WorldWideScience

Sample records for oppositely charged polymers

  1. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    Science.gov (United States)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  2. The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers

    Institute of Scientific and Technical Information of China (English)

    Di Bing; Wang Ya-Dong; Zhang Ya-Lin; An Zhong

    2013-01-01

    The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be of fundamental importance for the light-emitting and transport properties of conjugated polymers.Based on the tight-binding SSH model,and by using a nonadiabatic molecular dynamic method,we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction.It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant.In particular,at an intermediate electric field,when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value,two polarons can combine to become a lattice deformation in one of the two polymer chains,with the electron and the hole bound together,i.e.,a self-trapped polaron-exciton.The yield of excitons then increases to a peak value.These results show that interface hopping is of fundamental importance and facilitates the formation of polaron-excitons.

  3. Gel formation in systems composed of drug containing catanionic vesicles and oppositely charged hydrophobically modified polymer.

    Science.gov (United States)

    Dew, Noel; Edwards, Katarina; Edsman, Katarina

    2009-05-01

    The aim of this study was to explore if mixtures of drug containing catanionic vesicles and polymers give rise to gel formation, and if so, if drug release from these gels could be prolonged. Catanionic vesicles formed from the drug substances alprenolol or tetracaine, and the oppositely charged surfactant sodium dodecyl sulphate were mixed with polymers. Three polymers with different properties were employed: one bearing hydrophobic modifications, one positively charged and one positively charged polymer bearing hydrophobic modifications. The structure of the vesicles before and after addition of polymer was investigated by using cryo-TEM. Gel formation was confirmed by using rheological measurements. Drug release was studied using a modified USP paddle method. Gels were observed to form only in the case when catanionic vesicles, most likely with a net negative charge, were mixed with positively charged polymer bearing lipophilic modifications. The release of drug substance from these systems, where the vesicles are not trapped within the gel but constitute a founding part of it, could be significantly prolonged. The drug release rate was found to depend on vesicle concentration to a higher extent than on polymer concentration.

  4. Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system.

    Science.gov (United States)

    Miyake, M

    2017-01-01

    A mixture of oppositely charged polymer and surfactants changes the solubilized state, having a complex precipitation region at the composition of electric neutralization. This complex behavior has been applied to surface modification in the fields of health care and cosmetic products such as conditioning shampoos, as a dilution-deposition system in which the polymer/surfactant mixture at the higher surfactant concentration precipitates the insoluble complex by dilution. A large number of studies over many years have revealed the basic coacervation behavior and physicochemical properties of complexes. However, the mechanism by which a precipitated complex performs surface modification is not well understood. The precipitation region and the morphology of precipitated complex that are changed by molecular structure and additives affect the performance. Hydrophilic groups such as the EO unit in polymers and surfactants, the mixing of nonionic or amphoteric surfactant and nonionic polymer, and the addition of low polar solvent influence the complex precipitation region. Furthermore, the morphology of precipitated complex is formed by crosslinking and aggregating among polymers in the dilution process, and characterizes the performance of products. The polymer chain density in precipitated complex is determined by the charges of both the polymer and surfactant micelle and the conformation of polymer. As a result, the morphology of precipitated complexes is changed from a closely packed film to looser meshes, and/or to small particles, and it is possible for the morphology to control the rheological properties and the amount of adsorbed silicone. In the future, further investigation of the relationships between the morphology and performance is needed.

  5. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    Science.gov (United States)

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.

  6. Non-coalescence of oppositely charged drops

    CERN Document Server

    Ristenpart, W D; Belmonte, A; Dollar, F; Stone, H A

    2009-01-01

    Oppositely charged drops have long been assumed to experience an attractive force that favors their coalescence. In this fluid dynamics video we demonstrate the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to `bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops.

  7. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  8. Colloidal gelation of oppositely charged particles

    NARCIS (Netherlands)

    Russel, E.; Sprakel, J.H.B.; Kodger, T.E.; Weitz, D.A.

    2012-01-01

    Colloidal gelation has been extensively studied for the case of purely attractive systems, but little is understood about how colloidal gelation is affected by the presence of repulsive interactions. Here we demonstrate the gelation of a binary system of oppositely charged colloids, in which repulsi

  9. Backward Charge Transfer in Conjugated Polymers

    Institute of Scientific and Technical Information of China (English)

    CHENG Meng-Xing; LI Guang-Qi; Thomas F. George; SUN Xin

    2005-01-01

    It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polymer chain induced by an external electric field E during forming the biexciton. The time dependence of the charge distribution in the chain reveals that the charge transfer is backward: the positive charge shifts in the opposite direction of the external electric field. Such a backward charge transfer (BCT) produces an opposite dipole, which makes the polarization negative. The effect of electron interaction on the BCT is illustrated.

  10. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  11. Underwater Reversible Adhesion Between Oppositely Charged Weak Polyelectrolytes

    Science.gov (United States)

    Alfhaid, Latifah; Geoghegan, Mark; Williams, Nicholas; Seddon, William

    2015-03-01

    Force-distance data has shown that the adhesion between two oppositely charged polyelectrolytes: poly(methacrylic acid) (PMAA, a polyacid) and poly[2-(diethylamino)ethyl methacrylate] (PDEAEMA, a polybase), was controllable by varying the pH level of their surrounding. Accordingly, adhesive force at the interface between these two polymers was higher inside basic surroundings at pH 6 and 7, and then it started to decrease at pH level below 3 and above 8. Stimulating adhesion between PMAA gel and PDEAEMA brushes by adding salt to their surrounded water has only a limited effect on the adhesive force between them, contradicting previous results. Increasing the molar concentration of sodium chloride (NaCl) in the surrounded water of these two polymers from 0.1 to 1M did not decrease the adhesion forces between a PMAA gel and a grafted PDEAEMA layer (brush). The JKR equation was used to evaluate the adhesion forces between the polymer gel and the brushes and it was observed that the adhesion increased with the elastic modulus of the gel decreased.

