear Optical Absorption

    KAUST Repository

    Bakr, Osman M.

    2009-07-06

    A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.

  8. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  9. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  10. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  11. IR Spectra of Nano- and Macro-Crystals: the Overriding Importance of Optical Path

    Science.gov (United States)

    Hofmeister, A. M.; Rosen, L. J.; Speck, A. K.

    2000-03-01

    To clarify the effect of optical path, infrared (IR) absorption spectra were collected from nanocrystals of SiC and structurally related AlN and TiB2, and from commercial bulk samples using thin film, powder dispersion and single crystal methods. Crystals of 5-10 nm that were individually encapsulated in salt and subsequently pressed into thin films give identical features to those from thin films of the bulk sample (grain size >1 μm), which removes all possibility of a matrix effect, and negates the importance of grain size below a micron. Shifts in peak position for SiC samples are shown to relate to optical path, and are such that the β- and α- polymorphs can be distinguished. The shifts arise because peaks have finite widths and hence small frequency increments can have widely different absorption coefficient for the intense Si-C stretch. The high absorption coefficient serves as a filter for particulate dimensions perpendicular to the propagation of light.

  12. Two-Photon Absorption and Optical Power Limiting Based on New Organic Dyes

    Institute of Scientific and Technical Information of China (English)

    周广勇; 王东; 邵宗书; 蒋民华; 雷虹

    2001-01-01

    Two new organic dye samples J and L with a large two-photon absorption (TPA) cross section have been reported.The linear absorption spectra show that there is no linear absorption at the wavelength from 650 to 1200 nm.The molecular TPA cross section was measured to be as high as 2.59×10-47 cm4.s and 2.98×10-47 cm4.s at 1064 nm for samples J and L, respectively. The input-output curves indicate that there is a clear optical power limiting behaviour when the input intensity is higher than 0.4 GW/cm2. Furthermore, the basic theory of the TPA process has been discussed.

  13. Circumstellar C2, CN, and CH+ in the optical spectra of post-AGB stars

    CERN Document Server

    Bakker, E J; Waters, L B F M; Schoenmaker, T; Bakker, Eric J.; Dishoeck, Ewine F. van; Schoenmaker, Ton

    1996-01-01

    We present optical high-resolution spectra of a sample of sixteen post-AGB stars and IRC +10216. Of the post-AGB stars, ten show C2 Phillips and Swan and CN Red System absorption, one CH+ emission, one CH+ absorption, and four without any molecules. We find typically Trot=43-399, 155-202, and 18-50 K, log N = 14.90-15.57, 14.35, and 15.03-16.47 cm-2 for C2, CH+, and CN respectively, and 0.620. The presence of C2 and CN absorption is correlated with cold dust (Tdust300K). All objects with the unidentified 21mum emission feature exhibit C2 and CN absorption, but not all objects with C2 and CN detections exhibit a 21mum feature. The derived expansion velocity, ranging from 5 to 44 km/s, is the same as that derived from CO millimeter line emission. This unambiguously proves that these lines are of circumstellar origin and are formed in the AGB ejecta (circumstellar shell expelled during the preceding AGB phase). Furthermore there seems to be a relation between the C2 molecular column density and the expansion vel...

  14. Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal

    Science.gov (United States)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2017-01-01

    In this work we present ab initio study on linear optical properties of Dirac and Weyl semimetals and tried to find the consequences of inversion symmetry breaking in the optical properties of topological semimetal. The real and imaginary part of dielectric function in addition to energy loss spectra of topological semimetal with and without inversion symmetry have been calculated within Random phase approximation (RPA) then the electron-hole interaction is included by solving the Bethe-Salpeter Equation (BSE) for the electron-hole Green's function. We find that the lack of inversion symmetry and spin-orbit interaction increases the density of states at Fermi level, giving rise to excitonic peak in optical absorption of topological semimetal. It is remarkable that the excitonic effects in high energy range of the spectrum are stronger than in the lower one. To explore the breaking of inversion symmetry related optical properties, we have investigated the optical properties of Dirac semimetals Na3Bi and BaPt and compared them to corresponding ones in Weyl semimetals NbP and Na3Bi0.75Sb0.25. Our calculations show that NbP, which lacks inversion symmetry, has high energy exciton at 10 and 10.8 eV. In contrast with Na3Bi, electron-hole interactions give rise to several weak peaks at different energy in the optical absorption of Na3Bi0.75Sb0.25 while its red shift is less pronounced.

  15. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  16. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  17. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    Science.gov (United States)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  18. Multielectron excitations in x-ray absorption spectra of Rb and Kr

    Energy Technology Data Exchange (ETDEWEB)

    Kodre, A. [Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); J. Stefan Institute, Ljubljana (Slovenia)]. E-mail: alojz.kodre@fmf.uni-lj.si; Arcon, I. [J. Stefan Institute, Ljubljana (Slovenia); Nova Gorica Polytechnics, Nova Gorica (Slovenia); Padeznik-Gomilsek J. [Faculty of Mechanical Engineering, University of Maribor, Maribor (Slovenia); Preseren, R. [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Frahm, R. [Bergische Universitaet Gesamthochschule Wuppertal, Fachbereich 8-Physik, Wuppertal (Germany)

    2002-08-28

    In the K-edge x-ray absorption of rubidium vapour and gaseous krypton, comprehensive spectra of collective excitations down to the relative probability of 5x10{sup -5} are extracted. After removal of the asymptotic Victoreen trend, the region {approx}100 eV above the edge exhibits a steep decrease of the absorption coefficient attributed to core relaxation and post-collision interaction in the Auger decay. With an exponential model for the decrease, the entire spectrum of multielectron excitations is recognized as a succession of consecutive resonant, shake-up and shake-off channels. They can be identified as coexcitations of electrons from successively deeper subshells, from 5s down to 3s. The identification of excited states is aided by a quantitative modelling of subshell contributions and by natural-width deconvolution. The valence and subvalence coexcitations are shown to follow the pattern of the lighter homologues potassium and argon. (author)

  19. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  20. Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes

    Science.gov (United States)

    Li, Xin; Hua, Weijie; Wang, Bo-Yao; Pong, Way-Faung; Glans, Per-Anders; Guo, Jinghua; Luo, Yi

    2016-08-01

    Doping is an efficient way to open the zero band gap of graphene. The control of the dopant domain size allows us to tailor the electronic structure and the properties of the graphene. We have studied the electronic structure of boron nitride doped graphenes with different domain sizes by simulating their near-edge X-ray absorption fine structure (NEXAFS) spectra at the N K-edge. Six different doping configurations (five quantum dot type and one phase-separated zigzag-edged type) were chosen, and N K-edge NEXAFS spectra were calculated with large truncated cluster models by using the density functional theory with hybrid functional and the equivalent core hole approximation. The opening of the band gap as a function of the domain size is revealed. We found that nitrogens in the dopant boundary contribute a weaker, red-shifted π* peak in the spectra as compared to those in the dopant domain center. The shift is related to the fact that these interfacial nitrogens dominate the lowest conduction band of the system. Upon increasing the domain size, the ratio of interfacial atom decreases, which leads to a blue shift of the π* peak in the total NEXAFS spectra. The spectral evolution agrees well with experiments measured at different BN-dopant concentrations and approaches to that of a pristine h-BN sheet.

  1. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    Science.gov (United States)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  2. Resonant Photoemission and M_{2,3}-Absorption Spectra in Nickel Dichloride

    Science.gov (United States)

    Igarashi, J.

    Ni 3p-resonant photoemission and Ni M_{2,3}-absorption spectra are calculated in detail on a cluster of (NiCl_6)^{4-} with the use of the transition matrix elements evaluated on the Herman-Skillman potential in Ni atom. Overall spectral shape agrees well with experiment, allowing a determination of the parameters which characterize Ni 3d and Cl 3p states. Resonance behavior is discussed near the Ni 3p-core level photothreshold. The resonant enhancement is found to be larger for the peak with higher binding energy in the d^7-multiplets.

  3. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  4. A ubiquitous absorption feature in the X-ray spectra of BL Lacertae objects

    Science.gov (United States)

    Madejski, Greg M.; Mushotzky, Richard F.; Weaver, Kimberly A.; Arnaud, Keith A.; Urry, C. Megan

    1991-01-01

    The paper presents the broadband (0.5-20-keV) X-ray spectra of five X-ray bright BL Lac objects observed with the Einstein Observatory Solid State Spectrometer (SSS) and Monitor Proportional Counter (MPC) detectors. The combination of moderate energy resolution and broad spectral coverage makes it possible to confirm the presence of an absorption feature at an energy of 650 eV in the BL Lac object PKS 2155-304, originally reported by Canizares and Kruper (1984) based on higher resolution Einstein Objective Grating Spectrometer (OGS) data.

  5. Analyzing the acoustic spectra of sound velocity and absorption in amphiphilic liquids

    OpenAIRE

    2015-01-01

    The paper analyzes the theoretical approaches to the study of the acoustic spectrum and the speed of sound absorption in the frequency range up to 10 GHz in liquid systems. For example ethoxylated derivatives of normal decyl alcohol EDDn, belonging to nonionic surfactants showed that at room temperature and low degrees of ethoxylation n acoustic spectra can be described in terms of the relaxation theory. It is shown that within the experimental error of the acoustic spectrum of EDDn, in the s...

  6. Modeling the absorption spectra of Er3+ and Yb3+ in a phosphate glass

    Science.gov (United States)

    Gruber, John B.; Sardar, Dhiraj K.; Zandi, Bahram; Hutchinson, J. Andrew; Trussell, C. Ward

    2003-10-01

    Absorption spectra of Er3+ and Yb3+ ions, codopants in a phosphate glass, are reported at 8 K and at wavelengths between 350 and 1600 nm. Detailed structure appearing in the spectra, associated with individual multiplet states, 2S+1LJ, of Er3+(4f11) and Yb3+(4f13) is interpreted using a ligand-field coordination sphere model to characterize the microscopic environment surrounding the rare earth ions in multiple sites. Inhomogeneous broadening of the spectra is likely due to different configurations of PO4 tetrahedra clustered about a caged rare earth ion in the amorphous host. Similarity between the Er3+ spectrum in the glass and in the spectrum of single-crystal LiErP4O12, where Er3+ occupies sites of C2 symmetry, suggests that an averaged site symmetry of C2 is a reasonable approximation for Er3+ and Yb3+ ions in the phosphate glass. Calculated splitting of multiplet states by the ligand-field cluster model are compared with energy levels derived from the observed absorption peaks and well-defined shoulders. Inhomogeneous broadening of the spectra limit the precision in establishing the energy of the multiplet splittings, but the analysis is useful for modeling studies of the Er:Yb:phosphate glass as an eye-safe laser (1.53 μm). The splitting of the Yb3+(4f13)2FJ states is determined using parameters obtained from the Er3+ set by means of the three-parameter theory. No adjustments were made to the Yb3+ parameters that predict multiplet splittings in reasonable agreement with experimental data.

  7. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    Science.gov (United States)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  8. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Science.gov (United States)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  9. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z., E-mail: namezhangzhen@126.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Huang, J.; Geng, F.; Zhou, X.Y. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Feng, S.Q. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Cheng, X.L., E-mail: chengxl@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Jiang, X.D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, W.D. [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Zheng, W.G.; Tang, Y.J. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-01-01

    Highlights: • Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. • As the energy density increases to 2.54 J/cm{sup 2}, the absorption intensity reaches to about 0.2. • The mechanism of two-photon ionization mainly plays a critical role at sub-damage site. • Intensity of Raman spectra is very high at low energy density and decreased with respect to high energy density. -- Abstract: Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm{sup 2}, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  10. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  11. Optical absorption of hyperbolic metamaterial with stochastic surfaces

    DEFF Research Database (Denmark)

    Liu, Jingjing; Naik, Gururaj V.; Ishii, Satoshi;

    2014-01-01

    We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing ind...... of stochastically perturbed HMM compared to that of metal. (C) 2014 Optical Society of America...... indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered...

  12. High Resolution Optical Spectra of HBC 722 after Outburst

    CERN Document Server

    Lee, Jeong-Eun; Lee, Sang-Gak; Sung, Hyun-Il; Lee, Byeong-Cheol; Sung, Hwankyung; Green, Joel D; Jeon, Young-Beom

    2011-01-01

    We report the results of our high resolution optical spectroscopic monitoring campaign ($\\lambda$ = 3800 -- 8800 A, R = 30000 -- 45000) of the new FU Orionis-type object HBC 722. We observed HBC 722 with the BOES 1.8-m telescope between 2010 November 26 and 2010 December 29 and FU Orionis itself on 2011 January 26. We detect a number of previously unreported high-resolution K I and Ca II lines beyond 7500 A. We resolve the H$\\alpha$ and Ca II line profiles into three velocity components, which we attribute to both disk and outflow. The increased accretion during outburst can heat the disk to produce the relatively narrow absorption feature and launch outflows appearing as high velocity blue and redshifted broad features.

  13. Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach

    Science.gov (United States)

    Bloemsma, E. A.; Silvis, M. H.; Stradomska, A.; Knoester, J.

    2016-12-01

    Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the interplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions for the spectra are derived and compared with results obtained from direct numerical diagonalization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we show that our polaron transformation reproduces both the collective (exciton) and single-molecule (vibrational) optical response associated with the appropriate standard perturbation limits. Specifically, for the molecular dimer excellent agreement with the spectra from the two-particle approach for the entire range of model parameters is obtained. This is in marked contrast to commonly used polaron transformations. Upon increasing the temperature, the spectra show a transition from the collective to the individual molecular features, which results from the thermal destruction of the exciton coherence.

  14. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  15. Linear Absorption and Two-Dimensional Infrared Spectra of N-Methylacetamide in Chloroform Revisited : Polarizability and Multipole Effects

    NARCIS (Netherlands)

    Jansen, Thomas L. C.

    2014-01-01

    The effect of solvent polarizability and multipole effects on the amide I vibrational spectra of a peptide unit is investigated. Four molecular dynamics force fields of increasing complexity for the solvent are used to model both the linear absorption and two-dimensional infrared spectra. It is obse

  16. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increas...

  17. Study of optical absorption, visible emission and NIR–vis luminescence spectra of Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} doped tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, M., E-mail: seshumeruva@gmail.com [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Barbosa, L.C.; Cordeiro, C.M.B.; Radha, M. [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Sigoli, F.A. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970 (Brazil); Ratnakaram, Y.C. [Department of Physics, Sri Venkateswara University, SVU, Tirupat 517502 (India)

    2015-10-15

    Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} co-doped and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TeO{sub 2}–Bi{sub 2}O{sub 3}–ZnO–Li{sub 2}O–Nb{sub 2}O{sub 5} (TBZLN) tellurite glasses were prepared by melt quenching method. Judd–Ofelt intensity parameters (Ω{sub λ}, λ=2, 4 and 6), radiative transition probabilities, branching ratios and radiative lifetimes of Tm{sup 3+}, Ho{sup 3+} ions in co-doped TBZLN glasses were calculated from the optical absorption spectra. Excitation, visible luminescence and decay lifetimes in visible region were also investigated. The stimulated emission and gain cross-sections for the Tm{sup 3+}:{sup 3}F{sub 4}→{sup 3}H{sub 6} (1700 nm) and Ho{sup 3+}:{sup 5}I{sub 7}→{sup 5}I{sub 8} (1956 nm) transitions in co-doped TBZLN glasses have been analyzed and compared with those of other reported glasses. Up-conversion luminescence was observed in TBZLN glasses under 980 nm laser excitation and energy transfer mechanisms have been discussed. Finally, CIE color co-ordinates were calculated and it is observed that the color co-ordinates fall in blue and green regions for Tm{sup 3+}/Yb{sup 3+} and Ho{sup 3+}/Yb{sup 3+} co-doped TBZLN glasses, respectively. A subsequent shift in color co-ordinates from green to greenish-yellow region has been observed with an increase in the concentration (0.1, 0.5 and 1.0 mol%) of Tm{sup 3+} ions in Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TBZLN glasses. - Highlights: • High degree of covalecy of RE–O bond in co-doped TBZLN glasses was observed. • Tm{sup 3+}:{sup 1}D{sub 2}→{sup 3}F{sub 4} and Ho{sup 3+}:{sup 5}F{sub 4}({sup 5}S{sub 2})→{sup 5}I{sub 8} transitions show high emission cross-section. • Visible and strong 793 nm emission was observed when pumped by 980 nm diode laser. • Triply doped glasses exhibits tunable emission intensity by increasing Tm{sup 3+} ions.

  18. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin.

    Science.gov (United States)

    Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana

    2016-04-14

    Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.

  19. A wavelet analysis for the X-ray absorption spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Penfold, T. J. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Tavernelli, I.; Rothlisberger, U. [Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); Milne, C. J.; Abela, R. [SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Reinhard, M.; Nahhas, A. El; Chergui, M. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland)

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  20. Multi-State Extrapolation of Uv/vis Absorption Spectra with Qm/qm Hybrid Methods

    Science.gov (United States)

    Ren, Sijin; Caricato, Marco

    2017-06-01

    In this work, we present a simple approach to obtain absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated entirely at a high level of theory. The approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g. band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  1. Absorption spectra of e-beam-excited Ne, Ar, and Kr, pure and in binary mixtures.

    Science.gov (United States)

    Levchenko, A O; Ustinovskii, N N; Zvorykin, V D

    2010-10-21

    A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1 MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ∼285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(∗)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (∗) (λ∼325 nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (∗)(npπ (3)Π(g))←Rg(2) (∗)(msσ (3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.

  2. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  3. Radio spectra and polarisation properties of a bright sample of Radio-Loud Broad Absorption Line Quasars

    CERN Document Server

    Bruni, G; Salerno, E; Montenegro-Montes, F M; Carballo, R; Benn, C R; González-Serrano, J I; Holt, J; Jiménez-Luján, F

    2012-01-01

    The origin of broad-absorption-line quasars (BAL QSOs) is still an open issue. Accounting for ~20% of the QSO population, these objects present broad absorption lines in their optical spectra generated from outflows with velocities up to 0.2c. In this work we present the results of a multi-frequency study of a well-defined radio-loud BAL QSO sample, and a comparison sample of radio-loud non-BAL QSOs, both selected from the Sloan Digital Sky Survey (SDSS). We aim to test which of the currently-popular models for the BAL phenomenon - `orientation' or 'evolutionary' - best accounts for the radio properties of BAL quasars. Observations from 1.4 to 43 GHz have been obtained with the VLA and Effelsberg telescopes, and data from 74 to 408 MHz have been compiled from the literature. The fractions of candidate GHz-peaked sources are similar in the two samples (36\\pm12% vs 23\\pm8%), suggesting that BAL QSOs are not generally younger than non-BAL QSOs. BAL and non-BAL QSOs show a large range of spectral indices, consist...

  4. Remark on: the neutron spherical optical-model absorption.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  5. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    DEFF Research Database (Denmark)

    Grosch, Helge

    the concentration of the mentioned compounds. However, continuous measurements of different species directly in the gas (in-situ) and at the same time are scarce. In this work, the basis of optical in-situ analysis with ultraviolet and infrared spectroscopy was build to determine the concentration of the most...... important gas species of the low-temperature circulating fluidized bed gasifier. At first, a special gas cell,the hot gas flow cell (HGC), was build up and veried. In this custom-made gas cell, the optical properties, the so-called absorption cross-sections, of the most important sulfur and aromatic...

