WorldWideScience

Sample records for optic gas sensing

  1. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    Science.gov (United States)

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  2. Microstructured optical fibers for gas sensing systems

    Science.gov (United States)

    Challener, William Albert; Choudhury, Niloy; Palit, Sabarni

    2017-10-17

    Microstructured optical fiber (MOF) includes a cladding extending a length between first and second ends. The cladding includes an inner porous microstructure that at least partially surrounds a hollow core. A perimeter contour of the hollow core has a non-uniform radial distance from a center axis of the cladding such that first segments of the cladding along the perimeter contour have a shorter radial distance from the center axis relative to second segments of the cladding along the perimeter contour. The cladding receives and propagates light energy through the hollow core, and the inner porous microstructure substantially confines the light energy within the hollow core. The cladding defines at least one port hole that extends radially from an exterior surface of the cladding to the hollow core. Each port hole penetrates the perimeter contour of the hollow core through one of the second segments of the cladding.

  3. Distributed gas sensing with optical fibre photothermal interferometry.

    Science.gov (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  4. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  5. Ammonia gas sensing property of gadolinium oxide using fiber optic gas sensor

    Science.gov (United States)

    Kumar, J. Santhosh; Ranganathan, B.; Sastikumar, D.

    2017-05-01

    The design of fiber optic sensor is based on a cladding modification methodology. A fiber-optic chemical sensor is developed by replacing a certain portion of the original cladding with a chemically sensitive material, specifically, calcinated gadolinium oxide (Gd2O3).Both the light absorption co-efficient and refractive index change upon exposure to chemical vapours of volatile organic compounds (VOCs) such as ammonia (NH3), ethanol (CH3CH2OH), and methanol (CH3OH). The spectral characteristics of the sensor were studied for different concentrations ranging from 0-500 ppm. These changes induced the optical intensity modulation of the transmitted optical signal. During interaction between the sensing material and VOCs, the output intensity is taken into account to detect the toxic VOCs present in the environment. This was systematically investigated by X-ray diffractometer (XRD) and SEM. The XRD analysis indicated that the calcinated Gd2O3 was formed in cubic structure with the crystallite size of 13 nm. The Gd2O3 nanorods with thickness ranging from 80 to 120 nm were confirmed from SEM. The ammonia gas response of the Gd2O3 sensor is presented. A model is proposed for understanding the spectral intensity variations.

  6. Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors

    OpenAIRE

    Manera, Maria Grazia; Montagna, G.; Ferreiro-Vila, Elías; González-García, Lola; Sánchez-Valencia, J.R.; González-Elipe, Agustín R.; Cebollada, Alfonso; García-Martín, José Miguel; García-Martín, Antonio; Armelles Reig, Gaspar; Rella, Roberto

    2011-01-01

    Porous TiO2 thin films deposited by glancing angle deposition are used as sensing layers to monitor their sensing capabilities towards Volatile Organic Compounds both in a standard Surface Plasmon Resonance (SPR) sensor and in Magneto-Optical Surface Plasmon Resonance (MO-SPR) configuration in order to compare their sensing performances. Here our results on the enhanced sensing capability of these TiO2 functionalized MO-SPR sensors with Au/Co/Au transducers with respect to traditional SPR gas...

  7. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  8. Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Li-Wei Chang

    2011-09-01

    Full Text Available Zigzag GaN/Ga2O3 heterogeneous nanowires (NWs were fabricated, and the optical properties and NO gas sensing ability of the NWs were investigated. We find that NWs are most effective at 850 °C at a switching process once every 10 min (on/off = 10 min per each with a mixture flow of NH3 and Ar. The red shift of the optical bandgap (0.66 eV is observed from the UV-vis spectrum as the GaN phase forms. The gas sensing characteristics of the developed sensor are significantly replaced to those of other types of NO sensors reported in literature.

  9. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  10. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  11. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  12. Optical and morphological characterization of bispyrazole thin films for gas sensing applications

    Directory of Open Access Journals (Sweden)

    Rachid Touzani

    2014-11-01

    Full Text Available The optical gas recognition capabilities of thin film layer of 4-[bis[(3,5-dimethyl-1H-pyrazol-1-ylmethyl]-amino]phenol deposed on quartz substrates were studied. The dynamic gas responses to the following analytes have been investigated as air pollutants (SO2, NO2, CO, CH4 and NH3. The spin-coated bispyrazole layer appears to have reversible response towards SO2 and a very low and irreversible response to NO2. The selectivity of the thin film based on bispyrazole layer with respect to other analytes was also examined and the present data show that the thin sensing layer in the presence of CO, CH4 and NH3 in low concentration does not influence its optical properties.

  13. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  14. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  15. Optical backscatter probe for sensing particulate in a combustion gas stream

    Science.gov (United States)

    Parks, James E; Partridge, William P

    2013-05-28

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  16. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  17. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  18. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  19. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber

    Science.gov (United States)

    Devendiran, S.; Sastikumar, D.

    2017-03-01

    A new type of fiber optic gas sensor is proposed by detecting a light radiated from a region of cladding modified with metal oxide (nanocrystalline ZnO). The intensity of radiated light is found to vary with different gasses and concentrations. Sensing characteristics are studied for ammonia, methanol, ethanol and acetone gasses. Gas sensitivity of the proposed sensor is compared with clad-modified fiber optic gas sensor. The new sensor exhibits enhanced sensitivity. Time response characteristics of the sensor are reported.

  20. Tailoring and optimization of optical properties of CdO thin films for gas sensing applications

    Science.gov (United States)

    Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).

  1. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  2. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  3. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    Science.gov (United States)

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  4. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  5. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  6. Production and Characterization of Thin Film Materials for Indoor Optical Gas Sensing Applications

    International Nuclear Information System (INIS)

    Maggioni, Gianluigi; Carturan, Sara; Quaranta, Alberto; Vomiero, Alberto; Tonezzer, Michele; Mea, Gianantonio Della

    2006-01-01

    Pure and Nile-Red-doped polyimide and porphyrin films have been deposited and their optical response to different organic vapours has been tested. Polyimide films were obtained by spin coating a solution containing 4, 4'-4, 4'-(hexafluoroisopropylidene) diphthalic anhydride and 2, 3, 5, 6-tetramethyl-1, 4-phenylenediamine. Free, cobalt and iron chloride 5, 10, 15, 20 meso-tetraphenyl porphyrin films were deposited by spin coating and by high vacuum evaporation. Exposure to water, ethanol and isopropanol vapours produce reversible changes of the fluorescence features of both pure and doped polyimide films. Exposure to methanol, ethanol and isopropanol vapours gives rise to changes of the optical absorption of porphyrin films. The results of the optical measurements point out that the synthesized films can be used for the detection of volatile organic compounds

  7. A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing

    Directory of Open Access Journals (Sweden)

    Ivo Rendina

    2006-06-01

    Full Text Available We have recently presented an integrated silicon-glass opto-chemical sensor forlab-on-chip applications, based on porous silicon and anodic bonding technologies. In thiswork, we have optically characterized the sensor response on exposure to vapors of severalorganic compounds by means of reflectivity measurements. The interaction between theporous silicon, which acts as transducer layer, and the organic vapors fluxed into the glasssealed microchamber, is preserved by the fabrication process, resulting in optical pathincrease, due to the capillary condensation of the vapors into the pores. Using theBruggemann theory, we have calculated the filled pores volume for each substance. Thesensor dynamic has been described by time-resolved measurements: due to the analysischamber miniaturization, the response time is only of 2 s. All these results have beencompared with data acquired on the same PSi structure before the anodic bonding process.

  8. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  9. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  10. Structural, optical and gas sensing properties of screen-printed nanostructured Sr-doped SnO2 thick film sensor

    International Nuclear Information System (INIS)

    Shaikh, F.I.; Chikhale, L.P.; Patil, J.Y.; Rajgure, A.V.; Suryavanshi, S.S.; Mulla, I.S.

    2013-01-01

    The nanocrystalline materials of strontium doped tin oxide powders were synthesized by conventional co-precipitation method. Synthesized nanophase SnO 2 powders were used to fabricate thick films of pure and Sr-doped SnO 2 using screen-printing technology and investigated for their gas sensing properties towards LPG, ethanol, ammonia and acetone vapor. The crystal structure and phase of the sintered powders were characterized by X-ray diffractometer (XRD) and microstructure by scanning electron microscopy (SEM). All the doped and undoped SnO 2 compositions revealed single phase and solid solution formation. X-ray diffractometer (XRD) results indicated that well crystallized Sr-doped SnO 2 particles of size about 10 nm were obtained at sintering temperature 700℃. The optical properties viz. UV-Vis, FTIR and Raman were used to characterize various physico-chemical properties of samples. The reduction of grain size in metal oxide is a key factor to enhance the gas sensing properties. The doping of Sr in SnO 2 has reduced the grain size and improved the gas response. The results of gas sensing measurements showed that the thick films deposited on alumina substrates using screen-printing technique exhibited high gas response, quick response time and fast recovery time to acetone gas at a working temperature of 250℃. Further, the selectivity of sensor towards acetone with respect to other reducing gases (LPG, ethanol, ammonia) was studied. (author)

  11. Effect of oxygen partial pressure on the microstructural, optical and gas sensing characterization of nanostructured Gd doped ceria thin films deposited by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Nagaraju P.

    2017-12-01

    Full Text Available Microstructural properties of 10 mol% gadolinium doped ceria (CeO2 thin films that were deposited on quartz substrate at substrate temperature of 1023 K by using pulsed laser deposition with different oxygen partial pressures in the range of 50–200 mTorr. The influence of oxygen partial pressure on microstructural, morphological, optical and gas sensing characterization of the thin films was systematically studied. The microstructure of the thin films was investigated using X-ray diffraction, atomic force microscopy and Raman spectroscopy. Morphological studies have been carried out using scanning electron microscope. The experimental results confirmed that the films were polycrystalline in nature with cubic fluorite structure. Optical properties of the thin films were examined using UV–vis spectrophotometer. The optical band gap calculated from Tauc’s relation. Gas sensing characterization has been carried at different operating temperatures (room temperature to 523 K for acetone gas. Response and recovery times of the sensor were calculated using transient response plot.

  12. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  13. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  14. Optical fibre sensing of plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Woolsey, G.A.; Scelsi, G.B. [School of Physical Sciences and Engineering, Univ. of New England, Armidale, NSW (Australia)

    2000-03-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  15. Optical fibre sensing of plasmas

    International Nuclear Information System (INIS)

    Woolsey, G.A.; Scelsi, G.B.

    2000-01-01

    The progress of optical fiber technology for communications has induced an interest in, among others, the sensing of a wide range of physical, and chemical quantities. Any application of optical fibers that are crucial for communication are significant for sensing, e.g. small dimension, insulating materials, immunity to high voltage field etc. In the present paper basic points of optical fiber sensing are summarized. It is noted optical fiber sensors come in two forms, intrinsic and extrinsic. In the former the fiber itself works as sensing element, in addition to data transmission lines. In an intrinsic sensor, a single fiber transmits the light from the source to the detector and the light is modulated while it is in the fiber. On the other hand, in the extrinsic sensor, the light leaves the input fiber to be modulated before being collected by the second output fiber. Characteristic of the light that can be modulated are amplitude, phase, polarization, and wavelength. The paper describes the modulation in some details. (author)

  16. Quantum enhanced optical sensing

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens

    light source was designed and built from scratch, which achieved a noise suppression of −8 dB at an optical pump power of 40mW. The generated squeezed light was first used to demonstrate how Gaussian states and detection can beat the shot noise limit and Rayleigh criterion in phase measurements...... or demanding detection techniques. A second experiment combined squeezed light and feedback control to cool an optomechanical system. This proof-of-principle study is the first reported squeezing enhanced optomechanical cooling experiment. Despite losses of more than 50% (a resulting noise suppression of −2 d...... signals to overcome e.g. technical detection limitations. Amplified communication channels were characterised by applying the measure of mutual information I, as it offers strict bounds on the maximum achievable performance, which enabled a fair comparison between different applications scenarios...

  17. Porous Silicon Structures as Optical Gas Sensors.

    Science.gov (United States)

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  18. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  19. Optical display for radar sensing

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  20. Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films.

    Science.gov (United States)

    Anni, M; Rella, R

    2010-02-04

    We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.

  1. Structural, optical and NO{sub 2} gas sensing properties of ZnMgO thin films prepared by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: chbil.widad@live.fr [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Boukadhaba, M.A. [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Madhi, I. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif (Tunisia); and others

    2017-01-15

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO{sub 2} for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  2. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  3. Investigation of Electrical, Optical and GaS Sensing properties Sol-Gel Derived WO3 Thin Films

    International Nuclear Information System (INIS)

    Dumludag, F.

    2008-01-01

    Tungsten oxide (WO 3 ) is a wide band gap n-type semiconductor. Thin films of WO 3 are considerable interest because of their potential applications in electrochromic devices, and gas sensors. In this work, WO 3 thin films were deposited on IDT (Interdigital electrodes) by a sol-gel dipping process. Precursor solution was prepared by dissolving of tungstic acid in ammonia. We investigated d.c. and a.c. (40 Hz-100 KHz) electrical properties of the films in the temperature range of 293K and 473K in vacuum ambient (10 - 2 mbar). We observed frequency dependent conductivity behavior at high frequencies. Absorption spectra of the film showed that a maximum absorption occurred at 330 nm. We also investigated the response of the films to vapors of the volatile organic compounds (acetone, chloroform, toluene, ethanol, ammonia) and water vapor. The films showed no sensitivity to the test gases at room temperature. Concentration of the vapors were controlled by mass flowmeters. All the measurement system was computerized

  4. Fiber optic sensing for telecommunication satellites

    Science.gov (United States)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  5. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  6. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  7. Porous Silicon Structures as Optical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Igor A. Levitsky

    2015-08-01

    Full Text Available We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  8. Effect of post-deposition annealing treatment on the structural, optical and gas sensing properties of TiO/sub 2/ thin films

    International Nuclear Information System (INIS)

    Haidry, A.A.; Durina, P.; Tomasek, M.; Gregus, J.; Schlosser, P.; Mikula, M.; Truhly, M.; Roch, T.; Plecenik, T.; Pidik, A.; Zahoran, M.; Kus, P.; Plecenik, A.

    2011-01-01

    One of the potential applications of TiO/sub 2/ is its use in gas sensor technology. The aim of this work was to study the gas sensing properties of TiO/sub 2/ thin films in combination with the effect of post-deposition annealing treatment. Titanium dioxide thin films with thickness 100 nm were prepared by the reactive dc magnetron sputtering. The thin films were deposited on sapphire substrate from a titanium target in an oxygen atmosphere. The samples were then post-annealed in air in the temperature range 600 deg. C 1000 deg. C. Crystal structure, surface topography and absorption edge of the thin films have been studied by X-ray Diffraction technique, Atomic Force Microscopy and UV-VIS Spectroscopy. It was found that the phase gradually changed from anatase to rutile, the grain size and roughness tended to increase with increasing post-annealing temperature. The effect of these factors on gas sensing properties was discussed. For electrical measurements comb-like Pt electrodes were prepared by standard photolithography and the films were exposed to different concentrations of H/sub 2/ gas up to 10000 ppm in synthetic air at various operating temperatures from 200 deg. C to 350 deg. C. (author)

  9. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  10. Nanogenerators for Self-Powered Gas Sensing

    Science.gov (United States)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  11. Enabling technologies for fiber optic sensing

    Science.gov (United States)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  12. Lattice doped Zn–SnO{sub 2} nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Baraneedharan, P. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Alternative Energy and Nanotechnology Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Imran Hussain, S. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Applied Science and Technology, Anna University, Chennai 600 025 (India); Dinesh, V.P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Siva, C. [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India); Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203 (India); Biji, P. [Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Nanoscience and Technology, Anna University – BIT Campus, Tiruchirappalli 620024 (India)

    2015-12-01

    Graphical abstract: - Highlights: • A simple, novel and surfactant free hydrothermal route to prepare SnO{sub 2} nanospheres. • A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images. • Incorporation of Zn ions into SnO{sub 2} lattices clearly elucidated with XRD and XPS spectrums. • Three fold time increased response in Zn–SnO{sub 2} nanospheres when compared to undoped SnO{sub 2}. - Abstract: A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn{sup 2+}) doped SnO{sub 2} nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn{sup 2+} ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn{sup 2+} ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn{sup 2+} ions has a significant effect on the electrical conductivity of SnO{sub 2} nanospheres. Comparative tests for gas sensors based on Zn doped SnO{sub 2} nanospheres and SnO{sub 2} nanospheres clearly show that the former exhibited excellent NO{sub 2} sensing performance. The responses of Zn{sup 2+} ions incorporated SnO{sub 2} nanospheres sensor were increased 3 fold at trace level NO{sub 2} gas concentrations ranging from 1 to 5 ppm. The excellent sensitivity, selectivity and fast response make the Zn{sup 2+} doped SnO{sub 2} nanospheres ideal for NO{sub 2} sensing.

  13. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    Science.gov (United States)

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  14. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  15. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  16. Optical Graphene Gas Sensors Based on Microfibers: A Review

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2018-03-01

    Full Text Available Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations.

  17. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  18. Capacitive Structures for Gas and Biological Sensing

    KAUST Repository

    Sapsanis, Christos

    2015-04-01

    The semiconductor industry was benefited by the advances in technology in the last decades. This fact has an impact on the sensors field, where the simple transducer was evolved into smart miniaturized multi-functional microsystems. However, commercially available gas and biological sensors are mostly bulky, expensive, and power-hungry, which act as obstacles to mass use. The aim of this work is gas and biological sensing using capacitive structures. Capacitive sensors were selected due to its design simplicity, low fabrication cost, and no DC power consumption. In the first part, the dominant structure among interdigitated electrodes (IDEs), fractal curves (Peano and Hilbert) and Archimedean spiral was investigated from capacitance density perspective. The investigation consists of geometrical formula calculations, COMSOL Multiphysics simulations and cleanroom fabrication of the capacitors on a silicon substrate. Moreover, low-cost fabrication on flexible plastic PET substrate was conducted outside cleanroom with rapid prototyping using a maskless laser etching. The second part contains the humidity, Volatile Organic compounds (VOCs) and Ammonia sensing of polymers, Polyimide and Nafion, and metal-organic framework (MOF), Cu(bdc)2.xH2O using IDEs and tested in an automated gas setup for experiment control and data extraction. The last part includes the biological sensing of C - reactive protein (CRP) quantification, which is considered as a biomarker of being prone to cardiac diseases and Bovine serum albumin (BSA) protein quantification, which is used as a reference for quantifying unknown proteins.

  19. Studying Structural, Optical, Electrical, and Sensing Properties of Nanocrystalline SnO2:Cu Films Prepared by Sol-Gel Method for CO Gas Sensor Application at Low Temperature

    Science.gov (United States)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl2ṡ2H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.

  20. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  1. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  2. Optical fibre sensing: a solution for industry

    Science.gov (United States)

    Sun, T.; Fabian, M.; Chen, Y.; Vidakovic, M.; Javdani, S.; Grattan, K. T. V.; Carlton, J.; Gerada, C.; Brun, L.

    2017-04-01

    Optical fibres have been explored widely for their sensing capability to meet increasing industrial needs, building on their success in telecommunications. This paper provides a review of research activities at City University of London in response to industrial challenges through the development of a range of fibre Bragg grating (FBG)-based sensors for transportation structural monitoring. For marine propellers, arrays of FBGs mapped onto the surface of propeller blades allow for capturing vibrational modes, with reference to simulation data. The research funded by EU Cleansky programme enables the development of self-sensing electric motor drives to support `More Electric Aircraft' concept. The partnership with Faiveley Brecknell Willis in the UK enables the integration of FBG sensors into the railway current-collecting pantographs for real-time condition monitoring when they are operating under 25kV conditions.

  3. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    Science.gov (United States)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  4. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  5. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: candidates for room temperature methane and hydrogen gas sensing

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-08-01

    Full Text Available O crystallite size and crystallinity on the gassensing performance of hydrogen and methane gases was also evaluated. Sensing film based on ZnOnanoparticles has numerous advantages in terms of its reliability and high sensitivity. These sensingmaterials revealed...

  6. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  7. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Science.gov (United States)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  8. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of

  9. Optical registration of spaceborne low light remote sensing camera

    Science.gov (United States)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  10. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  11. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  12. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  13. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  14. Radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo; Tsujimura, Norio

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( 90 Sr -90 Y), gamma rays ( 137 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 -5 % and 5.4x10 -4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  15. Bridge SHM system based on fiber optical sensing technology

    Science.gov (United States)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  16. Effect of Al dopants on the structural, optical and gas sensing properties of spray-deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, C.S. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211 004 (India); Kushwaha, Ajay [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sahay, P.P., E-mail: dr_ppsahay@rediffmail.com [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211 004 (India)

    2013-10-01

    Undoped and Al-doped ZnO thin films were deposited on glass substrates by the spray pyrolysis method. The structural, morphological and optical properties of these films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy, photoluminescence (PL) and photoconductivity (PC) measurements, respectively. XRD analyses confirm that the films are polycrystalline zinc oxide with the hexagonal wurtzite structure, and the crystallite size has been found to be in the range 20–40 nm. SEM and AFM analyses reveal that the films have continuous surface without visible holes or faulty zones, and the surface roughness decreases on Al doping. The Al-doped films have been found to be highly transparent (>85%) and show normal dispersion behavior in the wavelength range 450–700 nm. The doped films show only ultraviolet emission and are found to be highly photosensitive. Among all the films examined, at 300 °C the 1.0 at% Al-doped film shows the selective high response (98.2%) to 100 ppm acetone concentration over to methanol, ethanol, propan-2-ol, formaldehyde and hydrogen. - Highlights: • ZnO films possess hexagonal wurtzite structure with crystallite size: 20–40 nm. • On Al doping, the surface roughness decreases and optical transmission increases. • Al-doped films exhibit the normal dispersion behavior for (450–700 nm) wavelength. • All the films are photosensitive and the photocurrent enhances on Al doping. • 1 at% Al-doped films exhibit high sensitivity and selectivity to acetone at 300 °C.