  12. Opposites Attract: Organic Charge Transfer Salts

    Science.gov (United States)

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  13. Phase diagrams of binary mixtures of oppositely charged colloids.

    Science.gov (United States)

    Bier, Markus; van Roij, René; Dijkstra, Marjolein

    2010-09-28

    Phase diagrams of binary mixtures of oppositely charged colloids are calculated theoretically. The proposed mean-field-like formalism interpolates between the limits of a hard-sphere system at high temperatures and the colloidal crystals which minimize Madelung-like energy sums at low temperatures. Comparison with computer simulations of an equimolar mixture of oppositely charged, equally sized spheres indicate semiquantitative accuracy of the proposed formalism. We calculate global phase diagrams of binary mixtures of equally sized spheres with opposite charges and equal charge magnitude in terms of temperature, pressure, and composition. The influence of the screening of the Coulomb interaction upon the topology of the phase diagram is discussed. Insight into the topology of the global phase diagram as a function of the system parameters leads to predictions on the preparation conditions for specific binary colloidal crystals.

  14. Programmable co-assembly of oppositely charged microgels

    NARCIS (Netherlands)

    Go, D.; Kodger, T.E.; Sprakel, J.H.B.; Kuehne, A.J.C.

    2014-01-01

    Here we report the development of an aqueous, self-assembling system of oppositely charged colloids leading towards particle arrangements with controlled order. The colloidal system consists of two types of particles, each consisting of refractive index matched colloidal core–shell microgel particle

  15. Interaction modes between asymmetrically and oppositely charged rods.

    Science.gov (United States)

    Antila, Hanne S; Van Tassel, Paul R; Sammalkorpi, Maria

    2016-02-01

    The interaction of oppositely and asymmetrically charged rods in salt-a simple model of (bio)macromolecular assembly-is observed via simulation to exhibit two free energy minima, separated by a repulsive barrier. In contrast to similar minima in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the governing mechanism includes electrostatic attraction at large separation, osmotic repulsion at close range, and depletion attraction near contact. A model accounting for ion condensation and excluded volume is shown to be superior to a mean-field treatment in predicting the effect of charge asymmetry on the free-energy profile.

  16. Coacervation in Symmetric Mixtures of Oppositely Charged Rodlike Polyelectrolytes

    Science.gov (United States)

    Kumar, Rajeev; Fredrickson, Glenn

    2010-03-01

    Phase separation in the salt-free symmetric mixtures of oppositely charged rodlike polyelectrolytes is studied using quasi-analytical calculations. Stability analyses for the isotropic-isotropic and the isotropic-nematic phase transitions in the symmetric mixtures are carried out. It is shown that electrostatics favor nematic ordering. Also, the coexistence curves for the symmetric mixtures are computed, and the effects of the linear charge density and the electrostatic interaction strength on the phase boundaries are studied. It is found that the counterions are uniformly distributed in the coexisting phases for low electrostatic interaction strengths characterized by the linear charge density of the polyelectrolytes and the Bjerrum's length. However, the counterions also phase separate along with the rodlike polyelectrolytes with an increase in the electrostatic interaction strength. It is shown that the number density of the counterions is higher in the concentrated (or coacervate) phase than in the dilute (or supernatant) phase. In contrast to the rodlike mixtures, flexible polyelectrolyte mixtures can undergo only isotropic-isotropic phase separation. A comparison of the coexistence curves for the weakly charged rodlike with the flexible polyelectrolyte mixtures reveals that the electrostatic driving force for the isotropic-isotropic phase separation is stronger in the flexible mixtures.

  17. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    Science.gov (United States)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  18. Nanotribology of charged polymer brushes

    Science.gov (United States)

    Klein, Jacob

    Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.

  19. Configurational Molecular Glue: One Optically Active Polymer Attracts Two Oppositely Configured Optically Active Polymers.

    Science.gov (United States)

    Tsuji, Hideto; Noda, Soma; Kimura, Takayuki; Sobue, Tadashi; Arakawa, Yuki

    2017-03-24

    D-configured poly(D-lactic acid) (D-PLA) and poly(D-2-hydroxy-3-methylbutanoic acid) (D-P2H3MB) crystallized separately into their homo-crystallites when crystallized by precipitation or solvent evaporation, whereas incorporation of L-configured poly(L-2-hydroxybutanoic acid) (L-P2HB) in D-configured D-PLA and D-P2H3MB induced co-crystallization or ternary stereocomplex formation between D-configured D-PLA and D-P2H3MB and L-configured L-P2HB. However, incorporation of D-configured poly(D-2-hydroxybutanoic acid) (D-P2HB) in D-configured D-PLA and D-P2H3MB did not cause co-crystallization between D-configured D-PLA and D-P2H3MB and D-configured D-P2HB but separate crystallization of each polymer occurred. These findings strongly suggest that an optically active polymer (L-configured or D-configured polymer) like unsubstituted or substituted optically active poly(lactic acid)s can act as "a configurational or helical molecular glue" for two oppositely configured optically active polymers (two D-configured polymers or two L-configured polymers) to allow their co-crystallization. The increased degree of freedom in polymer combination is expected to assist to pave the way for designing polymeric composites having a wide variety of physical properties, biodegradation rate and behavior in the case of biodegradable polymers.

  20. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    Science.gov (United States)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  1. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes

    Science.gov (United States)

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-01

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  2. Small angle neutron scattering study of mixed micelles of oppositely charged surfactants

    Indian Academy of Sciences (India)

    J V Joshi; V K Aswal; P S Goyal

    2008-11-01

    Structures of mixed micelles of oppositely charged surfactants dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulphate (SDS) have been studied using small angle neutron scattering. The concentration of one of the components was kept fixed (0.3 M) and that of another varied in the range 0 to 0.1 M. The aggregation number and micellar size increase and fractional charge decreases dramatically with the addition of small amount of oppositely charged surfactant. The effect of addition of SDS on DTAB is significantly different from that of the addition of DTAB on SDS. The contrast variation SANS experiments using deuterated surfactant suggests the homogeneous mixing of two components in mixed micellar system.