  6. Optimization of extraordinary optical absorption in plasmonic and dielectric structures

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2013-01-01

    Extraordinary optical absorption (EOA) can be obtained by plasmonic surface structuring. However, studies that compare the performance of these plasmonic devices with similar structured dielectric devices are rarely found in the literature. In this work we show different methods to enhance the EOA...... silicon layer for certain optical wavelengths compared to metal strips. It is then demonstrated that by topology optimization it is possible to generate nonintuitive surface designs that perform even better than the simple strip designs for both silicon and metals. These results indicate that in general...... by optimizing the geometry of the surface structuring for both plasmonic and dielectric devices, and the optimized performances are compared. Two different problem types with periodic structures are considered. The first case shows that strips of silicon on a surface can increase the absorption in an underlying...

  7. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  8. Producing absorption mode Fourier transform ion cyclotron resonance mass spectra with non-quadratic phase correction functions.

    Science.gov (United States)

    Kilgour, David P A; Nagornov, Konstantin O; Kozhinov, Anton N; Zhurov, Konstantin O; Tsybin, Yury O

    2015-06-15

    Previously described methods for producing absorption mode Fourier transform ion cyclotron resonance (FTICR) mass spectra have all relied on the phase correction function being quadratic. This assumption has been found to be invalid for some instruments and spectra and so it has not been possible to produce absorption mode spectra for these cases. The Autophaser algorithm has been adapted to allow nth order polynomial phase correction functions to be optimized. The data was collected on a modified Thermo LTQ FTICR mass spectrometer, using electrospray ionization and a novel ICR cell design (NADEL). Peak assignment and mass calibration were undertaken using the pyFTMS framework. An nth-order phase correction function has been used to produce an absorption mode mass spectrum of the maltene fraction of a crude oil sample which was not possible using the previous assumption that the phase correction function must be quadratic. Data processing for this spectrum in absorption mode has shown the expected benefits in terms of increasing the number of assigned peaks and also improving the mass accuracy (i.e. confidence) of the assignments. It is possible to phase-correct time-domain data in FTICRMS to yield absorption mode mass spectra representation even when the data does not correspond to the theoretical quadratic phase correction function predicted by previous studies. This will allow a larger proportion of spectra to be processed in absorption mode. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    CERN Document Server

    Zhi-fu, Chen; Luwenjia, Zhou; Yanmei, Chen

    2016-01-01

    In this paper, we extend our works of Papers I and II, which are assigned to systematically survey \\CIVab\\ narrow absorption lines (NALs) with \\zabs$\\ll$\\zem\\ on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), to collect \\CIV\\ NALs with \\zabs$\\approx$\\zem\\ from blue to red wings of \\CIVwave\\ emission lines. Together with Papers I and II, we have collected a total number of 41,479 \\CIV\\ NALs with $1.4544\\le$\\zabs$\\le4.9224$ in surveyed spectral region redward of \\lya\\ until red wing of \\CIVwave\\ emission line. We find that the stronger \\CIV\\ NALs tend to be the more saturated absorptions, and associated systems (\\zabs$\\approx$\\zem) seem to have larger absorption strengths when compared to intervening ones (\\zabs$\\ll$\\zem). The redshift density evolution behavior of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity ($\\beta$) distribution of \\MgII\\ absorbers, the $\\beta$ distribution of \\C...

  10. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    Science.gov (United States)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH3CF3) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range - around 13.8 ×10-17 cm .molecule-1 in the 570-1500 cm-1 spectral band - show the most consistency between authors.

  11. [The ultraviolet absorption spectra of pyrazoles and 1-carboxamidepyrazoles and their application].

    Science.gov (United States)

    Shi, Yun-Feng; Wu, Zhi-Jie; Chen, Li-Jun; Chen, Guang; Liu, Yao-Peng; Zhang, Li-Li

    2009-03-01

    The ultraviolet absorption spectra of pyrazoles and 1-carboxamidepyrazoles were studied. The results indicated that substitution in the 3 or the 5 position it leads to a bathochromic shift of the position of the maximum absorption by about 3-4 nm, whereas in the 4 position leads to a much larger bathochromic shift (> 10 nm). The introduction of carboxamide causes a bathochromic shift of the position of the maximum absorption by about 20-26 nm. Its also leads to an increase in molar extinction coefficient by about 2-3 times. So UV methods were established for determining the contents of pyrazoles and their derivations. Using these methods, the content of 3,4-dimethylpyrazole phosphate (DMPP) in stabilized urea was determined to be 1.15% of urea-N, the hydrolytic half lives of 1-carboxamide-3-methylpyrazole (CMP) in water solution at 20, 25 and 30 degrees C were 48, 30 and 18 h, respectively, and the extraction percentage of nitrification inhibitor 3-methylpyrazole phosphate (MPP) in 3 soils by 3 different extractants were ranged from 63.2% to 89.2%.

  12. Optical microresonators as single-particle absorption spectrometers

    Science.gov (United States)

    Heylman, Kevin D.; Thakkar, Niket; Horak, Erik H.; Quillin, Steven C.; Cherqui, Charles; Knapper, Kassandra A.; Masiello, David J.; Goldsmith, Randall H.

    2016-12-01

    Optical measurements of nanoscale objects offer major insights into fundamental biological, material and photonic properties. In absorption spectroscopy, sensitivity limits applications at the nanoscale. Here, we present a new single-particle double-modulation photothermal absorption spectroscopy method that employs on-chip optical whispering-gallery-mode (WGM) microresonators as ultrasensitive thermometers. Optical excitation of a nanoscale object on the microresonator produces increased local temperatures that are proportional to the absorption cross-section of the object. We resolve photothermal shifts in the resonance frequency of the microresonator that are smaller than 100 Hz, orders of magnitude smaller than previous WGM sensing schemes. The application of our new technique to single gold nanorods reveals a dense array of sharp Fano resonances arising from the coupling between the localized surface plasmon of the gold nanorod and the WGMs of the resonator, allowing for the exploration of plasmonic-photonic hybridization. In terms of the wider applicability, our approach adds label-free spectroscopic identification to microresonator-based detection schemes.

  13. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution.

    Science.gov (United States)

    Santoro, Fabrizio; Improta, Roberto; Lami, Alessandro; Bloino, Julien; Barone, Vincenzo

    2007-02-28

    The authors present a new method for the computation of vibrationally resolved optical spectra of large molecules, including the Duschinsky [Acta Physicochim. URSS 7, 551 (1937)] rotation of the normal modes. The method automatically selects the relevant vibronic contributions to the spectrum, independent of their frequency, and it is able to provide fully converged spectra with a quite modest computational time, both in vacuo and in condensed phase. Starting from the rigorous time-dependent expression they discuss indeed in which limits the spectrum of a molecule embedded in a solvent, described as a polarizable continuum, can be computed in a time-independent formalism, defining both nonequilibrium and equilibrium limits. In these cases the polarizable continuum model provides a suitable description of the solvent field. By computing the absorption spectra of anthracene in gas phase and of coumarin C153 in gas phase and cyclohexane, and the phosphorescence spectrum of the unsubstituted coumarin in ethanol they show that the method is fast and efficient.

  14. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  15. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    Science.gov (United States)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  16. Reverse saturable absorption studies in polymerized indole - Effect of polymerization in the phenomenal enhancement of third order optical nonlinearity

    Science.gov (United States)

    Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.

    2016-04-01

    We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.

  17. Modelling High Resolution Absorption Spectra with ExoMolLine Lists: NH3and CH4

    DEFF Research Database (Denmark)

    Barton, E. J.; Yurchenko, S. N.; Tennyson, J.;

    The conditions, chemical reactions and gas mixing in industrial progresses involving gasification or combustion can be monitored by in situ measurement of gas temperature and gas composition. This can be done spectroscopically, though the result is highly dependent on the quality of reference data...... [1]. For this reason, a smart collaboration has been established between Optical Diagnostics Group at DTU and ExoMol, to combine high resolution spectra measured at elevated temperatures and empirically tuned ab initio methods to produce suitable molecular line lists for modelling molecules...

  18. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    Science.gov (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  19. Gas detection techniques with fiber optical spectrum absorption at near-IR wavelength

    Science.gov (United States)

    Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Peng, Gangding; Wang, Yan; Jia, Dagong; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2010-04-01

    Detection of pollution gas is important in environmental and pollution monitoring, which can be used widely in mining and petrochemical industry. Fiber optical spectrum absorption (FOSA) at near-IR wavelength is widely used in gas detection due to its essential advantages. It has attracted considerable attention, and there are several types and methods in FOSA. Wavelength modulation technique (WMT) is one of them, which will improve the gas detection sensitivity dramatically. This technique can be realized by detecting the intensity of the second-harmonic component signal. Intra-cavity laser spectroscopy (ICLS) is another alternative technique for high sensitivity absorption measurement. With an absorber directly placed within the laser cavity, a short absorption cell can be transformed into a high sensitivity system. But the practical sensitivity is obviously less than the theoretical value. The authors did some works in these fields and have obtained some remarkable progress. With broad reflectors instead of FBG as mirror of the cavity and wavelength sweep technique (WST), several absorption spectra of detected gas can be collected. And the detection sensitivity can be enhanced sharply by averaging the results of each spectrum, with acetylene sensitivity less than 100 ppm . When ICLS is used combined with WST and WMT, the detection sensitivity of acetylene can be enhanced further. The sensitivity is less than 75 ppm. By using FBGs as wavelength references, the absorption wavelength of the detected gas is obtained, which can be used to realize gas recognition. The system is capable of accessing into fiber intelligent sensing network.

  20. Optical-optical double-resonant multiphoton ionization spectra of Rydberg states of nitrogen dioxide

    Institute of Scientific and Technical Information of China (English)

    Zhang Gui-Yin; Zhang Lian-Shui; Sun Bo; Han Xiao-Feng; Yu Wei

    2005-01-01

    The optical-optical double-resonant multiphoton ionization(OODR-MPI) technique has been applied to the study of the Rydberg states of nitrogen dioxide. The results show that ,althougy the OODR-MPI spectra of NO2 are composed of regular progression bands at different pump laser intensities, their ionization pathways are different.The NO2 mollecule is ionized through the (3+1+1)double-resonant process as the pump laser intensity is in a high value, or else it is through the (1+2+1)rpocess.The final resonant states in the two ionizing processes have been attributed to different Rydberg states.

  1. TDDFT Study of the Electronic Structure, Absorption and Emission Spectra of the Light Emitters of the Amazing Firefly Bioluminescence and Solvation Effects on the Spectra

    Institute of Scientific and Technical Information of China (English)

    REN,Ai-Min; GUO,Jing-Fu; FENG,Ji-Kang; ZOU,Lu-Yi; LI,Zhong-Wei; GODDARD,John,David

    2008-01-01

    The ground and excited state properties of luciferin (LH2) and oxyluciferin (OxyLH2), the bioluminescent chemicals in the firefly, have been characterized using density functional theory (DFT) and time dependent DFT (TDDFT) methods. The effects of solvation on the electronic absorption and emission spectra of luciferin and oxyluciferin were predicted with a self-consistent isodensity polarized continuum model of the solvent using TDDFT.The S0→S1 vertical excitation energies in the gas phase and in water were obtained. Optimizations of the excited state geometries permitted the first predictions of the fluorescence spectra for these biologically important molecules. Shifts in both of the absorption and emission spectra on proceeding from the gas phase to aqueous solution were also predicted.

  2. 2 μm mid-infrared optical spectra of Tm~(3+)-doped germanium gallate glasses

    Institute of Scientific and Technical Information of China (English)

    XIA Haiping; LIN Qiongfei; ZHANG Jianli; ZHANG Qinyuan

    2009-01-01

    Glasses with the composition of 65GeO_2-12Ga_2O_3-10BaO-8Li_2O-5La_2O_3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω_2,Ω_4,Ω_6) were calculated, with which the radiative transition probabilities,branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm LD excitation) at~1.47 and~1.8 μm of various concentrations of Tm3+-doped glasses were studied. The emission intensity at~1.8 μm reached to the maximum when the Tm2O3-doping concentration was near to be~3.006 wt.% (1.0 mol.%), and then decreased as doping concentration increased further. The mechanism of the fluorescence intensity change was explained with the cross-relaxation effect and the concentration quenching effect of Tm~(3+). Meanwhile, according to McCumber theory, the absorption and emission cross-sections corresponding to the ~3F_4→~3H_6 transitions of Tm~(3+) at 1.8 μm was obtained. For Tm3+-doped germanate glasses, the maximum emission cross-section reached a value higher than that re-ported for fluorozircoaluminate glasses. It is expected to be a favorable candidate host for~2.0 μm mid-inflated laser because the glass shows favorable optical spectra.

  3. 2 μm mid-infrared optical spectra of Tm3+-doped germanium gallate glasses

    Institute of Scientific and Technical Information of China (English)

    XIA; Haiping

    2009-01-01

    Glasses with the composition of 65GeO212Ga2O3-10BaO-8Li2O-5La2O3(molar ratio) doped with 1.526 wt.%, 3.006 wt.%, 5.836 wt.%, 11.028 wt.%, and 15.678 wt.% Tm2O3, respectively, were fabricated by conventional melting method. According to the absorption spectra and the Judd-Ofelt theory, the J-O strength parameters (Ω2,Ω4, Ω6) were calculated, with which the radiative transition probabilities,branching ratios and radiative lifetimes were obtained. The infrared emission spectra (with 808 nm LD excitation) at~1.47 and~1.8 μm of various concentrations of Tm3+-doped glasses were studied. The emission intensity at~1.8 μm reached to the maximum when the Tm2O3-doping concentration was near to be~3.006 wt.% (1.0 mol.%), and then decreased as doping concentration increased further. The mechanism of the fluorescence intensity change was explained with the cross-relaxation effect and the concentration quenching effect of Tm3+. Meanwhile, according to McCumber theory, the absorption and emission cross-sections corresponding to the 3F4→3H6 transitions of Tm3+ at 1.8 μm was obtained. For Tm3+-doped germanate glasses, the maximum emission cross-section reached a value higher than that re-ported for fluorozircoaluminate glasses. It is expected to be a favorable candidate host for~2.0 μm mid-inflated laser because the glass shows favorable optical spectra.

  4. Optical absorption and fluorescence properties of Er3+ in sodium borate glass

    Indian Academy of Sciences (India)

    Y C Ratnakaram; J Lakshmi; R P S Chakradhar

    2005-08-01

    Spectroscopic properties of Er3+ ions in sodium borate glass have been studied. The indirect and direct optical band gaps (opt) and energy level parameters (Racah (1, 2 and 3), spin-orbit (4f) and configurational interaction ()) are evaluated. Spectral intensities for various absorption bands of Er3+ doped sodium borate glass are calculated. Using Judd–Ofelt intensity parameters (2, 4, 6), radiative transition probabilities (), branching ratios () and integrated absorption cross sections ( ) are reported for certain transitions. The radiative lifetimes (R) for different excited states are estimated. From the fluorescence spectra, the emission cross section (p) for the transition, ${}^{4}I_{13/2} \\rightarrow {}^{4}I_{15/2}$ is reported.

  5. Optical Absorption and Electron Injection of 4-(Cyanomethylbenzoic Acid Based Dyes: A DFT Study

    Directory of Open Access Journals (Sweden)

    Yuehua Zhang

    2015-01-01

    Full Text Available Density functional theory (DFT and time-dependent density functional theory (TDDFT calculations were carried out to study the ground state geometries, electronic structures, and absorption spectra of 4-(cyanomethylbenzoic acid based dyes (AG1 and AG2 used for dye-sensitized solar cells (DSSCs. The excited states properties and the thermodynamical parameters of electron injection were studied. The results showed that (a two dyes have uncoplanar structures along the donor unit and conjugated bridge space, (b two sensitizers exhibited intense absorption in the UV-Vis region, and (c the excited state oxidation potential was higher than the conduction band edge of TiO2 photoanode. As a result, a solar cell based on the 4-(cyanomethylbenzoic acid based dyes exhibited well photovoltaic performance. Furthermore, nine dyes were designed on the basis of AG1 and AG2 to improve optical response and electron injection.

  6. Electron spin resonance and optical absorption spectroscopic studies of Cu{sup 2+} ions in aluminium lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    SivaRamaiah, G., E-mail: gsivaram7@yahoo.co.in [Department of Physics, Government College for Men, Kadapa 516004 (India); LakshmanaRao, J., E-mail: jlrao46@yahoo.co.in [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer It is for the first time to study optical absorption and EPR in these glasses. Black-Right-Pointing-Pointer The thermal properties are new and interesting in this glass system. Black-Right-Pointing-Pointer It is for the first time to report three optical bands for Cu{sup 2+} in oxide glasses. Black-Right-Pointing-Pointer The interesting optical results are due to excellent sample preparation. - Abstract: Electron Spin Resonance and optical absorption spectral studies of Cu{sup 2+} ions in 5 Al{sub 2}O{sub 3} + 75 B{sub 2}O{sub 3} + (20-z) PbO + z CuO (where z = 0.1-1.5 mol.% of CuO) glasses have been reported. The EPR spectra of all the glasses show resonance signals characteristic of Cu{sup 2+} ions at both room and low temperatures. The number of spins and Gibbs energy were calculated at different concentrations and temperatures. From the plot of the ratio of logarithmic number of spins and absolute temperature and the reciprocal of absolute temperature, the entropy and enthalpy have been evaluated. The optical absorption spectra of all the glasses exhibit three bands and these bands have been assigned to {sup 2}B{sub 1g} {yields} {sup 2}E{sub g}, {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g}, and {sup 2}B{sub 1g} {yields} {sup 2}A{sub 1g} transitions in the decreasing order of energy. It is for the first time to observe three optical absorption bands for Cu{sup 2+} ions in oxide glasses. Such type of results is due to excellent sample preparation. From the EPR and optical absorption spectroscopies data, the molecular orbital coefficients have been evaluated.

  7. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    Science.gov (United States)

    Zhang, Wei; Liu, Wei-Long; Zheng, Zhi-Ren; Huo, Ming-Ming; Li, Ai-Hua; Yang, Bin

    2010-01-01

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.

  8. Breaking of symmetrical charge distribution in xanthylocyanine chromophores detecting by their absorption spectra

    Science.gov (United States)

    Vasyluk, S. V.; Viniychuk, O. O.; Poronik, Ye. M.; Kovtun, Yu. P.; Shandura, M. P.; Yashchuk, V. M.; Kachkovsky, O. D.

    2011-03-01

    A detailed experimental investigation and quantum-chemical analysis of symmetrical cyanines with xanthylium and its substituted derivatives and with different polymethine chain (containing 1 and 2 vinylene groups) have been performed with the goal of understanding the nature of the electronic transitions in molecules. It is established electronic transitions in carbocyanines are similar to that in the typical Brooker's cyanines. In contrast, the absorption spectra of dicarbocyanines demonstrate a strong solvent dependence and substantial band broadening represented by the growth of the short wavelength shoulder. Basing on the results of the quantum-chemical calculation and conception of the mobile solitonic-like charge waves, we have concluded that the dicarbocyanines exist in two charged forms in the ground state with symmetrical and unsymmetrical distributions of the charge density. These are the examples of the cationic cyanines with the shortest chain when the symmetry breaking occurs.