  17. Analysis of Plasmonics Based Fiber Optic Sensing Structures

    Science.gov (United States)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  18. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  19. Optimization of a radiative membrane for gas sensing applications

    Science.gov (United States)

    Lefebvre, Anthony; Boutami, Salim; Greffet, Jean-Jacques; Benisty, Henri

    2014-05-01

    To engineer a cheap, portable and low-power optical gas sensor, incandescent sources are more suitable than expensive quantum cascade lasers and low-efficiency light-emitting diodes. Such sources of radiation have already been realized, using standard MEMS technology, consisting in free standing circular micro-hotplates. This paper deals with the design of such membranes in order to maximize their wall-plug efficiency. Specification constraints are taken into account, including available energy per measurement and maximum power delivered by the electrical supply source. The main drawback of these membranes is known to be the power lost through conduction to the substrate, thus not converted in (useful) radiated power. If the membrane temperature is capped by technological requirements, radiative flux can be favored by increasing the membrane radius. However, given a finite amount of energy, the larger the membrane and its heat capacity, the shorter the time it can be turned on. This clearly suggests that an efficiency optimum has to be found. Using simulations based on a spatio-temporal radial profile, we demonstrate how to optimally design such membrane systems, and provide an insight into the thermo-optical mechanisms governing this kind of devices, resulting in a nontrivial design with a substantial benefit over existing systems. To further improve the source, we also consider tailoring the membrane stack spectral emissivity to promote the infrared signal to be sensed as well as to maximize energy efficiency.

  20. Toward the next fiber optic revolution and decision making in the oil and gas industry

    NARCIS (Netherlands)

    Cheng, L.K.; Boering, M.; Braal, F.M.

    2013-01-01

    Fiber optic data transmission has caused revolutionary developments in the current information society. It was also an eye opener for the Oil & Gas industry when fiber optic-based Distributed Temperature Sensing was introduced in the nineties. Temperature profiles over the entire length of the

  1. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Science.gov (United States)

    Rey, J. M.; Fill, M.; Felder, F.; Sigrist, M. W.

    2014-12-01

    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content.

  2. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  3. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  4. Fabrication, characterization and gas sensing properties of gold ...

    Indian Academy of Sciences (India)

    Calixarenes are a group of materials that are widely used for gas sensing studies because of their simple synthesis, conformational flexibility, binding group tunability, variability in their cavity sizes and improved selectivity to different gas molecules. In recent years it has been shown that incorporation of gold nanoparticles ...

  5. Gas sensing behaviour of cerium oxide and magnesium aluminate

    Indian Academy of Sciences (India)

    Gas sensing behaviour of cerium oxide and magnesium aluminate composites ... A lone pairof the electron state was identified from the electro paramagnetic ... carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was ... The magnitude of the temperature varied linearly regardless of the gas ...

  6. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  7. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    OpenAIRE

    Devikala, S.; Kamaraj, P.

    2011-01-01

    Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA) has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In t...

  8. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  9. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  10. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    Science.gov (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K

    2011-06-10

    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  11. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  12. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  13. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  14. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  15. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Science.gov (United States)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  16. Synthesis, characterization and gas sensing property of ...

    Indian Academy of Sciences (India)

    Unknown

    et al 2000), drug delivery system (Panda et al 2001) and fuel cells (Gross et al 1998a; Verges et al 2000). It has promising application as a chemical gas sensor (Nagai et al .... apatite biomaterial ceramic was compacted into a pellet of 1⋅0 cm diameter having 0⋅15 cm thickness using poly- vinyl alcohol as binder material.

  17. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Renganathan, B.; Sastikumar, D.; Srinivasan, R.; Ganesan, A.R.

    2014-01-01

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm 2 O 3 nanoparticles are act as sensor materials. • Sm 2 O 3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm 2 O 3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm 2 O 3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm 2 O 3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  18. Nanopaper as an optical sensing platform

    Czech Academy of Sciences Publication Activity Database

    Morales-Narváez, E.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, Uliana; Horák, Daniel; Pourreza, N.; Merkoci, A.

    2015-01-01

    Roč. 9, č. 7 (2015), s. 7296-7305 ISSN 1936-0851 Institutional support: RVO:61389013 Keywords : nanocellulose * optical sensors * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 13.334, year: 2015

  19. Temperature Fiber Optic Sensing System (TEMP)

    Data.gov (United States)

    National Aeronautics and Space Administration — We're going to bake the fiber to take out all the moisture, then vacuum all the air out, fill it with a different gas (Helium) and seal the endings. This will...

  20. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    Science.gov (United States)

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  1. Fiber Optic Detection of Ammonia Gas

    Directory of Open Access Journals (Sweden)

    L. Kalvoda

    2006-01-01

    Full Text Available Bathochromic shifts accompanying the formation of several bivalent metallic complexes containing 5-(4’-dimethylaminophenylimino quinolin-8-one (L1, and 7-chlore-5(4’-diethylamino-2-methylphenylimino quinolin-8-one (L2 ligands in ethanol solutions were evaluated by VIS-NIR spectroscopy. The [L1-Cu-L1] sulphide complex was selected as a reagent for further tests on optical fibres. Samples of multimode siloxane-clad fused-silica fibre were sensitized by diffusing an ethanol/chloroform solution of the dye into the cladding polymer, and tested by VIS-NIR optical spectroscopy (12 cm long fibre sections, and optical time domain reflectometry (OTDR; 20 ns laser pulses, wavelength 850 nm, 120 m long fibre sensitized within the interval 104–110 m. A well-resolved absorption band of the reagent could be identified in the absorption spectra of the fibres. After exposure to dry ammonia/nitrogen gas with increasing ammonia concentration (0–4000 ppm, the short fibre samples showed subsequent decay of NIR optical absorption; saturation was observed for higher ammonia levels. The concentration resolution r ? 50 ppm and forward response time t90 ? 30 sec were obtained within the interval 0–1000 ppm. The OTDR courses showed an enhancement of the back-scattered light intensity coming from the sensitized region after diffusion of the initial reagent, and decay after exposure to concentrated ammonia/nitrogen gas (10000 ppm.

  2. Challenges in paper-based fluorogenic optical sensing with smartphones

    Science.gov (United States)

    Ulep, Tiffany-Heather; Yoon, Jeong-Yeol

    2018-05-01

    Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.

  3. Precision force sensing with optically-levitated nanospheres

    Science.gov (United States)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  4. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  5. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  6. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  7. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  8. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  9. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    Science.gov (United States)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  10. Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers

    Science.gov (United States)

    Davis, Anthony B.; Xu, Feng; Diner, David J.

    2018-01-01

    We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.

  11. Optical diagnostics in gas turbine combustors

    Science.gov (United States)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  12. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  13. Impact of interfacial interactions on optical and ammonia sensing in ...

    Indian Academy of Sciences (India)

    gas sensing. The hybrid ZnO/PANI structure was obtained by the addition of PANI on the surface of ZnO. The ... culty in fine particle distribution because of abnormal grain growth at .... the form of emeraldine salt (Zhang et al 2005; Mazeikiene.

  14. Optic Fiber Sensing IOT Technology and Application Research

    Directory of Open Access Journals (Sweden)

    Wenjuan Zeng

    2014-10-01

    Full Text Available The growth of the Internet of Things (IOT industry has become a new mark of the communication domain. As the development of the technology of the IOT and the fiber-optical sensor, the combination of the both is a big question to be discussed, and the fiber-optical IOT also has a good development prospect. This article first introduces IOT’s current status, the key technology, the theoretical frame and the applications. Then, it discusses the classification of the optical fiber sensor as well as the development and its application’s situation. Lastly, it puts the optical fiber sensing technology into the IOT, and introduces a specific application which is used in the mine safety based on the fiber-optical IOT.

  15. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  16. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    International Nuclear Information System (INIS)

    Vallerga, John; McPhate, Jason; Tremsin, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ('Medipix2') with individual pixels that amplify, discriminate and count input events. The detector has 256x256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7x7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest

  17. Optical Sensing of Weed Infestations at Harvest.

    Science.gov (United States)

    Barroso, Judit; McCallum, John; Long, Dan

    2017-10-19

    Kochia ( Kochia scoparia L.), Russian thistle ( Salsola tragus L.), and prickly lettuce ( Lactuca serriola L.) are economically important weeds infesting dryland wheat ( Triticum aestivum L.) production systems in the western United States. Those weeds produce most of their seeds post-harvest. The objectives of this study were to determine the ability of an optical sensor, installed for on-the-go measurement of grain protein concentration, to detect the presence of green plant matter in flowing grain and assess the potential usefulness of this information for mapping weeds at harvest. Spectra of the grain stream were recorded continuously at a rate of 0.33 Hz during harvest of two spring wheat fields of 1.9 and 5.4 ha. All readings were georeferenced using a Global Positioning System (GPS) receiver with 1 m positional accuracy. Chlorophyll of green plant matter was detectable in the red (638-710 nm) waveband. Maps of the chlorophyll signal from both fields showed an overall agreement of 78.1% with reference maps, one constructed prior to harvest and the other at harvest time, both based on visual evaluations of the three green weed species conducted by experts. Information on weed distributions at harvest may be useful for controlling post-harvest using variable rate technology for herbicide applications.

  18. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  19. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro; Pissadakis, Stavros; Das, Rabindra N.; Giannelis, Emmanuel P.; Anastasiadis, Spiros H.; Anglos, Demetrios

    2015-01-01

    O-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence

  20. Multipass optical device and process for gas and analyte determination

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E [Kennewick, WA

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  1. Critical review of pH sensing with optical fibers

    Science.gov (United States)

    Baldini, Francesco

    1999-02-01

    The chemical parameter most investigated with optical fibers is doubtless pH. The first pH optical fiber sensor was described in 1980. Since then, more than one hundred and twenty original papers describing different pH sensors have been published, based on absorption-based indicators on fluorophores. Such interest is perfectly justified, since pH detection is essential in many fields of application, ranging from the environment and medicine to industry and process control. Moreover, pH transduction can be used for measuring different chemical species, such as carbon dioxide, ammonia and pesticides. Notwithstanding the great number of prototypes realized in different laboratories all over the world, only a few products are available on the market. A critical analysis of the state of art in pH sensing using optical fibers is described, outlining the advantages and disadvantages of an optical approach.

  2. Macrobend optical sensing for pose measurement in soft robot arms

    International Nuclear Information System (INIS)

    Sareh, Sina; Noh, Yohan; Liu, Hongbin; Althoefer, Kaspar; Li, Min; Ranzani, Tommaso

    2015-01-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  3. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  4. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  5. Fabrication and gas sensing properties of vertically aligned Si nanowires

    Science.gov (United States)

    Mirzaei, Ali; Kang, Sung Yong; Choi, Sun-Woo; Kwon, Yong Jung; Choi, Myung Sik; Bang, Jae Hoon; Kim, Sang Sub; Kim, Hyoun Woo

    2018-01-01

    In this study, a peculiar configuration for a gas sensor consisting of vertically aligned silicon nanowires (VA-Si NWs) synthesized by metal-assisted chemical etching (MACE) is reported. Si NWs were prepared via a facile MACE method and subsequent thermal annealing. Etching was performed by generation of silver nanoparticles (Ag NPs) and subsequent etching in HF/H2O2 aqueous solution; the growth conditions were optimized by changing the process parameters. Highly vertically oriented arrays of Si NWs with a straight-line morphology were obtained, and a top-top electrode configuration was applied. The VA-Si NW gas sensor showed good sensing performance, and the VA-Si NWs exhibited a remarkable response (Rg/Ra = 11.5 ∼ 17.1) to H2 gas (10-50 ppm) at 100 °C which was the optimal working temperature. The formation mechanism and gas sensing mechanism of VA-Si NWs are described. The obtained results can suggest new approaches to making inexpensive, versatile, and portable sensors based on Si NWs having a novel top-top electrode structure that are fully compatible with well-developed Si technologies.

  6. Microstructure actuation and gas sensing by the Knudsen thermal force

    Energy Technology Data Exchange (ETDEWEB)

    Strongrich, Andrew; Alexeenko, Alina, E-mail: alexeenk@purdue.edu [School of Aeronautics and Astronautics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-11-09

    The generation of forces and moments on structures immersed in rarefied non-isothermal gas flows has received limited practical implementation since first being discovered over a century ago. The formation of significant thermal stresses requires both large thermal gradients and characteristic dimensions which are comparable to the gas molecular mean free path. For macroscopic geometries, this necessitates impractically high temperatures and very low pressures. At the microscale, however, these conditions are easily achieved, allowing the effects to be exploited, namely, for gas-property sensing and microstructure actuation. In this letter, we introduce and experimentally evaluate performance of a microelectromechanical in-plane Knudsen radiometric actuator, a self-contained device having Knudsen thermal force generation, sensing, and tuning mechanisms integrated onto the same platform. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated. Results are presented in terms of a non-dimensional force coefficient, allowing measurements to be directly compared to the previous experimental and computational data on out-of-plane cantilevered configurations.

  7. Distributed fiber optic sensing enhances pipeline safety and security

    Energy Technology Data Exchange (ETDEWEB)

    Frings, Jochen; Walk, Tobias [ILF Consulting Engineers, Munich (Germany)

    2011-09-15

    Pipelines are efficient, highly reliable and safe means of transportation. However, despite intensive right of way surveillance by foot, car and out of the air, pipeline leaks and illegal tappings are a reality - sometimes with catastrophic results. These events show a gap in real-time monitoring caused by the highly distributed nature of pipelines. Parts of this gap now can be closed with distributed fiber optic sensing technology. Using various physical effects this technology is apt to detect temperature, strain, vibrations and sound with very good localization over spans up to 50 km with a single sensor cable. Various field tested applications like leakage detection, third party activity monitoring and intrusion detection or ground movement detection as well as integrity monitoring proof that distributed fiber optic sensing can enhance pipeline safety and security. (orig.)

  8. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  9. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  10. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  11. Fiber optic corrosion sensing for bridges and roadway surfaces

    Science.gov (United States)

    Fuhr, Peter L.; Ambrose, Timothy P.; Huston, Dryver R.; McPadden, Adam P.

    1995-04-01

    In this paper we report the development of a fiber optic corrosion sensing system that complements and/or surpasses the capabilities of conventional corrosion sensing techniques. The sensing system is based on evanescent wave phenomena and in the configured sensor allows for the detection of general corrosion on and within materials. Based on the authors' experience installing may kilometers of fiberoptic sensors into large civil structures such as multistory buildings, hydroelectric dams, and railway/roadway bridges, we are (currently) embedding these sensors into bridge test members -- limited structures that are being subjected to accelerated corrosion testing conditions. Three Vermont Agency of Transportation bridges, one in a low salt use region, one in a medium salt use region, and the third in a high salt use region, are being selected and will be instrumented with these embedded fiber optic corrosion sensors. Monitoring of chloride penetration and rebar corrosion status will be measured during the course of a longitudinal study. The specific sensing mechanism and design for robustness (to allow survival of the embedding process during repaving of the bridges) are discussed and laboratory and initial field results are presented.

  12. Feasibility of optical sensing for robotics in highly radioactive environments

    International Nuclear Information System (INIS)

    Coenen, S.; Decreton, M.

    1993-01-01

    The application of robotics for repair, refurbishing or dismantling of nuclear installations implies eventually severe radiation resistance requirements on embarked components and subsystems. This is particularly critical when optical sensing is considered. Optoelectronic components and optical fibers are indeed quite sensitive to radiation, and without special design are rapidly out-of-operation in such an environment. This paper reports the results of a series of γ irradiation experiments on such devices, and identify their behavior under radiation. Test results show that carefully selected optical fibers can keep their radiation induced attenuation lower than 0.3 dB/m even up to a total dose of 10 MGy. Temperature annealing can even lower this attenuation down to 0.1 dB/m. On the other hand, commercially available light emitting diodes and photodiodes present attenuations figures up to 15 dB, even after a gamma irradiation as low as 250 kGy. However, properly chosen bias procedures are shown to greatly enhance this figure. The paper concludes by showing the feasibility of optical sensing for proximity measurement and data transmission for nuclear robots used under severe radiation conditions

  13. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    Science.gov (United States)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  14. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  15. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  16. Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity

    Directory of Open Access Journals (Sweden)

    Kuen-Lin Chen

    2015-06-01

    Full Text Available We have successfully observed the change in indium–gallium–zinc–oxide (IGZO gas sensor sensitivity by controlling the light emitting diode (LED power under the same gas concentrations. The light intensity dependence of sensor properties is discussed. Different LED intensities obviously affected the gas sensor sensitivity, which decays with increasing LED intensity. High LED intensity decreases not only gas sensor sensitivity but also the response time (T90, response time constant (τres and the absorption rate per second. Low intensity irradiated to sensor causes high sensitivity, but it needs larger response time. Similar results were also observed in other kinds of materials such as TiO2. According to the results, the sensing properties of gas sensors can be modulated by controlling the light intensity.

  17. Methanol Gas-Sensing Properties of SWCNT-MIP Composites

    Science.gov (United States)

    Zhang, Jin; Zhu, Qin; Zhang, Yumin; Zhu, Zhongqi; Liu, Qingju

    2016-11-01

    The single-walled carbon nanotube (SWCNT)-molecularly imprinted powder (MIP) composites in this paper were prepared by mixing SWCNTs with MIPs. The structure and micrograph of the as-prepared SWCNTs-MIPs samples were characterized by XRD and TEM. The gas-sensing properties were tested through indirect-heating sensors based on SWCNT-MIP composites fabricating on an alumina tube with Au electrodes and Pt wires. The results showed that the structure of SWCNTs-MIPs is of orthogonal perovskite and the average particle size of the SWCNTs-MIPs was in the range of 10-30 nm. SWCNTs-MIPs exhibit good methanol gas-sensitive properties. At 90 °C, the response to 1 ppm methanol is 19.7, and the response to the interferent is lower than 5 to the other interferent gases (ethanol, formaldehyde, toluene, acetone, ammonia, and gasoline). The response time and recovery time are 50 and 58 s, respectively.

  18. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    Science.gov (United States)

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  19. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prasantha R. Mudimela

    2014-06-01

    Full Text Available Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2 at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  20. Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators

    Science.gov (United States)

    Cocking, Alexander

    Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices. Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically. In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles. The fifth chapter discusses the characterization of a new class

  1. Gas Sensing of Fluorine Doped Tin Oxide Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    A. A. YADAV

    2008-05-01

    Full Text Available Fluorine doped tin oxide (F: SnO2 films have been prepared onto the amorphous glass substrates by a spray pyrolysis. XRD studies reveal that the material deposited is polycrystalline SnO2 and have tetragonal structure. It is observed that films are highly orientated along (200 direction. The direct optical band gap energy for the F: SnO2 films are found to be 4.15 eV. Gas sensing properties of the sensor were checked against combustible gases like H2, CO2 CO, C3H8, CH4.The H2 sensitivity of the F-doped SnO2 sensor was found to be increased. The increase in the sensitivity is discussed in terms of increased resistivity and reduced permeation of gaseous oxygen into the underlying sensing layer due to the surface modification of the sensor.

  2. Fiber optic coupled multipass gas minicell, design assembly thereof

    Science.gov (United States)

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  3. Sensing RF signals with the optical wideband converter

    Science.gov (United States)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  4. Basic study on radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Naka, R.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.; Kaneko, J.; Takeuchi, H.; Kakuta, T.

    2000-01-01

    Recently, some methods of radiation distribution sensing with optical fibers have been proposed. These methods employ scintillating fibers or scintillators with wavelength-shifting fibers. The positions of radiation interactions are detected by applying a time-of-flight (TOF) technique to the scintillation photon propagation. In the former method, the attenuation length for the scintillation photons in the scintillating fiber is relatively short, so that the operating length of the sensor is limited to several meters. In the latter method, a radiation distribution cannot continuously be obtained but discretely. To improve these shortcomings, a normal optical fiber made of polymethyl methacrylate (PMMA) is used in this study. Although the scintillation efficiency of PMMA is very low, several photons are emitted through interaction with a radiation. The fiber is transparent for the emitted photons to have a relatively long operating length. A radiation distribution can continuously be obtained. This paper describes a principle of the position sensing method based on the time of flight technique and preliminary results obtained for 90 Sr- 90 Y beta rays, 137 Cs gamma rays, and 14 MeV neutrons. The spatial resolutions for the above three kinds of radiations are 0.30 m, 0.37 m, 0.13 m, and the detection efficiencies are 1.1 x 10 -3 , 1.6 x 10 -7 , 5.4 x 10 -6 , respectively, with 10 m operation length. The results of a spectroscopic study on the optical property of the fiber are also described. (author)

  5. Micro‑cantilevers for optical sensing of biogenic amines

    DEFF Research Database (Denmark)

    Wang, Ying; Bravo Costa, Carlos André; Sobolewska, Elżbieta Karolina

    2017-01-01

    molecules in the gas phase. Different functionalization conditions were investigated by immersing gold coated AFM cantilevers in cyclam solutions at different concentrations, for different functionalization times, and for different post-annealing treatments. The optimum morphology for high capture...... micro-cantilever based mass detection. We demonstrate that besides conventional AFM systems a MEMS cantilever in combination with an optical read out is a powerful analytic system which is highly attractive for widespread use in diagnostic applications, with optimized functionalization conditions...

  6. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  7. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  8. Development of fiber optic sensing interrogators for launchers

    Science.gov (United States)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible

  9. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  10. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    Directory of Open Access Journals (Sweden)

    Masayuki Morisawa

    2012-01-01

    Full Text Available A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-coated polycarbonate (PC. Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a fast response time less than 1 minute.

  11. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    OpenAIRE

    Masayuki Morisawa; Shinzo Muto

    2012-01-01

    A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF) with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-)coated polycarbonate (PC). Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a...

  12. Optical Remote Sensing of Electric Fields Above Thunderstorms

    Science.gov (United States)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  13. New Optical Sensing Materials for Application in Marine Research

    Science.gov (United States)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  14. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  15. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing

    Science.gov (United States)

    Huang, Yi-Lin; Walker, Alison S.; Miller, Evan W.