  3. Charge-driven and reversible assembly of ultra-dense polymer brushers: Formation and antifouling properties of a zipper brush

    NARCIS (Netherlands)

    Vos, de W.M.; Meijer, G.; Keizer, de A.; Cohen Stuart, M.A.; Kleijn, J.M.

    2010-01-01

    We investigated a new type of polymer brushes: the zipper brush. By adsorbing a diblock-copolymer with one charged block and one neutral block to an oppositely charged polyelectrolyte brush, a neutral polymer brush is formed on top of an almost neutral complex layer of polyelectrolytes. This neutral

  4. Charge Injection and Transport in Conjugated Polymers.

    Science.gov (United States)

    Malliaras, George

    2007-03-01

    We will overview the state-of-the-art in our understanding of charge injection and transport in conjugated polymers. We start by discussing the identifying characteristics of this class of materials, especially in relation with their structure and morphology. We follow by reviewing the advantages and limitations of experimental techniques that are used to probe charge transport. We then embark on a discussion of the fundamentals of charge transport in organics. We follow a didactic approach, where we start from transport in crystalline semiconductors and gradually introduce corrections for space charge effects, for the influence of disorder on mobility, for high charge densities, and for electric field-dependent charge densities. We compare with experimental data from polyfluorenes. We then shift our attention to charge injection. We review some of the recent theories and compared their predictions to experimental data, again from polyfluorenes. We close by proposing directions for future work.

  5. Charge-transport model for conducting polymers

    Science.gov (United States)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  6. Pickering emulsions stabilized by oppositely charged colloids: Stability and pattern formation

    Science.gov (United States)

    Christdoss Pushpam, Sam David; Basavaraj, Madivala G.; Mani, Ethayaraja

    2015-11-01

    A binary mixture of oppositely charged colloids can be used to stabilize water-in-oil or oil-in-water emulsions. A Monte Carlo simulation study to address the effect of charge ratio of colloids on the stability of Pickering emulsions is presented. The colloidal particles at the interface are modeled as aligned dipolar hard spheres, with attractive interaction between unlike-charged and repulsive interaction between like-charged particles. The optimum composition (fraction of positively charged particles) required for the stabilization corresponds to a minimum in the interaction energy per particle. In addition, for each charge ratio, there is a range of compositions where emulsions can be stabilized. The structural arrangement of particles or the pattern formation at the emulsion interface is strongly influenced by the charge ratio. We find well-mixed isotropic, square, and hexagonal arrangements of particles on the emulsion surface for different compositions at a given charge ratio. The distribution of coordination numbers is calculated to characterize structural features. The simulation study is useful for the rational design of Pickering emulsifications wherein oppositely charged colloids are used, and for the control of pattern formation that can be useful for the synthesis of colloidosomes and porous shells derived thereof.

  7. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    Science.gov (United States)

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser

    2015-03-21

    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.

  8. Gel formation in suspensions of oppositely charged colloids: mechanism and relation the equilibrium phase diagram

    NARCIS (Netherlands)

    Sanz, E.; Leunissen, M.E.; Fortini, A.; van Blaaderen, A.; Dijkstra, M.

    2008-01-01

    We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phas

  9. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at Dcharge asymmetry (sigma(+) not equal to |sigma(-)|).

  10. Direct Measurement of Sub-Debye-Length Attraction between Oppositely Charged Surfaces

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S. A.; Klein, Jacob

    2009-09-01

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities σ+, σ-) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length λS. At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D<λS agrees well with predictions based on solving the Poisson-Boltzmann theory, when due account is taken of the independently-determined surface charge asymmetry (σ+≠|σ-|).

  11. Self assembly of oppositely charged latex particles at oil-water interface.

    Science.gov (United States)

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phase diagram of aggregation of oppositely charged colloids in salty water.

    Science.gov (United States)

    Zhang, R; Shklovskii, B I

    2004-02-01

    Aggregation of two oppositely charged colloids in salty water is studied. We focus on the role of Coulomb interaction in strongly asymmetric systems in which the charge and size of one colloid is much larger than the other one. In the solution, each large colloid (macroion) attracts a certain number of oppositely charged small colloids (Z-ion) to form a complex. If the concentration ratio of the two colloids is such that complexes are not strongly charged, they condense in a macroscopic aggregate. As a result, the phase diagram in a plane of concentrations of two colloids consists of an aggregation domain sandwiched between two domains of stable solutions of complexes. The aggregation domain has a central part of total aggregation and two wings corresponding to partial aggregation. A quantitative theory of the phase diagram in the presence of monovalent salt is developed. It is shown that as the Debye-Hückel screening radius r(s) decreases, the aggregation domain grows, but the relative size of the partial aggregation domains becomes much smaller. As an important application of the theory, we consider solutions of long double-helix DNA with strongly charged positive spheres (artificial chromatin). We also consider implications of our theory for in vitro experiments with the natural chromatin. Finally, the effect of different shapes of macroions on the phase diagram is discussed.

  13. Annealed Scaling for a Charged Polymer

    Science.gov (United States)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  14. Annealed Scaling for a Charged Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Caravenna, F., E-mail: francesco.caravenna@unimib.it [Università degli Studi di Milano-Bicocca, Dipartimento di Matematica e Applicazioni (Italy); Hollander, F. den, E-mail: denholla@math.leidenuniv.nl [Leiden University, Mathematical Institute (Netherlands); Pétrélis, N., E-mail: nicolas.petrelis@univ-nantes.fr [Université de Nantes, Laboratoire de Mathématiques Jean Leray UMR 6629 (France); Poisat, J., E-mail: poisat@ceremade.dauphine.fr [Université Paris-Dauphine, PSL Research University, CEREMADE, UMR 7534 (France)

    2016-03-15

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  15. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids

    Science.gov (United States)

    Zong, Yiwu; Yuan, Guangcui; Han, Charles C.