  9. Analyzing the acoustic spectra of sound velocity and absorption in amphiphilic liquids

    Directory of Open Access Journals (Sweden)

    Sergei V. Mysik

    2015-10-01

    Full Text Available The paper analyzes the theoretical approaches to the study of the acoustic spectrum and the speed of sound absorption in the frequency range up to 10 GHz in liquid systems. For example ethoxylated derivatives of normal decyl alcohol EDDn, belonging to nonionic surfactants showed that at room temperature and low degrees of ethoxylation n acoustic spectra can be described in terms of the relaxation theory. It is shown that within the experimental error of the acoustic spectrum of EDDn, in the studied range of frequencies and temperature, are composed of two prime areas of acoustic dispersion. The results of calculations of relaxation and thermodynamic parameters of fast and ultrafast processes of restructuring EDDn can be used in the development of combined technologies of enhanced oil recovery using surfactant solutions and various physical fields and factors.

  10. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    Science.gov (United States)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  11. The optical spectra of X-shaped radio galaxies

    CERN Document Server

    Landt, Hermine; Healey, Stephen E

    2010-01-01

    X-shaped radio galaxies are defined by their peculiar large-scale radio morphology. In addition to the classical double-lobed structure they have a pair of low-luminosity wings that straddles the nucleus at almost right angles to the active lobes, thus giving the impression of an 'X'. In this paper we study for the first time the optical spectral properties of this object class using a large sample (~50 sources). We find that the X-shaped radio population is composed roughly equally of sources with weak and strong emission line spectra, which makes them, in combination with the well-known fact that they preferentially have radio powers intermediate between those of Fanaroff-Riley type I (FR I) and type II (FR II) radio galaxies, the archetypal transition population. We do not find evidence in support of the proposition that the X-shape is the result of a recent merger: X-shaped radio sources do not have unusually broad emission lines, their nuclear environments are in general not dusty, and their host galaxie...

  12. Optical spectra of lactoperoxidase as a function of solvent.

    Science.gov (United States)

    Zelent, B; Yano, T; Ohlsson, P-I; Smith, M L; Paul, J; Vanderkooi, J M

    2005-12-01

    The iron of lactoperoxidase is predominantly high-spin at ambient temperature. Optical spectra of lactoperoxidase indicate that the iron changes from high-spin to low-spin in the temperature range from room temperature to 20 K. The transformation is independent of whether the enzyme is in glycerol/water or solid sugar glass. Addition of the inhibitor benzohydroxamic acid increases the amount of the low-spin form, and again the transformation is independent of whether the protein is in an aqueous solution or a nearly anhydrous sugar. In contrast to lactoperoxidase, horseradish peroxidase remains high-spin over the temperature excursion in both solvents and with addition of benzohydroxamic acid. We conclude that details of the heme pocket of lactoperoxidase allow ligation changes with temperature that are dependent upon the apoprotein but independent of solvent fluctuations. At low pH, lactoperoxidase shows a solvent-dependent transition; the high-spin form is predominant in anhydrous sugar glass, but in the presence of water, the low-spin form is also present in abundance. The active site of lactoperoxidase is not as tightly constrained at low pH as at neutrality, though the enzyme is active over a wide pH range.

  13. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    Science.gov (United States)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  14. Arylperoxyl radicals. Formation, absorption spectra, and reactivity in aqueous alcohol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alfassi, Z.B.; Khaikin, G.I.; Neta, P. (National Inst. of Standards and Technology, Gaithersburg, MD (United States))

    1995-01-05

    Aryl radicals (phenyl, 4-biphenylyl, 2-naphthyl, 1-naphthyl, and 9-phenanthryl) were produced by the reaction of the corresponding aryl bromide with solvated electrons and reacted rapidly with oxygen to produce the arylperoxyl radicals. These radicals exhibit optical absorptions in the visible range, with [lambda][sub max] at 470, 550, 575, 650, and 700 nm, respectively. Arylperoxyl radicals react with 2,2[prime]-azinobis(3-ethylbenzothiazoiine-6-sulfonate ion) (ABTS), chlorpromazine, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox C) by one-electron oxidation. The rate constants k for these reactions, determined from the rate of formation of the one-electron oxidation products as a function of substrate concentration, vary between 4 [times] 10[sup 6] and 2 [times] 10[sup 9] L mol[sup [minus]1] s[sup [minus]1] and increase in the order phenyl-, 4-biphenyl-, 2-naphthyl-, 1-naphthyl-, and 9-phenanthrylperoxyl, the same order as the absorption peaks of these radicals. Good correlation was found between log k and the energy of the absorption peak. 16 refs., 2 figs., 2 tabs.

  15. EPR and optical absorption study of Cu{sup 2+}-doped lithium potassium sulphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)], E-mail: ram_kripal2001@rediffmail.com; Bajpai, Manisha [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)], E-mail: bmanisha15@yahoo.co.in; Maurya, Manju [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India); Govind, Har [Department of Electronics, Ewing Christian College, Allahabad (India)

    2008-10-01

    EPR spectra of Cu{sup 2+} ion doped in lithium potassium sulphate single crystal at room temperature are reported. The observed spectra are fitted to a spin Hamiltonian of orthorhombic symmetry with Cu{sup 2+} (site I) g{sub x}=2.0930, g{sub y}=2.1421, g{sub z}=2.2900 ({+-}0.0002) and A{sub x}=85, A{sub y}=89, A{sub z}=184 ({+-}2x10{sup -4} cm{sup -1}); Cu{sup 2+} (site II) g{sub x}=2.0795, g{sub y}=2.1580, g{sub z}=2.2876 ({+-}0.0002) and A{sub x}=93, A{sub y}=95, A{sub z}=189 ({+-}2x10{sup -4} cm{sup -1}); respective errors given in brackets. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The ground state wave function of the Cu{sup 2+} ion in this lattice is determined as predominantly |x{sup 2}-y{sup 2}>. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption of the crystal at room temperature is also recorded. Further, with the help of the optical absorption and EPR data, the nature of bonding in the complex is discussed.

  16. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh)

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  17. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  18. TL, EPR and optical absorption in natural grossular crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yauri, J.M. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil); Department of Physics, University of San Agustin, Av. Independencia S/N, Arequipa (Peru); Cano, N.F. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil)], E-mail: nilocano@dfn.if.usp.br; Watanabe, S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil)

    2008-10-15

    Grossular is one of six members of silicate Garnet group. Two samples GI and GII have been investigated concerning their luminescence thermally stimulated (TL). EPR and optical absorption and the measurements were carried out to find out whether or not same point defects are responsible for all three properties. Although X-rays diffraction analysis has shown that both GI and GII have practically the same crystal structure of a standard grossular crystal, they presented different behavior in many aspects. The TL glow curve shape, TL response to radiation dose, the effect of annealing at high temperatures before irradiation, the dependence of UV bleaching parameters on peak temperature, all of them differ going from GI to GII. The EPR signals around g=2.0 as well as at g=4.3 and 6.0 have much larger intensity in GI than in GII. Very high temperature (>800 deg. C) annealing causes large increase in the bulk background absorption in GI, however, only very little in GII. In the cases of EPR and optical absorption, the difference in their behavior can be attributed to Fe{sup 3+} ions; however, in the TL case one cannot and the cause was not found as yet.

  19. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  20. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines.

    Science.gov (United States)

    Burns, R. G.; Huggins, F. E.; Abu-Eid, R. M.

    1972-01-01

    Measurements have been made of the polarized absorption spectra (360-2200 nm) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe(2+) and Ti(3+) ions in the minerals. Broad intense bands at about 1000 and 2100 nm arise from spin-allowed, polarization-dependent transitions in Fe(2+) ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550, and 585 nm represent spin-forbidden transitions in Fe(2+) ions, while broader bands at 460-470 nm and 650-660 nm are attributed to Ti(3+) ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Ti(3+) ions in these minerals.

  1. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    Science.gov (United States)

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  2. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  3. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Science.gov (United States)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  4. X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation

    Science.gov (United States)

    Kong, Lingzhu; Car, Roberto

    2013-03-01

    We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.

  5. The absorption spectra of Q1107+487 and Q1442+295

    CERN Document Server

    Carballo, R; Webb, J K; Carballo, R; Barcons, X; Webb, J K

    1995-01-01

    We present the first moderate resolution (approx. 40--120 km/s) spectroscopic observations of the bright (V<16.7) high-redshift QSOs Q1107+487 (z_{em} = 2.965) and Q1442+295 (z_{em} = 2.669) (Sanduleak & Pesch 1989). The relatively high signal to noise reached in the spectra along with an extensive wavelength coverage of the Lyman alpha and the Lyman beta forest allowed us to obtain, through profile fitting, column densities and Doppler parameters of the Lyman clouds towards these QSOs. The spectral coverage of regions longward of the Lyman alpha emission line of the QSOs at the expected wavelengths of CIV 1548,1550 at the redshifts of the Lyman alpha forest allowed us to identify some heavy element absorption systems (hereafter HEASs) towards these QSOs. We have found no Lyman absorption system or HEAS towards these QSOs for which our data allow a deuterium measurement or to provide an interesting upper limit for the D/H ratio. The reason for this is that the Lyman lines with high column density detec...

  6. EPR and optical absorption studies of Cr3+ ions in d-gluconic acid monohydrate.

    Science.gov (United States)

    Kripal, Ram; Singh, Pragya; Govind, Har

    2009-10-01

    EPR studies are carried out on Cr(3+) ions doped in d-gluconic acid monohydrate (C(6)H(12)O(7)*H(2)O) single crystals at 77 K. From the observed EPR spectra, the spin Hamiltonian parameters g, |D| and |E| are measured to be 1.9919, 349 (x 10(-4)) cm(-1) and 113 (x 10(-4)) cm(-1), respectively. The optical absorption of the crystal is also studied at room temperature. From the observed band positions, the cubic crystal field splitting parameter Dq (2052 cm(-1)) and the Racah interelectronic repulsion parameter B (653 cm(-1)) are evaluated. From the correlation of EPR and optical data the nature of bonding of Cr(3+) ion with its ligands is discussed.

  7. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    Science.gov (United States)

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  8. The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    CERN Document Server

    Stern, Boris E

    2014-01-01

    We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure ...

  9. Optical absorption in commercial single mode optical fibres for the LHC machine

    CERN Document Server

    Wijnands, T J; Kuhnhenn, J; Hoeffgen, S K; Weinand, U; TS

    2007-01-01

    The optical absorption of light at 1310 nm and 1550 nm in various commercially available Single Mode (SM) fibres samples has been studied. The absorption was measured as a function of dose, dose rate, temperature and light power. The samples were irradiated with gamma rays from a 60Co source and exposed to a complex radiation field from high energy physics. One fibre sample with an F-doped core exhibits extreme low absorption of light at 1310 nm during irradiation up to doses of at least 100 kGy.

  10. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    Science.gov (United States)

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-14

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σp and σm). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  11. Correlated theory of linear optical absorption of octacene and nonacene

    Science.gov (United States)

    Chakraborty, Himanshu; Shukla, Alok

    2013-08-01

    The technological importance of higher acenes has led to resurgence of interest in synthesizing higher acenes such as octacene, nonacene etc. Recently, Tönshoff and Bettinger [2010 Angew. Chem. Int. Ed. 49 4125] have synthesized octacene and nonacene. Motivated by their work, we have performed large-scale calculations of linear optical absorption of octacene and nonacene. Methodology adopted in our work is based upon Pariser-Parr-Pople model (PPP) Hamiltonian, along with large-scale multi-reference singles-doubles configuration interaction (MRSDCI) approach.

  12. Imaging photothermal microscopy for absorption measurements of optical coatings

    Institute of Scientific and Technical Information of China (English)

    Chunxian Tao; Yuanan Zhao; Hongbo He; Dawei Li; Jianda Shao; Zhengxiu Fan

    2009-01-01

    @@ For absorption measurement of large-aperture optical coatings, a novel method of imaging photothermal microscopy based on image lock-in technique is presented.Detailed theoretical analysis and numerical calculation are made based on the image photothermal technique.The feasibility of this imaging method is proved through the coincidence between the theoretical results of single spot method and multi-channel method.The measuring speed of this imaging method can be increased hundreds of times compared with that of the raster scanning.This technique can expand the applications of photothermal technique.

  13. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    Science.gov (United States)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  14. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  15. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    Science.gov (United States)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  16. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    Science.gov (United States)

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets.

  17. ANISOTROPY OF OPTICAL ABSORPTION INTENSITY IN Tm3+ DOPED YVO4 CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    LIN XIU-HUA; JIANG BING-XI

    2000-01-01

    Seven absorption group-bands (1D2, 1G4, 3F2, 3F3, 3H4, 3H5, 3F4) of Tm3+ in YVO4 single crystals have been observed in the orientation absorption spectra recorded in the spectral range from 200 to 4000 nm at 300K.The integrated absorption cross section for each group-band was accurately evaluated. On the assumption that the anisotropy of this uni-axial crystal is small, the Judd-Ofelt theory was extended for the calculation of 4f-4f transition intensities of Tm3+ in YVO4. Two sets of phenomenological intensity parameters were derived from a least-squares-fit procedure. For c-axis cut sample we have Ω2=10.18 (10-20cm2), Ω4=1.96 (10-20cm2), Ω6=0.75 (10-20cm2). For a-axis cut sample we have Ω2 = 8.20 (10-20cm2), Ω4 = 2.47 (10-20cm2), Ω6 = 0.91 (10-20cm2). The anisotropy of the optical absorption intensities of Tm3+:YVO4 was theoretically analyzed in detail.

  18. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  19. Rendering Optical Effects Based on Spectra Representation in Complex Scenes

    OpenAIRE

    Dong, Weiming

    2006-01-01

    http://www.springerlink.com/; Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Ach...

  20. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    Science.gov (United States)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  1. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  2. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations.

    For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as

  3. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Science.gov (United States)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  4. Excited state assisted three-photon absorption based optical limiting in nanocrystalline Cu2Se and FeSe2

    Science.gov (United States)

    Anand, Benoy; Molli, Muralikrishna; Aditha, Saikiran; Mimani Rattan, Tanu; Siva Sankara Sai, S.; Kamisetti, Venkataramaniah

    2013-09-01

    Transition metal selenides (FeSe2 and Cu2Se) are synthesized by the hydrothermal co-reduction method. XRD results revealed the crystalline nature of their single phase and the elemental compositions are obtained using EDS. TEM images of the as-prepared samples show the formation of nanorods of 10-20 nm diameter in case of iron selenide and nanoparticles of 10-35 nm diameter in case of copper selenide. The energy bandgap values are calculated using tauc plots obtained from UV-Visible absorption spectra. The open aperture Z-scan measurements carried out using 5 ns pulses at 532 nm revealed that the samples showed excellent optical limiting behavior owing to strong nonlinear absorption (NLA). Through numerical simulations, the mechanism of NLA is found to be effective three-photon absorption which has significant contribution from excited state absorption.

  5. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  6. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    Energy Technology Data Exchange (ETDEWEB)

    Bhogi, Ashok [VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana (India); Kumar, R. Vijaya [School of Physics, University of Hyderabad, Hyderabad, Telangana (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad, Telangana (India)

    2016-05-23

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  7. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    Science.gov (United States)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  8. Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application

    Science.gov (United States)

    Jin, Jing; Li, Ya; Zhang, Zu-Chen; Wu, Chun-Xiao; Song, Ning-Fang

    2016-08-01

    The effects of color centers’ absorption on fibers and interferometric fiber optical gyroscopes (IFOGs) are studied in the paper. The irradiation induced attenuation (RIA) spectra of three types of polarization-maintaining fibers (PMFs), i.e., P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to 1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers’ absorption on RIA and mean wavelength shifts (MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient (RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments. Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  9. Effect of VO2+ ions on the EPR and optical absorption investigations of lithium sulphate monohydrate single crystals for non linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Radha Krishnan, S.; Shanmugam, V. M.; Subramanian, P.

    2017-09-01

    Electron paramagnetic resonance (EPR) and optical absorption studies of VO2+ ions in Lithium Sulphate Monohydrate (LSMH) single crystal are carried out at room temperature. Single crystal rotations in each of the three mutually orthogonal crystalline planes, ac, ab, cb indicate three different vanadyl complexes. Three VO2+ ions of EPR spectra indicate among them, that two of them have (the intense two) entered the lattice substitutionally and the third one occupies the interstitial position. From the angular variation, the spin Hamiltonian parameters are evaluated. From the optical absorption spectrum containing four selected bands and EPR data, various bonding parameters are determined and the nature of bonding in the crystal is discussed. Also Second Harmonic Generation (SHG) studies are carried out to confirm the Non Linear Optical (NLO) properties of the given material.

  10. Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds

    NARCIS (Netherlands)

    GOEDKOOP, JB; THOLE, BT; VANDERLAAN, G; SAWATZKY, GA; DEGROOT, FMF; FUGGLE, JC; de Groot, Frank

    1988-01-01

    We present atomic calculations for the recently discovered magnetic x-ray dichroism (MXD) displayed by the 3d x-ray-absorption spectra of rare-earth compounds. The spectral shapes expected at T=0 K for linear polarization parallel and normal to the local magnetic field is given, together with the te

  11. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Science.gov (United States)

    Zhang, Z.; Huang, J.; Geng, F.; Zhou, X. Y.; Feng, S. Q.; Cheng, X. L.; Jiang, X. D.; Wu, W. D.; Zheng, W. G.; Tang, Y. J.

    2014-01-01

    Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm2, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  12. CALCULATION OF MAGNETIC-X-RAY DICHROISM IN 4D AND 5D ABSORPTION-SPECTRA OF ACTINIDES

    NARCIS (Netherlands)

    OGASAWARA, H; KOTANI, A; THOLE, BT

    1991-01-01

    We present atomic calculations of the magnetic dichroism in 4d and 5d x-ray-absorption (XAS) spectra of trivalent actinide ions. The calculations are carried out for both linearly and circularly polarized light at zero temperature. Large magnetic dichroism is predicted for 5d XAS with

  13. Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study.

    Science.gov (United States)

    Sakata, Tetsuya; Kawashima, Yukio; Nakano, Haruyuki

    2011-01-07

    The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the

  14. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    OpenAIRE

    Kaya, Sarp; Sellberg, Jonas A.; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders

    2014-01-01

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in ...

  15. Dielectronic Recombination Of Iron M-shell Ions Motivated By Absorption Features In AGN Spectra

    Science.gov (United States)

    Lukic, Dragan; Schnell, M.; Savin, D. W.; Brandau, C.; Schmidt, E. W.; Yu, D.; Bernhardt, D.; Schippers, S.; Müller, A.; Lestinsky, M.; Orlov, D.; Sprenger, F.; Grieser, M.; Repnow, R.; Hoffmann, J.; Wolf, A.