    2015-01-01

    This paper describes the design and synthesis of a photostable, far-red to near-infrared (NIR) platform for optical voltage sensing. We developed a new, sulfonated silicon rhodamine fluorophore and integrated it with a phenylenevinylene molecular wire to create a Berkeley Red Sensor of Transmembrane potential, or BeRST 1 (“burst”). BeRST 1 is the first member of a class of farred to NIR voltage sensitive dyes that make use of a photoinduced electron transfer (PeT) trigger for optical interrogation of membrane voltage. We show that BeRST 1 displays bright, membrane-localized fluorescence in living cells, high photostability, and excellent voltage sensitivity in neurons. Depolarization of the plasma membrane results in rapid fluorescence increases (24% ΔF/F per 100 mV). BeRST 1 can be used in conjunction with fluorescent stains for organelles, Ca2+ indicators, and voltage-sensitive fluorescent proteins. In addition, the red-shifted spectral profile of BeRST 1, relative to commonly employed optogenetic actuators like ChannelRhodopsin2 (ChR2), which require blue light, enables optical electrophysiology in neurons. The high speed, sensitivity, photostability and long-wavelength fluorescence profiles of BeRST 1 make it a useful platform for the non-invasive, optical dissection of neuronal activity. PMID:26237573

  16. Optical telescope refocussing mechanism concept design on remote sensing satellite

    Science.gov (United States)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  17. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  18. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  19. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Directory of Open Access Journals (Sweden)

    Abdul Quddious

    2016-12-01

    Full Text Available An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band.

  20. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    Science.gov (United States)

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (H2S) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2–3 GHz band. PMID:27929450

  1. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul

    2016-12-06

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  2. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications

    KAUST Repository

    Quddious, Abdul; Yang, Shuai; Khan, Munawar M.; Tahir, Farooq A.; Shamim, Atif; Salama, Khaled N.; Cheema, Hammad M.

    2016-01-01

    An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on a paper substrate provides the base conductivity that varies during the sensing process. Aided by the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with hydrogen sulphide gas (HS) changes, both the optical and the electrical properties of the electrode. A fast response time of 3 min is achieved at room temperature for a HS concentration of 10 ppm at a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which the inner loop takes care of conductivity changes in the 4-5 GHz band, whereas the outer-dipole arm is used for chipless identification in the 2-3 GHz band.

  3. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    International Nuclear Information System (INIS)

    Caron, James N.; Kunapareddy, Pratima

    2014-01-01

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content

  4. Zinc oxide nanostructured layers for gas sensing applications

    Science.gov (United States)

    Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.

    2011-03-01

    Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.

  5. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  6. Diagnostics of gas behind shock waves by refractive optical techniques

    International Nuclear Information System (INIS)

    Blaha, J.

    In a brief outline of optical methods for measuring neutral gas and plasma parameters, techniques are specifically dealt with based on the interferometric measurement of the refractive index. The investigation is shown of gas density changes in a shock tube using the optical Mach-Zehnder interferometer. While in a neutral gas the refractive index is determined by gas density, in a plasma the effects of all components, ie., electrons, ions and atoms are additive. The contributions to refraction from the various components may, in view of the different character and frequencies of the components, be resolved by measurement on more than one wavelength. (J.U.)

  7. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  8. Fiber-optic-coupled dosemeter for remote optical sensing of radiation

    International Nuclear Information System (INIS)

    Justus, B.L.; Huston, A.L.

    1996-01-01

    Remote sensing technologies for the detection and measurement of ionizing radiation exposure are of current interest for applications such as patient dose verification during radiotherapy and the monitoring of environmental contaminants. Fiberoptic-based sensing is attractive due to the advantages of small size, low cost, long life and freedom from electromagnetic interference. Several fiberoptic-based radiation sensing systems have been described that utilize radiation induced changes in the optical characteristics of the fiber such as reduced transmission as a result of darkening of the glass, optical phase shifts due to heating, or changes in the birefringence of a polarization-maintaining fiber. The measurement of radiation induced darkening is limited in both sensitivity and dynamic range and requires long fiber lengths. Phase shift measurements require the use of single-mode lasers, phase sensitive interferometric detection, long fiber lengths and complex signal processing techniques. Alternatively, thermoluminescent (TL) phosphor powders have been coated onto fiberoptic cables and remote dosimetry measurements performed using traditional laser heating techniques. The sensitivity is limited by the requirement for a very thin layer of phosphor material, due to problems associated with light scattering and efficient heating by thermal diffusion. In this paper we report the development of an all-optical, fiber-optic-coupled, thermoluminescence dosemeter for remote radiation sensing that offers significant advantages compared to previous technologies. We recently reported the development of an optically transparent, TL glass material having exceptionally good characteristics for traditional dosimetry applications. We also reported a modified TL glass incorporating a rare earth ion dopant in order to absorb light from a semiconductor laser and utilize the absorbed light energy to internally heat the glass and release the trapped electrons. (author)

  9. Exceptional points enhance sensing in an optical microcavity

    Science.gov (United States)

    Chen, Weijian; Kaya Özdemir, Şahin; Zhao, Guangming; Wiersig, Jan; Yang, Lan

    2017-08-01

    Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.

  10. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  11. Gas Sensing Properties of Ordered Mesoporous SnO2

    Directory of Open Access Journals (Sweden)

    Michael Tiemann

    2006-04-01

    Full Text Available We report on the synthesis and CO gas-sensing properties of mesoporoustin(IV oxides (SnO2. For the synthesis cetyltrimethylammonium bromide (CTABr wasused as a structure-directing agent; the resulting SnO2 powders were applied as films tocommercially available sensor substrates by drop coating. Nitrogen physisorption showsspecific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verifiedby TEM. The film conductance was measured in dependence on the CO concentration inhumid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivityat low CO concentrations and turn out to be largely insensitive towards changes in therelative humidity. We compare the materials with commercially available SnO2-basedsensors.

  12. Fabrication of Titania Nanotubes for Gas Sensing Applications

    Science.gov (United States)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  13. Extractive Sampling and Optical Remote Sensing of F-100 Aircraft Engine Emissions (PREPRINT)

    National Research Council Canada - National Science Library

    Cowen, Kenneth; Goodwin, Bradley; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard T

    2008-01-01

    ... from military aircraft, in order to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS...

  14. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  15. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  16. Gas-sensing behaviour of ZnO/diamond nanostructures.

    Science.gov (United States)

    Davydova, Marina; Laposa, Alexandr; Smarhak, Jiri; Kromka, Alexander; Neykova, Neda; Nahlik, Josef; Kroutil, Jiri; Drahokoupil, Jan; Voves, Jan

    2018-01-01

    Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO 2 , CO 2 ) and reducing (i.e., NH 3 ) gases at 150 °C. The hybrid ZnO NRs/NCD sensor showed a remarkably enhanced NO 2 response compared to the ZnO NRs sensor. Further, inspired by this special hybrid structure, the simulation of interaction between the gas molecules (NO 2 and CO 2 ) and hybrid ZnO NRs/NCD sensor was studied using DFT calculations.

  17. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    DEFF Research Database (Denmark)

    Grosch, Helge

    important gas species of the low-temperature circulating fluidized bed gasifier. At first, a special gas cell,the hot gas flow cell (HGC), was build up and veried. In this custom-made gas cell, the optical properties, the so-called absorption cross-sections, of the most important sulfur and aromatic...... compounds were determined in laboratory experiments. By means of the laboratory results and spectroscopic databases,the concentrations of the major gas species and the aromatic compounds phenol and naphthalene were determined in extraction and in-situ measurements....

  18. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  19. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  20. Large-area multiplexed sensing using MEMS and fiber optics

    Science.gov (United States)

    Miller, Michael B.; Clark, Richard L., Jr.; Bell, Clifton R.; Russler, Patrick M.

    2000-06-01

    Micro-electro-mechanical (MEMS) technology offers the ability to implement local and independent sensing and actuation functions through the coordinated response of discrete micro-electro-mechanical 'basis function' elements. The small size of micromechanical components coupled with the ability to reduce costs using volume manufacturing techniques opens up significant potential not only in military applications such as flight and engine monitoring and control, but in autonomous vehicle control, smart munitions, airborne reconnaissance, LADAR, missile guidance, and even in intelligent transportation systems and automotive guidance applications. In this program, Luna Innovations is developing a flexible, programmable interface which can be integrated direction with different types of MEMS sensors, and then used to multiplex many sensors ona single optical fiber to provide a unique combination of functions that will allow larger quantities of sensory input with better resolution than ever before possible.

  1. Semiconductor type n for applications in gas sensing film

    International Nuclear Information System (INIS)

    Cerón Hurtado, Nathalie Marcela; Rodríguez Páez, Jorge Enrique

    2008-01-01

    Semiconductors are materials commonly used in the conformation of the active material in gas sensors, in this paper the synthesis routes are shown for obtaining raw material Sn02-Ti02 system, n-type semiconductor material, methods of characterization the same and the formation of thick films. The synthesis was performed using the methods of precipitation Controlled Polymeric Precursor, characterization of ceramic powders are made using techniques of differential thermal analysis and thermogravimetric (DTA / TG), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM ) and Scanning Electron Microscopy (SEM); Finally they settled in thick films by screen printing method and microstructurally characterized by Optical Microscopy (M0) and Scanning Electron Microscopy (SEM), besides this electrically characterized. The ceramic powders obtained are nanoscale high chemical purity and respond favorably formed films in the presence of oxygen and carbon monoxide.

  2. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  3. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  4. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  5. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  6. Biomimetric sentinel reef structures for optical sensing and communications

    Science.gov (United States)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  7. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  8. Applications of optical sensing for laser cutting and drilling.

    Science.gov (United States)

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  9. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  10. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  11. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  12. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  13. Miniature fibre optic probe for minimally invasive photoacoustic sensing

    Science.gov (United States)

    Mathews, Sunish J.; Zhang, Edward Z.; Desjardins, Adrien E.; Beard, Paul C.

    2016-03-01

    A miniature (175 μm) all-optical photoacoustic probe has been developed for minimally invasive sensing and imaging applications. The probe comprises a single optical fibre which delivers the excitation light and a broadband 50 MHz Fabry-Pérot (F-P) ultrasound sensor at the distal end for detecting the photoacoustic waves. A graded index lens proximal to the F-P sensor is used to reduce beam walk-off and thus increase sensitivity as well as confine the excitation beam in order to increase lateral spatial resolution. The probe was evaluated in non-scattering media and found to provide lateral and axial resolutions of < 100 μm and < 150 μm respectively for distances up to 1 cm from the tip of the probe. The ability of the probe to detect a blood vessel mimicking phantom at distances up to 7 mm from the tip was demonstrated in order to illustrate its potential suitability for needle guidance applications.

  14. Magnetic Sensing with Ferrofluid and Fiber Optic Connectors

    Directory of Open Access Journals (Sweden)

    Daniel Homa

    2014-02-01

    Full Text Available A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications.

  15. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    Science.gov (United States)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  16. ECOAL Project—Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Joana Ribeiro

    2017-09-01

    Full Text Available The combustion of coal wastes resulting from mining is of particular environmental concern, and the importance of proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of the combustion temperature and emission levels of certain gases allows for the possibility of planning corrective actions to minimize their negative impact on the surroundings. Optical fiber technology is well suited to this purpose and here we describe the main attributes and results obtained from a fiber optic sensing system projected to gather data on distributed temperature and gas emissions in these harsh environments.

  17. Gas sensing of ruthenium implanted tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tesfamichael, T., E-mail: t.tesfamichael@qut.edu.au [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Ahsan, M. [William A. Cook Australia, 95 Brandl Street Eight Mile Plains, Brisbane, QLD 4113 (Australia); Notarianni, M. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Groß, A.; Hagen, G.; Moos, R. [University of Bayreuth, Faculty of Engineering Science, Department of Functional Materials, Universitätsstr. 30, 95440 Bayreuth (Germany); Ionescu, M. [ANSTO, Institute for Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bell, J. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia)

    2014-05-02

    Different amounts of Ru were implanted into thermally evaporated WO{sub 3} thin films by ion implantation. The films were subsequently annealed at 600 °C for 2 h in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at.%. The un-implanted WO{sub 3} films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman Spectroscopy two peaks at 408 and 451 cm{sup −1} (in addition to the typical vibrational peaks of the monoclinic WO{sub 3} phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d{sub 5/2} at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO{sub 2} and NO with higher sensor response to NO{sub 2}. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO{sub 3} films with sufficient film porosity and film thickness can be beneficial for NO{sub 2} sensing at temperatures in the range of 250 °C to 350 °C. - Highlights: • Densification of WO{sub 3} thin films has occurred after Ru ion implantation. • Thickness and porosity of the films decrease with increasing Ru ion dose. • The amount of oxygen vacancies and defects increases with increasing Ru ion dose. • Ru has shown a crucial role in enhancing sensor response

  18. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    Tabassum, Rana; Gupta, Banshi D

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO (1−x) Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO (1−x) Pd x )  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO (1−x) Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H 2 and 4% H 2 in N 2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO (1−x) Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO (1−x) Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  19. Ultrasensitive mass sensing with nonlinear optics in a doubly clamped suspended carbon nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Zhu, Ka-Di [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 2 00240 (China)

    2013-12-07

    Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.

  20. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  1. Influence of sol concentration on CdO nanostructure with gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Jeevitesh K. [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Pathak, Trilok K. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kumar, Vinod [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi (India); Purohit, L.P., E-mail: lppurohit@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2017-07-01

    Highlights: • CdO thin films are prepared by spin coater of precursor solution of different molarity. • Nano-structure of CdO is cauliflower like change with concentration. • Relation of strain and crystal size with conductivity as a function of molarity. • A CdO thin film shows nitrogen sensing at room temperature. - Abstract: The effect of sol concentration has been investigated on the sol-gel derived CdO nanostructures to optimize the optical and electrical properties enhancing gas sensing properties at low temperatures. X-ray diffraction patterns show that 0.5 M CdO film has cubic structure (111) preferred orientation with 34 nm particle size. Scanning electron micrographs indicated concentration dependent surface morphology. The optical band gap energy for highly transparent thin films increases from 1.9 eV to 2.34 eV as molarity was increased from 0.2 M to 1.0 M. The photoluminescence spectra of the samples have a violet to blue emission peak centred at 435 nm. J-V characteristics show that thin film of 0.5 M has conductivity 1.41 × 10{sup −3} S/m. The sensor characteristic such as response curve, sensor response, response time and recovery time were measured for optimized thin film at different operating temperatures. The sensor response was found 20% near room temperature (32 °C) and proportional to temperature. Fastest response time 10 s and recovery time 20 s were observed near room temperature. The resistivity of sensor was found to decrease in presence of gas attribute to more charge carriers with flower like morphology. Our study is encouraging to get faster response by CdO thin films near room temperature.

  2. Ferrite thin films: Synthesis, characterization and gas sensing properties towards LPG

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V. [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Phase, D.M. [UGC-DAE CSR Centre, Indore (India); Chikate, R.C. [Department of Chemistry, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Bhagwat, Sunita, E-mail: smb.agc@gmail.com [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India)

    2015-01-15

    Nanocrystalline (Co, Cu, Ni, Zn) ferrite thin films have been deposited onto the Si (100) and alumina substrates by spray pyrolysis deposition technique. Respective metal chlorides and iron chloride were used as precursors. The structural properties of (Co, Cu, Ni, Zn) ferrite thin films were investigated by X-ray diffraction (XRD) technique which confirms polycrystalline nature and single phase spinel structure. The surface morphology was studied using scanning electron microscopy (SEM) which reveals spherical morphology for these films except NiFe{sub 2}O{sub 4} films that exhibit petal like structure. The optical transmittance and reflectance measurements were recorded using a double beam spectrophotometer. The optical studies reveal that the transition is direct band gap energy. The VSM analyzes reveal the predominant ferrimagnetic nature for CuFe{sub 2}O{sub 4} films. The gas sensing properties towards Liquid Petroleum Gas (LPG) revealed that ZnFe{sub 2}O{sub 4} films are sensitive at lower temperature while NiFe{sub 2}O{sub 4} films show steep rise at higher temperature. - Highlights: • (Co, Cu, Ni, Zn) ferrite thin films are synthesized by simple spray pyrolysis technique. • Homogenization of substituent within ferrite structure. • CuFe{sub 2}O{sub 4} film exhibits predominantly ferrimagnetic nature. • LPG sensing at lower temperature for ZnFe{sub 2}O{sub 4} film. • High sensitivity for NiFe{sub 2}O{sub 4} film at higher temperature due to defects created in the structure.

  3. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  4. Highly versatile fiber-based optical Fabry-Pérot gas sensor.

    Science.gov (United States)

    Liu, Jing; Sun, Yuze; Fan, Xudong

    2009-02-16

    We develop a versatile, compact, and sensitive fiber-based optical Fabry-Pérot (FP) gas sensor. The sensor probe is composed of a silver layer and a vapor-sensitive polymer layer that are sequentially deposited on the cleaved fiber endface, thus forming an FP cavity. The interference spectrum resulting from the reflected light at the silver-polymer and polymer-air interfaces changes when the polymer is exposed to gas analytes. This structure enables using any polymer regardless of the polymer refractive index (RI), which significantly enhances the sensor versatility. In experiments, we use polyethylene glycol (PEG) 400 (RI=1.465-1.469) and Norland Optical Adhesive (NOA) 81 (RI=1.53-1.56) as the gas sensing polymer and show drastically different sensor response to hexanol, methanol, and acetone. The estimated sensitivity for methanol vapor is 3.5 pm/ppm and 0.1 pm/ppm for PEG 400 and NOA 81, respectively, with a detection limit on the order of 1-10 ppm. Gas sensing for the analytes delivered in both continuous flow mode and pulsed mode is demonstrated.

  5. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  6. Low-Power Architecture for an Optical Life Gas Analyzer

    Science.gov (United States)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  7. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  8. 2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application

    KAUST Repository

    Al-Hadeethi, Yas; Umar, Ahmad; Al-Heniti, Saleh. H.; Kumar, Rajesh; Kim, S.H.; Zhang, Xixiang; Raffah, Bahaaudin M.

    2016-01-01

    In this paper, we report the synthesis, characterizations and gas sensing application of 2D Sn-doped ZnO ultrathin nanosheet networks synthesized by a simple and facile hydrothermal process. The synthesized nanosheets were characterized using several techniques in terms of their morphological, structural, optical and compositional properties. The detailed characterizations confirmed that the nanosheets are pure, grown in high-density, possessing well-crystalline wurtzite hexagonal phase and exhibiting good optical properties. Further, the synthesized nanosheets were used as functional material to develop nanosensor device by coating it on the alumina substrate with suitable electrodes. The fabricated sensor device was tested towards acetone gas which exhibited a maximum sensitivity of 5.556 (Ra/Rg) for 200 ppm of acetone at 320 °C.

  9. 2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application

    KAUST Repository

    Al-Hadeethi, Yas

    2016-11-10

    In this paper, we report the synthesis, characterizations and gas sensing application of 2D Sn-doped ZnO ultrathin nanosheet networks synthesized by a simple and facile hydrothermal process. The synthesized nanosheets were characterized using several techniques in terms of their morphological, structural, optical and compositional properties. The detailed characterizations confirmed that the nanosheets are pure, grown in high-density, possessing well-crystalline wurtzite hexagonal phase and exhibiting good optical properties. Further, the synthesized nanosheets were used as functional material to develop nanosensor device by coating it on the alumina substrate with suitable electrodes. The fabricated sensor device was tested towards acetone gas which exhibited a maximum sensitivity of 5.556 (Ra/Rg) for 200 ppm of acetone at 320 °C.

  10. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    A new design is presented for a gas flow cell for reactive gases at high temperatures. The design features three heated sections that are separated by flow windows. This design avoids the contact of reactive gases with the material of the exchangeable optical windows. A gas cell with this design ......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  11. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  12. Measuring artificial recharge with fiber optic distributed temperature sensing.

    Science.gov (United States)

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  13. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  14. A survey on object detection in optical remote sensing images

    Science.gov (United States)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  15. REAL TIME DATA PROCESSING FOR OPTICAL REMOTE SENSING PAYLOADS

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available The application of operational systems for remote sensing requires new approaches for data processing. It has to be the goal to derive user relevant information close the sensor itself and to downlink this information to a ground station or to provide them as input to an actuator of the space-borne platform. A complete automation of data processing is an essential first step for a thematic onboard data processing. In a second step, an appropriate onboard computer system has to be de-signed being able to fulfill the requirements. In this paper, standard data processing steps will be introduced correcting systematic errors during image capturing. A new hardware operating system, which is the interface between FPGA hardware and data processing algorithms, gives the opportunity to implement complex data processing modules in an effective way. As an example the derivation the camera's orientation based on data of an optical payload is described in detail. The thereby derived absolute or relative orientation is essential for high level data products. This will be illustrated by means of an onboard image matcher

  16. Binding Quantum Dots to Silk Biomaterials for Optical Sensing

    Directory of Open Access Journals (Sweden)

    Disi Lu

    2015-01-01

    Full Text Available Quantum dots (QDs, have great potential for fabricating optical sensing devices and imaging biomaterial degradation in vivo. In the present study, 2-mercaptoethylamine- (MEA- and mercaptopropionic acid- (MPA- capped CdTe-QDs were physically incorporated in silk films that contained a high content (>30% of crystalline beta-sheet structure. The beta-sheets were induced by the addition of glycerol, water annealing, glycerol/annealing, or treatment with methanol. Incorporation of QDs did not influence the formation of beta-sheets. When the films were extracted with water, most QDs remained associated with the silk, based on the retention of photoluminescence in the silk films and negligible photoluminescence in the extracts. Compared to the solution state, photoluminescence intensity significantly decreased for MEA-QDs but not for MPA-QDs in the silk films, while the emission maximum blue shifted (≈4 nm slightly for both. Further film digestion using protease XIV, alpha-chymotrypsin, and the combination of the two proteases suggested that QDs may be bound to the silk beta-sheet regions but not the amorphous regions. QDs photoluminescence in silk films was quenched when the concentration of hydrogen peroxide (H2O2 was above 0.2-0.3 mM, indicating the QDs-incorporated silk films can be used to report oxidation potential in solution.

  17. Understanding and applying open-path optical sensing data

    Science.gov (United States)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  18. Using optical remote sensing model to estimate oil slick thickness based on satellite image

    International Nuclear Information System (INIS)

    Lu, Y C; Tian, Q J; Lyu, C G; Fu, W X; Han, W C

    2014-01-01

    An optical remote sensing model has been established based on two-beam interference theory to estimate marine oil slick thickness. Extinction coefficient and normalized reflectance of oil are two important parts in this model. Extinction coefficient is an important inherent optical property and will not vary with the background reflectance changed. Normalized reflectance can be used to eliminate the background differences between in situ measured spectra and remotely sensing image. Therefore, marine oil slick thickness and area can be estimated and mapped based on optical remotely sensing image and extinction coefficient

  19. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  20. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe

    Science.gov (United States)

    Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim

    2018-03-01

    In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.