    2016-07-01

    Two types of colloidal particles, which are nearly the same in chemical composition but carry opposite surface charges, are mixed in water. Depending on the relative proportion of the oppositely charged particles, the process of aggregation leads to the formation of discrete clusters of various sizes in dilute dispersions, and to the development of particle gel networks in more concentrated systems. Due to the significant difference in the absolute values of surface charges (negative particle: -48 mV, positive particle: +24 mV), the phase separation and the gelation behaviors are asymmetric with respect to the mixing ratio. Mixtures with excess negative particles are more stable, while mixtures with excess positive particles are easily affected by phase separation. The hetero-aggregation triggered by the addition of microscopically large macro-ions is similar to what is often observed in a mono-component charged colloidal system, i.e., phase separation occurs through addition of small electrolyte ions. Within the concentration region investigated here, it is clear that the gel line is buried inside the phase separation region. Gelation occurs only when the number and size of the clusters are large and big enough to connect up into a space-spanning network. Our results indicate that, in this binary mixture of oppositely charged colloids, although the interaction between unlike species is attractive and that between like species is repulsive, the onset of gelation is in fact governed by the equilibrium phase separation, as in the case of purely attractive systems with short-range isotropic interaction.

  16. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge : a direct measurement

    CERN Document Server

    Gummel, Jérémie; Boué, François

    2009-01-01

    Though often considered as one of the main driving process of the complexation of species of opposite charges, the release of counterions has never been experimentally directly measured on polyelectrolyte/proteins complexes. We present here the first structural determination of such a release by Small Angle Neutron Scattering in complexes made of lysozyme, a positively charged protein and of PSS, a negatively charged polyelectrolyte. Both components have the same neutron density length, so their scattering can be switched off simultaneously in an appropriate "matching" solvent; this enables determination of the spatial distribution of the single counterions within the complexes. The counterions (including the one subjected to Manning condensation) are expelled from the cores where the species are at electrostatic stoichiometry.

  17. Approximate solutions to the quantum problem of two opposite charges in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ardenghi, J.S., E-mail: jsardenghi@gmail.com [IFISUR, Departamento de Física (UNS-CONICET), Avenida Alem 1253, Bahía Blanca, Buenos Aires (Argentina); Gadella, M., E-mail: manuelgadella1@gmail.com [Department of Theoretical, Atomic Physics and Optics and IMUVA, University of Valladolid, 47011 Valladolid (Spain); Grinnell College, Department of Physics, Grinnell, 50112 IA (United States); Negro, J., E-mail: jnegro@fta.uva.es [Department of Theoretical, Atomic Physics and Optics and IMUVA, University of Valladolid, 47011 Valladolid (Spain)

    2016-05-06

    We consider two particles of equal mass and opposite charge in a plane subject to a perpendicular constant magnetic field. This system is integrable but not superintegrable. From the quantum point of view, the solution is given by two fourth degree Hill differential equations which involve the energy as well as a second constant of motion. There are two solvable approximations in relation to the value of a parameter. Starting from each of these approximations, a consistent perturbation theory can be applied to get approximate values of the energy levels and of the second constant of motion. - Highlights: • We have studied the quantum model of two charged particles on a plane with opposite charges and a perpendicular constant magnetic field. • This model is integrable, although not superintegrable. • The model under study is described by two fourth degree Hill equations, one trigonometric and the other hyperbolic. • We have considered two distinct approximations that have exact solution. • We have applied a perturbative method to improve the approximation.

  18. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    Science.gov (United States)

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-11-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrality of charges, data are missing about the stability of nanoparticles when they have more complex surface structures, like the presence of hydrophobic patches. To study the role of these hydrophobic patches in the stability of nanoparticles a series of negatively charged nanoparticles has been synthesized with different ratios of hydrophobic content and with control on the structural distribution of the hydrophobic moiety, and then titrated with positively charged nanoparticles. For nanoparticles with patchy nanodomains, the influence of hydrophobic content was observed together with the influence of the size of the nanoparticles. By contrast, for nanoparticles with a uniform distribution of hydrophobic ligands, size changes and hydrophobic content did not play any role in co-precipitation behaviour. A comparison of these two sets of nanoparticles suggests that nanodomains present at the surfaces of nanoparticles are playing an important role in stability against co-precipitation.

  19. Photoinduced Transformation between Charge Carrier and Spin Carrier in Polymers

    Institute of Scientific and Technical Information of China (English)

    MEI Yuan; ZHAO Chang; SUN Xin

    2006-01-01

    By dynamical simulations, we show a transforming process between neutral soliton (spin carrier) and charged soliton (charge carrier) in polymers via photo-excitation, taking a polaron as the transitional bridge. It is photoinduced transformation between spin carrier and charge carrier. In this way, we demonstrate an access for polymers to be applied to spintronics.

  20. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach.

    Science.gov (United States)

    Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-09-22

    The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.

  1. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge.