    2006-09-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show spectra rich with X-ray absorption features. These observations have detected a broad unresolved transition array (UTA) between 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we report our recent experimental results for DR for several iron M-shell ions and plans for future work. This work has been supported in part by NASA, the German Federal Ministry for Education and Research, and the German Research Council

  16. Absorption line indices from high resolution spectra. I. New Response Functions

    CERN Document Server

    Tantalo, R; Munari, U; Piovan, L; Sordo, R

    2004-01-01

    Basing on the huge library of 1A resolution spectra calculated by Munari et al. (2004) over a large range of atmospheric parameters (log Teff, log g, [Fe/H]) and both for solar and alpha-enhanced abundance ratios, we present theoretical absorption line indices on the Lick system. Firstly we derive the so-called Response Functions (RFs) of Tripicco & Bell (1995, TB95) for a wide range of atmospheric parameters, and [a/Fe]=+0.4. The RFs are commonly used to correct indices with solar [a/Fe] ratios to indices with [a/Fe]>0. Not only the RFs vary with the type of star but also with the metallicity. Secondly, with the aid of this and the Fitting Functions (FFs) of Worthey et al. (1994), we derive the indices for SSPs and compare them with those obtained by previous authors. The new RFs not only supersede the old ones by TB95, but also confirm that method adopted by Tantalo & Chiosi (2004a) to include the effect of alpha-enhancement was correct, and clearly show that also Hb increases with the degree of enh...

  17. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  18. Rototranslational collision-induced absorption and collision-induced light scattering spectra of molecular hydrogen using isotropic intermolecular potentials

    Science.gov (United States)

    El-Kader, M. S. A.; Maroulis, G.; Bich, E.

    2012-07-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures and of collision-induced light scattering (CILS) at room temperature are computed for gaseous molecular hydrogen using theoretical values for induced dipole moments and pair-polarizability trace and anisotropy as input. Comparison with measured spectra of absorption, isotropic and anisotropic light scattering shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Empirical models of the dipole moment and pair-polarizability trace and anisotropy which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when potential models which are constructed from the thermophysical, transport, total scattering cross-section and spectroscopic properties are used. Also, the use of the new potential in lattice dynamic calculations yields good results for several properties of solid hydrogen.

  19. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    CERN Document Server

    Kollatschny, W; Zetzl, M; Santos-Lleó, M; Rodríguez-Pascual, P M; Ballo, L; Talavera, A

    2016-01-01

    The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST) and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme {\\alpha}_ox gradient ({\\alpha}_ox =-2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-...

  20. Optical absorption of CdSe quantum dots on electrodes with different morphology

    Directory of Open Access Journals (Sweden)

    Witoon Yindeesuk

    2013-10-01

    Full Text Available We have studied the optical absorption of CdSe quantum dots (QDs adsorbed on inverse opal TiO2 (IO-TiO2 and nanoparticulate TiO2 (NP-TiO2 electrodes using photoacoustic (PA measurements. The CdSe QDs were grown directly on IO-TiO2 and NP-TiO2 electrodes by a successive ionic layer adsorption and reaction (SILAR method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO2 electrodes was similar to that on the NP-TiO2 ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO2 electrodes than on the IO-TiO2 ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO2 electrodes was higher than that on NP-TiO2 ones, indicating that CdSe QDs on IO-TiO2 electrodes are more disordered states than those on NP-TiO2 electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.

  1. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  2. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    National Research Council Canada - National Science Library

    Pereira, Fábio; Bernacka-Wojcik, Iwona; Ribeiro, Rita; Lobato, Maria; Fortunato, Elvira; Martins, Rodrigo; Igreja, Rui; Jorge, Pedro; Águas, Hugo; Oliva, Abel

    2016-01-01

    ...: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip...

  3. Absorption of optical power in an S-20 photocathode

    CERN Document Server

    Harmer, S W

    2003-01-01

    By considering a monochromatic plane wave obliquely incident upon a planar layer of S-20 photocathode material, deposited upon a non-absorbing glass substrate, the distribution of optical power absorbed within the layer can be resolved. This is important to the question of photocathode efficiency, as the absorbed light excites photoelectrons within the photocathode which then may pass from the photocathode into the vacuum of the photomultiplier tube and be collected and multiplied. The calculation uses the measured complex permittivity of an extended red S-20 photocathode in the wavelength range, 375-900 nm. The results show that thin film effects are important within the photocathode, as they give rise to interesting power absorption profiles. This information is invaluable in predicting optimum photocathode thickness for wavelength selective applications. Electromagnetic waves that are obliquely incident upon the photocathode are also considered in both transverse electric and transverse magnetic polarizati...

  4. The Physics of Thin Film Optical Spectra An Introduction

    CERN Document Server

    Stenzel, Olaf

    2005-01-01

    The book is intended to bridge the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.

  5. A low-cost portable fibre-optic spectrometer for atmospheric absorption studies

    Directory of Open Access Journals (Sweden)

    J. Bailey

    2013-01-01

    Full Text Available A compact and portable solar absorption spectrometer based on fibre-optic Fabry–Perot technology has been built and tested. The instrument weighs only 4.2 kg and operates from 5 W of power from internal batteries. It provides spectroscopy over the range from 5980–6580 cm−1 (1.52–1.67 μm at a resolution of 0.16 cm−1. The input to the spectrometer is via single-mode optical fibre from a solar tracking system. Spectral scanning is carried out with a piezoelectrically scanned fibre Fabry–Perot tunable filter. Software has been developed to calibrate the spectra in wavelength and relative flux. The signal to noise ratio in solar spectra is about 700 for a spectrum scanned at 200 milliseconds per spectral point. The techniques used should be capable of being adapted to a range of wavelengths and to higher or lower resolutions.

  6. EPR and optical absorption studies of vanadyl ions in potassium oxalate monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram [Department of Physics, University of Allahabad, Allahabad 211002 (India)]. E-mail: ram_kripal2001@rediffmail.com; Maurya, Manju [Department of Physics, University of Allahabad, Allahabad 211002 (India)]. E-mail: mmanju8@yahoo.co.in; Govind, Har [Department of Electronics, Ewing Christian College, Allahabad 211003 (India)

    2007-04-15

    Electron paramagnetic resonance (EPR) studies are reported on vanadyl (VO{sup 2+}) ions in potassium oxalate monohydrate (POM) single crystals at room temperature. The results indicate that the paramagnetic impurity takes up an interstitial site in the lattice. The angular variation of EPR spectra in three mutually perpendicular planes are used to determine the spin Hamiltonian parameters and the values obtained are: g{sub x} =2.0153{+-}0.0002, g{sub y} =1.9489{+-}0.0002, g{sub z} =1.9155{+-}0.0002 and A{sub x} =(63{+-}2)x10{sup -4} cm{sup -1}, A{sub y} =(92{+-}2)x10{sup -4} cm{sup -1}, A{sub z} =(193{+-}2)x10{sup -4} cm{sup -1}. The optical absorption spectrum of VO{sup 2+} ions in the crystal lattice is also studied at room temperature. The characteristic spectrum of the VO{sup 2+} ions has four absorption bands. The band positions are calculated using the energy expressions and compared with the observed values to confirm the transitions. The analysis of the spectrum indicates that the first three bands correspond to d-d transitions and the last band is probably charge transfer band. Crystal field parameter (Dq) and tetragonal parameters (Ds and Dt) are also evaluated. From optical and EPR data various bonding parameters are obtained and nature of bonding in the crystal is discussed.

  7. Synthesis, XRD, TEM, EPR, and Optical Absorption Spectral Studies of CuZnO2 Nanocompound

    Directory of Open Access Journals (Sweden)

    T. Ravindra Reddy

    2014-01-01

    Full Text Available Synthesis of nano CuZnO2 compound is carried out by thermal decomposition method. The crystalline phase of the material is characterized by XRD. The calculated unit cell constants are a=3.1 Å and c=3.4786 Å and are of tetragonal structure. The unit cell constants are different from wurtzite (hexagonal which indicate that a nanocompound is formed. Further TEM images reveal that the metal ion is in tetragonal structure with oxygen ligands. The prepared CuZnO2 is then characterized for crystallite size analysis by employing transmission electron microscopy (TEM. The size is found to be 100 nm. Uniform bright rings are noticed in the TEM picture suggesting that the nanocrystals have preferential instead of random orientations. The selected-area electron diffraction (SAED pattern clearly indicates the formation of CuO-ZnO nanocompound. The nature of bonding is studied by electron paramagnetic resonance (EPR. The covalency character is about 0.74 and thus the compound is electrically less conductive. Optical absorption spectral studies suggest that Cu(II is placed in tetragonal elongation crystal field. The spin-orbit coupling constant, λ, is calculated using the EPR and optical absorption spectral results suggest some covalent bond between metal and ligand. Near infrared (NIR spectra are due to hydroxyl and water fundamentals.

  8. Optical re-injection in cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  9. Optical re-injection in cavity-enhanced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  10. Coherent potential approximation for the absorption spectra of a two-dimensional Frenkel exciton system with Gaussian diagonal disorder

    Science.gov (United States)

    Boukahil, A.; Huber, D. L.

    2014-12-01

    We investigate the optical absorption and the density of states of a Frenkel exciton system on a square lattice with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). Results are presented for the absorption and the density of states of direct and indirect edge systems for a range of variances. There is reasonable agreement with the corresponding finite array calculations of Schreiber and Toyozawa. The existence of an Urbach tail is also investigated.

  11. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  12. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  13. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Science.gov (United States)

    Taylor, Robert A.; Phelan, Patrick E.; Otanicar, Todd P.; Adrian, Ronald; Prasher, Ravi

    2011-12-01

    Suspensions of nanoparticles (i.e., particles with diameters nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  14. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  15. Three-photon absorption in optical parametric oscillators based on OP-GaAs

    Science.gov (United States)

    Heckl, Oliver H.; Bjork, Bryce J.; Winkler, Georg; Bryan Changala, P.; Spaun, Ben; Porat, Gil; Bui, Thinh Q.; Lee, Kevin F.; Jiang, Jie; Fermann, Martin E.; Schunemann, Peter G.; Ye, Jun

    2016-11-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  16. Three Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs

    CERN Document Server

    Heckl, Oliver H; Winkler, Georg; Changala, P Bryan; Spaun, Ben; Porat, 1 Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin; Schunemann, Peter G; Ye, Jun

    2016-01-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  17. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide

    Science.gov (United States)

    Leigh, Roland J.; Corlett, Gary K.; Friess, Udo; Monks, Paul S.

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62°N, 1.12°W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2.

  18. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes.

    Science.gov (United States)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  19. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    Science.gov (United States)

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  20. How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids

    Directory of Open Access Journals (Sweden)

    Juan Yang

    2011-09-01

    Full Text Available Single-walled carbon nanotubes (SWNTs can be efficiently dispersed in the imidazolium-based ionic liquids (ILs, at relatively high concentration, with their intrinsic structure and properties retained. Due to the hygroscopicity of the ILs, water bands may be introduced in the absorption spectra of IL-dispersed SWNTs and cause problems in spectral deconvolution and further analysis. In order to remove this influence, a quantitative characterization of the trace water in [BMIM]+[PF6]− and [BMIM]+[BF4]− was carried out by means of UV–vis-NIR absorption spectroscopy. A simple yet effective method involving spectral subtraction of the water bands was utilized, and almost no difference was found between the spectra of the dry IL-dispersed SWNT samples treated under vacuum for 10 hours and the spectra of the untreated samples with subtraction of the pure water spectrum. This result makes it more convenient to characterize SWNTs with absorption spectra in the IL-dispersion system, even in the presence of trace amount of water.

  1. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Xue, L.C.; Wu, L.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, S.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); School of Sciences, Hebei University of Science and Technology, Shijiazhuang City 050018 (China); Li, Z.Z. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Qi, W.H.; Ge, X.S.; Ding, L.L. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2016-07-01

    It is very important to determine electron transition energies (E{sub tr}) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν){sup 2} vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E{sub tr}) between the anions and cations, Fe{sup 2+} and Fe{sup 3+} at the (A) and [B] sites and Ni{sup 2+} at the [B] sites for the (A)[B]{sub 2}O{sub 4} spinel ferrite samples Co{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (0.0≤x≤0.3), Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0≤x≤0.3) and Fe{sub 3}O{sub 4}. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  2. Synthesis and time-resolved absorption spectra of 1,3,3,5,2’-pentamethylspiro[indolinnaphthooxazine

    Institute of Scientific and Technical Information of China (English)

    张新宇; 金声; 明阳福; 梁永超; 于联合; 樊美公; 骆坚; 姚思德

    1995-01-01

    The title compound 1,3,3,5,2’-pentamethylspirooxazine (I) is synthesized and identified by 1R, 1H NMR and elemental analysis. The time-resolved transient absorption spectra of I are investigated by nanosecond laser flash photolysis. The photolysis of I in solution excited by 248 nm laser pulse results in two different colored species. One of them is a short-lived species (CT intermediate), which has two absorption maxima at 440 and 640 nm in acetonitrile, and 450 and 640 nm in cyclohexane. The corresponding lifetimes are 12 and 0.8 us, respectively. The absorption spectra of CT intermediate are not influenced by solvent polarity. This fact indicates that the structure of CT is between the zwitterionic and quinoidal ones. The much longer lifetime of CT in acetonitrile than in cyclohexane is due to the electron donating effect of methyl in position 5 of indolino ring. The long-lived colored species (>>80 us) proves a planar photomerocyanine (PMC) structure, whose absorption spectra in acetonitrile and cyc

  3. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2009-11-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. Therefore they are strictly valid for weak absorptions and narrow wavelength intervals (strictly only for monochromatic radiation. For medium and strong absorption (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is not linear anymore. As well, for large wavelength intervals the wavelength dependent differences in the travelled light-paths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, by taking into account these dependencies, the applicability of the DOAS method can be extended also to cases with medium to strong absorptions and for broader wavelength intervals.

    Common approaches for this correction are the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a-priori knowledge for the air mass factor or the weighting function calculation by radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself.

    This new approach gives a description of the SCD that is as close to reality as desired (depending on the order of the Taylor expansion, and is independent from any assumptions or a-priori knowledge

  4. Optical calculations and in-situ measurement of transmittance spectra of contaminant thin films

    Science.gov (United States)

    Shimazaki, Kazunori; Miyazaki, Eiji; Kimoto, Yugo

    2016-09-01

    Molecular contaminants outgassed from organic materials used for the spacecraft degrade the performance of optical surfaces of spacecraft. The influence of contaminants outgassed from epoxy resin on the spectral transmittance of the quartz substrate was investigated with an in-situ measurement system. The system can deposit the contaminants on temperature-controlled quartz substrates and the transmittance spectra were measured immediately after deposition in vacuum ambient. We tried to obtain the optical constants of the contaminant using transmittance spectrum and simple optical models for optical calculations. The optical constants were described with a harmonic oscillator model and the effective medium approximation model. This paper reports the in-situ measurement results of transmittance spectra of the epoxy-resin-induced contaminants. In addition, the result of optical calculations using the obtained optical constants were compared to the measurement results.

  5. Quantum and classical optics of dispersive and absorptive structured media

    Science.gov (United States)

    Bhat, Navin Andrew Rama

    This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schrodinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF 2 metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100% or more for common media regardless of geometry if the pump is near the band

  6. The End of Helium Reionization at z ~= 2.7 Inferred from Cosmic Variance in HST/COS He II Lyα Absorption Spectra

    Science.gov (United States)

    Worseck, Gábor; Prochaska, J. Xavier; McQuinn, Matthew; Dall'Aglio, Aldo; Fechner, Cora; Hennawi, Joseph F.; Reimers, Dieter; Richter, Philipp; Wisotzki, Lutz

    2011-06-01

    We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z em ~= 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from ≃ 1 at z ~= 2.3 to ≳ 5 at z ~= 3.2, but with a large scatter of 2≲ τ_{eff,He II} ≲ 5 at 2.7 background, rather than density variations that are probed by the coeval H I forest. Semianalytic models of He II absorption require a strong decrease in the He II-ionizing background to explain the strong increase of the absorption at z >~ 2.7, probably indicating He II reionization was incomplete at z reion >~ 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z reion ~= 2.7 or even below, as suggested by a large τ_{eff,He II}≳ 3 in two of our five sightlines at z Technology, the University of California and NASA; it was made possible by the generous financial support of the W.M. Keck Foundation. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (programs 166.A.-0106, 071.A-0066, 083.A-0421).

  7. Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures.

    Science.gov (United States)

    Chen, Xiumei; Yan, Xiaopeng; Li, Ping; Mou, Yongni; Wang, Wenqiang; Guan, Zhiqiang; Xu, Hongxing

    2016-08-22

    The mechanism of resonant perfect optical absorbers is quantitatively revealed by the coupled mode method for the air/grating/dielectric film/air four region system. The sufficient and necessary conditions of the perfect optical absorption are derived from the interface scattering coefficients analyses. The coupling of the Fabry-Perot modes in the grating slits and non-zero order quasi waveguide modes in the dielectric film play a key role for the perfect optical absorption when the light is incident from the grating side. The analytical sufficient and necessary conditions of the perfect optical absorption provide an efficient tool towards geometry design for the perfect optical absorption at the specific wavelengths. The advantages of a widely tunable perfect optical absorption wavelength, a high Q factor and the confined energy loss on metal surfaces make the air/grating/film/air structures promising for applications in sensing, modulation and detection.

  8. Optical Spectra of the High Voltage Erosive Water Discharge

    CERN Document Server

    Pirozerski, A L

    2008-01-01

    In the present paper kinetics of emission spectra of the high voltage erosive water discharge at near ultraviolet and visible spectral ranges has been investigated. Obtained results show a similarity of physical properties of this discharge (and of corresponding plasmoids) to that of some other types of erosional discharges which also result in the formation of dust-gas fireballs.

  9. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    Science.gov (United States)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, Panimals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  10. Intermolecular interaction as the origin of red shifts in absorption spectra of zinc-phthalocyanine from first-principles.

    Science.gov (United States)

    Yanagisawa, Susumu; Yasuda, Taiga; Inagaki, Kouji; Morikawa, Yoshitada; Manseki, Kazuhiro; Yanagida, Shozo

    2013-11-07

    We investigate electronic origins of a redshift in absorption spectra of a dimerized zinc phthalocyanine molecule (ZnPc) by means of hybrid density functional theoretical calculations. In terms of the molecular orbital (MO) picture, the dimerization splits energy levels of frontier MOs such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the constituent molecules. Consequently, the absorption wavelength seems to become longer than the monomer as the overlap between the monomers becomes larger. However, for a ZnPc dimer configuration with its cofacially stacked monomer arrangement, the calculated absorption spectra within the time-dependent density functional theory indicates no redshift but blueshift in the Q-band absorption spectrum, i.e., a typical H-aggregate. The origin of the apparently contradictory result is elucidated by the conventional description of the interaction between monomer transition dipoles in molecular dimers [Kasha, M. Radiat. Res. 1963, 20, 55]. The redshift is caused by an interaction between the two head-to-tail transition dipoles of the monomers, while the side-by-side arranged transition dipoles result in a blueshift. By tuning the dipole-dipole interaction based on the electronic natures of the HOMO and the LUMO, we describe a slipped-stacked ZnPc dimer configuration in which the Q-band absorption wavelength increases by as large as 144 nm relative to the monomer Q-band.