  1. Novel gas sensor with dual response under CO(g) exposure: Optical and electrical stimuli

    Science.gov (United States)

    Rocha, L. S. R.; Cilense, M.; Ponce, M. A.; Aldao, C. M.; Oliveira, L. L.; Longo, E.; Simoes, A. Z.

    2018-05-01

    In this work, a lanthanum (La) doped ceria (CeO2) film, which depicted a dual gas sensing response (electric and optical) for CO(g) detection, was obtained by the microwave-assisted hydrothermal (HAM) synthesis and deposited by the screen-printing technique, in order to prevent deaths by intoxication with this life-threatening gas. An electric response under CO(g) exposure was obtained, along with an extremely fast optical response for a temperature of 380 °C, associated with Ce+4 reduction and vacancy generation. A direct optical gap was found to be around 2.31 eV from UV-Vis results, which corresponds to a transition from valence band to 4f states. Due to the anomalous electron configuration of cerium atoms with 4f electrons in its reduced state, they are likely to present an electric conduction based on the small polaron theory with a hopping mechanism responsible for its dual sensing response with a complete reversible behaviour.

  2. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  3. Optical absorption in a degenerate Bose-Einstein gas

    International Nuclear Information System (INIS)

    Yip, S.K.

    2002-01-01

    We develop a theory on optical absorption in a dilute Bose-Einstein gas at low temperatures. This theory is motivated by the Bogoliubov theory of elementary excitations for this system, and takes into account explicitly the modification of the nature and dispersion of elementary excitations due to Bose-Einstein condensation. Our results show important differences from existing theories

  4. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  5. Wireless gas sensing in South African underground platinum mines

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2014-04-01

    Full Text Available Approximately 70% of South African mines are classified as fiery, where methane gas potentially could cause explosions. The number of flammable gas reports and accidents are increasing steadily for both gold and platinum mines. However...

  6. Gas dependent sensing mechanism in ZnO nanobelt sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manmeet, E-mail: manmeet@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kailasaganapathi, S.; Ramgir, Niranjan; Datta, Niyanta [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Sushil [Heavy Water Plant (Manuguru), Gautaminagar, Dist. Khammam, Telangana (India); Debnath, A.K.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-01

    Highlights: • ZnO nanobelts exhibit an appreciable response towards H{sub 2}S and NO. • At room temperature, sensor recovers completely after exposure to NO (1 to 60 ppm). • At room temperature, incomplete recovery observed on exposure to higher concentrations of H{sub 2}S (> 5 ppm). • Complete recovery on exposure to concentrations higher than 5 ppm H{sub 2}S is achieved by heating the sensor films at 250 °C. • Incomplete recovery after exposure to higher concentrations of H{sub 2}S is due to formation of ZnS. - Abstract: Gas sensing properties of ZnO nanobelts synthesized using carbothermal reduction method has been investigated. At room temperature (28 °C), the sensor films exhibit an appreciable response towards H{sub 2}S and NO and response of these two gases were studied as a function of concentration. For NO the sensor films exhibit a complete reversible curve for the concentration range between 1 and 60 ppm. However, for H{sub 2}S a complete recovery was obtained for concentration <5 ppm and for higher concentration a partial recovery of the baseline resistance was observed. The reason for the incomplete recovery was investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies of the sample before and after the H{sub 2}S exposure. After exposure, appearance of an additional peak at 26.6° corresponding to the formation of ZnS was observed in XRD. Formation of additional phase was further corroborated using the results of XPS. H{sub 2}S exposure causes decrease in the intensity of O 1s peak and appearance of sulphide peaks at binding energies of 162.8 and 161.8 eV corresponding to S-2p peaks – 2p{sub 3/2} and 2p{sub 1/2}, confirms the formation of ZnS upon exposure.

  7. On the upgrade of an optical code division PON with a code-sense ethernet MAC protocol

    NARCIS (Netherlands)

    Huiszoon, B.; Waardt, de H.; Khoe, G.D.; Koonen, A.M.J.

    2007-01-01

    We propose, for the first time, optical code-sense multiple access / collision detection to upgrade an optical code division passive optical network with minor modifications to transparently deploy Ethernet (or packet) based services.

  8. Pattern Recognition in Optical Remote Sensing Data Processing

    Science.gov (United States)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  9. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  10. Phase Diversity Wavefront Sensing for Control of Space Based Adaptive Optics Systems

    National Research Council Canada - National Science Library

    Schgallis, Richard J

    2007-01-01

    Phase Diversity Wavefront Sensing (PD WFS) is a wavefront reconstruction technique used in adaptive optics, which takes advantage of the curvature conjugating analog physical properties of a deformable mirror (MMDM or Bi-morph...

  11. Distributed Anemometry via High-Definition Fiber Optic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna is developing a distributed anemometer that can directly measure flow field velocity profiles using high-definition fiber optic sensing (HD-FOS). The concept is...

  12. Gas Sensing Properties of Pure and Cr Activated WO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. GAIKWAD

    2010-09-01

    Full Text Available Thick films of WO3 (Tungsten Oxide were prepared by screen-printing techniques. The surfaces of the films were modified by dipping them into an aqueous solution of Chromium Oxide (CrO3 for different intervals of time, followed by firing at 550 oC for 30 min. The gas sensing performance of the pure and Cr2O3-modified films was tested for various gases at different temperatures. The unmodified films showed response to H2S, ethanol and cigar smoke. However Cr2O3- modified films suppresses gas sensing response to all gases except H2S. The surface modification, using dipping process, altered the adsorbate-adsorbent interactions, which gave the specific selectivity and enhanced sensitivity to H2S gas. The gas response, selectivity, thermal stability and recovery time of the sensor were measured and presented. The role played by surface chromium species to improve gas sensing performance is discussed.

  13. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S., E-mail: piyush.physics@gmail.com [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); Rathod, K. N.; Solanki, Sapana [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); V.V.P. Engineering College, Gujarat Technological University, Rajkot – 360 005 (India)

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  14. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  15. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  16. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Milani Moghaddam, Hossain, E-mail: hossainmilani@yahoo.com [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Nasirian, Shahruz [Solid State Physics Department, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Basic Sciences Department, Mazandaran University of Science and Technology, Babol (Iran, Islamic Republic of)

    2014-10-30

    Graphical abstract: - Highlights: • Polyaniline/titania (rutile) nanocomposite (TPNC) was synthesized by a chemical oxidative polymerization method. • Surface morphology and titania (rutile) wt% in TPNC sensors were significant factors for H{sub 2} gas sensing. • TPNC sensors could be used for H{sub 2} gas sensing at different R.H. humidity. • TPNC Sensors exhibited considerable sensitive, reversible and repeatable response to H{sub 2} gas at environmental conditions. - Abstract: The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H{sub 2}) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H{sub 2} gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H{sub 2} gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H{sub 2} gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  17. Designing Plasmonic Materials and Optical Metasurfaces for Light Manipulation and Optical Sensing

    Science.gov (United States)

    Chen, Wenxiang

    Metamaterials are artificial materials designed to create optical properties that do not exist in nature. They are assemblies of subwavelength structures that are tailored in size, shape, composition, and orientation to realize the desired property. Metamaterials are promising for applications in diverse areas: optical filters, lenses, holography, sensors, photodetectors, photovoltaics, photocatalysts, medical devices, and many more, because of their excellent abilities in bending, absorbing, enhancing and blocking light. However, the practical use of metamaterials is challenged by the lack of plasmonic materials with proper permittivity for different applications and the slow and expensive fabrication methods available to pattern sub-wavelength structures. We have also only touched the surface in exploring the innovative uses of metamaterials to solve world problems. In this thesis, we study the fundamental optical properties of metamaterial building blocks by designing material permittivity. We continuously tune the interparticle distance in colloidal Au nanocrystal (NC) solids via the partial ligand exchange process. Then we combine top-down nanoimprint lithography with bottom-up assembly of colloidal NCs to develop a large-area, low-cost fabrication method for subwavelength nanostructures. Via this method, we fabricate and characterize nano-antenna arrays of different sizes and demonstrate metasurface quarter wave-plates of different bandwidth, and compare their performances with simulation results. We also integrate the metasurfaces with chemically- and mechanically-responsive polymers for strong-signal sensing. In the first design, we combine ultrathin plasmonic nanorods with hydrogel to fabricate optical moisture sensors for agricultural use. In the second application, we design mechanically tunable Au grating resonances on a polydimethylsiloxane (PDMS) substrate. The dimensions of Au grating are carefully engineered to achieve a hybridized, ultrasharp, and

  18. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  19. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  20. Using Distributed Fiber-Optic Sensing Systems to Estimate Inflow and Reservoir Properties

    NARCIS (Netherlands)

    Farshbaf Zinati, F.

    2014-01-01

    Recent developments in the deployment of distributed fiber-optic sensing systems in horizontal wells carry the promise to lead to a new, cheap and reliable way of monitoring production and reservoir performance. Practical applicability of distributed pressure sensing for quantitative inflow

  1. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Science.gov (United States)

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  2. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  3. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM of civil infrastructure.

  4. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  5. Development of absorption fiber optic sensor for distributed measurement of ammonia gas

    Science.gov (United States)

    Aubrecht, J.; Kalvoda, L.

    2013-05-01

    Polymer-clad silica optical fibers are employed for development of different absorption optic fiber sensors of gaseous analytes. In our case, the physical principles of the detection are combined with a chemical reaction between analyte and suitable opto-chemical absorption reagents. Selected organometallic complex reagents with different lengths of lateral aliphatic chains are studied with respect to the type of central ions and their coordinative conditions to surrounding ligands. The effect of solvent type on solubility and the long-term stability of the prepared reagents in solid matrix are presented and discussed. Various methods are also tested in order to achieve an effective reagent immobilization into the polymer matrix, which creates optical fiber cladding. The chemical reaction of the reagents with ammonia based on ligand exchange process is accompanied by changes of visible-near-infrared optical absorption influencing via evanescent field on the guided light intensity. Experimental results suggest that the selected reagents provide optical properties suitable for practical sensing applications and that the sensitized PCS optical fibers could be used for detection of ammonia gas.

  6. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  7. [INVITED] Porphyrin-nanoassembled fiber-optic gas sensor fabrication: Optimization of parameters for sensitive ammonia gas detection

    Science.gov (United States)

    Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo

    2018-05-01

    Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).

  8. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia Parajo, M.F.; van Hulst, N.F.; Ravoo, B.J.; Reinhoudt, David; van den Berg, Albert

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to

  9. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  10. Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing

    Science.gov (United States)

    Wu, Chao-Wei; Chiang, Chia-Chin

    2016-01-01

    An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.

  11. Large-area nanopatterned graphene for ultrasensitive gas sensing

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Mackenzie, David Micheal Angus; Tschammer, Lisa Katharina

    2014-01-01

    of magnitude higher than for non-patterned graphene. NO2 concentrations as low as 300 ppt were detected with an ultimate detection limit of tens of ppt. This is the smallest value reported so far for non-UV illuminated graphene chemiresistive NO2 gas sensors. The dramatic improvement in the gas sensitivity...

  12. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    Science.gov (United States)

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  13. Abnormal gas sensing characteristics arising from catalyzed morphological changes of ionsorbed oxygen

    International Nuclear Information System (INIS)

    Xue Xinyu; Chen Zhaohui; Ma Chunhua; Xing Lili; Chen Yujin; Wang Yanguo; Wang Taihong

    2010-01-01

    Abnormal gas sensing characteristics are observed at low temperature in uniformly loaded Pt-SnO 2 nanorod gas sensors. The sensors operated at 200 deg. C exhibit opposite variations of resistances, and the change of resistance decreases with increasing ethanol concentration. In contrast, the sensors operated at 300 deg. C show regular behavior and the sensitivity is extremely high. Such behaviors are ascribed to Pt-catalyzed morphological changes of ionsorbed oxygen at low temperature. The present results are the bases for further investigating the effect of ionsorbed oxygen morphologies on gas sensing.

  14. Development of self-sensing BFRP bars with distributed optic fiber sensors

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  15. Electrical conduction and NO{sub 2} gas sensing properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Yasin [Council of Forensic Medicine, Bahçelievler, 34196 Istanbul (Turkey); Öztürk, Sadullah, E-mail: sadullahozturk@gyte.edu.tr [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Kılınç, Necmettin [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Koc University, Department of Electrical and Electronics Engineering, Sariyer, 34450 Istanbul (Turkey); Kösemen, Arif [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); Mus Alparslan University, Department of Physics, 49100 Mus (Turkey); Erkovan, Mustafa [SAKARYA University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Esentepe Campus, 54187 Sakarya (Turkey); Öztürk, Zafer Ziya [Gebze Institute of Technology, Science Faculty, Department of Physics, 41400 Gebze, Kocaeli (Turkey); TÜBİTAK-Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey)

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO{sub 2} (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO{sub 2} gas decreased by exposing to white light.

  16. Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions

    Science.gov (United States)

    Milani Moghaddam, Hossain; Nasirian, Shahruz

    2014-10-01

    The resistance-based sensors of polyaniline/titania (rutile) nanocomposite (TPNC) were prepared by spin coating technique onto an epoxy glass substrate with Cu-interdigited electrodes to study their hydrogen (H2) gas sensing features. Our findings are that the change of the surface morphology, porosity and wt% of titania in TPNCs have a significant effect on H2 gas sensing of sensors. All of the sensors had a reproducibility response toward 0.8 vol% H2 gas at room temperature, air pressure and 50% relative humidity. A sensor with 40 wt% of titania nanoparticles had better response/recovery time and the response than other sensors. Moreover, H2 gas sensing mechanism of TPNC sensors based contact areas and the correlation of energy levels between PANI chains and the titania grains were studied.

  17. CO2 laser ablation of bent optical fibers for sensing applications

    International Nuclear Information System (INIS)

    Lévesque, L; Jdanov, V

    2011-01-01

    A procedure for the fabrication of a fiber optic sensor involving CO 2 laser ablation at λ = 10.6 µm is proposed. A basic system to achieve optical fiber bending and material processing on a single mode optical fiber is described and it is demonstrated that an optical fiber can be bent at a very precise angle by focusing a CO 2 beam locally near the glass cladding surface until it reaches melting temperature. A method is also described for removing material at the apex of a bent fiber to obtain a smooth and well flattened plane surface that is suitable for optical fiber sensing

  18. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    Science.gov (United States)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  19. Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)

    International Nuclear Information System (INIS)

    Barczak, Mariusz; McDonagh, Colette; Wencel, Dorota

    2016-01-01

    This review (with 172 references) highlights the progress made in the past 10 years in silica sol-gel-based materials for use in optical chemical sensing. Following an introduction, the processes leading to the sol-gel-based and ormosil materials, their printability and methods for characterisation are discussed. Then various classes of optical sensors, with a focus on sensors for pH values, oxygen, carbon dioxide, ammonia (also in dissolved form), and heavy metal ions are described. A further section covers nanoparticle-based optical sensors mainly for use in intracellular sensing of the above species. Recent developments in this area are also emphasised and future trends discussed. (author)

  20. Advanced feed-through systems for in-well optical fibre sensing

    International Nuclear Information System (INIS)

    Shiach, G; Nolan, A; McAvoy, S; McStay, D; Prel, C; Smith, M

    2007-01-01

    A new optical fibre feed-through for use in subsea in-well optical fibre sensing systems is reported. The new feed-through is compatible for use with standard subsea Christmas Tree penetrators and allows multiple re-mating of the feed-through over the lifetime of the device. The system has been extensively tested under in-well conditions and found to conform to the performance requirements. The new feed-through is planned to be used in one of the first subsea optical fibre in-well sensing systems

  1. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  2. Optics, illumination, and image sensing for machine vision II

    International Nuclear Information System (INIS)

    Svetkoff, D.J.

    1987-01-01

    These proceedings collect papers on the general subject of machine vision. Topics include illumination and viewing systems, x-ray imaging, automatic SMT inspection with x-ray vision, and 3-D sensing for machine vision

  3. Fiber Optic Shape Sensing for Tethered Marsupial Rovers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Building upon the successful proof of concept work in Phase I, Luna Innovations Incorporated is proposing to design, build, and test a sensing tether for marsupial...

  4. Gas sensing application of nanocrystalline zinc oxide thin films ...

    Indian Academy of Sciences (India)

    Experimental data revealed the sensors to be more selective to NO2 gas with satisfactory response and recovery time. .... energy-dispersive X-ray spectroscopy (EDS, JEOL Model ... nm line of argon ion laser was used for excitation. 3.

  5. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.

    Science.gov (United States)

    Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng

    2009-11-09

    Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.

  6. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  7. Research on distributed optical fiber sensing data processing method based on LabVIEW

    Science.gov (United States)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  8. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  9. Geologic remote sensing over the Cottageville, West Virginia, gas field. Final report, August 15, 1977-February 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P. L.; Wagner, H. L.; Shuchman, R. A.

    1979-02-01

    Remote sensing of geologic features was investigated for the purpose of exploration for gas reserves in the eastern Mississippian-Devonian Shales. The Cottageville gas field in Jackson and Mason Counties, West Virginia, was used as a test site for this purpose. Available photographic and multispectral (MSS) images from Landsat were obtained; also 4-channel synthetic aperture radar and 12-channel MSS in the range between ultraviolet and far infrared were gathered by the Environmental Research Institute of Michigan over the test site. The images were first interpreted visually for lineaments. Then the images were enhanced by many different digital computation techniques in addition to analysis and enhancement by optical techniques. Subtle, interpretative lineaments were found which could not be enhanced to an obvious level by the procedures used. Two new spatial enhancement procedures were developed.

  10. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  11. TiO2-Based Nanomaterials for Gas Sensing-Influence of Anatase and Rutile Contributions.

    Science.gov (United States)

    Zakrzewska, K; Radecka, M

    2017-12-01

    The paper deals with application of three nanomaterial systems: undoped TiO 2 , chromium-doped TiO 2 :Cr and TiO 2 -SnO 2 synthesized by flame spray synthesis (FSS) technique for hydrogen sensing. The emphasis is put on the role of anatase and rutile polymorphic forms of TiO 2 in enhancing sensitivity towards reducing gases. Anatase-to-rutile transformation is achieved by annealing of undoped TiO 2 in air at 700 °C, specific Cr doping and modification with SnO 2 . Undoped TiO 2 and TiO 2 -SnO 2 exhibit n-type behaviour and while TiO 2 : 5 at.% Cr is a p-type semiconductor. X-ray diffraction (XRD) has been applied to determine anatase-to-rutile weight ratio as well as anatase and rutile crystal size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphological parameters. Optical reflectometry enabled to find and compare the band gaps E g of anatase and rutile predominated compositions. Electrical properties, i.e. the electrical conductivity and values of constant phase element (CPE), have been established on the basis of impedance spectroscopy. Dynamic responses of the electrical resistance as a function of hydrogen concentration revealed that predominance of rutile in anatase/rutile mixture is beneficial for gas sensing. Partial transformation to rutile in all three material systems under study resulted in an increased sensitivity towards hydrogen. It is proposed that this effect can be explained in a similar way as in photocatalysis, i.e. by specific band alignment and electron transfer from rutile to anatase to facilitate oxygen preadsorption on the surface of anatase grains.

  12. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  13. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  14. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  15. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  16. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    Science.gov (United States)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  17. Optochemical sensing of hydrogen chloride gas using meso-tetramesitylporphyrin deposited glass plate

    International Nuclear Information System (INIS)

    Kalimuthu, Palanisamy; Abraham John, S.

    2008-01-01

    Meso-tetramesitylporphyrin (MTMP) deposited glass plate (solid state sensor) was used to sense hydrogen chloride (HCl) gas based on optochemical method. Exposure of the solid state sensor to HCl vapor results in the formation of protonated meso-tetramesitylporphyrin (PMTMP). UV-vis and fluorescence spectral techniques were used to study the protonation of MTMP in dichloromethane-methanol mixture. The optical spectra of MTMP show an intense Soret band at 418 nm with a 14 nm red shift upon protonation by HCl. Ab-initio calculations were carried out to visualize the effect of protonation on planarity and stability of the porphyrin ring. The solid state sensor was characterized by UV-vis spectral technique. The sensor exhibits characteristic Soret and Q bands for the deposited MTMP with slight red shift when compared to MTMP in dichloromethane. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band of PMTMP at 452 nm. The detection limit of the solid state sensor towards gaseous HCl was found to be 0.03 ppm. The present solid state sensor was highly stable for several months

  18. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  19. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  20. Hepatitis B virus evasion from cGAS sensing in human hepatocytes.

    Science.gov (United States)

    Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F

    2018-04-20

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  1. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Gold (Au), which is otherwise non-reactive with gas samples, is selected as ... At oblique incidence for p-polarized light, the modified optical admittances are given .... Plot of (a) SPR angle and (b) sensitivity vs. refractive index of the gas.

  2. Photoacoustic trace gas sensing : application to fruit and insects

    NARCIS (Netherlands)

    Persijn, Stefan Timotheüs

    2001-01-01

    A novel photoacoustic spectrometer has been applied to study trace gas emissions by fruit and insects. The spectrometer is based on a newly designed CO laser that can operate on 400 laser lines between 5.1-8.0 and 2.8-4.1 micrometer (delta v=1 and 2 mode, respectively). The spectrometer is equipped

  3. Studies on gas sensing performance of pure and modified barium ...

    Indian Academy of Sciences (India)

    The effect of film thickness on gas response was also studied. As prepared. BST thick films ... vity, stability, and response rate, to various kinds of gases and to meet the .... Slopes of the ... increased porosity increases the in-pore adsorption of oxygen and ... state preventing fast decomposition and water formation. NH3 could ...

  4. Gas sensing behaviour of cerium oxide and magnesium aluminate ...

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... sis techniques are used to prepare a CeO2 thin sensor sample. However, these synthesis ... with CO2 and ethanol gas sensors at room temperature as well as at ... NaCl, KCl, hydrochloric acid (HCl) and ethanol were used as.