    Science.gov (United States)

    Petkova, R; Tcholakova, S; Denkov, N D

    2012-03-20

    Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

  2. pH and Salt Effects on the Associative Phase Separation of Oppositely Charged Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Prateek K. Jha

    2014-05-01

    Full Text Available The classical Voorn-Overbeek thermodynamic theory of complexation and phase separation of oppositely charged polyelectrolytes is generalized to account for the charge accessibility and hydrophobicity of polyions, size of salt ions, and pH variations. Theoretical predictions of the effects of pH and salt concentration are compared with published experimental data and experiments we performed, on systems containing poly(acrylic acid (PAA as the polyacid and poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA or poly(diallyldimethyl ammonium chloride (PDADMAC as the polybase. In general, the critical salt concentration below which the mixture phase separates, increases with degree of ionization and with the hydrophobicity of polyelectrolytes. We find experimentally that as the pH is decreased below 7, and PAA monomers are neutralized, the critical salt concentration increases, while the reverse occurs when pH is raised above 7. We predict this asymmetry theoretically by introducing a large positive Flory parameter (= 0.75 for the interaction of neutral PAA monomers with water. This large positive Flory parameter is supported by molecular dynamics simulations, which show much weaker hydrogen bonding between neutral PAA and water than between charged PAA and water, while neutral and charged PDMAEMA show similar numbers of hydrogen bonds. This increased hydrophobicity of neutral PAA at reduced pH increases the tendency towards phase separation despite the reduction in charge interactions between the polyelectrolytes. Water content and volume of coacervate are found to be a strong function of the pH and salt concentration.

  3. THERMOSENSITIVE POLYION COMPLEX MICELLES PREPARED BY SELF-ASSEMBLY OF TWO OPPOSITELY CHARGED DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Pan He; Chang-wen Zhao; Chun-sheng Xiao; Zhao-hui Tang; Xue-si Chen

    2013-01-01

    Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers,poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine).Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA),ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction.The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy.Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles.

  4. Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension.

    Science.gov (United States)

    Fortini, Andrea; Hynninen, Antti-Pekka; Dijkstra, Marjolein

    2006-09-07

    We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigmaMonte Carlo simulations. The interfacial tension decreases upon increasing the range of the interaction. In particular, we find that simple scaling can be used to relate the interfacial tension of the YRPM to that of the restricted primitive model, where particles interact with bare Coulomb interactions.

  5. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).

  6. Charge transfer and transport in polymer-fullerene solar cells

    NARCIS (Netherlands)

    Parisi, J; Dyakonov, [No Value; Pientka, M; Riedel, [No Value; Deibel, C; Brabec, CJ; Sariciftci, NS; Hummelen, JC

    2002-01-01

    The development of polymer-fullerene plastic solar cells has made significant progress in recent years. These devices excel by an efficient charge generation process as a consequence of a photoinduced charge transfer between the photo-excited conjugated polymer donor and acceptor-type fullerene

  7. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  8. Simulations of polymer brushes with charged end monomers under external electric fields

    Science.gov (United States)

    Ding, Huanda; Duan, Chao; Tong, Chaohui

    2017-01-01

    Using Langevin dynamics simulations, the response of neutral polymer brushes with charged terminal monomers to external electric fields has been investigated. The external electric field is equivalent to the field generated by the opposite surface charges on two parallel electrodes. The effects of charge valence of terminal monomers on the structure of double layers and overall charge balance near the two electrodes were examined. Using the charge density distributions obtained from simulations, the total electric field normal to the electrodes was calculated by numerically solving the Poisson equation. Under external electric fields, the total electric field across the two electrodes is highly non-uniform and in certain regions within the brush, the total electric field nearly vanishes. The probability distribution of electric force acting on one charged terminal monomer was obtained from simulations and how it affects the probability density distribution of terminal monomers was analyzed. The response of polymer brushes with charged terminal monomers to a strongly stretching external electric field was compared with that of uniformly charged polymer brushes.

  9. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer.

    Science.gov (United States)

    Shen, Xiang; Zhao, Yiping; Feng, Xia; Bi, Sixin; Ding, Wenbin; Chen, Li

    2013-01-01

    Biofouling resulting from the attachment of microorganisms communities to the membrane surface is the major obstacle for the widespread application of membrane technology. This work develops a feasible approach to prepare an anti-biofouling poly(vinylidene fluoride) (PVDF) membrane. A copolymer that possessed oppositely charged groups was first synthesized via radical copolymerization with methyl methacrylate, 2-methacryloxy ethyltrimethyl ammonium chloride and 2-acrylamide-2-methyl propane sulphonic acid as monomers. The copolymer was blended with the PVDF powder to prepare the antifouling membrane via the immersed phase inversion method. The antifouling properties of the modified PVDF membrane were studied by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, water contact angle measurement, zeta-potential measurement, protein adsorption, microbial adhesion and filtration experiments. The modified PVDF membrane showed limited adsorption and adhesion of protein bovine serum albumin and microbes (Escherichia coli and Saccharomyces cerevisiae) with increasing copolymer concentration in the casting solution. The modified PVDF membrane exhibited excellent antibiofouling properties.

  10. Opposite side jet charge tagging and measurement of CP asymmetry parameter $\\sin_{2\\beta}$ at D0

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojian [Univ. of Oklahoma, Norman, OK (United States)

    2004-01-01

    This dissertation describes the first CP asymmetry parameter sin(2β) measurement by the DO collaboration, sing the opposite side jet charge tagging algorithm in determining B-flavor. The time integrated measurement yields sin(2β) = 0.82 ± 1.80, and the time dependent measurement gives sin(2β) = 1.80 ± 1.15.

  11. Complexation of amyloid fibrils with charged conjugated polymers.

    Science.gov (United States)

    Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K

    2014-04-01

    It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.

  12. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    Science.gov (United States)

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  13. Charge transport in conducting polymers: insights from impedance spectroscopy.

    Science.gov (United States)

    Rubinson, Judith F; Kayinamura, Yohani P

    2009-12-01

    This tutorial review gives a brief introduction to impedance spectroscopy and discusses how it has been used to provide insight into charge transport through conducting polymers, particularly when the polymers are used as electrodes for solution studies or the design of electrodes for biomedical applications. As such it provides both an introduction to the topic and references to both classic and contemporary work for the more advanced reader.

  14. Simulation of bipolar charge transport in nanocomposite polymer films

    Science.gov (United States)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  15. Cell separation in microcanal coated with electrically charged phospholipid polymers.