  11. Investigating the Fabrication Imperfections of Plasmonic Nanohole Arrays and Its Effect on the Optical Transmission Spectra

    Directory of Open Access Journals (Sweden)

    Amr M. Mahros

    2015-01-01

    Full Text Available We investigate the extraordinary optical transmission spectra of thin gold films perforated with imperfect nanohole arrays using the finite difference time domain (FDTD method. Exponential shapes for the nanohole sidewalls are used. To the best of our knowledge, such investigation of transmission spectra of imperfect nanohole arrays has not previously been demonstrated. It was found that the asymmetry between the two openings of the circular nanoholes or bending to their sidewalls strongly modifies both the intensity and resonance positions of the transmission spectra. Furthermore, the results of this study assist in explaining the technicality of extraordinary optical transmission phenomenon and why some experimental results on transmission differ from those expected.

  12. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  13. Redox ratio and optical absorption of polyvalent ions in industrial glasses

    Indian Academy of Sciences (India)

    W Thiemsorn; K Keowkamnerd; P Suwannathada; H Hessenkemper; S Phanichaphant

    2007-10-01

    The changes in glass structure and redox ratio, (reduced ion to oxidized ion) of Mn2+–Mn3+, Cu+–Cu2+, Cr3+–Cr6+, Ni2+–Ni3+ and Co2+–Co3+ couples and optical absorption due to Mn3+, Cu2+, Cr3+, Ni2+ and Co2+ ions in industrial soda–lime–silica glass were investigated as a function of Na2O concentration in the range 11–19 mol%. With increasing Na2O concentration in the experimental glasses, the basicity, expressed as calculated basicity, cal, increased. 29Si NMR and X-ray diffraction were used to investigate the structural change in glasses. The NMR spectra showed high non-bridging oxygens (NBOs) when the basicity of glass was increased. The results were interpreted to be due to the tetrahedral networks; 4 species were depolymerized by replacing the bridging oxygens (BOs) with NBOs to 3 species. These results confirmed the shift of broadening peaks of XRD patterns. The redox reactions of the Mn2+–Mn3+, Cu+–Cu2+ and Cr3+–Cr6+ couples shifted more toward their oxidized ions due to the oxygen partial pressure, (2), during melting and the oxide ion activity, O2–, increased with increasing glass basicity. These changes caused the redox ratio of these ion couples to decrease. The Ni2+–Ni3+ and Co2+–Co3+ couples were assumed to be present only in the Ni2+ and Co2+ ions in these glasses, respectively. The optical absorption bands due to Mn3+, Cu2+, Cr3+, Ni2+ and Co2+ ions were also investigated. Their spectra occurred at constant wavelengths with different optical densities or intensities as a function of glass basicity. The increase in the intensities of the absorption bands of these absorbing ions, except for Cr3+ ion, at the maximum wavelength, depends not only on the ion concentration but also on the increase of polarizability of oxide (–II) species, oxide(–II), surrounding the ions. This value affected directly the extinction coefficients of the ions, ion. The increase of ion caused the colour of glasses appearing in high intensity. In

  14. The optical spectra of the brightest mid-IR-selected galaxies

    NARCIS (Netherlands)

    Caputi, K. I.

    2007-01-01

    We present here sore of the first results we have obtained oil the study of the optical spectra, of Spitzer/MIPS 24 mu m selected galaxies in the COSMOS field. This is part of a, series of studies we are conducting to analyse the optical spectral properties of mid-infrared (mid-IR) galaxies with dif

  15. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and in

  16. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a.

    Science.gov (United States)

    Rätsep, Margus; Linnanto, Juha; Freiberg, Arvi

    2009-05-21

    The absorption and fluorescence emission spectra of chlorophyll a in different organic solvents where the central Mg atom is either penta- or hexacoordinated have been studied using conventional and selective spectroscopy methods at ambient and cryogenic temperatures. A breakdown of the basic model mirror-symmetry rule in relation to the lowest-energy Q(y) transitions was observed due to Franck-Condon and Hertzberg-Teller interactions. Detailed vibrational structure in the ground electronic state, virtually independent of the Mg coordination state, was revealed by hole-burning fluorescence line-narrowing technique. The total Huang-Rhys factor associated with the linear vibronic coupling strength of the solvent collective vibrations and the local chlorophyll a intramolecular vibrations is equal to 0.53+/-0.07 in fluorescence and to 0.39+/-0.05 in absorption. The electron-phonon coupling part was also found to depend on the excitation wavelength within the inhomogeneously broadened absorption origin band, its average value being S(ph) approximately = 0.38. All these numbers qualify for the weak vibronic coupling. A comparison of the conjugate Q(y) absorption and fluorescence emission spectra as well as the temperature dependence of the absorption spectra allowed unambiguous locating of the still controversial Q(x) absorption band position for penta- and hexacoordinated chlorophyll a species. The basic experimental findings have been qualitatively supported by semiempirical quantum chemical calculations.

  17. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  18. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    Science.gov (United States)

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extremely Red Quasars from SDSS, BOSS and WISE: Classification of Optical Spectra

    CERN Document Server

    Ross, Nicholas P; Zakamska, Nadia L; Richards, Gordon T; Villforth, Carolin; Strauss, Michael A; Greene, Jenny E; Alexandroff, Rachael; Brandt, W Niel; Liu, Guilin; Myers, Adam D; Paris, Isabelle; Schneider, Donald P

    2014-01-01

    Quasars with extremely red colours are an interesting population that can test ideas about quasar evolution as well as orientation and geometric effects in the so-called AGN unified model. To identify such a population we search the quasar catalogs of the Sloan Digital Sky Survey (SDSS), the Baryon Oscillation Spectroscopic Survey (BOSS) and the Wide-Field Infrared Survey Explorer (WISE) for quasars with extremely high infrared-to-optical ratios. We identify 65 objects with r(AB)-W4(Vega)>14 mag (i.e., F_nu(22um)/F_nu(r) > ~1000). This sample spans a redshift range of 0.282.6 objects that are detected in the W4-band but not W1 or W2 (i.e., "W1W2-dropouts"). The SDSS/BOSS spectra show that the majority of the objects are reddened Type 1 quasars, Type 2 quasars (both at low and high redshift) or objects with deep low-ionization broad absorption lines (BALs) that suppress the observed r-band flux. In addition, we identify a class of Type 1 permitted broad-emission line objects at z~2-3 which are characterized by...

  20. Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Hoffmann, M.C.; Monozon, B.S.; Livhits, D.

    2010-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption in InGaAs/GaAs quantum dots (QDs) via an electro-absorption effect induced by the electric field of an incident free-space terahertz signal. A terahertz signal with the full bandwidth of 3 THz was directly encoded onto...

  1. Resonant optical absorption and defect control in Ta3N5 photoanodes

    NARCIS (Netherlands)

    Dabirian, A.; Van de Krol, R.

    2013-01-01

    In this study, we explore resonance-enhanced optical absorption in Ta3N5 photoanodes for water splitting. By using a reflecting Pt back-contact and appropriate Ta3N5 film thickness, the resonance frequency can be tuned to energies just above the bandgap, where the optical absorption is normally weak

  2. First-Principles Calculation of Principal Hugoniot and K-Shell X-ray Absorption Spectra for Warm Dense KCl

    CERN Document Server

    Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-01-01

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  3. Role of quantum nuclei and local fields in the x-ray absorption spectra of water and ice

    CERN Document Server

    Kong, Lingzhu; Car, Roberto

    2012-01-01

    We calculate the x-ray absorption spectra of liquid water at ambient conditions and of hexagonal ice close to melting, using a static GW approach that includes approximately local field effects. Quantum dynamics of the nuclei is taken into account by averaging the absorption cross section over molecular configurations generated by path integral simulations. We find that inclusion of quantum disorder is essential to bring the calculated spectra in close agreement with experiment. In particular, the intensity of the pre-edge feature, a spectral signature of broken and distorted hydrogen bonds, is accurately reproduced, in water and ice, only when quantum nuclei are considered. The effect of the local fields is less important but non negligible, particularly in ice.

  4. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  5. Supercontinuum Spectra generation in the single-mode optical fibre with Concave dispersion profile

    Institute of Scientific and Technical Information of China (English)

    Xu Wen-Cheng; Gao Jie-Li; Liang Zhan-Qiang; Chen Qiao-Hong; Liu Song-Hao

    2006-01-01

    In this paper,a new method is proposed to generate broad supercontinuum (SC) spectra in the single-mode optical fibre with concave dispersion profile.We numerically simulate pulse evolutions and discuss physics mechanism in detail for SC spectrum generation in the optical fibre with concave dispersion profile.Furthermore,general criteria are presented for specifying the shape of SC spectrum by introducing normalized parameters,which are related to the fibres and the initial pump pulses.The results show that the flat and broad SC spectra are indeed generated in our proposed optical fibre.

  6. Effects of Electron-Phonon Interaction on Linear and Nonlinear Optical Absorption in Cylindrical Quantum Wires

    Institute of Scientific and Technical Information of China (English)

    YU You-Bin

    2008-01-01

    The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.

  7. HST hot Jupiter Transmission Spectral Survey: A detection of Na and strong optical absorption in HAT-P-1b

    CERN Document Server

    Nikolov, N; Pont, F; Burrows, A S; Fortney, J J; Ballester, G E; Evans, T M; Huitson, C M; Wakeford, H R; Wilson, P A; Aigrain, S; Deming, D; Gibson, N P; Henry, G W; Knutson, H; Etangs, A Lecavelier des; Showman, A P; Vidal-Madjar, A; Zahnle, K

    2013-01-01

    We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on HST observations, covering the spectral regime from 0.29 to 1.027{\\mu}m with STIS, which is coupled with a recent WFC3 transit (1.087 to 1.687{\\mu}m). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55{\\mu}m, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3{\\sigma} significance level, but find no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~0.85{\\mu}m. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 +/- 1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simulta- neous st...

  8. Novel Nb3O7F/WS2 hybrid nanomaterials with enhanced optical absorption and photocatalytic activity

    Science.gov (United States)

    Huang, Fei; Li, Zhen; Yan, Aihua; Zhao, Hui; Feng, Hao; Wang, Yuehua

    2017-07-01

    Coping with increasing environmental issues, niobium oxyfluoride (Nb3O7F), as a novel semiconductor, is a promising photocatalyst due to its outstanding electronic and optoelectronic properties. However, the photocatalytic performance of Nb3O7F is restricted in practical application due to its weak optical absorption and low carrier separation. In this work, Nb3O7F/WS2 hybrids with superior optical absorption and photocatalytic activity have been successfully synthesized by a facile two-step sol-hydrothermal technique. UV-vis spectra show that WS2 not only exhibits enhanced optical absorption in the range of 420-1100 nm but extends the absorption edge, and tends to narrow the band gap of the Nb3O7F photocatalyst. Photocatalytic experiments indicate that introducing WS2 into Nb3O7F markedly enhances the photocatalytic activity in the degradation of methylene blue dyes under visible-light irradiation. Nb3O7F/WS2 photocatalysts exhibit the highest activity with 98.9% decoloration efficiency in 70 min, while pure Nb3O7F only achieves 67.9% in the same time and achieves its final decoloration ratio after 150 min. The excellent photocatalytic activity can be directly ascribed to more exposed active sites, higher carrier separation efficiency, and faster carrier transfer. The results may open up a new avenue for the design and preparation of novel and highly efficient photocatalysts.

  9. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-04

    College, City University of New York, New York, NY 10065 ONR Absorption spectra Density Functional Theory Molecular clusters Contents Introduction ...Clusters using Density Functional Theory May 4, 2017 Approved for public release; distribution is unlimited. L. Huang S.g. LambrakoS Center for...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  10. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra.

    Science.gov (United States)

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He-Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D7 is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  11. Modeling the structure and absorption spectra of stilbazolium merocyanine in polar and nonpolar solvents using hybrid QM/MM techniques.

    Science.gov (United States)

    Murugan, N Arul; Kongsted, Jacob; Rinkevicius, Zilvinas; Aidas, Kestutis; Ågren, Hans

    2010-10-28

    We have performed Car-Parrinello mixed quantum mechanics/molecular mechanics (CP-QM/MM) calculations for stilbazolium merocyanine (SM) in polar and nonpolar solvents in order to explore the role of solute molecular geometry, solvation shell structure, and different interaction mechanisms on the absorption spectra and its dependence on solvent polarity. On the basis of the average bond length values and group charge distributions, we find that the SM molecule remains in a neutral quinonoid form in chloroform (a nonpolar solvent) while it transforms to a charge-separated benzenoid form in water (a polar solvent). Based on a quantum mechanical/molecular mechanical response technique, with different MM descriptions for the water environment, absorption spectra were obtained as averages over configurations derived from the CP-QM/MM simulations. We show that for SM in water the solute polarization plays a major role in predictions of the λ(max) and solvatochromic shift and that once this effect is included the contributions from solvent polarization and intermolecular charge transfer become less important. For SM in chloroform and water solvents, we have also performed absorption spectra calculations using a polarizable continuum model in order to address its relative performance compared to the QM/MM response technique. In the case of SM in water, our study supports the notion that, in order to predict accurate absorption spectra and solvatochromic shifts, it is important to use a discrete description of the solvent when it, as in water, is involved in site-specific interaction with the solute molecule. The technique is thus shown to outperform the more conventional polarizable continuum model in predicting the solvatochromic shift.

  12. EPR and optical absorption studies of vanadyl impurity in zinc potassium phosphate hexahydrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.co [Department of Physics, University of Allahabad, Allahabad 211002 (India); Maurya, Manju, E-mail: mmanju8@yahoo.co.i [Department of Physics, University of Allahabad, Allahabad 211002 (India); Bajpai, Manisha [Department of Physics, University of Allahabad, Allahabad 211002 (India); Govind, Har [Department of Electronics, Ewing Christian College, Allahabad 211003 (India)

    2009-11-01

    Electron paramagnetic resonance (EPR) study of VO{sup 2+} doped zinc potassium phosphate hexahydrate single crystal is carried out. The angular variation of the spectra is studied in the three crystallographic planes. The principal value of spin Hamiltonian parameters g and A and the direction cosines which principal axes make with the crystallographic axes are determined. The observed values are site I: g{sub ||} =1.9664+-0.0002, g{sub perpendicular} =1.9973+-0.0002, A{sub ||} =150+-2x10{sup -4}, A{sub perpendicular} =60+-2x10{sup -4} cm{sup -1}; site II: g{sub ||} =1.9276+-0.0002, g{sub perpendicular} =1.9921+-0.0002, A{sub ||} =155+-2x10{sup -4} and A{sub perpendicular} =62+-2x10{sup -4} cm{sup -1}. By comparison of direction cosines of g from EPR with the direction cosines of different bonds obtained from crystal structure data it is ascertained that the VO{sup 2+} ion occupies Zn{sup 2+} substitutional sites. The optical absorption study of the crystal at room temperature is also carried out. The bands observed in the optical absorption spectrum are attributed to d-d transitions. The EPR results together with the optical data are employed to estimate the molecular orbital (MO) coefficients. These MO coefficients (also called bonding coefficients) are further used to discuss the nature of bonding of VO{sup 2+} ion with different ligands in the crystal.

  13. EPR and optical absorption of VO{sup 2+} impurity in lithium potassium sulphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.co [Department of Physics, University of Allahabad, Allahabad 211002 (India); Maurya, Manju, E-mail: mmanju8@yahoo.co.i [Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2009-05-01

    Electron paramagnetic resonance (EPR) and optical absorption studies of VO{sup 2+} doped lithium potassium sulphate single crystals are carried out at room temperature. The angular variation of the spectra is studied in the crystallographic a*b, bc and ca* plane. Vanadyl is found to have fixed orientations in the lattice and there are two magnetically inequivalent complexes in the lattice. The spin Hamiltonian parameters obtained from single crystal data for the two sites are, Site I: g{sub xx}=2.0015+-0.0002, g{sub yy}=1.9835+-0.0002, g{sub zz}=1.9211+-0.0002, A{sub xx}=(48+-2)x10{sup -4} cm{sup -1}, A{sub yy}=(64+-2)x10{sup -4} cm{sup -1}, A{sub zz}=(169+-2)x10{sup -4} cm{sup -1}, Site II: g{sub xx}=2.0019+-0.0002, g{sub yy}=1.9796+-0.0002, g{sub zz} =1.9225+-0.0002, A{sub xx}=(48+-2)x10{sup -4} cm{sup -1}, A{sub yy}=(83+-2)x10{sup -4} cm{sup -1}, A{sub zz}=(178+-2)x10{sup -4} cm{sup -1}. The first three bands observed in optical absorption spectrum are attributed to d-d transitions and the last band is probably charge transfer band. The band positions are calculated using energy expressions and compared with the observed values to confirm the transitions. Crystal field parameter (D{sub q}) and tetragonal parameters (D{sub s} and D{sub t}) are also evaluated. Using EPR and optical results, the molecular orbital parameters of VO{sup 2+} ions in the lattice are evaluated with a tetragonal symmetry approximation (because the rhombic part is small) and the nature of bonding in the complex is discussed.

  14. Study on the interaction between diphenhydramine and erythrosin by absorption,fluorescence and resonance Rayleigh scattering spectra

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In pH 4.5 Britton-Robinson(BR)buffer solution,erythrosin(ET)can react with diphenhydramine(DP)to form a 1:1 ion-association complex,which not only results in the change of the absorption spectra,but also results in the great enhancement of resonance Rayleigh scattering(RRS)and the quenching of fluorescence.Furthermore,a new RRS spectrum will appear,and the maximum RRS wavelength was located at about 580 nm.In this work,the spectral characteristics of the absorption,fluorescence and RRS,the optimum conditions of the reaction and the properties of an analytical chemistry were inves- tigated.A sensitive,simple and new method for the determination of DP by using erythrosin as a probe has been developed.The detection limits for DP were 0.0020μg/mL for RRS method,0.088μg/mL for absorption method and 0.094μg/mL for fluorophotometry.There was a linear relationship between the absorbance,RRS and fluorescence intensities and the drug concentration in the range of 0.0067-2.0, 0.29-6.4 and 0.31-3.2μg/mL,respectively.The effects of the interaction of diphenhydramine and erythrosin on the absorption,fluorescence and resonance Rayleigh scattering spectra were discussed. In light polarization experiment,the polarization of RRS at maximum wavelength was measured to be P =0.9779,and it revealed that the RRS spectrum of DP-ET complex consists mostly of resonance scat- tering and few resonance fluorescence.In this study,enthalpy of formation and mean polarizability were calculated by AM1 quantum chemistry method.In addition,the reaction mechanism and the rea- sons for the enhancement of scattering spectra and the energy transfer between absorption,fluores- cence and RRS were discussed.