  5. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Henderson, Philip J

    2014-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  6. Lidar: range-resolved optical remote sensing of the atmosphere

    National Research Council Canada - National Science Library

    Weitkamp, Claus; Walther, Herbert

    2005-01-01

    "Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection...

  7. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  8. Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir

    2006-01-01

    comprising a pump laser, optical filters, optical fibre and photo-detectors are presented. Limitations, trade-offs and optimisation processes are described for setups having different specifications with respect to range, resolution and accuracy. The analysis is conducted using computer simulation programs...... developed and implemented in Matlab. The computer model is calibrated and tested, and describes the entire system with high precision. Noise analysis and digital processing of the detected signal are discussed as well. An equation describing the standard deviation of the measured temperature is derived......This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...

  9. Optically compressed sensing by under sampling the polar Fourier plane

    International Nuclear Information System (INIS)

    Stern, A; Levi, O; Rivenson, Y

    2010-01-01

    In a previous work we presented a compressed imaging approach that uses a row of rotating sensors to capture indirectly polar strips of the Fourier transform of the image. Here we present further developments of this technique and present new results. The advantages of our technique, compared to other optically compressed imaging techniques, is that its optical implementation is relatively easy, it does not require complicate calibrations and that it can be implemented in near-real time.

  10. Suppression of Instability on Sensing Signal of Optical Pulse Correlation Measurement in Remote Fiber Sensing

    Directory of Open Access Journals (Sweden)

    Hirokazu Kobayashi

    2012-01-01

    response and improve the accuracy of signals at the focused sensing regions. We also experimentally demonstrate remote temperature monitoring over a 30 km-long distance using a remote reference technique, and we estimate the resolution and the measurable span of the temperature variation as (1.1/L∘C and (5.9×10/L°C, respectively, where L is the length of the fiber in the sensing region.

  11. Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes.

    Science.gov (United States)

    Ohira, Shin-Ichi; Wanigasekara, Eranda; Rudkevich, Dmitry M; Dasgupta, Purnendu K

    2009-03-15

    Calixarenes are interesting building blocks in supramolecular receptor design. They can be easily functionalized to give the desired guest binding and sequestration properties. We demonstrate here the use of simple alkylated calixarenes as novel NO(2) sensors. Upon reacting with gaseous NO(2), alkylated calixarenes form stable calixarene-NO(+) (nitrosonium) complexes that have a deep purple color. This specific and selective formation of the colored complex was used to develop a fiber optic based colorimetric NO(2) sensor. Several alkylated calixarenes are used and tested as sensing materials. The calixarene compound was immobilized on a fine mesh silica-gel coated thin layer chromatography plate. The sensing plate was coupled with a fiber optic based photodetector. Gas samples were sampled in a manner where they impinged on the surface of sensing plate. The light transmission through the plate was continuously monitored. For a 5 min sample, the limit of detection was 0.54 ppmv with 1,3-alternate O-hexyl calix[4]arene (1a). There were no significant response differences between different conformations of calixarenes such as 1,3-alternate or cone. This chemistry can form the basis of a colorimetric sensor that relies on extant filter tape technology. With calixarenes however, such a reaction is potentially reversible - color formed upon reaction with NO(2) can be reversed by flushing the sensing plate by purified air. While we found that the removal of the developed color can be accelerated by simultaneous heating and suction, permitting the reuse of the same sensing area multiple times, we also observed that the sensitivity gradually decreased. The nitrosonium calixarene derivative tends to transform to the nitrated form; this process is catalyzed by light. Several methylated calixarenes were synthesized and tested but a fully satisfactory solution has proven elusive.

  12. Electronic and gas sensing properties of soluble phthalocyanines

    Czech Academy of Sciences Publication Activity Database

    Pochekaylov, Sergey; Rais, David; Nešpůrek, Stanislav; Rakušan, J.; Karásková, M.

    2009-01-01

    Roč. 27, č. 3 (2009), s. 781-795 ISSN 0137-1339. [International Conference on Electtrical and Related Properties of Organic Solids /11./. Wroclaw, 13.07.2008-17.07.2008] R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : substituted phthalocyanine * nitrogen dioxide sensor * optical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009

  13. Effect of the sheet thickness of hierarchical SnO_2 on the gas sensing performance

    International Nuclear Information System (INIS)

    Zhang, Wenlong; Zeng, Wen; BinMiao; Wang, Zhongchang

    2015-01-01

    Graphical abstract: - Highlights: • A unique flower-like SnO_2 hierarchical architecture assembled with nanosheets were successfully synthesized. • The thickness of the unique hierarchical nanoflowers was precisely controlled. • The nanoflowers composed of thinner nanosheets show a significantly enhanced gas sensing properties. • A possible growth mechanism for the unique hierarchical SnO_2 nanoflower assembled with nanosheets of different thickness is proposed. - Abstract: A unique hierarchical SnO_2 nanoflower was successfully synthesized via a facile one-step hydrothermal method. The nanoflower was analyzed in detail using X ray diffraction, field-emission electron microscope and transmission electron microscope. It was found that the nanoflowers are all assembled from nanosheets. The nanosheet thickness could be precisely controlled by tuning the dosage of NaOH. Gas sensing tests demonstrated that the thickness of the sheet significantly affects the gas sensing performance. The improved gas sensing properties are attributed to the thinned petals as well as their pores and defects. These results show that the thickness and morphology of hierarchical nanostructures affect the functionality of gas sensors.

  14. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  15. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.

    Science.gov (United States)

    Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2011-01-24

    An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Gas-sensing behaviour of ZnO/diamond nanostructures

    Czech Academy of Sciences Publication Activity Database

    Davydova, Marina; Laposa, A.; Smarhak, J.; Kromka, Alexander; Neykova, Neda; Náhlík, J.; Kroutil, J.; Drahokoupil, Jan; Voves, J.

    2018-01-01

    Roč. 9, Jan (2018), s. 22-29 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GP14-06054P Institutional support: RVO:68378271 Keywords : density functional theory (DFT) * gas sensor * interdigital electrodes * nanocrystalline diamond * sensitivity * zinc oxide (ZnO) Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.127, year: 2016

  17. Superior Gas Sensing Properties of Monolayer PtSe2

    KAUST Repository

    Sajjad, Muhammad

    2016-12-15

    First-principles calculations of the structural and electronic properties of monolayer 1T-PtSe2 with adsorbed (a) NO2, (b) NO, (c) NH3, (d) H2O, (e) CO2, and (f) CO molecules are discussed. The results point to great potential of the material in gas sensor applications. Superior sensitivity is demonstrated by transport calculations using the nonequilibrium Green\\'s function method.

  18. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  19. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  20. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    Science.gov (United States)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  1. A model for the impact of the nanostructure size on its gas sensing properties

    DEFF Research Database (Denmark)

    Alenezi, Mohammad R.; Alzanki, T.H.; Almeshal, A.M.

    2015-01-01

    The size of a metal oxide nanostructure plays a key role in its performance as a gas sensor. ZnO nanostructures with different morphologies including nanowires at different diameters and nanodisks at different thicknesses were synthesized hydrothermally. Gas sensors based on individual...... of the surface to volume ratio as well as the depletion region of the nanostructure. This work can be simply generalized for other metal oxides to enhance their performance as gas sensors....... nanostructures with different sizes were fabricated and their sensing properties were compared and investigated. Nanowires with smaller diameter size and higher surface to volume ratio showed enhanced gas sensing performance. Also, as the nanodisk thickness gets closer to the thickness of the ZnO depletion layer...

  2. Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas

    International Nuclear Information System (INIS)

    Tishchenko, V N; Grachev, G N; Smirnov, A L; Pavlov, A A; Pavlov, A A; Golubev, M P

    2008-01-01

    The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source. (laser applications and other topics in quantum electronics)

  3. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    OpenAIRE

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced p...

  4. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  5. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  6. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Henderson, P. J.

    2013-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  7. Integrated optics on Lithium Niobate for sensing applications

    Science.gov (United States)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  8. Optical devices for biochemical sensing in flame hydrolysis deposited glass

    Science.gov (United States)

    Ruano-Lopez, Jesus M.

    Previous research in the field of Flame Hydrolysis Deposition (FHD) of glasses has focused on the production of low cost optical devices for the field of telecommunications. The originality of this doctoral research resides in the exploration of this technology in the fabrication of optical bio-chemical sensors, with integrated "Lab-on-a-chip" devices. To achieve this goal, we have combined and applied different microfabrication processes for the manufacture of sensor platforms using FHD. These structures are unique in that they take advantage of the intrinsic benefits of the microfabrication process, such as, miniaturisation and mass production, and combine them with the properties of FHD glass, namely: low loss optical transducing mechanisms, planar technologies and monolithic integration. This thesis demonstrates that FHD is a suitable technology for biosensing and Lab- on-a-Chip applications. The objective is to provide future researchers with the necessary tools to accomplish an integrated analytical system based on FHD. We have designed, fabricated, and successfully tested a FHD miniaturised sensor, which comprised optical and microfluidic circuitry, in the framework of low volume fluorescence assays. For the first time, volumes as low as 570 pL were analysed with a Cyanine-5 fluorophore with a detection limit of 20 pM, or ca. 6000 molecules (+/-3sigma) for this platform. The fabrication of the sensor generated a compilation of processes that were then utilised to produce other possible optical platforms for bio-chemical sensors in FHD, e.g. arrays and microfluidics. The "catalogue" of methods used included new recipes for reactive ion etching, glass deposition and bonding techniques that enabled the development of the microfluidic circuitry, integrated with an optical circuitry. Furthermore, we developed techniques to implement new tasks such as optical signal treatment using integrated optical structures, planar arraying of sensors, a separating element for

  9. Fabrication, characterization and gas sensing studies of PPy/MWCNT/SLS nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, D. C., E-mail: dctiwari2001@yahoo.com; Atri, Priyanka, E-mail: dctiwari2001@yahoo.com [SOS Electronics, Jiwaji University, Gwalior (M.P.)-474011 (India); Sharma, R. [CSIR-CEERI, Pilani (Rajasthan)-333031 (India)

    2014-04-24

    Multiwall carbon nanotubes (MWCNT) coated with polypyrrole nanocomposite was prepared by in-situ chemical oxidative polymerization method in the presence of surfactant (SLS). The scanning electron microscope (SEM) pictures indicate the core shell structure of PPy/MWCNT/SLS nanocomposite. Nature of the prepared material was investigated by X-ray diffraction spectroscopy. This nanocomposite shows the excellent gas sensing behaviour for ammonia gas at 150 ppm and 300 ppm levels.

  10. Resonant optical transducers for in-situ gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    2018-01-30

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  11. Resonant optical transducers for in-situ gas detection

    Science.gov (United States)

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  12. Fibre optic system for biochemical and microbiological sensing

    International Nuclear Information System (INIS)

    Penwill, L A; Slater, J H; Hayes, N W; Tremlett, C J

    2007-01-01

    This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application

  13. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  14. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  16. Characterization and hydrogen gas sensing properties of TiO{sub 2} thin films prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Haidry, Azhar Ali [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Puskelova, Jarmila [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Plecenik, Tomas; Durina, Pavol; Gregus, Jan; Truchly, Martin; Roch, Tomas; Zahoran, Miroslav [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Vargova, Melinda [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Kus, Peter; Plecenik, Andrej [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Plesch, Gustav, E-mail: plesch@fns.uniba.sk [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Preparation and characterization of hydrogen sensing TiO{sub 2} thin films by sol-gel method. Black-Right-Pointing-Pointer The annealing effect on the structure, electrical, optical and sensing properties was studied. Black-Right-Pointing-Pointer The best sensitivity show the films composed of rutile with grain size of {approx}100 nm. - Abstract: Thin films of titanium dioxide with thickness of about 150 nm were deposited by spin coating method on a sapphire substrate from a sol-gel and annealed at various temperatures (from 600 Degree-Sign C to 1000 Degree-Sign C). Structural, optical and hydrogen gas sensing properties of the films were investigated. The annealing temperatures from 600 to 800 Degree-Sign C led to anatase phase with grain size in the range of 14-28 nm. Further increase of the annealing temperature resulted in transformation to rutile phase with larger grain size of about 100-120 nm. The optical band gap tended to decrease with increasing annealing temperature. The estimated values of activation energy for charge transport were in the range of 0.6-1.0 eV for films annealed at temperatures from 600 Degree-Sign C to 800 Degree-Sign C and 0.37-0.38 eV for films annealed at 900 Degree-Sign C and 1000 Degree-Sign C. The films annealed at 900 Degree-Sign C and 1000 Degree-Sign C showed better hydrogen sensitivity, what can be at least partially caused by their higher surface roughness.

  17. Characterisation and optical vapour sensing properties of PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I. [Balikesir University, Science and Arts Faculty, Physics Department, 10100 Balikesir (Turkey)], E-mail: inci.capan@gmail.com; Tarimci, C. [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Tandogan, Ankara (Turkey); Hassan, A.K. [Sheffield Hallam University, Materials and Engineering Research Institute, City Campus, Pond Street, Sheffield S1 1WB (United Kingdom); Tanrisever, T. [Balikesir University, Science and Arts Faculty, Chemistry Department, 10100 Balikesir (Turkey)

    2009-01-01

    The present article reports on the characterisation of spin coated thin films of poly (methyl methacrylate) (PMMA) for their use in organic vapour sensing application. Thin film properties of PMMA are studied by UV-visible spectroscopy, atomic force microscopy and surface plasmon resonance (SPR) technique. Results obtained show that homogeneous thin films with thickness in the range between 6 and 15 nm have been successfully prepared when films were spun at speeds between 1000-5000 rpm. Using SPR technique, the sensing properties of the spun films were studied on exposures to several halohydrocarbons including chloroform, dichloromethane and trichloroethylene. Data from measured kinetic response have been used to evaluate the sensitivity of the studied films to the various analyte molecules in terms of normalised response (%) per unit concentration (ppm). The highest PMMA film sensitivity of 0.067 normalised response per ppm was observed for chloroform vapour, for films spun at 1000 rpm. The high film's sensitivity to chloroform vapour was ascribed mainly to its solubility parameter and molar volume values. Effect of film thickness on the vapour sensing properties is also discussed.

  18. Self-Calibrating High Resolution Tunable Filter for Remote Gas Sensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for local and remote sensing of oxygen (O2) at 1.26 µm, carbon dioxide (CO2) at 1.56 µm and other...

  19. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Studies on Gas Sensing Performance of Pure and Surface Chrominated Indium Oxide Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2010-12-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CrO3 for different intervals of time. The surface chrominated (20 min In2O3 thick film showed maximum response to H2S gas (40 ppm than pure In2O3 thick film at 250 oC. Chromium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the sensor indicates the key role played by chromium oxide on the surface of thick film. The selectivity, gas response and recovery time of the sensor were measured and presented.

  1. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    Science.gov (United States)

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  2. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  3. Fiber-optic multipoint radiation sensing system using waveguide scintillators

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yoda, Masaki; Tanaka, Koutarou; Masumaru, Tarou; Morimoto, Souichirou.

    1996-01-01

    Novel fiber-optic radiation sensors and a multipoint measurement method that takes advantage of them have been developed. The new sensor design, which we call a 'waveguide scintillator', consists of a scintillating material and a wavelength-shifting fiber (WLSF). The WLSF is embedded in the scintillating material, and each end is connected to a transparent optical fiber. These waveguide scintillators can be connected in series along an optical fiber loop to form a radiation monitoring system, and each end of the fiber loop is terminated with a photodetector. This new radiation monitoring arrangement dispenses with the need for electronic apparatus at each measuring point and consequently improves resistance to noise. Furthermore, it offers the advantages of multipoint monitoring - meaning that radiation intensity can be measured at multiple sensors - using only two photodetectors. We have examined the light output characteristics and time resolution of a prototype arrangement of these new waveguide scintillators, thus confirming the feasibility of multipoint measurements using a system of multiple waveguide scintillators connected in series in an optical fiber loop. (author)

  4. Wavelet-Based Processing for Fiber Optic Sensing Systems

    Science.gov (United States)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  5. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  6. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    Science.gov (United States)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  7. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  8. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Science.gov (United States)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  9. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  10. Ethanol gas sensing properties of Al2 O3 -doped ZnO thick film ...

    Indian Academy of Sciences (India)

    WINTEC

    ing temperature can affect the microstructure and gas sensing performance of the sensor. The efforts ... Amongst the women, the chances of breast cancer increase with alco- ... The aim of the present work is to develop the sensor by modifying ...

  11. Tungsten sulfide nanoflakes. Synthesis by electrospinning and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Feng, Wen-Lin [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing (China).

    2017-07-01

    Tungsten sulfide (WS{sub 2}) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS{sub 2} (Ag-WS{sub 2}) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS{sub 2} has a graphene-like structure with P{sub 63/mmc} space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS{sub 2} and Ag-WS{sub 2} nanomaterials. The sensing responses of WS{sub 2} and Ag-WS{sub 2} on the ammonia (NH{sub 3}), ethanol (C{sub 2}H{sub 5}OH), and acetone (C{sub 3}H{sub 6}O) were investigated at about 220 C. The results indicate that gas sensor based on WS{sub 2} and Ag-WS{sub 2} nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS{sub 2} and Ag-WS{sub 2} gas sensors is surface control via charge transfer.

  12. Methodological aspects of using remote sensing data in oil and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Kostriukov, M I; Tsarenko, P T

    1981-01-01

    The use of remote sensing data for oil and gas exploration in the central part of the western Siberian plain is considered. Techniques to increase the efficiency of interpretation of deep structures are examined, and the necessity of augmenting the development of automated interpretation systems is emphasized.

  13. Synthesis, characterization and gas sensing performance of SnO2 ...

    Indian Academy of Sciences (India)

    Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. GANESH E PATIL, D D KAJALE, D N CHAVAN†, N K PAWAR††, P T AHIRE, S D SHINDE#,. V B GAIKWAD# and G H JAIN. ∗. Materials Research Laboratory, Arts, Commerce and Science College, Nandgaon 423 106, ...

  14. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  15. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  16. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  17. Composite polyaniline/calixarene Langmuir - Blodgett films for gas sensing

    Science.gov (United States)

    Lavrik, N. V.; DeRossi, D.; Kazantseva, Z. I.; Nabok, A. V.; Nesterenko, B. A.; Piletsky, S. A.; Kalchenko, V. I.; Shivaniuk, A. N.; Markovskiy, L. N.

    1996-12-01

    Mixtures of the polyaniline (emeraldine base) and phosphorylated calix[4]resorcinolarene derivative (CA) are proposed to prepare LB films for conductometric gas sensors. They are quite stable at the air - water interface and give LB films of high quality. The average thickness of the mixed monolayers is found to be 1.6 nm. The as-deposited films are insulating. Doping with HCl increases the conductivity up to between 0957-4484/7/4/002/img12 and 0957-4484/7/4/002/img13 which depends on the component ratio. The films containing more than 20 wt% of CA are doped reversibly in part. Thus, the films which are highly sensitive to either 0957-4484/7/4/002/img14 or HCl films are prepared by choosing the component ratio. Detection of 0957-4484/7/4/002/img14 and HCl in the ppm range is demonstrated.

  18. Orthogonal trapping and sensing with long working distance optics [invited

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2010-01-01

    We are developing a next generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials. The workstation......Photonics Workstation that allows the user to directly control and simultaneously measure a portfolio of important chemical and biological processes. We arc currently able to generate up to 100 powerful optical traps using well-separated objectives, which eliminates the need for high numerical aperture oil or water...... immersion objectives required in conventional optical tweezers. This generates a large field of view and leaves vital space for integrating other enabling tools for probing the trapped particles, such as linear and nonlinear microscopy or micro-spectroscopy. Together with chcmists at another Danish...

  19. Multicore optical fiber grating array fabrication for medical sensing applications

    Science.gov (United States)

    Westbrook, Paul S.; Feder, K. S.; Kremp, T.; Taunay, T. F.; Monberg, E.; Puc, G.; Ortiz, R.

    2015-03-01

    In this work we report on a fiber grating fabrication platform suitable for parallel fabrication of Bragg grating arrays over arbitrary lengths of multicore optical fiber. Our system exploits UV transparent coatings and has precision fiber translation that allows for quasi-continuous grating fabrication. Our system is capable of both uniform and chirped fiber grating array spectra that can meet the demands of medical sensors including high speed, accuracy, robustness and small form factor.

  20. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere

    CERN Document Server

    Weitkamp, Claus

    2005-01-01

    Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection. Its broad cross-disciplinary scope should appeal to both the experienced scientist and the novice in the field. The Foreword is by one of the early pioneers in the area, Herbert Walther.

  1. Experimental demonstration of remote, passive acousto-optic sensing.

    Science.gov (United States)

    Antonelli, Lynn; Blackmon, Fletcher

    2004-12-01

    Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.

  2. Applicability study of optical fiber distribution sensing to nuclear facilities

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Nakazawa, Masaharu; Kakuta, Tsunemi

    1999-01-01

    Optical fibers have advantages like flexible configuration, intrinsic immunity for electromagnetic fields etc., and they have been used for signal transmission and as optical fiber sensors (OFSs). By some of these sensor techniques, continuous or discrete distribution of physical parameters can be measured. Here, in order to discuss the applicability of these OFSs to nuclear facilities, irradiation experiments to optical fibers were carried out using the fast neutron source reactor 'YAYOI' and a 60 Co γ source. It has been shown that, under irradiation with fast neutrons, the radiation induced loss increase almost linearly with the neutron fluence. On the other hand, when irradiated with 60 Co γ rays, the loss shows a saturation tendency. As an example of the OFSs, applicability of the Raman distributed temperature sensor (RDTS) to the monitoring of nuclear facilities has been examined. Two correction techniques for radiation induced errors have been developed and for the demonstration of their feasibility, measurements were carried out along the primary piping system of the experimental fast reactor: JOYO. During the continuous measurements with the total dose of more than 10 7 [R], the radiation induced errors showed a saturating tendency and the feasibility of the loss correction technique was demonstrated. Although the time response of the system should be improved, the RDTS can be expected as a noble temperature monitor in nuclear facilities. (author)

  3. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2010-11-01

    Full Text Available This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR. The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance.