    Science.gov (United States)

    Ito, Tomomi; Iwasaki, Yasuhiko; Narita, Tadashi; Akiyoshi, Kazunari; Ishihara, Kazuhiko

    2005-03-25

    To separate the cell population in whole blood using microcanal, the surface was covered with a polyion complex (PIC) composed of electrically charged phospholipid polymers. The phospholipids polymers were prepared by the polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate with 3-(methacryloyloxypropyl)-trimethyl ammonium iodide as the cationic unit or potassium 3-methacryloyloxypropyl sulfonate as the anionic unit. The PIC was formed at the solid-liquid interface, that is, first, the cationic polymer was coated on the substrate and an aqueous solution containing the anionic polymer with different concentrations was applied to the polymer-coated substrate. The formation of the PIC was followed using a quartz crystal microbalance (QCM), and the PIC surfaces were analyzed by both zeta-potential measurement and X-ray photoelectron spectroscopic measurement. The surface electrical potential on the PIC was controllable from +40 to -40 mV by increasing the amount of the adsorbed anionic polymer. The PIC surface was prepared in microcanal. The surface electrical potential was sequentially changed. When the whole blood was introduced into the microcanal, the cells adhered on the positively charged surface, but could not adhere to the negatively charged surface. Even when the cells adhere to the surface, the morphology of cells was maintained. This is due to MPC units at the surface, which show a good biocompatibility. These results indicated that the change in the surface electrical potential will be a useful method to separate the cells from whole blood.

  16. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  17. Molecular Dynamics Simulations of Nanoparticles Coated with Charged Polymers

    Science.gov (United States)

    Wen, Chengyuan; Cheng, Shengfeng

    Polymer coating is frequently used to stabilize colloidal and nano-sized particles. We employ molecular dynamics simulations to study nanoparticles coated with polymer chains that contain ionizable groups. In a polar solvent, the chains become charged with counterions dissociated. In the computational model, we treat the solvent as a uniform dielectric background and use the bead-spring model for the polymer chains. Counterions are explicitly included as mobile beads. The nanoparticle is modeled as a layer of sites uniformly distributed on a spherical surface with a certain fraction of sites serving as the tether points of the grafted polymer brush. We vary the grafting density and calculate the distribution of polymer beads and counterions around the nanoparticle. Our results indicate that charged chains adopt extended conformations because of their mutual repulsions. We further study the interactions between two polymer-coated nanoparticles and obtain the potential of mean force. We also find an interesting transition of a confined single layer of such polymer-coated nanoparticles into two layers when the confinement is removed. Results show that the brush-brush contact has a nonuniform distribution and the nanoparticles tend to form dipole-like structures.

  18. Electrostatic shock waves in a nonthermal dusty plasma with oppositely charged dust

    Science.gov (United States)

    Hossen, M. Mobarak; Nahar, L.; Alam, M. S.; Sultana, S.; Mamun, A. A.

    2017-09-01

    Theoretical and numerical investigations of dust acoustic shock waves (DASHWs) have been carried out in electron-depleted magnetized dusty plasmas (consisting of mobile positively charged as well as negatively charged dust particles, and nonextensive q-distributed ions). The both positively and negatively charged dust kinematic viscosities are taken into account to derive the Burgers equation. It is observed that the viscous force (acting on both polarity charged dust particles) is the dissipitive source and responsible for the formation of DASHWs. It is seen that the electron-depleted magnetized plasma supports both (positive and negative) polarity shock structures. It is also seen that the basic features (i.e., amplitude, width, polarity, phase speed, etc.) of DASHWs are modified by the effects of ion nonextensivity, coefficient of viscosity, oblique angle, negative-to-positive dust mass ratio, ratio of the number of electrons on a negatively charged dust-to-the number of protons on a positively charged dust, and the ratio of the ion number density-to-the negative dust number density. The results of our present investigation may be useful to study the various space and laboratory plasmas, where dissipation due to kinematic viscosity can not be neglected.

  19. Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values.

    Science.gov (United States)

    Maier, Christiane; Zeeb, Benjamin; Weiss, Jochen

    2014-05-01

    The pH-dependent formation and stability of food-grade heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. After screening suitable emulsifiers, 10% (w/w) oil in-water emulsions (d32≈1 μm) were prepared at pH 3-7 using a positively charged emulsifier (Na-lauroyl-l-arginine ethyl ester; LAE) and four negatively charged ones (citric esters of mono- and diglycerides, soy lecithin, sugar beet pectin, and Quillaja saponin). The oppositely charged emulsions were then combined at constant pH values at a volume flow rate ratio of 1:1. Emulsions and heteroaggregates were characterized by their surface charge, particle size distribution and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. The emulsifier type was found to greatly influence the type of heteroaggregates formed, as well as the pH value, specifically in combined LAE/Quillaja saponin emulsions. Larger aggregates particularly were formed with increasing pH values (2.71±1.21 to 46.53±4.30 μm from pH 3 to 7, respectively), while LAE/pectin aggregates appeared not to be affected by pH over the full pH range investigated (3.80±2.89 to 3.94±2.78 μm from pH 3 to 7, respectively). Our study thus provides valuable first insights into the mechanism of the formation of food-grade heteroaggregates for later use in food systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.

    Science.gov (United States)

    Trubetskoy, V S; Loomis, A; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-08-01

    DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.

  1. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge

    Directory of Open Access Journals (Sweden)

    Schweiger Christoph

    2012-07-01

    Full Text Available Abstract Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate. The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar. This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.

  2. Small-amplitude shock waves and double layers in dusty plasmas with opposite polarity charged dust grains

    Science.gov (United States)

    Amina, M.; Ema, S. A.; Mamun, A. A.