  15. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    Science.gov (United States)

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  16. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  17. Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances

    Science.gov (United States)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

  18. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  19. The Optical Spectra of X-Shaped Radio Galaxies

    Science.gov (United States)

    2010-01-01

    Sky Survey ( SDSS ; Abazajian et al. 2009) but has only narrow emission lines in its spectrum (see Fig. A1), and J0245+1047, whose X- shaped radio...spectroscopically observed by the SDSS (Data Release 5; see Fig. A1). For another seven sources, namely, J0113+0106, J0115−0000, J0245+1047, J1309−0012...of this task to deblend the indi- vidual features. However, this procedure was not necessary in the case of the SDSS spectra, whose spectral resolution

  20. Optical transmission spectra in symmetrical Fibonacci photonic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Mauriz, P.W.; Vasconcelos, M.S. [Departamento de Ciencias Exatas, Centro Federal de Educacao Tecnologica do Maranhao, 65025-001 Sao Luis-MA (Brazil); Albuquerque, E.L. [Computational Physics for Engineering Materials, IfB, ETH-Zuerich, CH-8093 Zuerich (Switzerland)], E-mail: eudenilson@dfte.ufrn.br

    2009-01-19

    We study the transmission properties of light through the symmetric Fibonacci photonic multilayers, i.e, a binary one-dimensional quasiperiodic structure, made up of both positive (SiO{sub 2}) and negative refractive index materials with a mirror symmetry. These spectra are calculated by using a theoretical model based on the transfer matrix approach for normal incidence geometry, in which many perfect transmission peaks (the transmission coefficients are equal to the unity) are numerically obtained. Besides, the transmission coefficient exhibits a six-cycle self-similar behavior with respect to the generation number of the Fibonacci sequence.

  1. Effects of solvent and substituent on the electronic absorption spectra of some substituted Schiff bases: a chemometrics study.

    Science.gov (United States)

    Hemmateenejad, Bahram; Yazdani, Mahdieh; Sharghi, Hashem

    2012-06-01

    A series of Schiff bases were studied for their delicate changes in absorption electronic spectra by changing substituents and solvents. UV/vis absorbance spectra of Schiff base derivatives of different substituents ranging from electron withdrawing to electron donating (Br, CF(3), Cl, CN, CO(2)H, F, Me, NO(2), OH, OMe, H) were studied in different solvents (acetonitrile, chloroform, cyclohexane, dioxane, dimethylsulfoxide and methanol). Linear relationships were established to investigate the effect of solute structure and solvatochromic parameters of solvents on the absorbance spectra. Meaningful chemical factors and then regression models were provided utilizing factor analysis (FA) and multiple linear regression (MLR). It was found that the frequency of maximum absorbance was mainly controlled by the solvent's dipolarity/polarizability. The λ(max) of the ortho-nitro derivative represented the largest dependency on solvents' polarity/polarizability so that it can be used as a solvatochromic probe. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    Science.gov (United States)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  3. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    CERN Document Server

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  4. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein

    Science.gov (United States)

    Xie, Peng; Zhou, Panwang; Alsaedi, Ahmed; Zhang, Yan

    2017-03-01

    The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.

  5. Rototranslational collision-induced absorption and collision-induced light scattering spectra of molecular hydrogen using isotropic intermolecular potentials

    Energy Technology Data Exchange (ETDEWEB)

    El-Kader, M.S.A., E-mail: Mohamedsay68@hotmail.com [Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12211 (Egypt); Maroulis, G. [Department of Chemistry, University of Patras, GR-26500 Patras (Greece); Bich, E. [Institut fuer Chemie, Universitaet Rostock Albert-Einstein-Strasse 3a, D-18059 Rostock (Germany)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer We have determined an isotropic intermolecular potential for the interaction of hydrogen. Black-Right-Pointing-Pointer The thermophysical and transport properties are calculated for this system. Black-Right-Pointing-Pointer The rovibrational energy levels and scattering cross-sections are determined. Black-Right-Pointing-Pointer We have adopted a model for the induced dipole moment {mu}(r) with adjustable parameters. Black-Right-Pointing-Pointer The quantum lineshapes of absorption and scattering are calculated. -- Abstract: Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures and of collision-induced light scattering (CILS) at room temperature are computed for gaseous molecular hydrogen using theoretical values for induced dipole moments and pair-polarizability trace and anisotropy as input. Comparison with measured spectra of absorption, isotropic and anisotropic light scattering shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Empirical models of the dipole moment and pair-polarizability trace and anisotropy which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when potential models which are constructed from the thermophysical, transport, total scattering cross-section and spectroscopic properties are used. Also, the use of the new potential in lattice dynamic calculations yields good results for several properties of solid hydrogen.

  6. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    CERN Document Server

    Crenshaw, D M; Gabel, J R; Schmitt, H R; Filippenko, A V; Ho, L C; Shields, J C; Turner, T J

    2004-01-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope's Space Telescope Imaging Spectrograph at velocity resolutions of 7 to 15 km/sec. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region (NLR), outflowing UV absorbers, and X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km/sec with respect to the nucleus, is only identified in the C IV 1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reali...

  7. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations....... The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations...... in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made...

  8. Optical absorption of neutron-irradiated silica fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  9. THEORY OF PHONON-ASSISTED MULTIMAGNON OPTICAL-ABSORPTION AND BIMAGNON STATES IN QUANTUM ANTIFERROMAGNETS

    NARCIS (Netherlands)

    Lorenzana, J.; Sawatzky, G.A

    1995-01-01

    We calculate the effective charge for multimagnon infrared absorption assisted by phonons in a perovskitelike antiferromagnet and we compute the spectra for two-magnon absorption using interacting spin-wave theory. The full set of equations for the interacting two-magnon problem is presented in the

  10. A time-dependent density functional theory (TDDFT) interpretation of the optical spectra of zinc phthalocyanine π-cation and π-anion radicals1

    National Research Council Canada - National Science Library

    Ricciardi, Giampaolo; Rosa, Angela

    2009-01-01

    ...-anion radical prove to be in excellent agreement with the solution spectra and generally in line with deconvolution analyses of solution absorption and magnetic circular dichroism (MCD) spectra...

  11. A generalized method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted shortwave radiance spectra

    Directory of Open Access Journals (Sweden)

    S. E. LeBlanc

    2014-06-01

    Full Text Available A new retrieval scheme for cloud optical thickness, effective radius, and thermodynamic phase was developed for ground-based measurements of cloud shortwave spectral transmittance. 15 parameters were derived to quantify spectral variations in shortwave transmittance due to absorption and scattering of liquid water and ice clouds, manifested by shifts in spectral slopes, curvatures, maxima, and minima. To retrieve cloud optical thickness and effective particle radius a weighted least square fit that matched the modeled parameters was applied. The measurements for this analysis were made with a ground-based Solar Spectral Flux Radiometer (SSFR in Boulder, Colorado, between May 2012 and January 2013. We compared the cloud optical thickness and effective radius from the new retrieval to two other retrieval methods. By using multiple spectral features, we find a closer fit (with a root mean square difference over the entire spectra of 3.1% for a liquid water cloud and 5.9% for an ice cloud between measured and modeled spectra compared to two other retrieval methods, which diverge by a root-mean-square of up to 6.4% for a liquid water cloud and 22.5% for an ice cloud. The new retrieval introduced here has an average uncertainty in effective radius (±1.2 μm smaller by factor of at least 2.5 than two other methods when applied to an ice cloud.

  12. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators.

    Science.gov (United States)

    Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei

    2017-03-01

    Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in

  13. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    1991-01-01

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  14. Optical and terahertz spectra analysis by the maximum entropy method.

    Science.gov (United States)

    Vartiainen, Erik M; Peiponen, Kai-Erik

    2013-06-01

    Phase retrieval is one of the classical problems in various fields of physics including x-ray crystallography, astronomy and spectroscopy. It arises when only an amplitude measurement on electric field can be made while both amplitude and phase of the field are needed for obtaining the desired material properties. In optical and terahertz spectroscopies, in particular, phase retrieval is a one-dimensional problem, which is considered as unsolvable in general. Nevertheless, an approach utilizing the maximum entropy principle has proven to be a feasible tool in various applications of optical, both linear and nonlinear, as well as in terahertz spectroscopies, where the one-dimensional phase retrieval problem arises. In this review, we focus on phase retrieval using the maximum entropy method in various spectroscopic applications. We review the theory behind the method and illustrate through examples why and how the method works, as well as discuss its limitations.

  15. Optical absorption, photoluminescence and structural analysis of CdS quantum dots in weak confinement

    Science.gov (United States)

    Mishra, Rakesh K.; Vedeshwar, A. G.; Tandon, R. P.

    2014-02-01

    The diffusion-controlled growth of CdS quantum dots (QDs) dispersed in a silicate glass matrix was investigated. It was found that the size of CdS QDs can be controlled by either heat treatment at various temperatures for a fixed duration or varying times at a constant temperature. Pastel yellow colored glass samples were obtained due to the presence of CdS petite crystals. X-ray diffraction (XRD) was used for determining the average dot size which varied from 3.8 to 30 nm. The typical quantum confinement effect was clearly observed from the blue shift measured in the optical absorption edge with decreasing dot size in the absorption spectroscopy. The band gap of CdS QDs ranges from 2.41 to 2.82 eV. Measured photoluminescence (PL) at an excitation wavelength of 350 nm showed the red shift of emission wavelength with increasing thermal treatment time and temperature in agreement with the increasing dot sizes. The half-width of PL spectra seems to indicate qualitatively the size distribution of dots and is consistent with the treatment parameters.

  16. Multicomponent Analysis of the UV Si IV and C IV Broad Absorption Troughs in BALQSO Spectra: The Examples of J01225+1339 and J02287+0002

    Indian Academy of Sciences (India)

    D. Stathopoulos; E. Danezis; E. Lyratzi; A. Antoniou; D. Tzimeas

    2015-12-01

    Broad Absorption Line QSOs (BALQSOs) are a subtype of radio-quite QSOs that exhibit complex and unusually broad (FWHM ≥ 2,000 km/s) absorption lines. The existence of these lines in BALQSO spectra raises some questions with respect to the properties, the physical conditions and kinematics of the BAL material as well as the morphology of BAL troughs. In this study, taking into consideration the clumpy structure of the AGN outflow winds, we propose a physical model in order to explain the formation of BAL troughs and we give the mathematical description of this model. We also propose a method for analyzing spectroscopically the BAL profiles in the UV region of the electromagnetic spectrum. This method consists of the criteria we set during the fitting process of BAL troughs. The purpose of these criteria is to enable us to determine the exact number of components needed to simulate accurately the BAL troughs and guarantee the uniqueness of the fit. We give an application of the model and the method for Si IV and C IV resonance lines in the case of two BALQSOs. From the analysis, we conclude that the BAL material is in the form of clouds (density enhancements) that move radially and intercept the line-of-sight to the central continuum source. Using our method, we find the number of absorption components needed to simulate the BAL profiles, which means the number of clouds in the line-of-sight. We calculate the velocity shifts, the FWHM and the optical depths of the absorption components of BALs and we propose an internal structure for these clouds. Finally, we give some correlations between the properties of absorption components of Si IV and C IV.

  17. Electronic structure and absorption spectra of biferrocenyl and bisfulvalenide diiron radical cations: detection and assignment of new low-energy transitions.

    Science.gov (United States)

    Warratz, Ralf; Aboulfadl, Hanane; Bally, Thomas; Tuczek, Felix

    2009-01-01

    UV-visible/near-IR (NIR)/mid-IR (MIR) solution, solid-state, and matrix-isolation electronic absorption spectra of the Fe(II)-Fe(III) mixed-valent homobimetallic compounds biferrocenyl triiodide (1) and 1',1'''-diethylbiferrocenyltriiodide (2) reveal the presence of a low-energy transition in the MIR region that has not been reported before. The new absorption feature and the known NIR band are both assigned to intervalence charge-transfer (IVCT) transitions. To obtain insight into the electronic structures of 1 and 2, DFT calculations with the BP86 functionals and different basis sets have been performed. Based on the molecular orbital scheme of cation 1, one band corresponds to the transition between the highest occupied d(x(2)-y(2)) orbitals on the two iron centers, whereas the other one is assigned to a transition from a lower-lying d(z(2)) orbital to the d(x(2)-y(2)) orbital. For comparison, the doubly bridged bisfulvalenide diiron cation (3) has been investigated by optical absorption spectroscopy and DFT calculations. The experimental and theoretical results are discussed with respect to the degree of electron localization/delocalization in these systems.

  18. 叶绿素的紫外吸收谱%The Ultraviolet Absorption Spectra of the Chlorophyll

    Institute of Scientific and Technical Information of China (English)

    范雅; 蔡红星; 李霜; 王雪萍

    2011-01-01

    In view of the important effect of the photosynthesis on human's survival and developments, the spectra of the chlorophyll (the key carrier of the photosynthesis) were analyzed and studied in this article. On the base of the theories, the ultraviolet absorption spectra of the chlorophyll were measured and analyzed by the WGD-8A grating spectrometer. Results showed that there was a strong absorption peak in the ultraviolet absorption spectra of the chlorophyll, which lied at about 230 nm and shifted towards longer wavelength with the increase of the content of the chlorophyll. Besides, there were two wide absorption bands at 270nm and 330nm, which were not dependent on the content of the chlorophyll.%鉴于光合作用对人类生存和发展的极其重要的作用,本文选取其关键载体--叶绿素进行其光谱的分析研究.在理论分析的基础上,使用WGD-8A型多功能组合光谱仪测量并分析了叶绿素的紫外吸收谱.结果表明,叶绿素溶液在紫外波段230 nm左右有一较强的吸收峰,且随溶液浓度的增大向长波方向移动;另外在270 nm和330 nm处有两个较宽的吸收带,其位置不依赖于溶液浓度.

  19. Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples.

    Science.gov (United States)

    Gomez, Anthony L; Renzi, Ronald F; Fruetel, Julia A; Bambha, Ray P

    2012-05-10

    An integrated fiber-optic sensor is described that uses incoherent broadband cavity enhanced absorption spectroscopy for sensitive detection of aqueous samples in nanoliter volumes. Absorption was measured in a 100 µm gap between the ends of two short segments of multimode graded-index fiber that were integrated into a capillary using a precision machined V-grooved fixture that allowed for passive fiber alignment. The other ends of the fibers were coated with dielectric mirrors to form a 9.5 cm optical resonator. Light from a fiber-coupled superluminescent diode was directly coupled into one end of the cavity, and transmission was measured using a fiber-coupled silicon photodiode. Dilute aqueous solutions of near infrared dye were used to determine the minimum detectable absorption change of 2.4×10(-4) under experimental conditions in which pressure fluctuations limited performance. We also determined that the absolute minimum detectable absorption change would be 1.6×10(-5) for conditions of constant pressure in which absorption measurement is limited by electronic and optical noise. Tolerance requirements for alignment are also presented.

  20. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  1. Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD

    Science.gov (United States)

    Hou, Guo-Fu; Geng, Xin-Hua; Zhang, Xiao-Dan; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying

    2011-07-01

    A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si-H stretching mode shifts from 2000 cm-1 to 2100 cm-1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm-1 to 620 cm-1. At the same time the SiH/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.

  2. Photoluminescence and Optical Absorption of Pure NanocrystallineTiO2 Anatase and Rutile at Room Temperature

    Directory of Open Access Journals (Sweden)

    L. Kernazhitsky

    2013-10-01

    Full Text Available The optical absorption and photoluminescence of nanocrystalline TiO2 samples of anatase and rutile were investigated at room temperature. Nanocrystalline TiO2 samples were synthesized in the form of pure anatase or rutile and studied by X-ray diffraction, X-ray fluorescence, Raman spectroscopy, optical absorption and photoluminescence (PL. PL was studied at room temperature when excited by intense UV (3.68 eV by a nitrogen laser. For the first time for nanocrystalline TiO2 a features in the high-resolution PL spectra, including the exciton band and interband transitions were registered. It is concluded that the processes of absorption and emission of light near the edge of the forbidden zone occur with the participation of the same electronic transitions. PL bands, including the peaks at 2.71-2.81 eV in the anatase and rutile arise due to exciton recombination in the TiO2 lattice oxygen vacancies. The exciton peak at 2.91 eV is attributed to the recombination of self-trapped excitons in anatase or to the free exciton in rutile, respectively. PL bands within 3.0-3.3 eV attributed to indirect and direct allowed transitions due to electron-hole recombination. PL bands at 3.03 eV and 3.26 eV, attributed to the emission of free excitons near the fundamental absorption edge of rutile and anatase, respectively. The influence of TiO2 crystal structure and calcination temperature of the samples on the PL spectra and optical absorbtion is discussed.

  3. Optical, mass, and auger spectra from e-bombarded KBr

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, E.T.; Kamada, M.

    1988-01-01

    We have measured the mass spectrum and optical emission lines of neutral potassium atoms ejected from KBr at T = 300/degree/K and 443/degree/K bombarded by 2-keV electrons. The room-temperature data may be complicated by the nonstoichiometry of the alkali-enriched sample surface and seem difficult to interpret. The high-temperature sample, which maintains the proper stoichiometry, produces data in support of gas-phase excitation of alkali atoms desorbed from the surface. 15 refs., 4 figs.

  4. Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain

    Institute of Scientific and Technical Information of China (English)

    YU Gui-Li; JIA Yong-Lei

    2009-01-01

    Considering the exciton effect,the linear optical spectra of semiconducting single-walled carbon nanotubes (SWNTs) under uniaxial strain are theoretically studied by using the standard formulae of Orr and Ward [Mol.Phys.20(1971)513].It is found that due to the wrapping effect existing in the semiconducting zigzag tubes,the excitation energies of the linear optical spectra show two different kinds of variations with increasing uniaxial strain,among which one decreases such as tube (11,0),and the other increases firstly and then decreases such as tube (10,0).These variations of the linear optical spectra are consistent with the changes of the exciton binding energies or the (quasi)continuum edge of these SWNTs calculated in our previous work,which can be used as a supplemented tool to detect the deformation degree of an SWNT under uniaxiai strain.

  5. Absolute Determination of Optical Constants by a Direct Physical Modeling of Reflection Electron Energy Loss Spectra

    CERN Document Server

    Xu, H; Toth, J; Tokesi, K; Ding, Z J

    2016-01-01

    We present an absolute extraction method of optical constants of metal from the measured reflection electron energy loss (REELS) spectra by using the recently developed reverse Monte Carlo (RMC) technique. The method is based on a direct physical modeling of electron elastic and electron inelastic scattering near the surface region where the surface excitation becomes important to fully describe the spectrum loss feature intensity in relative to the elastic peak intensity. An optimization procedure of oscillator parameters appeared in the energy loss function (ELF) for describing electron inelastic scattering due to the bulk- and surface-excitations was performed with the simulated annealing method by a successive comparison between the measured and Monte Carlo simulated REELS spectra. The ELF and corresponding optical constants of Fe were obtained from the REELS spectra measured at incident energies of 1000, 2000 and 3000 eV. The validity of the present optical data has been verified with the f- and ps-sum r...

  6. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    Science.gov (United States)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  7. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydration...... shell which strongly interact with the molecule are treated explicitly while the waters in the bulk are treated by a continuum model. The structures are optimized and the harmonic force elds are calculated. The derivatives needed to simulate the Raman and ROA intensities are calculated from first...... principles. The simulated Raman and ROA spectra have been compared to recently meassured spectra on amino acids and peptides. The simulations and understanding from them are used to interpret the Raman and ROA spectra of proteins. A comparison to vibrational absorption (VA) and vibrational circular dichroism...