  4. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas

    International Nuclear Information System (INIS)

    Ishpal; Kaur, Amarjeet

    2013-01-01

    Ammonia gas sensing mechanism in oxidant-mediated polypyrrole (PPy) nanofibers/nanoparticles has been studied through spectroscopic and electrical investigations. PPy nanofibers/nanoparticles have been synthesized by chemical oxidation method in the presence of various oxidizing agents such as ammonium persulfate (APS), potassium persulfate (PPS), vanadium pentoxide (V 2 O 5 ), and iron chloride (FeCl 3 ). Scanning electron microscopy study revealed that PPy nanofibers of about 63, 71 and 79 nm diameters were formed in the presence of APS, PPS, V 2 O 5 , respectively, while PPy nanoparticles of about 100–110 nm size were obtained in the presence of FeCl 3 as an oxidant. The structural investigations and confirmation of synthesis of PPy were established through Fourier transform infrared and Raman spectroscopy. The gas sensing behavior of the prepared PPy samples is investigated by measuring the electrical resistance in ammonia environment. The observed gas sensing response (ΔR/Rx100) at 100 ppm level of ammonia is ∼4.5 and 18 % for the samples prepared with oxidizing agents FeCl 3 and APS, respectively, and by changing the ammonia level from 50 to 300 ppm, the sensing response varies from ∼4.5 to 11 % and ∼10 to 39 %, respectively. Out of all four samples, the PPy nanofibers prepared in the presence of APS have shown the best sensing response. The mechanism of gas sensing response of the PPy samples has been investigated through Raman spectroscopy study. The decrease of charge carrier concentration through reduction of polymeric chains has been recognized through Raman spectroscopic measurements recorded in ammonia environment.

  5. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS and lidar

    Directory of Open Access Journals (Sweden)

    Galtier Sandrine

    2018-01-01

    Full Text Available Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  6. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  7. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism

    KAUST Repository

    Majhi, Sanjit Manohar

    2018-04-25

    In this work, Au@NiO core-shell nanoparticles (C-S NPs) as a p-type gas sensing material was synthesized by a facile wet-chemical method, and evaluated their gas sensing properties as compared to the pristine NiO NPs gas sensors. Transmission electron microscope (TEM) results exhibited the well-dispersed formation of Au@NiO C-S NPs having the total size of 70–120 nm and NiO shells having 30–50 nm thickness. The C-S morphology as well as the overall particle sizes are unchanged even at 500 °C. The gas sensing result reveals that the response of Au@NiO C-S NPs gas sensor is higher than pristine NiO NPs gas sensor for 100 ppm of ethanol at 200 °C operating temperature. The baseline resistance in the air for Au@NiO C-S NPs sensor is lowered as compared to pristine NiO NPs, which is due to the increased number of holes as charge carriers in Au@NiO C-S NPs. The high response of Au@NiO core-shell NPs as compared to pristine NiO NPs is attributed to electronic and chemical sensitization effects of Au. In Au@NiO C-S structure, the contact between metal (Au) and semiconductor (NiO) formed a Schottky junction since Au metal acted as electron acceptor, a withdrawal of electrons from NiO by Au metal core leaved behind number of holes as charge carriers in Au@NiO C-S NPs. Therefore, the baseline resistance of Au@NiO C-S NPs greatly decreased than pristine NiO NPs, as a result the Au@NiO C-S NPs showed higher response. On the other hand, in chemical sensitization effect, Au NPs catalyzed to dissociate O2 molecules into ionic species. This work will give some clue to the researchers for the further development of p-type based C-S NPs sensors.

  8. Correlation between lateral size and gas sensing performance of MoSe2 nanosheets

    Science.gov (United States)

    Zhang, Shaolin; Nguyen, Thuy Hang; Zhang, Weibin; Park, Youngsin; Yang, Woochul

    2017-10-01

    We demonstrate a facile synthetic method to prepare lateral size controlled molybdenum diselenide (MoSe2) nanosheets using liquid phase exfoliated few-layer MoSe2 nanosheets as a starting material. By precisely controlling the centrifugation condition, preparation of MoSe2 nanosheets with a narrow size distribution ranging from several hundred nanometers to several micrometers could be realized. The accurate size control of MoSe2 nanosheets offers us a great opportunity to examine the size dependent sensing properties. The sensing test results demonstrate that the MoSe2 nanosheets provide competitive advantages compared with conventional graphene based sensors. A tradeoff phenomenon on sensing response and recovery as the lateral size of MoSe2 nanosheets varies is observed. First principles calculations reveal that the ratio of edge-surface sites is responsible for this phenomenon. The correlation between the lateral size and gas sensing performance of MoSe2 nanosheets is established.

  9. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    Science.gov (United States)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  10. Al2O3- BSST Based Chemical Sensors for Ammonia Gas Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-10-01

    Full Text Available Gas sensing behaviour of pure and modified (Ba0.9Sr0.1(Sn0.5Ti0.5O3 (BSST thick films is reported in this article. The surface of the BSST thick film was modified by dipping it into aqueous solution of AlCl3, for different intervals of time. These films were then dried at 500 0C for 24 hours in air ambient for transformation of AlCl3 into Al2O3, for the evaporation of organic binders and also to improve the texture of the film. The gas response, selectivity, response and recovery time of the sensors were measured and presented. The role played by the aluminium species to improve the gas sensing performance of the sensors is discussed.

  11. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    Science.gov (United States)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  13. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Science.gov (United States)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  14. Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Sonik, E-mail: sonikbhatia@gmail.com [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Verma, Neha [Department of Physics, Kanya Maha Vidyalaya, Vidyalaya Marg, Jalandhar, 144004 (India); Bedi, R.K. [Satyam Institute of Engineering and Technology, Amritsar, 143107, Punjab (India)

    2017-06-15

    Highlights: • Tin doped ZnO nanoparticles were synthesized by simple combustion method and doctor blade technique. • Different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants. • 2.0% of Sn-doped ZnO nanoparticles exhibiting complete photodegradation of DR-31 dye under UV irradiation. Photocatalytic activities for all the samples were observed in 60 min. • The sensing performance showed 5% volume of ethanol and acetone and gases could be detected with sensitivity of 86.80% and 84.40% respectively. - Abstract: Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. This paper reports, rapid synthesis and characterization for tin doped ZnO nanoparticles prepared by simple combustion method and doctor blade technique. The prepared nanoparticles were characterized by several techniques in terms of their morphological, structural, compositional, optical, photocatalytic and gas sensing properties. These detailed characterization confirmed that all the synthesized nanoparticles are well crystalline and having good optoelectronic properties. Herein, different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants (SZ1–SZ4). The morphology of synthesized technique confirmed that the petal-shaped nanoparticles has high surface area and are well crystalline. In order to develop smart and functional nano-device, the prepared powder was coated on glass substrate by doctor blade technique and fabricated device was sensed for ethanol and acetone gas at different operating temperatures (300–500{sup °}C). It is noteworthy that morphology of the nanoparticles of the sensitive layer is maintained after different concentration of Sn. High sensitivity is the main cause of high surface area and tin doping. PL intensity near 598 nm of SZ3 is greater than other Sn-doped ZnO which indicates more oxygen vacancies of SZ3 is responsible for enhanced gas

  15. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections

    NARCIS (Netherlands)

    Nienhuis, J.; De Haan, C.; Langeveld, J.G.; Klootwijk, M.; Clemens, F.H.L.R.

    2012-01-01

    Distributed Temperature Sensing (DTS) with fiber-optic cables is a powerful tool to detect illicit connections in storm sewer systems. High frequency temperature measurements along the in-sewer cable create a detailed representation of temperature anomalies due to illicit discharges. The detection

  16. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its...

  17. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  18. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  19. Poly (N-isopropylacrylamide Microgel-Based Optical Devices for Sensing and Biosensing

    Directory of Open Access Journals (Sweden)

    Molla R. Islam

    2014-05-01

    Full Text Available Responsive polymer-based materials have found numerous applications due to their ease of synthesis and the variety of stimuli that they can be made responsive to. In this review, we highlight the group’s efforts utilizing thermoresponsive poly (N-isopropylacrylamide (pNIPAm microgel-based optical devices for various sensing and biosensing applications.

  20. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    Science.gov (United States)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  1. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  2. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2014-11-01

    Full Text Available Respiratory and heart rates are among the most important physiological parameters used to monitor patients’ health. It is important to design devices that can measure these parameters without risking or altering the subject’s health. In this context, a novel sensing method to monitor simultaneously the heartbeat and respiratory rate signals of patients within an electrically safety environment was developed and tested. An optical fiber-based sensor was used in order to detect two optical phenomena. Photo-plethysmography and the relation between bending radius and attenuation of optical fiber were coupled through a single beam light traveling along this fiber.

  3. Gas Sensing Performance of Pure and Modified BST Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    G. H. JAIN

    2008-04-01

    Full Text Available Barium Strontium Titanate (BST-(Ba0.87Sr0.13TiO3 ceramic powder was prepared by mechanochemical process. The thick films of different thicknesses of BST were prepared by screen-printing technique and gas-sensing performance of these films was tested for various gases. The films showed highest response and selectivity to ammonia gas. The pure BST film was surface modified by surfactant CrO3 by using dipping technique. The surface modified film suppresses the response to ammonia and enhances to H2S gas. The surface modification of films changes the adsorption-desorption relationship with the target gas and shifts its selectivity. The gas response, selectivity, response and recovery time of the pure and modified films were measured and presented.

  4. Optical, Nanomechanical and Electrochemical Sensing on a DVD Disc

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    platform in order to study and count larger objects such as cells. In this way it will be possible to analyze a given sample for several parameters simultaneously. Electrodes can also be integrated on the spinning platform [4] and hereby it is possible to perform electrochemical measurements at the same...... combined with sensitive and compact read-out possibilities from optical pick-up heads makes it possible to realize full sample pretreatment and read-out in a both fast and compact manner. References: 1. M. Madou et al., Lab on a CD, Annual Review of Biomedical Engineering, Vol. 8: 601-628, 2016 2. F...

  5. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism

    International Nuclear Information System (INIS)

    Zeng Wen; Liu Tianmo

    2010-01-01

    We report the microstructure and gas-sensing properties of the SnO 2 -TiO 2 composite oxide dope with Ag ion prepared by the sol-gel method. Of all various volatile organic compounds (VOCs) such as ethanol, methanol, acetone and formaldehyde were examined, the sensor exhibits remarkable selectivity to each VOCs at different operating temperature. Further investigations based on quantum chemistry calculation show that difference orbital energy of VOCs molecule may be a qualitative factor to affect the selectivity of the sensor.

  6. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.

    Science.gov (United States)

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-12-13

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10 -3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  7. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Filipa Sequeira

    2016-12-01

    Full Text Available We report the optimization of the length of a D-shaped plastic optical fiber (POF sensor for refractive index (RI sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR. POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471 through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI range (1.33–1.39, the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU was obtained with 6 cm sensing length. In the RI range (1.41–1.47, the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  8. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Sønnik

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA....

  9. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  10. Mechanism and look-alikes analysis of oil spill monitoring with optical remote sensing

    Science.gov (United States)

    Lan, Guoxin; Ma, Long; Li, Ying; Liu, Bingxin

    2011-12-01

    Remote Sensing surveillance constitutes an important component of oil spill disaster management system, but subject to monitoring accuracy and ability, which suffered from resolution, environmental conditions, and look-alikes. So this article aims to provide information of identification and distinguishing of look-alikes for optical sensors, and then improve the monitoring precision. Although limited by monitoring conditions of the atmosphere and night, optical satellite remote sensing can provide the intrinsic spectral information of the film and the background sea, then affords the potentiality for detailed identification of the film thickness, oil type classification (crude/light oil), trends, and sea surface roughness by multi-type data products. This paper focused on optical sensors and indicated that these false targets of sun glint, bottom feature, cloud shadow, suspend bed sediment and surface bioorganic are the main factors for false alarm in optical images. Based on the detailed description of the theory of oil spill detection in optical images, depending on the preliminary summary of the feature of look-alikes in visible-infrared bands, a discriminate criteria and work-flow for slicks identification are proposed. The results are helpful to improve the remote sensing monitoring ability and the contingency planning.

  11. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  12. Development of an optical fiber SERS microprobe for minimally invasive sensing applications

    Science.gov (United States)

    Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.

    2018-02-01

    Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.

  13. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    Science.gov (United States)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  14. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  15. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    International Nuclear Information System (INIS)

    Nakate, U.T.; Bulakhe, R.N.; Lokhande, C.D.; Kale, S.N.

    2016-01-01

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  16. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  17. Sputtered PdO Decorated TiO2 Sensing Layer for a Hydrogen Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jeong Hoon Lee

    2018-01-01

    Full Text Available We report a sputtered PdO decorated TiO2 sensing layer by radiofrequency (RF sputtering methods and demonstrated gas sensing performance for H2 gas. We prepared sputtered anatase TiO2 sensing films with 200 nm thickness and deposited a Pd layer on top of the TiO2 films with a thickness ranging from 3 nm to 13 nm. Using an in situ TiO2/Pd multilayer annealing process at 550°C for 1 hour, we observed that Pd turns into PdO by Auger electron spectroscopy (AES depth profile and confirmed decorated PdO on TiO2 sensing layer from scanning electron microscope (SEM and atomic-force microscope (AFM. We also observed a positive sensing signal for 3, 4.5, and 6.5 nm PdO decorated TiO2 sensor while we observed negative output signal for a 13.5 nm PdO decorated one. Using a microheater platform, we acquired fast response time as ~11 sec and sensitivity as 6 μV/ppm for 3 nm PdO under 33 mW power.

  18. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Nakate, U.T., E-mail: umesh.nakate@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India); Bulakhe, R.N.; Lokhande, C.D. [Department of Physics, Thin films Physics Laboratory, Shivaji University Kolhapur 416004 (India); Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Deemed University, Pune 411025 (India)

    2016-05-15

    Highlights: • We studied ZnO nanorods film for liquefied petroleum gas (LPG) sensing. • The Au sensitization on ZnO nanorods gives improved LPG sensing response. • The Au–ZnO shows 48% LPG response for 1040 ppm with fast response time of 50 S. • We proposed schematic for sensing mechanism using band diagram. - Abstract: The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  19. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  20. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  1. Effect of Annealing Temperature on Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    G. E. PATIL

    2010-12-01

    Full Text Available The effect of variation of annealing temperature on the gas sensing characteristics of SnO2 thin films, which have been prepared by spray pyrolysis on alumina substrate at 350 oC, is investigated systematically for various gases at different operating temperature. The XRD, UV-visible spectroscopy and SEM techniques were employed to establish the structural, optical and morphological characteristics of the materials, resp. The X-ray diffraction results showed an increase in the crystallinity at higher annealing temperature. A high value of sensitivity is obtained for H2S gas at an optimum temperature of 100 oC is improved considerably. A SnO2 gas sensor annealed at 950 oC with sensitivity as high as 24 %, 4 times higher than that of sensor annealed at 550oC, are obtained for 80 ppm of H2S. The degree of crystallinity and grain size calculated from the XRD patterns has been found increasing with annealing temp

  2. Optical turbulence in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2009-07-01

    Full Text Available in the Spinning Pipe Gas Lens by optical means • Axial Propagation • Boundary Layer Phase Structure Function and Slope Correlation • Slope Correlation ( ) ( ) ( )[ ]2rrxrD φφφ −+= ( ) ( ) ( )rsrxsrCs += Inner Scale Outer Scale • Phase Structure Function... -----------------------Mean 4 3 2 1 DΦ(r2) or SC(r2) DΦ(r1) or SC(r1) Phase Structure Function ( ) oon Lrl,LC.logrlogrDlog ≤≤⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎠ ⎞⎜⎝ ⎛+= 2 22912 3 5 λ π φ Homogeneity Isotropy Boundary LayerAxisPropagation Path 1. Axial propagation fulfils...

  3. ZnO nanoparticles based fiber optic gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, S.; Sivacoumar, R.; Alex, Z. C. [MEMS and Sensor Division, School of Electronics Engineering, VIT University, Vellore 632 014 (India); Balakrishnan, L., E-mail: bslv85@gmail.com; Meher, S. R. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632 014 (India)

    2016-05-23

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction and scanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia and ethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  4. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1996-01-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I ampersand C) systems for the next generation of reactors and in older plants which are retrofitted with new I ampersand C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment

  5. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  6. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  7. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  8. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  9. Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications

    KAUST Repository

    Montes Muñoz, Enrique

    2017-05-23

    On the basis of first principles calculations, we study the adsorption of CO, CO2, NH3, NO, and NO2 molecules on armchair and zigzag blue phosphorus nanotubes. The nanotubes are found to surpass the gas sensing performance of other one-dimensional materials, in particular Si nanowires and carbon nanotubes, and two-dimensional materials, in particular graphene, phosphorene, and MoS2. Investigation of the energetics of the gas adsorption and induced charge transfers indicates that blue phosphorus nanotubes are highly sensitive to N-based molecules, in particular NO2, due to covalent bonding. The current–voltage characteristics of nanotubes connected to Au electrodes are derived by the non-equilibrium Green\\'s function formalism and used to quantitatively evaluate the change in resistivity upon gas adsorption. The observed selectivity and sensitivity properties make blue phosphorus nanotubes superior gas sensors for a wide range of applications.

  10. Noncontact optical motion sensing for real-time analysis

    Science.gov (United States)

    Fetzer, Bradley R.; Imai, Hiromichi

    1990-08-01

    The adaptation of an image dissector tube (IDT) within the OPTFOLLOW system provides high resolution displacement measurement of a light discontinuity. Due to the high speed response of the IDT and the advanced servo loop circuitry, the system is capable of real time analysis of the object under test. The image of the discontinuity may be contoured by direct or reflected light and ranges spectrally within the field of visible light. The image is monitored to 500 kHz through a lens configuration which transposes the optical image upon the photocathode of the IDT. The photoelectric effect accelerates the resultant electrons through a photomultiplier and an enhanced current is emitted from the anode. A servo loop controls the electron beam, continually centering it within the IDT using magnetic focusing of deflection coils. The output analog voltage from the servo amplifier is thereby proportional to the displacement of the target. The system is controlled by a microprocessor with a 32kbyte memory and provides a digital display as well as instructional readout on a color monitor allowing for offset image tracking and automatic system calibration.

  11. Optics of Confined Liquid Crystals for Gas Detection

    Science.gov (United States)

    Charles, William; Carrozzi, Daniel; Vigilia, Lee Anne; Wang, Xiaoyurui; Guzman, Violet; Shibayev, Petr; Fordham University Students of Undergraduate Physics Team

    Cholesteric liquid crystals (CLCs) of a wide range of viscosities were studied experimentally in relation to their use as gas sensors and sensors of volatile organic compounds (VOCs), specifically ethanol, cyclohexane, toluene, acetic acid, and pyridine. CLCs were obtained by mixing low molar mass liquid crystals (MBBA and cholesterol derivatives with siloxane based oligomers). The droplets of CLCs were placed in containers with controlled atmospheres. The shift of the selective reflection band, predominantly from shorter to longer wavelengths, and the color changes were observed in the CLC illuminated by light coming from the various directions. Visible optical changes were observed in droplets with viscosities of CLCs ranging from c.a. 4 Pa*s to 105 Pa*s. The most responsive droplets in which the shift of the selective reflection band occurs at lower concentrations of VOCs were prepared from CLC mixtures with the lowest viscosities. Higher viscosities of CLCs lead to a slower response to VOCs, but the rate of response is different for each pair of VOC and CLC with a certain viscosity. This finding opens a possibility for selective detection of VOCs by CLCs with different viscosities. The mechanism of VOCs diffusion, interaction with CLC matrix and optical changes is discusse

  12. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  13. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    Science.gov (United States)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  14. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Science.gov (United States)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  15. Optical Sensing Material for pH Detection based on the Use of Roselle Extract

    International Nuclear Information System (INIS)

    Nurul Huda Abd Karim; Musa Ahmad; Mohammad Osman Herman; Ahmad Mahir Mokhtar

    2008-01-01

    This research assessed the potential of natural colour extract of Hibiscus Sabdariffa L. (roselle) as sensing material.The pH sensor was developed based on the use of natural reddish colour in roselle calyx, delphinidin-3-sambubioside immobilised in a glass fibre filter paper. In free solution, roselle extract was characterised by using UV-visible spectrophotometer to study the effect of pH, extract concentration, response time, repeatability and photo stability. The study showed that natural colour extract can be used as sensing material for the development of an optical pH sensor. (author)

  16. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  17. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  18. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites

    International Nuclear Information System (INIS)

    Gaikwad, Ganesh; Patil, Pritam; Patil, Devidas; Naik, Jitendra

    2017-01-01

    Highlights: • Developed GO, ZnO, PANI nanocomposites. • Evaluated for effect of GO addition on gas sensing performance. • Performed ammonia gas sensing at room temperature. • Obtained excellent recovery time of gas sensor. - Abstract: Polyaniline (PANI) nanofibers and Polyaniline/Graphene Oxide (PANI/GO), Polyaniline/Graphene Oxide/Zinc Oxide (PANI/GO/ZnO) nanocomposites were successfully prepared by nanoemulsion method. The synthesized nanofibers and nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Field emission scanning electron microscope (FE-SEM), has showed the evidence of interaction between PANI nanofibers, GO nanosheets and ZnO nanoparticles, respectively. PANI nanofibers and nanocomposites were used for the sensing of NH_3_, LPG, CO_2 and H_2S gases respectively at room temperature. It was observed that the PANI nanofibers and PANI/GO, PANI/GO/ZnO nanocomposites with different weight ratios of ZnO and GO had better selectivity and sensitivity towards NH_3 at room temperature. Best performance was shown by PANI/GO/ZnO nanocomposite response of 5.706 (10.3 times better response than PANI sensor) for 1000 ppm NH_3 at 80 ± 1 °C with the recovery time of 1 min 30 s only.