    2017-06-01

    Theoretical investigation is carried out for understanding the properties of nonlinear dust-acoustic (DA) waves in an unmagnetized dusty plasma whose constituents are massive, micron-sized, positive and negatively charged inertial dust grains along with q (nonextensive) distributed electrons and ions. The reductive perturbation method is employed in order to derive two types of nonlinear dynamical equations, namely, Burgers equation and modified Gardner equation (Gardner equation with dissipative term). They are also numerically analyzed to investigate the basic features (viz., polarity, amplitude, width, etc.) of shock waves and double layers. It has been observed that the effects of nonextensivity, opposite polarity charged dust grains, and different dusty plasma parameters have significantly modified the fundamental properties of shock waves and double layers. The results of this investigation may be used for researches of the nonlinear wave propagation in laboratory and space plasmas.

  3. Supercritical instability of Dirac electrons in the field of two oppositely charged nuclei

    CERN Document Server

    Sobol, O O

    2016-01-01

    The Dirac equation for an electron in a finite dipole potential has been studied within the method of linear combination of atomic orbitals (LCAO). The Coulomb potential of the nuclei that compose a dipole is regularized, by considering the finite nuclear size. It is shown that if the dipole momentum reaches a certain critical value, the novel type of supercriticality occurs; namely, the wave function of the highest occupied electron bound state changes its localization from the negatively charged nucleus to the positively charged one. This phenomenon can be interpreted as a spontaneous creation of an electron-positron pair in vacuum, with each of the created particles being in the bound state with the corresponding nucleus and partially screening it.

  4. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    Science.gov (United States)

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.

  5. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions.

    Science.gov (United States)

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-28

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  6. Material simulation of charge carrier transport properties of polymer dielectrics

    Science.gov (United States)

    Unge, Mikael; Christen, Thomas; Törnkvist, Christer; ABB Corporate Research Team

    To understand electron and hole transport in solid material requires to know its electronic properties, i.e. the density of states (DOS) and whether the states are spatially localized or delocalized. The states closest to the band edges may be localized, states further away can be delocalized. This transition from localized to delocalized states determines the mobility edge, above the mobility edge the mobility is expected to be high. A real polymer is never perfect; it contains a number of oxidative states, bonding defects and molecular impurities. These imperfections yield electronic states that can appear in the band gap of the polymer, traps. Traps can be shallow, i.e. close to the band edges, from these states the charge carrier easily can jump to a state in the band edge or another shallow state. Other traps can be deep, in these states it is likely that the charge carrier remains and become immobile. All these properties related to the electronic structure of the polymer, including its defects, affects the conductivity of the polymer. Linear scaling Density Functional Theory has been applied to calculate electronic structure of amorphous polyethylene. In particular DOS, trap levels and mobility edges are studied.

  7. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers.

    Science.gov (United States)

    Singh, S Santinath; Siddhanta, A K; Meena, Ramavatar; Prasad, Kamalesh; Bandyopadhyay, S; Bohidar, H B

    2007-07-01

    Turbidity measurements performed at 450nm were used to follow the process of complex formation, and phase separation in gelatin-agar aqueous solutions. Acid (Type-A) and alkali (Type-B) processed gelatin (polyampholyte) and agar (anionic polyelectrolyte) solutions, both having concentration of 0.1% (w/v) were mixed in various proportions, and the mixture was titrated (with 0.01 M HCl or NaOH) to initiate associative complexation that led to coacervation. The titration profiles clearly established observable transitions in terms of the solution pH corresponding to the first occurrence of turbidity (pH(C), formation of soluble complexes), and a point of turbidity maximum (pH(phi), formation of insoluble complexes). Decreasing the pH beyond pH(phi) drove the system towards precipitation. The values of pH(C) and pH(phi) characterized the initiation of the formation of intermolecular charge neutralized soluble aggregates, and the subsequent formation of microscopic coacervate droplets. These aggregates were characterized by dynamic light scattering. It was found that Type-A and -B gelatin samples formed soluble intermolecular complexes (and coacervates) with agar molecules through electrostatic and patch-binding interactions, respectively.

  8. Charge carrier dissociation and recombination in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg, 97074 Wuerzburg (Germany)

    2009-12-15

    In polymer:fullerene solar cells, the origin of the losses in the field-dependent photocurrent is still controversially debated. We contribute to the ongoing discussion by performing photo-induced charge extraction measurements on poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C{sub 61} butyric acid methyl ester solar cells in order to investigate the processes ruling charge carrier decay. Calculating the drift length of photogenerated charges, we find that polaron recombination is not limiting the photocurrent for annealed devices. Additionally, we applied Monte Carlo simulations on blends of conjugated polymer chain donors with acceptor molecules in order to gain insight into the polaron pair dissociation. The dissociation yield turns out to be rather high, with only a weak field dependence. With this complementary view on dissociation and recombination, we stress the importance of accounting for polaron pair dissociation, polaron recombination as well as charge extraction when considering the loss mechanisms in organic solar cells. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. The Optical Signature of Charges in Conjugated Polymers

    Science.gov (United States)

    2016-01-01

    Electrical charge flowing through organic semiconductors drives many of today’s mobile phone displays and television screens, suggesting an internally consistent model of charge-carrier properties in these materials to have manifested. In conjugated polymers, charges give rise to additional absorption of light at wavelengths longer than those absorbed by the electrically neutral species. These characteristic absorption bands are universally being related to the emergence of localized energy levels shifted into the forbidden gap of organic semiconductors due to local relaxation of the molecular geometry. However, the traditional view on these energy levels and their occupation is incompatible with expected changes in electron removal and addition energies upon charging molecules. Here, I demonstrate that local Coulomb repulsion, as captured by nonempirically optimized electronic-structure calculations, restores compatibility and suggests a different origin of the charge-induced optical transitions. These results challenge a widely accepted and long-established picture, but an improved understanding of charge carriers in molecular materials promises a more targeted development of organic and hybrid organic/inorganic (opto-)electronic devices. PMID:27280165

  10. Charge transfer excitons in C60-dimers and polymers

    CERN Document Server

    Harigaya, K

    1996-01-01

    Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.

  11. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  12. Charged Polymers Transport under Applied Electric Fields in Periodic Channels

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2013-07-01

    Full Text Available By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.