  8. A Nano-Biosensor for DNA Sequence Detection Using Absorption Spectra of SWNT-DNA Composite

    Directory of Open Access Journals (Sweden)

    J. Bansal

    2011-01-01

    Full Text Available A biosensor based on Single Walled Carbon Nanotube (SWNT-Poly (GTn ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes.

  9. Electron Paramagnetic Resonance and Optical Absorption Studies on Copper Ions in Mixed Alkali Cadmium Phosphate Glasses

    Institute of Scientific and Technical Information of China (English)

    G.Giridhar; M.Rangacharyulu; R.V.S.S.N.Ravikumar; P.Sambasiva Rao

    2009-01-01

    Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Hamiltonian parameters obtained from room temperature EPR spectra are: g||=2.437, g⊥=2.096, A||=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g||=2.441, g⊥=2.088, A||=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2 and g||=2.433, g⊥=2.096, A||=125×10-4 cm-1, A⊥=32×10-4 cm-1 for LiNaCdP3. These EPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.

  10. Modal-field spectra analysis of pump absorption efficiency in double-clad rare-earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Doya, Valérie; Peterka, Pavel

    2017-03-01

    High-power fiber lasers became important devices in many industrial and health care fields. The key for high-power operation of fiber lasers is the double-clad fiber technology transforming lower-brightness pumps into high-brightness laser beams. Efficient pump absorption in the active core of the double-clad fiber is crucial for reliable and economic operation of high power fiber lasers. In our recent work we extensively studied the dependence of the pump absorption efficiency on bending and twisting of the fiber. For the first time we theoretically predicted and later experimentally demonstrated significant enhancement of pump absorption efficiency by simultaneous bending and twisting of the double-clad fiber. In this contribution we provide extension of our previous theoretical studies using beam propagation model incorporating laser rate equations. The effect of bending and twisting on signal amplification in the double-clad fiber is analyzed for different input signal powers, and moreover, pump field modal spectra are evaluated. The results show that in correspondence with pump absorption efficiency the gain of the amplifier is enhanced under the conditions of simultaneously bent and twisted fiber. The key to understand the effect of bending and twisting on pump absorption efficiency consists in modal spectra of pump field propagating in the first clad of the double clad fiber. Three cases of straight, bent only, and simultaneously bent and twisted fiber are compared. The comparison shows that bending causes increase of the spectral range of propagating modes, but does not bring about mode-mixing. Substantial mode-mixing is established only in simultaneously bent and twisted fiber.

  11. Mid-infrared absorption spectra of dimethyl methylphosphonate as molecular simulant of nerve agents

    Institute of Scientific and Technical Information of China (English)

    Yonggang Zhang; Zhenxing Cheng; Aizhen Li; Songlin Feng

    2006-01-01

    The fine mid-infrared absorption features of dimethyl methylphosphonate vapor have been characterized by using Fourier transforms infrared spectroscopy, and the nitrous oxide was used for calibration purpose. The results show that the main P-O-C and P=O bonds related absorption bands of dimethyl methylphosphonate vapor are peaked at 1050.01 and 1275.76 cm-1 respectively, those two bands show continuous characteristics at resolution of 0.125 cm-1.

  12. [Efficient method of analysis of optical spectra from kinetic studies].

    Science.gov (United States)

    Skvortsov, A N

    2009-01-01

    The application of principal components for the analysis of kinetic data obtained by optical spectroscopy is described. The use of singular value decomposition (SVD) for stable and reproducible generation of principal components, details of realization, advantages and drawbacks of the method are discussed. The described method with minor modifications may be used in a wide variety of UV-spectroscopy applications in molecular biology and biophysics. The developed method was applied to study the reaction of platinum anticancer drug, cisplatin, with DNA and methionine. Use of sensitive UV-spectroscopy allowed to study low platinum concentrations, typical for biological systems. It has been shown, that reactions of cisplatin with DNA and L-methionine generally follow the same pathway both at high and low concentrations.

  13. Hardware authentication using transmission spectra modified optical fiber.

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert K.; Romero, Juan A.

    2010-09-01

    The ability to authenticate the source and integrity of data is critical to the monitoring and inspection of special nuclear materials, including hardware related to weapons production. Current methods rely on electronic encryption/authentication codes housed in monitoring devices. This always invites the question of implementation and protection of authentication information in an electronic component necessitating EMI shielding, possibly an on board power source to maintain the information in memory. By using atomic layer deposition techniques (ALD) on photonic band gap (PBG) optical fibers we will explore the potential to randomly manipulate the output spectrum and intensity of an input light source. This randomization could produce unique signatures authenticating devices with the potential to authenticate data. An external light source projected through the fiber with a spectrometer at the exit would 'read' the unique signature. No internal power or computational resources would be required.

  14. Optical and UV spectra of RS CVn stars

    Science.gov (United States)

    Ramsey, Lawrence W.

    1990-01-01

    The observed phenomenology in RS CVn and related binary systems is considered in terms of its modeling according to solar activity by examining UV and optical spectroscopy. Current data are examined to validate the existence of cool starspots, plage, prominences, and flares, as well as to determine the consistency of spatial correlations given by these data. RS CVn stars show spots at or near the poles, contrasting the low latitudes of solar spots; plage appears to be associated with cool spots on BY Draconis-like systems; plage and prominences, although identified as distinct phenomena, are theorized to be the same event in some cases. More spectroscopic and photometric observations are proposed to identify the detailed structure and locations of spots. UV and visible data are also required to distinguish plage regions from flare variations as well as determine the relation of extended structures to starspot and plage phenomena in RS CVn systems.

  15. Optical spectra of the heavy fermion uniaxial ferromagnet UGe2

    Science.gov (United States)

    Guritanu, V.; Armitage, N. P.; Tediosi, R.; Saxena, S. S.; Huxley, A.; van der Marel, D.

    2008-11-01

    We report a detailed study of UGe2 single crystals using infrared reflectivity and spectroscopic ellipsometry. The optical conductivity suggests the presence of a low-frequency interband transition and a narrow free-carrier response with strong frequency dependence of the scattering rate and effective mass. We observe sharp increase in the low-frequency mass and reduction in scattering rate below the upper ferromagnetic transition TC=53K indicating the emergence of a heavy fermion state triggered by the ferromagnetic order. The characteristic changes are exhibited most strongly at an energy scale below 12 meV. They recover their unrenormalized value above TC and for ω>40meV . In contrast no sign of an anomaly is seen at the lower transition temperature of unknown nature, Tx˜30K , observed in transport and thermodynamic experiments.

  16. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Gronoff, G.; Mertens, C. J.; Norman, R. B. [NASA LaRC, Hampton, VA (United States); Maggiolo, R. [BIRA-IASB, Avenue Circulaire 3, 1180 Brussels (Belgium); Wedlund, C. Simon [Aalto University School of Electrical Engineering Department of Radio Science and Engineering, P.O. Box 13000, FI-00076 Aalto (Finland); Bell, J. [National Institute of Aerospace, Hampton, VA (United States); Bernard, D. [IPAG, Grenoble (France); Parkinson, C. J. [University of Michigan, MI (United States); Vidal-Madjar, A., E-mail: Guillaume.P.Gronoff@nasa.gov [Observatoire de Paris, Paris (France)

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  17. Comparison between reflectance spectra obtained with an integrating sphere and a fiber optic collection system

    Science.gov (United States)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Koenig, Karsten; Bakken, B.; Grini, D.; Standahl, O.; Milner, Thomas E.; Berns, Michael W.; Nelson, J. Stuart; Svaasand, Lars O.

    1996-01-01

    Visible reflectance spectra of human skin might serve as a valuable tool for determining blood volume and pigmentation. They can therefore be used to evaluate the response to various skin treatments such as, e.g., port-wine stain therapy. A fiber-optic system is preferable for clinical evaluation of the therapeutic response due to its higher flexibility. Diffuse reflectance spectra obtained using a fiber system are compared with the corresponding spectra from an integrating sphere system. The results show that the most accurate reflectance spectra are obtained using the integrating sphere set-up. The aperture should then be much larger than the optical penetration depth of the skin. The system will then collect all the reflected light from superficial and deeper layers, and this enables a qualitative comparison between the wavelengths. However, the size and localization of many dermal lesions limit its use. In these cases the fiber-optic system is preferable. Light with an optical penetration depth shorter than the distance between the excitation and collecting fibers is, however, favorized. Normal dermis has typically a penetration depth of 600 micrometers and 2000 micrometers for, respectively, green/yellow and red light. Consequently, the collection efficiency of a typical fiber-optic system with a distance of 100 - 200 micrometers between the emitting and collecting fibers, will be higher in the green/yellow than in the red part of the spectrum. It is, however, important to remember that the relevant parameter is the change in reflectance at each particular wavelength, rather than comparison between the wavelengths. When such a comparison is required, the spectra collected by the fiber-optic system can be calibrated. The more accurate integrating sphere system is maybe preferable in a research laboratory environment, whereas the more flexible fiber-optic system is the most applicable for use in the clinic.

  18. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    Science.gov (United States)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  19. Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: density functional theory calculations.

    Science.gov (United States)

    Xu, Jie; Wang, Lei; Liang, Guijie; Bai, Zikui; Wang, Luoxin; Xu, Weilin; Shen, Xiaolin

    2011-01-01

    The molecular structures and absorption spectra of triphenylamine dyes containing variable thiophene units as the spacers (TPA1-TPA3) were investigated by density functional theory (DFT) and time-dependent DFT. The calculated results indicate that the strong conjugation is formed in the dyes and the length of conjugate bridge increases gradually with the increased thiophene spacers. The interfacial charge transfer between the TiO2 electrode and TPA1-TPA3 are electron injection processes from the excited dyes to the semiconductor conduction band. The simulated absorption bands are assigned to π→π* transitions, which exhibit appreciable red-shift with respect to the experimental bands due to the lack of direct solute-solvent interaction and the inherent approximations in TD-DFT. The effect of thiophene spacers on the molecular structures, absorption spectra and photovoltaic performance were comparatively discussed and points out that the choice of appropriate conjugate bridge is very important for the design of new dyes with improved performance.

  20. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra

    Science.gov (United States)

    Lu, Liping; Hu, Taoping; Xu, Zhigang

    2017-10-01

    Carotenoids can self-assemble in hydrated polar solvents to form J- or H-type aggregates, inducing dramatic changes in photophysical properties. Here, we measured absorption and emission spectra of astaxanthin in ethanol-water solution using ultraviolet-visible and fluorescence spectrometers. Two types of aggregates were distinguished in mixed solution at different water contents by absorption spectra. After addition of water, all probed samples immediately formed H-aggregates with maximum blue shift of 31 nm. In addition, J-aggregate was formed in 1:3 ethanol-water solution measured after an hour. Based on Frenkel exciton model, we calculated linear absorption and emission spectra of these aggregates to describe aggregate structures in solution. For astaxanthin, experimental results agreed well with the fitted spectra of H-aggregate models, which consisted of tightly packed stacks of individual molecules, including hexamers, trimers, and dimers. Transition moment of single astaxanthin in ethanol was obtained by Gaussian 09 program package to estimate the distance between molecules in aggregates. Intermolecular distance of astaxanthin aggregates ranges from 0.45 nm to 0.9 nm. Fluorescence analysis showed that between subbands, strong exciton coupling induced rapid relaxation of H-aggregates. This coupling generated larger Stokes shift than monomers and J-aggregates.

  1. Optical spectra of CdMnSe of nano-ferro- and antiferro-magnets.

    Science.gov (United States)

    Proshchenko, Vitaly; Dahnovsky, Yuri

    2015-10-28

    We study optical transitions in CdSe quantum dots doped by Mn atoms. At low concentrations the transitions are spin-forbidden. Nevertheless, strong light absorption was experimentally found. To explain this effect we propose a new mechanism that includes two or more Mn atoms closely placed to each other containing the electrons with opposite spin projections. In this case the spin-flip is unnecessary. In addition we study absorption from quantum dots containing two Mn atoms with different multiplicities. We find that the strongest absorption from the gap is for an antiferromagnetic arrangement. The obtained results confirm the experimental concentration dependencies.

  2. Calculation of Raman optical activity spectra for vibrational analysis.

    Science.gov (United States)

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-01

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  3. Solvents effect on the absorption and fluorescence spectra of 7-diethylamino-3-thenoylcoumarin: evaluation and correlation between solvatochromism and solvent polarity parameters.

    Science.gov (United States)

    Basavaraja, Jana; Inamdar, S R; Suresh Kumar, H M

    2015-02-25

    Effect of solvents of varying polarities on absorption and fluorescence spectra and dipole moment of laser dye: 7-diethylamino-3-thenoylcoumarin (DETC) has been investigated. A small band shift is obtained in the absorption spectra compared to emission spectra. The spectral shifts were correlated with Catalan's parameters using linear solvation energy relationship. It reveals that non-specific interaction measured by solvent polarity has more influence on absorption and solvent dipolarity contribution is significant in case of fluorescence. A bathochromic shift observed in absorption and emission spectra with increasing solvent polarity, which implied that the transition involved is π→π(∗). The solvatochromic correlations were used to estimate the excited state dipole moment using experimentally determined ground state dipole moment. The observed single-state excited state dipole moment is found to be greater than the ground state.

  4. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  5. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  6. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  7. A new algorithm to retrieve chromophoric dissolved organic matter (CDOM) absorption spectra in the UV from ocean color

    Science.gov (United States)

    Cao, Fang; Miller, William L.

    2015-01-01

    Accurate estimation of the absorption coefficient (ag) for chromophoric dissolved organic matter (CDOM) over ultraviolet (UV) and short visible radiation wavelengths (with λ = 275-450 nm) is crucial to provide a robust assessment of the biogeochemical significance of UV in the global ocean. Using a training data set spanning a variety of water types from the clearest open ocean to dynamic inshore waters, a novel algorithm to accurately resolve CDOM absorption spectra from ocean color is presented. Employing a suite of multivariate statistical approaches (principal component analysis, cluster analysis, and multiple linear regression), this new algorithm was developed with matched field data for CDOM spectra and remote sensing reflectance (Rrs) at Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands. Freed from any presupposition about CDOM spectral shape or conventional spectral extrapolations from visible data, our algorithm allows direct retrieval of a fully resolved CDOM absorption spectrum over UV wavelengths from visible Rrs and further enables a global scale view of the dynamics of CDOM over different water types. Accuracy of ag retrieval is good, with a mean absolute percent difference for ag in the UV of ˜25%. With fully resolved spectra, maps of calculated CDOM spectral slopes (S275-295, S350-400) and slope ratios (SR) are presented with the potential to provide new information about the chemical composition (e.g., molecular weight and aromaticity), sources, transformation, and cycling pathways of CDOM on global as well as regional scales. The new algorithm will contribute to improved accuracy for photochemical and photobiological rate calculations from ocean color.

  8. Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates

    Science.gov (United States)

    Perlík, Václav; Šanda, František

    2017-08-01

    We present a computational model for the spectra of molecular aggregates with signatures of vibronic progression. Vibronic dynamics is implemented by coupling the dynamics of Frenkel excitons with underdamped vibrations. Vibrational dynamics includes linear damping resulting in the exponential decay and quadratic damping inducing subexponential or power law relaxation and increasing vibrational decoherence as demonstrated on lineshapes of the absorption spectrum. Simulations of the third-order coherent response account for bath reorganization during excitonic transport, which allows us to study the line-shape evolution of cross peaks of 2D spectra.

  9. The effect of absorption and coherent interference in the photoluminescence and electroluminescence spectra of SRO/SRN MIS capacitors.

    Science.gov (United States)

    Juvert, Joan; González-Fernández, Alfredo Abelardo; Llobera, Andreu; Domínguez, Carlos

    2013-04-22

    In this paper we present a technique that can be used to study the effect of absorption and coherent interference in the luminescence of multilayer structures. We apply the technique to the measured photoluminescence and electroluminescence spectra of MIS capacitors where the insulator is composed of a silicon rich oxide (SRO)/silicon rich nitride (SRN) bilayer structure. We remove the effect of the multilayer stack on the measured photoluminescence spectrum of the samples without the metal contact to find the intrinsic spectrum. Then we apply the effect of the MIS structure on the intrinsic spectrum in order to calculate the electroluminescence spectrum. Good agreement with the experimentally measured EL spectrum is found. We discuss which parameters affect the spectra most significantly.

  10. Solvent effects on the absorption spectra of potentially pharmacologically active 5-alkyl-5-arylhydantoins: A structure-property relationship study

    Directory of Open Access Journals (Sweden)

    Hmuda Sleem F.

    2013-01-01

    Full Text Available To obtain an insight into the interactions of potential anticonvulsant drugs with their surrounding, two series of 5-methyl-5-aryl- and 5-ethyl-5-arylhydantoins were synthesized and their absorption spectra were recorded in the region from 200 to 400 nm in a set of selected solvents. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima shifts were analyzed by means of the linear solvation energy relationship (LSER concept of Kamlet and Taft. The ratio of the contributions of specific and nonspecific solvent-solute interactions were correlated with the corresponding ADME properties of the studied compounds. The correlation equations were combined with different physicochemical parameters to generate new equations, which demonstrate the reasonable relationships between solvent-solute interactions and the structure-activity parameters. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  11. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) to identify and quantify the reaction products. Absorption cross sections were quantified over the wavelength range 220-320 nm. At 240 nm, sigma(HOC(CH3)2CH2) = (2.4 +/- 0.3) x 10(-18) and sigma(HOC(CH3)2CH2O2) = (3.4 +/- 0.5) X 10(-18) cm2 molecule-1 have been obtained. Observed rate constants for the self...

  12. Extragalactic background light absorption signal in the 0.26-10 TeV spectra of blazars

    CERN Document Server

    Vasilev, V

    1999-01-01

    Recent observations of the TeV gamma-ray spectra of the two closest active galactic nuclei (AGNs), Markarian 501 (Mrk 501) and Markarian 421 (Mrk 421), by the Whipple and HEGRA collaborations have stimulated efforts to estimate or limit the spectral energy density (SED) of extragalactic background light (EBL) which causes attenuation of TeV photons via pair-production when they travel cosmological distances. In spite of the lack of any distinct cutoff-like feature in the spectra of Mrk 501 and Mrk 421 (in the interval 0.26-10 TeV) which could clearly indicate the presence of such a photon absorption mechanism, we demonstrate that strong EBL attenuation signal (survival probability of 10 TeV photon (~10^{-2}) may still be present in the spectra of these AGNs. This attenuation could escape detection due to a special form of SED of EBL and unknown intrinsic spectra of these blazars. Here we show how the proposed and existing experiments, VERITAS, HESS, MAGIC, STACEE and CELESTE may be able to detect or severely ...

  13. A search for weak ultraviolet interstellar absorption features in IUE spectra of Rho Ophiuchi and Zeta Ophiuchi

    Science.gov (United States)

    Welty, D. E.; Thorburn, J. A.; Hobbs, L. M.; York, D. G.