  19. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Ganesh [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Patil, Pritam [SVMIT, College of Engineering, Bharuch 392001, Gujarat (India); Patil, Devidas [Bulk and Nanomaterials Research Laboratory, Rani Laxmibai Mahavidyalaya Parola, Jalgaon 425111, Maharashtra (India); Naik, Jitendra, E-mail: jbnaik@nmu.ac.in [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India)

    2017-04-15

    Highlights: • Developed GO, ZnO, PANI nanocomposites. • Evaluated for effect of GO addition on gas sensing performance. • Performed ammonia gas sensing at room temperature. • Obtained excellent recovery time of gas sensor. - Abstract: Polyaniline (PANI) nanofibers and Polyaniline/Graphene Oxide (PANI/GO), Polyaniline/Graphene Oxide/Zinc Oxide (PANI/GO/ZnO) nanocomposites were successfully prepared by nanoemulsion method. The synthesized nanofibers and nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Field emission scanning electron microscope (FE-SEM), has showed the evidence of interaction between PANI nanofibers, GO nanosheets and ZnO nanoparticles, respectively. PANI nanofibers and nanocomposites were used for the sensing of NH{sub 3,} LPG, CO{sub 2} and H{sub 2}S gases respectively at room temperature. It was observed that the PANI nanofibers and PANI/GO, PANI/GO/ZnO nanocomposites with different weight ratios of ZnO and GO had better selectivity and sensitivity towards NH{sub 3} at room temperature. Best performance was shown by PANI/GO/ZnO nanocomposite response of 5.706 (10.3 times better response than PANI sensor) for 1000 ppm NH{sub 3} at 80 ± 1 °C with the recovery time of 1 min 30 s only.

  20. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions

    Science.gov (United States)

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  1. Synergistic improvement of gas sensing performance by micro-gravimetrically extracted kinetic/thermodynamic parameters

    International Nuclear Information System (INIS)

    Guo, Shuanbao; Xu, Pengcheng; Yu, Haitao; Cheng, Zhenxing; Li, Xinxin

    2015-01-01

    Highlights: • Sensing material can be comprehensively optimized by using gravimetric cantilever. • Kinetic-thermodynamic model parameters are quantitatively extracted by experiment • Sensing-material performance is synergistically optimized by extracted parameters. - Abstract: A novel method is explored for comprehensive design/optimization of organophosphorus sensing material, which is loaded on mass-type microcantilever sensor. Conventionally, by directly observing the gas sensing response, it is difficult to build quantitative relationship with the intrinsic structure of the material. To break through this difficulty, resonant cantilever is employed as gravimetric tool to implement molecule adsorption experiment. Based on the sensing data, key kinetic/thermodynamic parameters of the material to the molecule, including adsorption heat −ΔH°, adsorption/desorption rate constants K a and K d , active-site number per unit mass N′ and surface coverage θ, can be quantitatively extracted according to physical–chemistry theories. With gaseous DMMP (simulant of organophosphorus agents) as sensing target, the optimization route for three sensing materials is successfully demonstrated. Firstly, a hyper-branched polymer is evaluated. Though suffering low sensitivity due to insufficient N′, the bis(4-hydroxyphenyl)-hexafluoropropane (BHPF) sensing-group exhibits satisfactory reproducibility due to appropriate −ΔH°. To achieve more sensing-sites, KIT-5 mesoporous-silica with higher surface-area is assessed, resulting in good sensitivity but too high −ΔH° that brings poor repeatability. After comprehensive consideration, the confirmed BHPF sensing-group is grafted on the KIT-5 carrier to form an optimized DMMP sensing nanomaterial. Experimental results indicate that, featuring appropriate kinetic/thermodynamic parameters of −ΔH°, K a , K d , N′ and θ, the BHPF-functionalized KIT-5 mesoporous silica exhibits synergistic improvement among

  2. A method for the detection of alcohol vapours based on optical sensing of magnesium 5,10,15,20-tetraphenyl porphyrin thin film by an optical spectrometer and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kladsomboon, Sumana [Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Kerdcharoen, Teerakiat, E-mail: teerakiat.ker@mahidol.ac.th [Department of Physics and Center of Nanoscience and Nanotechnology, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); NANOTEC Center of Excellence at Mahidol University, National Nanotechnology Center (Thailand)

    2012-12-13

    Highlights: Black-Right-Pointing-Pointer We prepared magnesium porphyrin thin film as optical sensing materials. Black-Right-Pointing-Pointer UV-vis spectrometer was modified to perform as optical artificial nose. Black-Right-Pointing-Pointer Change in optical absorption at various spectral regions is used as a sensor array. Black-Right-Pointing-Pointer Principal component analysis was employed to discriminate alcohol vapours. - Abstract: In this work we have proposed a method for the detection of alcohol vapours, i.e. methanol, ethanol and isopropanol, based on the optical sensing response of magnesium 5,10,15,20-tetraphenyl porphyrin (MgTPP) thin films, as measured by optical spectrometry with the assistance of chemometric analysis. We have implemented a scheme which allows a laboratory UV-vis spectrometer to act as a so-called 'electronic nose' with very little modification. MgTPP thin films were prepared by a spin coating technique, using chloroform as the solvent, and then subjected to thermal annealing at 280 Degree-Sign C in an argon atmosphere. These MgTPP optical gas sensors presented significant responses with methanol compared to ethanol and isopropanol, based on the dynamic flow of alcohol vapours at the same mol% of alcohol concentration. Density functional theory (DFT) calculations were performed to model the underlying mechanism of this selectivity. The performance of the optical gas sensors was optimised by varying the fabrication parameters. It is hoped that the MgTPP thin film together with an off-the-shelf optical spectrometer and a simple chemometrics algorithm can be a valuable tool for the analysis of alcoholic content in the beverage industry.

  3. A method for the detection of alcohol vapours based on optical sensing of magnesium 5,10,15,20-tetraphenyl porphyrin thin film by an optical spectrometer and principal component analysis

    International Nuclear Information System (INIS)

    Kladsomboon, Sumana; Kerdcharoen, Teerakiat

    2012-01-01

    Highlights: ► We prepared magnesium porphyrin thin film as optical sensing materials. ► UV–vis spectrometer was modified to perform as optical artificial nose. ► Change in optical absorption at various spectral regions is used as a sensor array. ► Principal component analysis was employed to discriminate alcohol vapours. - Abstract: In this work we have proposed a method for the detection of alcohol vapours, i.e. methanol, ethanol and isopropanol, based on the optical sensing response of magnesium 5,10,15,20-tetraphenyl porphyrin (MgTPP) thin films, as measured by optical spectrometry with the assistance of chemometric analysis. We have implemented a scheme which allows a laboratory UV–vis spectrometer to act as a so-called “electronic nose” with very little modification. MgTPP thin films were prepared by a spin coating technique, using chloroform as the solvent, and then subjected to thermal annealing at 280 °C in an argon atmosphere. These MgTPP optical gas sensors presented significant responses with methanol compared to ethanol and isopropanol, based on the dynamic flow of alcohol vapours at the same mol% of alcohol concentration. Density functional theory (DFT) calculations were performed to model the underlying mechanism of this selectivity. The performance of the optical gas sensors was optimised by varying the fabrication parameters. It is hoped that the MgTPP thin film together with an off-the-shelf optical spectrometer and a simple chemometrics algorithm can be a valuable tool for the analysis of alcoholic content in the beverage industry.

  4. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  5. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  6. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    Science.gov (United States)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  7. Photonic compressive sensing enabled data efficient time stretch optical coherence tomography

    Science.gov (United States)

    Mididoddi, Chaitanya K.; Wang, Chao

    2018-03-01

    Photonic time stretch (PTS) has enabled real time spectral domain optical coherence tomography (OCT). However, this method generates a torrent of massive data at GHz stream rate, which requires capturing as per Nyquist principle. If the OCT interferogram signal is sparse in Fourier domain, which is always true for samples with limited number of layers, it can be captured at lower (sub-Nyquist) acquisition rate as per compressive sensing method. In this work we report a data compressed PTS-OCT system based on photonic compressive sensing with 66% compression with low acquisition rate of 50MHz and measurement speed of 1.51MHz per depth profile. A new method has also been proposed to improve the system with all-optical random pattern generation, which completely avoids electronic bottleneck in traditional binary pseudorandom binary sequence (PRBS) generators.

  8. Optical detection of two-color-fluorophore barcode for nanopore DNA sensing

    Science.gov (United States)

    Zhang, M.; Sychugov, I.; Schmidt, T.; Linnros, J.

    2015-06-01

    A simple schematic on parallel optical detection of two-fluorophore barcode for single-molecule nanopore sensing is presented. The chosen two fluorophores, ATTO-532 and DY-521-XL, emitting in well-separated spectrum range can be excited at the same wavelength. A beam splitter was employed to separate signals from the two fluorophores and guide them to the same CCD camera. Based on a conventional microscope, sources of background in the nanopore sensing system, including membranes, compounds in buffer solution, and a detection cell was characterized. By photoluminescence excitation measurements, it turned out that silicon membrane has a negligible photoluminescence under the examined excitation from 440 nm to 560 nm, in comparison with a silicon nitrite membrane. Further, background signals from the detection cell were suppressed. Brownian motion of 450 bps DNA labelled with single ATTO-532 or DY-521-XL was successfully recorded by our optical system.

  9. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.

    Science.gov (United States)

    Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto

    2017-10-20

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  10. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis

    Directory of Open Access Journals (Sweden)

    Luis A. Herrera-Piad

    2017-10-01

    Full Text Available A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  11. Advanced sensing with micro-optical whispering-gallery-mode resonators

    CERN Document Server

    Righini, Giancarlo C

    2017-01-01

    This Spotlight examines an increasingly popular class of optical sensors that comprises microresonators based on the propagation of whispering gallery modes (WGMs). Several 2D and 3D WGM microresonators have already proved their capabilities as general-purpose sensors (especially as biosensors), and they have potential applications outside of research laboratories. Topics include the fundamentals of WGM propagation, types and characterization of microresonators, microfabrication issues, categories of sensing (physical, chemical, and biological), and state of the art sensors.

  12. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers

    OpenAIRE

    Manera, M. G.; Ferreiro-Vila, E.; Garcia-Martin, J. M.; Cebollada, A.; Garcia-Martin, A.; Giancane, G.; Valli, L.; Rella, R.

    2013-01-01

    Ethane-bridged Zn porphyrins dimers (ZnPP) have been deposited by Langmuir-Schäfer (LS) deposition technique onto proper transducer layers for surface plasmon resonance (SPR) and magneto-optical surface plasmon resonance (MO-SPR) characterization techniques performed in controlled atmosphere. This last tool has emerged as a novel and very performing sensing technique using as transducer layers a combination of noble and magnetic layers deposited onto glass substrates. A magnetic actuation all...

  13. Reliable clarity automatic-evaluation method for optical remote sensing images

    Science.gov (United States)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  14. NATO Advanced Study Institute on Optical Waveguide Sensing and Imaging in Medicine, Environment, Security and Defence

    CERN Document Server

    Bock, Wojtek J; Tanev, Stoyan

    2008-01-01

    The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinarry team of Editors was to provide an useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.

  15. Remote sensing reflectance simulation of coastal optical complex water in the East China Sea

    Science.gov (United States)

    He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang

    2018-02-01

    In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.

  16. Probe-pin device for optical neurotransmitter sensing in the brain

    Science.gov (United States)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  17. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  19. The Electrostatically Formed Nanowire: A Novel Platform for Gas-Sensing Applications

    Directory of Open Access Journals (Sweden)

    Gil Shalev

    2017-02-01

    Full Text Available The electrostatically formed nanowire (EFN gas sensor is based on a multiple-gate field-effect transistor with a conducting nanowire, which is not defined physically; rather, the nanowire is defined electrostatically post-fabrication, by using appropriate biasing of the different surrounding gates. The EFN is fabricated by using standard silicon processing technologies with relaxed design rules and, thereby, supports the realization of a low-cost and robust gas sensor, suitable for mass production. Although the smallest lithographic definition is higher than half a micrometer, appropriate tuning of the biasing of the gates concludes a conducting channel with a tunable diameter, which can transform the conducting channel into a nanowire with a diameter smaller than 20 nm. The tunable size and shape of the nanowire elicits tunable sensing parameters, such as sensitivity, limit of detection, and dynamic range, such that a single EFN gas sensor can perform with high sensitivity and a broad dynamic range by merely changing the biasing configuration. The current work reviews the design of the EFN gas sensor, its fabrication considerations and process flow, means of electrical characterization, and preliminary sensing performance at room temperature, underlying the unique and advantageous tunable capability of the device.

  20. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    Science.gov (United States)

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  1. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    Science.gov (United States)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  2. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...... exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can...

  3. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  4. Miniaturized multi channel infrared optical gas sensor system

    Science.gov (United States)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  5. Investigation of Gasochromic Rhodium Complexes Towards Their Reactivity to CO and Integration into an Optical Gas Sensor for Fire Gas Detection

    Directory of Open Access Journals (Sweden)

    Carolin Pannek

    2018-06-01

    Full Text Available The detection of the toxic gas carbon monoxide (CO in the low ppm range is required in different applications. We present a study of the reactivity of different gasochromic rhodium complexes towards the toxic gas carbon monoxide (CO. Therefore, variations of binuclear rhodium complexes with different ligands were prepared. They were characterized by FTIR spectroscopy, 1H NMR spectroscopy, and differential scanning calorimetry. All complexes are spectroscopically distinguishable and temperature stable up to at least 187 °C. The gasochromic behavior of all different compounds was tested. Therefore, the compounds were dissolved in toluene and exposed to 100 ppm CO for 10 min to investigate their gas sensitivity and reaction velocity. The changes in the transmission spectra were recorded by UV/vis spectroscopy. Furthermore, a significant influence of the solvent to the color dyes’ gasochromic reaction and behavior was observed. After characterization, one complex was transferred as sensing element into an optical gas sensor. Two different measurement principles (reflection- and waveguide-based were built up and tested towards their capability as gasochromic CO sensors. Finally, different gas-dependent measurements were carried out.

  6. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  7. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  8. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  9. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, Majid, E-mail: majid.taghavi@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Biorobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa (Italy); Sadeghi, Ali; Mazzolai, Barbara [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Beccai, Lucia, E-mail: lucia.beccai@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy); Mattoli, Virgilio, E-mail: virgilio.mattoli@iit.it [Micro-BioRobotics Center, Istituto Italiano di Tecnologia, Pontedera (Italy)

    2014-12-30

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  10. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    International Nuclear Information System (INIS)

    Taghavi, Majid; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio

    2014-01-01

    Highlights: • The mechanical energy of both pure and impure gases can be harvested by the introduced system. • The blown gas vibrates a non conductive sheet between two surfaces, generating the triboelectric charges. • The system is able to measure the flow rate of the blown gas. • The existence of dust in the blown air can be detected without external powering. • A self powered smoke detector is introduced. - Abstract: In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening

  11. Implementation of an Optical-Wireless Network with Spectrum Sensing and Dynamic Resource Allocation Using Optically Controlled Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    E. Raimundo-Neto

    2014-01-01

    Full Text Available This work proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths. Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to interference plus noise ratio parameter.

  12. Synthesis of a novel nitrogen-doped carbon dot by microwave-assisted carbonization method and its applications as selective probes for optical pH (acidity) sensing in aqueous/nonaqueous media, determination of nitrate/nitrite, and optical recognition of NO{sub X} gas

    Energy Technology Data Exchange (ETDEWEB)

    Doroodmand, Mohammad Mahdi, E-mail: doroodmand@shirazu.ac.ir; Askari, Mohsen

    2017-05-22

    A novel nitrogen-doped carbon dot (N-CD) was synthesized via carbonization of citric acid in the presence of triethylenetetramine as a nitrogen source. The average size of the N-doped CDs and also the quantum yield of the synthesized N-doped CDs were both estimated to be 9 ± 2 nm and 39.5%, respectively. The applications of the synthesized carbon nanostructure as a high quantum yield fluorescence probe were initially adopted in the fabrication of a novel optical pH (acidity) sensor in both aqueous and nonaqueous environments. Two optimum dynamic intervals were obtained with the ranges of1.5–5.0 and 7.0–10.0. for the fabricated pH sensor with a standard deviation of 0.09 pH (n = 4). The quantity of HClO{sub 4} inside acetic acid was determined as the degree of acidity with a linear range between 1.0 and 4.0%. Determination of nitrate (NO{sub 3}{sup −}) and nitrite (NO{sub 2}{sup −}) based on the fluorescence quenching of N-CDs was also evaluated in detail. The linear ranges for NO{sub 2}{sup −} and NO{sub 3}{sup −} species were estimated to be from 1 × 10{sup −7}to 7.5 × 10{sup −5} and from 2.5 × 10{sup −6} to 7.5 × 10{sup −4} mol L{sup −1}, respectively with RSD of 3.69% (n = 5) for NO{sub 2}{sup −} and 3.54% (n = 5) for NO{sub 3}{sup −}. The LODs (X+3S{sub b}) for both NO{sub 2}{sup −} and NO{sub 3}{sup −} were estimated to be 2.5 × 10{sup −8} and 7.5 × 10{sup −7} mol L{sup −1}, respectively. The synthesized N-CDs were also applicable for NO{sub X} recognition in the gaseous form at part per thousand (ppt) levels with linear ranges of 3.77–36.51 and 27.67–43.77 ppt, LOD (X+3S{sub b}) of 1.41 ppt (n = 4) and RSD of 4.37% (n = 5). The reliability of these methods was also evaluated via the analyses of different forms of gaseous, water and rumen samples. - Highlights: • N-dots as Fluorescent Probe. • N-dots Synthesized by Microwave-Assisted Carbonization. • Determination of Nitrate

  13. Intravitreal gas injection without vitrectomy for macular detachment associated with an optic disk pit.

    Science.gov (United States)

    Akiyama, Hideo; Shimoda, Yukitoshi; Fukuchi, Mariko; Kashima, Tomoyuki; Mayuzumi, Hideyasu; Shinohara, Yoichiro; Kishi, Shoji

    2014-02-01

    To evaluate the clinical outcomes after gas tamponade without vitrectomy for retinal detachment associated with an optic disk pit using optical coherence tomography. Intravitreal gas injection was performed on 8 consecutive patients (mean age, 35.0 years; range, 15-74 years) with unilateral macular detachment associated with an optic disk pit. A 0.3-mL injection of 100% sulfur hexafluoride 6 gas was carried out without an anterior chamber tap. Patients treated with gas injection were instructed to remain facedown for 5 days. Complete retinal reattachment after only gas tamponade was achieved in four out of eight eyes. The mean number of gas injections was 1.8. The mean best-corrected visual acuity before and after the treatment with gas tamponade was approximately 30/100 and 20/20, respectively. The period required for reattachment after final gas treatment was 12 months. There were no incidences of recurrence after complete reattachment by gas tamponade in any of the cases during the 94-month average follow-up period (range, 64-132 months). Gas tamponade appears to be an effective alternative method for macular detachment associated with an optic disk pit, even though the mechanisms of optic disk pit maculopathy are still unknown.

  14. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  15. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection

    Science.gov (United States)

    Nikles, Marc

    2009-05-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions where pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Third party intentional interference or accidental intrusions are a major cause of pipeline failures leading to large leaks or even explosions. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. The description is supported by case studies and illustrated by field data.

  16. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  17. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    Science.gov (United States)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  18. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    Energy Technology Data Exchange (ETDEWEB)

    Craik, N G [Maritime Nuclear, Fredericton, N.B. (Canada)

    1997-12-31

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs.

  19. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  20. Investigation of remote sensing scale up for hot cell waste tank applications. CPAC optical moisture monitoring

    International Nuclear Information System (INIS)

    Jones, P.L.

    1994-01-01

    This report discusses work done to investigate the feasibility of using non-contact optical absorption to remotely sense the surface moisture content of salt cake materials. Optical measurements were made in a dimensionally scaled setup to investigate this technique for in-situ waste tank applications. Moisture measurements were obtained from BY-104 simulant samples with 0 wt%, 10 wt%, and 20 wt% moisture content using the back-scattered light from a pulsed infrared optical parametric converter (OPC) laser source operating from 1.51 to 2.12 micron. An InGaAs detector, with 0.038 steradian solid angle (hemisphere = 6.28 steradians) collection angle was used to detect the back-scattered light. This work indicated that there was sufficient back-scatter from the BY-104 material to provide an indication of the surface moisture content

  1. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  2. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    International Nuclear Information System (INIS)

    Craik, N.G.

    1996-01-01

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs

  3. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  4. Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics

    Science.gov (United States)

    Paul, Lancelot; Kumar Saxena, Ajay

    2010-12-01

    An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.

  5. Greenhouse gas emission rate estimates from airborne remote sensing in the short-wave infrared

    Energy Technology Data Exchange (ETDEWEB)

    Krings, Thomas

    2013-01-30

    The quantification of emissions of the greenhouse gases carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) is essential for attributing the roles of anthropogenic activity and natural phenomena in global climate change. The current measurement systems and networks, whilst having improved during the last decades, are deficient in many respects. For example, the emissions from localised and point sources such as fossil fuel exploration sites are not readily assessed. A tool developed to better understand point sources of CO{sub 2} and CH{sub 4} is the optical remote sensing instrument MAMAP, operated from aircraft. With a ground scene size of the order of 50m and a relative accuracy of the column-averaged dry air mole fractions of about 0.3% for XCO{sub 2} and less than 0.4% for XCH{sub 4}, MAMAP can make a significant contribution in this respect. Detailed sensitivity studies showed that the modified WFM-DOAS retrieval algorithm used for MAMAP has an approximate accuracy of about 0.24% for XCH{sub 4} and XCO{sub 2} in typical atmospheric conditions. At the example of CO{sub 2} plumes from two different power plants and CH{sub 4} plumes from coal mine ventilation shafts, two inversion approaches to obtain emission rates were developed and tested. One is based on an optimal estimation scheme to fit Gaussian plume models from multiple sources to the data and the other is based on a simple Gaussian integral method. Compared to CO{sub 2} emission estimates as reported by the power plants' operator within the framework of emission databases (24 and 13 MtCO{sub 2} yr{sup -1}), the results of the individual inversion techniques were within ±10% with uncertainties of ±20-30% mainly due to insufficient wind information and non-stationary atmospheric conditions. Measurements at the coal mine included on-site wind observations by an aircraft turbulence probe that could be utilised to calibrate the wind model. In this case, the inversion results have a bias of less than 1

  6. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  7. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    Science.gov (United States)

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  8. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    OpenAIRE

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-01-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airb...

  9. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

    Science.gov (United States)

    Lin, Likun

    Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network

  10. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by

  11. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  12. A simple large-scale synthesis of mesoporous In_2O_3 for gas sensing applications

    International Nuclear Information System (INIS)

    Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi

    2016-01-01

    Graphical abstract: Large-scale mesoporous In_2O_3 nanostructures for gas-sensing applications were successfully fabricated via a facile Lewis acid catalytic the furfural alcohol resin template route. - Highlights: • Mesoporous In_2O_3 nanostructures with high-yield have been successfully fabricated via a facile strategy. • The microstructure and formation mechanism of mesoporous In_2O_3 nanostructures were discussed based on the experimental results. • The as-prepared In_2O_3 samples exhibited high response, short response-recovery times and good selectivity to ethanol gas. - Abstract: In this paper, large-scale mesoporous In_2O_3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In_2O_3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In_2O_3. The In_2O_3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In_2O_3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.

  13. Simple Synthesis of ZnCo2O4 Nanoparticles as Gas-sensing Materials

    Directory of Open Access Journals (Sweden)

    S. V. Bangale

    2011-11-01

    Full Text Available Semiconductive nanometer-size material ZnCo2O4 was synthesized by a solution combustion reaction of inorganic reagents of Zn(NO33. 6H2O, Co(NO33.6H2O and glycine as a fuel. The process was a convenient, environment friendly, inexpensive and efficient preparation method for the ZnCo2O4 nanomaterial. The synthesized materials were characterized by TG/DTA, XRD, EDX, SEM, and TEM. Conductance responses of the nanocrystalline ZnCo2O4 thick film were measured by exposing the film to reducing gases like Acetone, Ethanol, Ammonia (NH3, Hydrogen (H2, Hydrogen sulphide (H2S, Chlorine (Cl2 and Liquefied petroleum gas (LPG. It was found that the sensors exhibited various sensing responses to these gases at different operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. The results demonstrated that ZnCo2O4 can be used as a new type of gas-sensing material which has a high sensitivity and good selectivity to Liquefied petroleum gas (LPG at 100 ppm.

  14. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    International Nuclear Information System (INIS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval’naya, Natal’ya V.; Chen, Wen; Zakharova, Galina S.

    2015-01-01

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO 3 microrods with the hexagonal cross-section is reported. • The h-MoO 3 phase is transformed to α-MoO 3 at 439 °C. • The h-MoO 3 microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C 2 H 5 OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO 3 ) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH 4 Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO 3 microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO 3 microrods to ethanol was also discussed.

  15. Liquid-Phase Co-Exfoliated Graphene/MoS2 Nanocomposite for Methanol Gas Sensing.

    Science.gov (United States)

    Zhang, Shao-Lin; Yue, Hongyan; Liang, Xishuang; Yang, Woo-Chul

    2015-10-01

    We developed an efficient method to co-exfoliate graphite and MoS2 to fabricate graphene/MoS2 nanocomposite. The size, morphology, and crystal structure of the graphene/MoS2 nanocomposite were carefully examined. The as-prepared graphene/MoS2 nanocomposite was fabricated into thin film sensor by a facile drop casting method and tested with methanol gas in various concentrations. The sensitivity, response time, and repeatability of the graphene/MoS2 nanocomposite sensor towards methanol gas were systematically investigated. A pure MoS2 based thin film sensor was also prepared and compared with the nanocomposite sensor to better understand the synergetic effect in the sensing performance. Our research demonstrated that compositing MoS2 with graphene could overcome the shortcoming of MoS2 as a sensor material and bring in a promising gas-sensing performance with a quicker response/recovery time and an enhanced sensitivity. Moreover, this composited material with a distinct structure and an excellent electronic property is expected to have potential application in various fields, such as optoelectronic.

  16. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

    Directory of Open Access Journals (Sweden)

    Elena Dilonardo

    2016-01-01

    Full Text Available A one-step electrochemical method based on sacrificial anode electrolysis (SAE was used to deposit stabilized gold nanoparticles (Au NPs directly on the surface of nanostructured ZnO powders, previously synthesized through a sol–gel process. The effect of thermal annealing temperatures (300 and 550 °C on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO was investigated. Transmission and scanning electron microscopy (TEM and SEM, as well as X-ray photoelectron spectroscopy (XPS, revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  17. Studies on Gas Sensing Performance of Cr-doped Indium Oxide Thick Film Sensors

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-02-01

    Full Text Available A series of In1-xCrxO3 composites, with x ranging from 0.01 to 0.5wt% were prepared by mechanochemically starting from InCl3 and CrO3. Structural and micro structural characteristics of the sample were investigated by XRD, SEM with EDAX. Thick films of pure Indium Oxide and composites were prepared by standard screen printing technique. The gas sensitivity of these thick films was tested for various gases. The pure Indium Oxide thick film (x=0 shows maximum sensitivity to ethanol vapour (80 ppm at 350 oC, but composite-A (x=0.01 thick film shows maximum sensitivity to H2S gas (40 ppm at 250 oC, composite-B (x=0.1 thick film shows higher sensitivity to NH3 gas (80 ppm at 250 oC and composite-C (x=0.5 thick film shows maximum sensitivity to Cl2 gas (80 ppm at 350 oC. A systematic study of gas sensing performance of the sensors indicates the key role played by concentration variation of Cr doped species. The sensitivity, selectivity and recovery time of the sensor were measured and presented.

  18. Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing

    Science.gov (United States)

    Passaro, Vittorio M.N.; De Leonardis, Francesco

    2009-01-01

    In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481

  19. Group IV Materials for High Performance Methane Sensing in Novel Slot Optical Waveguides at 2.883 μm and 3.39 μm

    Directory of Open Access Journals (Sweden)

    Vittorio M. N. PASSARO

    2012-03-01

    Full Text Available In this paper a detailed investigation of novel photonic sensors based on slot waveguides has been carried out. Appropriate alloys of group IV materials, such as germanium (Ge, silicon (Si, carbon (C and tin (Sn, are applied in silicon-on-insulator (SOI technology for homogeneous optical sensing at 2.883 µm and 3.39 μm. Electronic and optical properties of group IV alloys have been investigated. In addition, we have designed novel group IV vertical slot waveguides in order to achieve ultra-high sensitivities, as well as good fabrication tolerances. All these features have been compared with well-known SOI slot waveguides for optical label-free homogeneous sensing at 1.55 µm. In conclusion, theoretical investigation of ring resonators based on these novel slot waveguides has revealed very good results in terms of ultra high sensing performance of methane gas, i.e., limit of detection ~ 3.6×10-5 RIU and wavelength sensitivity > 2×103 nm/RIU.

  20. Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities

    Science.gov (United States)

    Ali, Amir R.; Kamel, Mohamed A.

    2018-04-01

    This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.

  1. Study on Gas Sensing Performance of TiO2 Screen Printed Thick Films

    Directory of Open Access Journals (Sweden)

    C. G. DIGHAVKAR

    2009-02-01

    Full Text Available Titanium dioxide (TiO2 thick films were prepared on alumina substrate by using screen printing technique. After preparation, the films were fired at temperature range 600 -1000 ºC for two hour. Morphological, compositional and structural properties of the film samples were performed by means of several techniques, including scanning electron microscopy (SEM, Energy dispersive spectroscopy (EDS, X-ray diffraction techniques. We explore the various gases to study the sensing performance of the TiO2 thick films. The maximum response was reported to film fired at 800 0C for LPG gas at 350 0C operating temperature.

  2. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  3. High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies

    KAUST Repository

    Wang, Dong

    2013-01-01

    The inner structure of W18O49 mesocrystals was observed by electron microscopy with the help of ultramicrotomy and focused ion beam techniques. The results showed that these mesocrystals contain irregular mesopores formed through partial fusion of self-assembled nanowires, and consequently have long-range structural ordering in one dimension and short-range ordering in the other two dimensions. The W18O 49 mesocrystals exhibit superior performance in gas sensing applications, which is considered to be associated with the presence of more oxygen vacancy sites in the unique mesoporous structure. © 2013 The Royal Society of Chemistry.

  4. Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing

    Science.gov (United States)

    Rodrigues, M. S.; Costa, D.; Domingues, R. P.; Apreutesei, M.; Pedrosa, P.; Martin, N.; Correlo, V. M.; Reis, R. L.; Alves, E.; Barradas, N. P.; Sampaio, P.; Borges, J.; Vaz, F.

    2018-04-01

    Nanomaterials based on Localized Surface Plasmon Resonance (LSPR) phenomena are revealing to be an important solution for several applications, namely those of optical biosensing. The main reasons are mostly related to their high sensitivity, with label-free detection, and to the simplified optical systems that can be implemented. For the present work, the optical sensing capabilities were tailored by optimizing LSPR absorption bands of nanocomposite Au/TiO2 thin films. These were grown by reactive DC magnetron sputtering. The main deposition parameters changed were the number of Au pellets placed in the Ti target, the deposition time, and DC current applied to the Ti-Au target. Furthermore, the Au NPs clustering, a key feature to have biosensing responses, was induced by several post-deposition in-air annealing treatments at different temperatures, and investigated via SEM analysis. Results showed that the Au/TiO2 thin films with a relatively low thickness (∼100 nm), revealing concentrations of Au close to 13 at.%, and annealed at temperatures above 600 °C, had the most well-defined LSPR absorption band and thus, the most promising characteristics to be explored as optical sensors. The NPs formation studies revealed an incomplete aggregation at 300 and 500 ⁰C and well-defined spheroidal NPs for higher temperatures. Plasma treatment with Ar led to a gradual blue-shift of the LSPR absorption band, which demonstrates the sensitivity of the films to changes in the dielectric environment surrounding the NPs (essential for optical sensing applications) and the exposure of the Au nanoparticles (crucial for a higher sensitivity).

  5. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  6. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    Science.gov (United States)

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.

  7. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  8. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  9. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  10. Classification of Several Optically Complex Waters in China Using in Situ Remote Sensing Reflectance

    Directory of Open Access Journals (Sweden)

    Qian Shen

    2015-11-01

    Full Text Available Determining the dominant optically active substances in water bodies via classification can improve the accuracy of bio-optical and water quality parameters estimated by remote sensing. This study provides four robust centroid sets from in situ remote sensing reflectance (Rrs (λ data presenting typical optical types obtained by plugging different similarity measures into fuzzy c-means (FCM clustering. Four typical types of waters were studied: (1 highly mixed eutrophic waters, with the proportion of absorption of colored dissolved organic matter (CDOM, phytoplankton, and non-living particulate matter at approximately 20%, 20%, and 60% respectively; (2 CDOM-dominated relatively clear waters, with approximately 45% by proportion of CDOM absorption; (3 nonliving solids-dominated waters, with approximately 88% by proportion of absorption of nonliving particulate matter; and (4 cyanobacteria-composed scum. We also simulated spectra from seven ocean color satellite sensors to assess their classification ability. POLarization and Directionality of the Earth's Reflectances (POLDER, Sentinel-2A, and MEdium Resolution Imaging Spectrometer (MERIS were found to perform better than the rest. Further, a classification tree for MERIS, in which the characteristics of Rrs (709/Rrs (681, Rrs (560/Rrs (709, Rrs (560/Rrs (620, and Rrs (709/Rrs (761 are integrated, is also proposed in this paper. The overall accuracy and Kappa coefficient of the proposed classification tree are 76.2% and 0.632, respectively.

  11. Using optical remote sensing techniques to track the development of ozone-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Meroni, Michele, E-mail: michele.meroni@unimib.i [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Panigada, Cinzia; Rossini, Micol [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy); Picchi, Valentina [CNR, Plant Virology Institute, Milan Unit, Milan (Italy); Department of Tree Science, Entomology and Plant Pathology ' G. Scaramuzzi' , University of Pisa, Pisa (Italy); Cogliati, Sergio; Colombo, Roberto [Remote Sensing of Environmental Dynamics Laboratory, DISAT, University of Milan-Bicocca, Piazza della Scienza, 1, 20126 Milan (Italy)

    2009-05-15

    In this paper, a literature review about optical remote sensing (RS) of O{sub 3} stress is presented. Studies on O{sub 3}-induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O{sub 3}-induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O{sub 3} fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O{sub 3} stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O{sub 3} stress by means of optical remote sensing are discussed.

  12. Using optical remote sensing techniques to track the development of ozone-induced stress

    International Nuclear Information System (INIS)

    Meroni, Michele; Panigada, Cinzia; Rossini, Micol; Picchi, Valentina; Cogliati, Sergio; Colombo, Roberto

    2009-01-01

    In this paper, a literature review about optical remote sensing (RS) of O 3 stress is presented. Studies on O 3 -induced effects on vegetation reflectance have been conducted since late '70s based on the analysis of optical RS data. Literature review reveals that traditional RS techniques were able to detect changes in leaf and canopy reflectance related to O 3 -induced stress when visible symptoms already occurred. Only recently, advanced RS techniques using hyperspectral sensors, demonstrated the feasibility of detecting the stress in its early phase by monitoring excess energy dissipation pathways such as chlorophyll fluorescence and non-photochemical quenching (NPQ). Steady-state fluorescence (Fs), measured by exploiting the Fraunhofer line depth principle and NPQ related xanthophyll-cycle, estimated through the photochemical reflectance index (PRI) responded to O 3 fumigation before visible symptoms occurred. This opens up new possibilities for the early detection of vegetation O 3 stress by means of hyperspectral RS. - Possibilities for the early detection of vegetation O 3 stress by means of optical remote sensing are discussed.

  13. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  14. Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure

    Science.gov (United States)

    Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio

    2018-04-01

    Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.

  15. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  16. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  17. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders.

    Science.gov (United States)

    Andreeva, Liudmila; Hiller, Björn; Kostrewa, Dirk; Lässig, Charlotte; de Oliveira Mann, Carina C; Jan Drexler, David; Maiser, Andreas; Gaidt, Moritz; Leonhardt, Heinrich; Hornung, Veit; Hopfner, Karl-Peter

    2017-09-21

    Cytosolic DNA arising from intracellular pathogens triggers a powerful innate immune response. It is sensed by cyclic GMP-AMP synthase (cGAS), which elicits the production of type I interferons by generating the second messenger 2'3'-cyclic-GMP-AMP (cGAMP). Endogenous nuclear or mitochondrial DNA can also be sensed by cGAS under certain conditions, resulting in sterile inflammation. The cGAS dimer binds two DNA ligands shorter than 20 base pairs side-by-side, but 20-base-pair DNA fails to activate cGAS in vivo and is a poor activator in vitro. Here we show that cGAS is activated in a strongly DNA length-dependent manner both in vitro and in human cells. We also show that cGAS dimers form ladder-like networks with DNA, leading to cooperative sensing of DNA length: assembly of the pioneering cGAS dimer between two DNA molecules is ineffective; but, once formed, it prearranges the flanking DNA to promote binding of subsequent cGAS dimers. Remarkably, bacterial and mitochondrial nucleoid proteins HU and mitochondrial transcription factor A (TFAM), as well as high-mobility group box 1 protein (HMGB1), can strongly stimulate long DNA sensing by cGAS. U-turns and bends in DNA induced by these proteins pre-structure DNA to nucleate cGAS dimers. Our results suggest a nucleation-cooperativity-based mechanism for sensitive detection of mitochondrial DNA and pathogen genomes, and identify HMGB/TFAM proteins as DNA-structuring host factors. They provide an explanation for the peculiar cGAS dimer structure and suggest that cGAS preferentially binds incomplete nucleoid-like structures or bent DNA.

  18. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  19. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    Science.gov (United States)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  20. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  1. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Science.gov (United States)

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  2. Effect of Ni Doping on Gas Sensing Performance of ZnO Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    M. K. DEORE

    2010-11-01

    Full Text Available This work investigates the use of ZnO-NiO as a H2S metal oxide thick film gas sensor. To find the optimum ratio of NiO to ZnO, two compositions were prepared using different molecular percentages and prepared as a thick film paste. These pastes were then screen-printed onto glass substrates with suitable binder. The final composition of each film was determined using SEM analysis. The films were used to detect CO, CL2, ethanol, Amonia and H2S. For each composition tested, the highest responses where displayed for H2S gas. The Thick film having composition of equal molar ZnO and NiO shows the highest response at operating temp. 350 0C for 100 ppm level. The gas response, selectivity, response and recovery time of the sensor were measured and presented. The role played by NiO species is to improve the gas sensing performance is discussed.

  3. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    Science.gov (United States)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  4. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.

  5. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  6. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing...... a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up...

  7. Exploring in teaching mode of Optical Fiber Sensing Technology outcomes-based education (OBE)

    Science.gov (United States)

    Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Bi, Weihong

    2017-08-01

    Combining with the characteristics of disciplines and OBE mode, also aiming at the phenomena of low learning enthusiasm for the major required courses for senior students, the course of optical fiber sensing was chosen as the demonstration for the teaching mode reform. In the light of "theory as the base, focus on the application, highlighting the practice" principle, we emphasis on the introduction of the latest scientific research achievements and current development trends, highlight the practicability and practicality. By observation learning and course project, enables students to carry out innovative project design and implementation means related to the practical problems in science and engineering of this course.

  8. Fused Microknot Optical Resonators in Folded Photonic Tapers for in-Liquid Durable Sensing

    Directory of Open Access Journals (Sweden)

    Alexandra Logvinova

    2018-04-01

    Full Text Available Optical microknot fibers (OMFs serve as localized devices, where photonic resonances (PRs enable self-interfering elements sensitive to their environment. However, typical fragility and drifting of the knot severely limit the performance and durability of microknots as sensors in aqueous settings. Herein we present the fabrication, electrical fusing, preparation, and persistent detection of volatile liquids in multiple wetting–dewetting cycles of volatile compounds and quantify the persistent phase shifts with a simple model relating to the ambient liquid, enabling durable in-liquid sensing employing OMF PRs.

  9. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  10. Fabrication of large area homogeneous metallic nanostructures for optical sensing using colloidal lithography

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    2010-01-01

    We propose a simple and reproducible method for fabricating large area metal films with inter-connected nanostructures using a combination of colloidal lithography, metal deposition and a template stripping technique. The method is generic in the sense that it is possible to produce a variety...... to fabricate metal films with inter-connected nanostructures consisting of either partial spherical shells or the inverted structures: spherical cavities. The substrates are characterized by optical reflectance and transmittance spectroscopy. We demonstrate, in the case of partial spherical shells...

  11. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu, Xiangfeng; Hu, Tao; Gao, Feng; Dong, Yongping; Sun, Wenqi; Bai, Linshan

    2015-01-01

    Graphical abstract: - Highlights: • The amount of graphene had an effect on the morphology of graphene–WO 3 composites. • The optimum temperature of 0.1 wt% graphene–WO 3 sensor to acetaldehyde was 100 °C. • 0.1 wt% graphene–WO 3 sensor exhibited good selectivity to acetaldehyde at 100 °C. - Abstract: Graphene–WO 3 composites mixed with different amounts of graphene (0, 0.1, 0.5, 1 and 3 wt%) were prepared by hydrothermal method at 180 °C for 24 h. The as-prepared graphite oxide, graphene and graphene–WO 3 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and Raman spectroscopy, respectively. The effect of the amount of graphene in the composites on the gas-sensing responses and the gas-sensing selectivity of the materials was investigated. The experimental results revealed that the sensor based on 0.1 wt% graphene–WO 3 composite exhibited high response and good selectivity to acetaldehyde vapor at 100 °C, the optimum operating temperature of this sensor to 1000 ppm acetaldehyde vapor decreased from 180 °C to 100 °C comparing with that of pure WO 3 . The response time and the recovery time for 100 ppm acetaldehyde vapor were 250 s and 225 s, respectively

  12. Graphene-based LbL deposited films: further study of electrical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Nabok A.

    2017-01-01

    Full Text Available Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS were utilised to construct thin films using layer-by-layer (LbL electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH or graphene-CTAB with polyanions (PSS. Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10% in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.

  13. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  14. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  15. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  16. Synthesis, characterization and liquefied petroleum gas (LPG) sensing properties of WO3 nano-particles

    Science.gov (United States)

    Singh, Subhash; Majumder, S. B.

    2018-05-01

    Metal oxide sensors, such as ZnO, SnO2, and WO3 etc. have been utilized for several decades for low-costd etection of combustible and toxic gases. In the present work tungsten oxide (WO3) nanoparticles have been prepared by using an economic wet chemical synthesis route. To understand the phase formation behavior of the synthesized powders, X-ray diffraction analysis has been performed. The microstructure evolution of the synthesized powders was characterized by field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The calcined phase pure WO3 nanoparticles are investigated in terms of LPG gas sensing properties. The gas sensing measurements has been done in two different mode of operation (namely static and dynamic measurements). The degree of oxygen deficiency in the WO3 sensor also affected the sensor properties and the optimum oxygen content of WO3 was necessary to get high sensitivity for LPG. The WO3 sensor shows the excellent sensor properties for LPG at the operating temperature of 250°C.

  17. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  18. Influence of crystallinity on CO gas sensing for TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary Mark [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Bandyopadhyay, Amit [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)], E-mail: amitband@wsu.edu; Bose, Susmita [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2009-08-15

    In the present research, carbon monoxide (CO) gas sensing response was studied for TiO{sub 2} thick films calcined and sintered between 700 and 900 deg. C. Crystalline phase, crystallite size, surface area, particle size, and amorphous content were measured for the calcined powder. Crystallinity of the powder was found to affect sensing response significantly towards CO. Anatase phase of TiO{sub 2} thick film was stable up to 900 deg. C however, as calcination temperature increased from 700 to 900 deg. C, surface area and amorphous phase content decreased. Films calcined and sintered at 700 deg. C showed a lower response towards CO than those calcined at 800 deg. C. Upon increasing the calcination temperature further, particle growth and reduced surface area hindered the sensing response. A calcination temperature of 800 deg. C was necessary to achieve sufficient order in the crystal structure leading to more efficient adsorption and desorption of oxygen ions on the surface of TiO{sub 2}.

  19. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    Directory of Open Access Journals (Sweden)

    Jan U. H. Eitel

    2010-03-01

    Full Text Available Active ground optical remote sensing (AGORS devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm and near-infrared (>760 nm reflectance AGORS devices have recently become available that also measure red-edge (730 nm reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris. Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69 when compared to those without (r2 = 0.57, RMSE = 2.11.

  20. Role of edge inclination in an optical microdisk resonator for label-free sensing.

    Science.gov (United States)

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-02-26

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.