    1992-01-01

    We have applied procedures designed to reduce substantially the nonrandom, so-called 'fixed-pattern' noise present in IUE spectra to archival long-wavelength high-dispersion spectra of Rho Ophiuchi and Zeta Ophiuchi. Substantial elimination of the fixed-pattern noise via flat fielding can yield 2sigma equivalent width limits of 5-10 mA from the sum of a small number (about less than 5) of well-exposed archival spectra, and increases confidence in the reality of any weak features found. Examination of complete long-wavelength (about 2200-3250 A) spectra of these two stars has revealed, in addition to many known strong absorption lines, several lines of Fe I and Si I which had not previously been reported, as well as a small number of possible unidentified lines. We also present substantially improved upper limits to the equivalent widths of a number of other weak lines; limits an order of magnitude smaller, now achievable with the HST GHRS, should produce detections of some of these.

  14. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations...... with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  15. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    Science.gov (United States)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  16. DSC, ESR and optical absorption studies of Cu{sup 2+} ion doped in boro cadmium tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri Pavani, P., E-mail: gayathri.potturi@gmail.com [Glassy Material Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India); Prasad, M.; Chandra Mouli, V. [Glassy Material Research Laboratory, Department of Physics, Osmania University, Hyderabad 500 007 (India)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Variation in different physical parameters of the glass system is studied. Black-Right-Pointing-Pointer Variation in glass transition temperature is discussed in terms of different structural parameters. Black-Right-Pointing-Pointer ESR analysis and the bonding parameters determination of the present glass system is interesting. - Abstract: Physical, optical absorption, ESR and DSC studies on 50 B{sub 2}O{sub 3}-(50 - x) CdO-xTeO{sub 2} glasses containing Cu{sup 2+} spin probe have been carried out. Density measurement is carried out by Archimedes principle. Variation in glass transition temperature is discussed in terms of physical parameters. ESR results show that g{sub Parallel-To} > g{sub Up-Tack} indicating that the Cu{sup 2+} ions is in tetragonal distorted octahedral site and its ground state is d{sub x{sub 2-y{sub 2}}}. There are considerable changes in g{sub Parallel-To }, g{sub Up-Tack} and A{sub Parallel-To} values with increasing the concentration of CdO in BCT glass systems. The optical absorption spectra results show that the absorption peak of Cu{sup 2+} is a function of composition. The observed optical absorption peak of Cu{sup 2+} has been found to be minimum at 776 nm for x = 30 mol.% of CdO content. The variations in the physical, optical and bonding parameters clearly indicate the structural changes in the present glass system with varied CdO content.

  17. Resonance raman and absorption spectra of isomeric retinals in their lowest excited triplet states

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N.-H.; Houee-Levin, C.

    1985-01-01

    implications about the size of the energy barriers separating the various triplet species are discussed. The resonance Raman spectra obtained by using either anthracene (ET = 177.7 kJ mol-1) or naphthalene (ET = 254.8 kJ mol-1) as sensitizers were virtually identical for the corresponding triplet states from...

  18. Temperature dependence of absorption and fluorescence spectra of bacteriochlorophylls in vivo and in vitro

    NARCIS (Netherlands)

    Goedheer, J.C.

    1972-01-01

    The “short wave” far-red absorption bands (795–825 nm) of bacteriochlorophyll in photosynthetic red bacteria are sharpened but not shifted upon cooling, the “long wave” far-red bands (840–890 nm) are sharpened less but shifted appreciably towards longer wavelengths. The fluorescence bands are shifte

  19. First-principles calculations of X-ray absorption spectra for warm dense methane

    Science.gov (United States)

    Li, Zi; Wang, Cong; Li, Dafang; Kang, Wei; Zhang, Ping

    2017-09-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on materials under extreme conditions. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations for warm dense methane under thermodynamical conditions along a Hugoniot curve. From the molecular dynamics trajectories, the detailed atomic structures are examined for each condition. The carbon K-shell X-ray absorption spectrum is calculated, and its change with temperature and pressure is discussed. The methane systems under extreme conditions may contain radicals CHx (x = 1,2,3), molecules CH4, and carbon chains CmHn (m,n >1). These various products show quite different contributions to the total X-ray spectrum due to the different atomic and electronic structures. The change of the total X-ray spectrum along the Hugoniot curve is then attributed to the change of the products induced by the temperature and pressure. Some clear signatures on the X-ray absorption spectrum under different thermodynamical conditions are proposed, which provide useful information for future X-ray experiments.

  20. Optimization of Optical Absorption of Colloids of SiO2@Au and Fe3O4@Au Nanoparticles with Constraints

    Science.gov (United States)

    Xue, Xiaozheng; Sukhotskiy, Viktor; Furlani, Edward P.

    2016-01-01

    We study the optical response of monodisperse colloids of core-shell plasmonic nanoparticles and introduce a computational approach to optimize absorption for photothermal applications that require dilute colloids of non-interacting particles with a prescribed volume fraction. Since the volume fraction is held constant, the particle concentration is size-dependent. Optimization is achieved by comparing the absorption spectra of colloids as a function of particle size and structure. We demonstrate the approach via application to colloids of core-shell SiO2@Au and Fe3O4@Au nanoparticles with particle sizes that range from 5–100 nm and with the incident wavelength varying from 600–1200 nm. The absorption spectra are predicted using Mie theory and the analysis shows that there is a unique mix of parameters (core radius, shell thickness, wavelength) that maximize absorption, independent of the value of volume fraction. We show that lossy Fe3O4 cores produce a much broader absorption peak with much less sensitivity to variations in particle structure and wavelength than lossless SiO2 cores. This approach can be readily adapted to colloids of nanoparticles with arbitrary materials, shapes and structure using appropriate numerical methods to compute the absorption spectra. As such, it is useful for the rational design of colloids and process variables for a broad range of photothermal applications. PMID:27786279

  1. Discrepancy between ambient annealing and H{sup +} implantation in optical absorption of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinpeng, E-mail: hitljp@gmail.com [College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu (China); Li, Chundong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang (China)

    2016-05-15

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H{sup +} implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to V{sub O}, whereas the absorption centers caused by H{sup +} implantation and H{sub 2} annealing are primarily associated with V{sub O} and ionized Zn{sub i}.

  2. Design of a simple cryogenic system for ultraviolet-visible absorption spectroscopy with a back-reflectance fiber optic probe.

    Science.gov (United States)

    Vinyard, Andrew; Hansen, Kaj A; Byrd, Ross; Stuart, Douglas A; Hansen, John E

    2014-01-01

    We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter electron paramagnetic resonance (EPR) tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected using the fiber optic bundle and analyzed using a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 and 700 nm. Absorption intensity at 506, 525, 545, and 567 nm was found to be proportional to concentration, displaying Beer's law-like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64. These 6% smaller values we attribute to the curvature of the EPR tube and transmission/reflection losses. This system is particularly well-suited to studying the kinetics and dynamics of chemical reactions at cryogenic temperatures. The rapid response (100 ms) and multiplex advantage provided the opportunity of recording simultaneous time courses at several wavelengths following initiation of a chemical reaction with a pulsed laser source.

  3. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between...... transmission cell controlled within 0.02 degreesC. Pathlengths of 50 mum and 0.4 mm were used in the mid- and near-infrared spectral region, respectively. Difference spectra were used to determine the effect of temperature on the water spectra quantitatively. These spectra were obtained by subtracting the 37...

  4. The bispectrum of the Lyman-alpha forest at z~2-2.4 from a Large sample of UVES QSO Absorption Spectra (LUQAS)

    CERN Document Server

    Viel, M; Heavens, A; Hähnelt, M G; Kim, T S; Springel, V; Hernquist, L

    2004-01-01

    We present a determination of the bispectrum of the flux in the Lyman-alpha forest of QSO absorption spectra obtained from LUQAS which consists of spectra observed with the high resolution Echelle spectrograph UVES. Typical errors on the observed bispectrum as obtained from a jack-knife estimator are ~ 50%. For wavenumbers in the range 0.03 s/km 2.

  5. Incorporation of AgI clusters into the cages of zeolites LTA and FAU observed by optical spectra and X-ray diffraction patterns

    Science.gov (United States)

    Kodaira, Tetsuya; Ikeda, Takuji; Takeo, Harutoshi

    1999-02-01

    The loading of AgI into the cages of zeolites LTA and FAU was performed by vapor-phase adsorption. The successful incorporation of AgI clusters into the cages was confirmed by optical absorption spectra and X-ray powder diffraction patterns. Large blue shifts of the absorption edges were observed in the spectra of adsorbed AgI to both zeolites, compared with the lowest excited state of AgI in the bulk. The present observation of the shift implies that a strong quantum confinement in the photoexcited state of AgI occurs, which leads to the conclusion that AgI clusters have been formed in the cages. In the X-ray powder diffraction pattern of AgI-loaded LTA, superlattice reflection peaks are observed which cannot be assigned either to the reflection of LTA or the AgI in the bulk.

  6. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data

    Directory of Open Access Journals (Sweden)

    Dariusz Ficek

    2004-12-01

    Full Text Available Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(λ by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP, undetected by HPLC. A preliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450-650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.

  7. Temperature-dependent optical absorption of SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Dirk J.; Irmscher, Klaus; Naumann, Martin; Guguschev, Christo; Galazka, Zbigniew; Uecker, Reinhard [Leibniz Institute for Crystal Growth, Berlin (Germany)

    2015-09-15

    The optical absorption edge and near infrared absorption of SrTiO{sub 3} were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO{sub 3}-based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO{sub 3}, measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Theoretical Investigation of the Optical Spectra of Organic Compounds in Natural Surrounding

    Science.gov (United States)

    Pomogaev, V. A.; Artyukhov, V. Ya.

    2016-08-01

    The hybrid multiscale approximation based on molecular dynamics, quantum mechanics, and statistical theory is used to generate profiles of electronic vibrational absorption and fluorescence bands of some organic compounds and biological objects whose photophysical properties specifically depend on external conditions. A temperature dependence of the spectrum width and intensity of transition to the long-wavelength band of benzene surrounded by cyclohexane molecules is demonstrated. Statistical broadband absorption spectra for estradiol in ethanol, hexane, and dimethyl sulfoxide have been obtained and analyzed at room temperature together with a wide spectrum of transitions to numerous excited states of Trp-cage miniprotein. The absorption and emission spectra of 9-cyan anthracene have been generated under various thermodynamic conditions. This allows changes in the spectral profile with increasing temperatures and pressure to be detected. A dependence of the tryptophan spectra on the protein microsurrounding is investigated. The possibility of charge transfer from tryptophan residue to the eupatorin molecule trapped by human serum albumin is analyzed. Spectral properties and charge transfer from the excited donor to acceptor states are calculated using the polarizable embedding approach for modeling of surrounding protein structure.

  9. Characterization of Mn{sup 2+} doped tetramethylammoniumtetrachlorozincate single crystal using EPR and optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002, Uttar Pradesh (India)], E-mail: ram_kripal2001@rediffmail.com; Maurya, Manju [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002, Uttar Pradesh (India)], E-mail: mmanju8@yahoo.co.in

    2008-04-15

    Studies of fine and hyperfine structures of paramagnetic resonance spectra in single crystals of Mn{sup 2+}: tetramethylammoniumtetrachlorozincate are reported. As sufficient numbers of lines were not obtained at room temperature, measurements were done at liquid nitrogen temperature (77 K). The Mn{sup 2+} spin Hamiltonian parameters are evaluated employing a large number of resonant line positions observed for various orientations of the external magnetic field. The values of the zero field parameters that give good fit to the observed EPR spectra are obtained. The values of different parameters are: g = 1.9834 {+-} 0.0002, A = (105 {+-} 2) x 10{sup -4} cm{sup -1}, B = (100 {+-} 2) x 10{sup -4} cm{sup -1}, D = (349 {+-} 2) x 10{sup -4} cm{sup -1}, E = (106 {+-} 2) x 10{sup -4} cm{sup -1} and a = (21 {+-} 1) x 10{sup -4} cm{sup -1}. The percentage of covalency of the metal-ligand bond has also been determined. From the optical absorption study, the lattice distortion is suggested. The observed bands are assigned as transitions from the {sup 6}A{sub 1g}(S) ground state to various excited quartet levels of Mn{sup 2+} ion in a cubic crystalline field. The electron repulsion parameters (B and C) and crystal field parameters (D{sub q} and {alpha}) providing a good fit to the observed optical spectra are evaluated and the values are: B = 737 cm{sup -1}, C = 2322 cm{sup -1}, D{sub q} = 670 cm{sup -1} and {alpha} = 76 cm{sup -1}. The considerable decrease in the values of B and C parameters from free ion values (B = 960 cm{sup -1}, C = 3325 cm{sup -1}) has indicated that there exists a fair amount of covalent bonding between the central metal ion and the ligand. On the basis of deviations {delta}g = g - 2.0023 it has been ascertained whether electrons are transferred to or from the central ion by the action of bonding.

  10. Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films

    Science.gov (United States)

    Triana, C. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-01-01

    Optical absorption in oxygen-deficient and Li+-ion inserted titanium oxide films was studied in the framework of small-polaron hopping. Non-stoichiometric TiOy films with 1.68 ≤ y ≤ 2.00 were deposited by reactive DC magnetron sputtering and were subjected to electrochemical intercalation of Li+-ions and charge-balancing electrons to obtain LixTiOy films with 0.12 ≤ x ≤ 0.34. Dispersion analysis was applied to calculate the complex dielectric function ɛ(ℏω) ≡ ɛ1(ℏω) + i ɛ2(ℏω) from numerical inversion of optical transmittance and reflectance spectra; a superposition of Tauc-Lorentz and Lorentz oscillator models was used for this purpose. Data on ɛ2(ℏω) were employed to calculate the optical conductivity and fit this property to a small-polaron model for disordered systems with strong electron-phonon interaction and involving transitions near the Fermi level. The introduction of oxygen vacancies and/or Li+ insertion yielded band gap widening by ˜0.20-0.35 eV, and both processes induced similar low-energy optical absorption. The small-polaron-based analysis indicated increases in the Fermi level by ˜0.15-0.3 eV for sub-stoichiometric and/or Li+-inserted films. This suggests the existence of polaronic Ti3+ states in the lower part of the conduction band arising from transfer of electrons from oxygen vacancies and/or inserted Li+ species. The present article is a sequel to an earlier paper on oxygen-deficient and/or Li+-inserted amorphous WOy thin films and forms part of a comprehensive investigation of optical absorption in amorphous transition metal oxides with different valence states of the metallic ions.

  11. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    Science.gov (United States)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical

  12. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    . Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...... as initial structures for SCC-DFTB geometry optimizations, while the optimized SCC-DFTB geometries were used as initial structures for the DFT geometry optimizations. The experimental VA spectrum and the VA spectra calculated for the low energy conformers at each level of theory are then compared...... for different conformers of this peptide. This comparison allowed structural study of this molecule as it is here presented....

  13. The Radio-optical Spectra of BL Lacs and Possible Relatives

    Science.gov (United States)

    Dennett-Thorpe, J.

    I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?

  14. The Gamma-ray Blazar Quest: new optical spectra, state of art and future perspectives

    CERN Document Server

    Massaro, F; D'Abrusco, R; Landoni, M; Masetti, N; Ricci, F; Milisavljevic, D; Paggi, A; Chavushyan, V; Jiménez-Bailón, E; Patiño-Álvarez, V; Strader, J; Chomiuk, L; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    We recently developed a procedure to recognize gamma-ray blazar candidates within the positional uncertainty regions of the unidentified/unassociated gamma-ray sources (UGSs). Such procedure was based on the discovery that Fermi blazars show peculiar infrared colors. However, to confirm the real nature of the selected candidates, optical spectroscopic data are necessary. Thus, we performed an extensive archival search for spectra available in the literature in parallel with an optical spectroscopic campaign aimed to reveal and confirm the nature of the selected gamma-ray blazar candidates. Here, we first search for optical spectra of a selected sample of gamma-ray blazar candidates that can be potential counterparts of UGSs using the Sloan Digital Sky Survey (SDSS DR12). This search enables us to update the archival search carried out to date. We also describe the state-of-art and the future perspectives of our campaign to discover previously unknown gamma-ray blazars.

  15. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  16. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: the Role of Vibrational Effects

    Science.gov (United States)

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2017-01-01

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  17. TD-DFT Study of Absorption and Emission Spectra of 2-(2'-Aminophenyl)benzothiazole Derivatives in Water.

    Science.gov (United States)

    Manojai, Natthaporn; Daengngern, Rathawat; Kerdpol, Khanittha; Kungwan, Nawee; Ngaojampa, Chanisorn

    2017-03-01

    Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H2S) which is useful in fluorescence microscopy and H2S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2'-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H2S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes' shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H2S in water.

  18. The origin of the absorption spectra of porphyrin N- and dithiaporphyrin S-oxides in their neutral and protonated states.

    Science.gov (United States)

    Bruhn, Torsten; Brückner, Christian

    2015-02-07

    meso-Tetraphenylporphyrin N-oxide (1) and meso-tetraphenyl-21,23-dithiaporphyrin S-oxide (3) possess optical spectra that are distinctly different from their parent porphyrins, meso-tetraphenylporphyrin (2) and meso-tetraphenyl-21,23-dithiaporphyrin (4), respectively. The hyperporphyrin spectra were reproduced and classified using TD CAM-B3LYP and SCS-CC2 computational methods. Calculations revealed the electronic and conformational influences of the N- and S-oxide functionalities. While the N-oxide under acidic conditions forms a dication with a UV-vis spectrum that is nearly indistinguishable from that of the diprotonated parent porphyrin, the diprotonated S-oxide possesses a much different UV-vis spectrum from diprotonated parent dithiaporphyrin. A computational study of the protonation events revealed the site and degree of protonation and rationalized the regular and hyperporphyrin UV-vis spectra of the neutral and protonated species, respectively. The study illuminates the electronic effects of the relatively rare modification of the inner porphyrin heteroatoms. It also illustrates a case in which TD CAM-B3LYP reaches its limits to make reliable predictions about the optical properties of a porphyrinoid, making the use of higher methods essential.

  19. The SLUGGS survey: Globular cluster stellar population trends from weak absorption lines in stacked spectra

    CERN Document Server

    Usher, Christopher; Brodie, Jean P; Romanowsky, Aaron J; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A

    2014-01-01

    As part of the SLUGGS survey, we stack 1137 Keck DEIMOS spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal to noise ratios of $\\sim 90$ \\AA$^{-1}$. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the H$\\alpha$ and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet--colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour--metallicity relation between galaxies. Two possible explanations for the colour--metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stackin...

  20. A new method for detecting velocity shifts and distortions between optical spectra

    CERN Document Server

    Evans, Tyler M

    2013-01-01

    Recent quasar spectroscopy from the VLT and Keck telescopes suggests that fundamental constants may not actually be constant. To better confirm or refute this result, systematic errors between telescopes must be minimized. We present a new method to directly compare spectra of the same object and measure any velocity shifts between them. This method allows for the discovery of wavelength-dependent velocity shifts between spectra, i.e. velocity distortions, that could produce spurious detections of cosmological variations in fundamental constants. This "direct comparison" method has several advantages over alternative techniques: it is model-independent (cf. line-fitting approaches), blind, in that spectral features do not need to be identified beforehand, and it produces meaningful uncertainty estimates for the velocity shift measurements. In particular, we demonstrate that, when comparing echelle-resolution spectra with unresolved absorption features, the uncertainty estimates are reliable for signal-to-nois...