  13. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    Science.gov (United States)

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction.

  14. Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    CERN Document Server

    Catalayud, M P; Raffa, V; Riggio, C; Ibarra, M R; Goya, G F

    2014-01-01

    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the...

  15. Nanosized films based on multicharged small molecules and oppositely charged polyelectrolytes obtained by simultaneous spray coating of interacting species.

    Science.gov (United States)

    Lefort, Mathias; Jierry, Loïc; Boulmedais, Fouzia; Benmlih, Karim; Lavalle, Philippe; Senger, Bernard; Voegel, Jean-Claude; Hemmerlé, Joseph; Ponche, Arnaud; Schaaf, Pierre

    2013-11-26

    Simultaneous spraying of polyelectrolytes and small multicharged molecules of opposite charges onto a vertical substrate leads to continuous buildups of organic films. Here, we investigate the rules governing the buildup of two such systems: poly(allylamine hydrochloride)/sodium citrate (PAH/citrate) and PAH/sulfated α-cyclodextrin (PAH/CD-S). Special attention is paid to the film growth rate as a function of the spraying rate ratio of the two constituents. This parameter was varied by increasing the spraying rate of one of the constituents while maintaining constant that of the other. For PAH/CD-S systems, whatever the constituent (PAH or CD-S) whose spraying rate was kept fixed, the film growth rate first increases and passes through a maximum before decreasing when the spraying rate of the other constituent is increased. For PAH/citrate, the film growth rate reaches a plateau value when the spraying rate of citrate is increased while that of PAH is maintained constant, whereas when the spraying rate of citrate is maintained constant and that of PAH is increased, a behavior similar to that of PAH/CD-S is observed. The composition of PAH/CD-S sprayed films determined by X-ray photoelectron spectroscopy is independent of the spraying rate ratio of the two constituents and corresponds to one allylamine for one sulfate group. For PAH/citrate, by increasing the PAH/citrate spraying rate ratio, the carboxylic/nitrogen ratio in the film increases and tends to 1. There is thus always a deficit of carboxylic groups (COO(-) + COOH) with respect to amines (NH2 + NH3(+)). Yet, the ratio (COO(-)/NH3(+)) is always close to 1, ensuring exact charge compensation. The film morphology determined by atomic force microscopy is granular for PAH/CD-S and is smooth and liquid-like for PAH/citrate. A model based on strong (respectively weak) interactions between PAH and CD-S (respectively citrate) is proposed to explain these features.

  16. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    Science.gov (United States)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  17. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Joel Davenas

    2009-06-01

    Full Text Available We investigate the dark and illuminated current density-voltage (J/V characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy1-4-phenylenevinylene (MEH-PPV/single-walled carbon nanotubes (SWNTs composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1 composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  18. Bending stiff charged polymers: The electrostatic persistence length

    Science.gov (United States)

    Trizac, Emmanuel; Shen, Tongye

    2016-10-01

    Many charged polymers, including nucleic acids, are locally stiff. Their bending rigidity —quantified by the persistence length— depends crucially on Coulombic features, such as the ionic strength of the solution which offers a convenient experimental route for tuning the rigidity. While the classic Odijk-Skolnick-Fixman treatment fails for realistic parameter values, we derive a simple analytical formula for the electrostatic persistence length. It is shown to be in remarkable agreement with numerically obtained Poisson-Boltzmann theory results, thereby fully accounting for non-linearities, among which counter-ion condensation effects. Specified to double-stranded DNA, our work reveals that the widely used bare persistence length of 500 Å is overestimated by some 20%.

  19. Small interfering RNA delivery through positively charged polymer nanoparticles

    Science.gov (United States)

    Dragoni, Luca; Ferrari, Raffaele; Lupi, Monica; Cesana, Alberto; Falcetta, Francesca; Ubezio, Paolo; D'Incalci, Maurizio; Morbidelli, Massimo; Moscatelli, Davide

    2016-03-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells.

  20. Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack

    Energy Technology Data Exchange (ETDEWEB)

    Milliere, L. [LAPLACE (Laboratoire Plasma et Conversion d' Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Makasheva, K., E-mail: kremena.makasheva@laplace.univ-tlse.fr; Laurent, C.; Despax, B.; Teyssedre, G. [LAPLACE (Laboratoire Plasma et Conversion d' Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2014-09-22

    Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurements [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.

  1. Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack

    Science.gov (United States)

    Milliere, L.; Makasheva, K.; Laurent, C.; Despax, B.; Teyssedre, G.

    2014-09-01

    Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurements [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311-320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.

  2. Charge generation in polymer-fullerene bulk-heterojunction solar cells

    OpenAIRE

    Gao, Feng; Inganäs, Olle

    2014-01-01

    Charge generation in organic solar cells is a fundamental yet heavily debated issue. This article gives a balanced review of different mechanisms proposed to explain efficient charge generation in polymer-fullerene bulk-heterojunction solar cells. We discuss the effect of charge-transfer states, excess energy, external electric field, temperature, disorder of the materials, and delocalisation of the charge carriers on charge generation. Although a general consensus has not been reached yet, r...

  3. Unbiased charge oscillations in DNA monomer-polymers and dimer-polymers

    CERN Document Server

    Lambropoulos, Konstantinos; Morphis, Andreas; Kaklamanis, Konstantinos; Theodorakou, Marina; Simserides, Constantinos

    2015-01-01

    We call {\\it monomer} a B-DNA base-pair and examine, analytically and numerically, electron or hole oscillations in monomer- and dimer-polymers, i.e., periodic sequences with repetition unit made of one or two monomers. We employ a tight-binding (TB) approach at the base-pair level to readily determine the spatiotemporal evolution of a single extra carrier along a $N$ base-pair polymer. We study HOMO and LUMO eigenspectra as well as the mean over time probabilities to find the carrier at a particular monomer. We use the pure mean transfer rate $k$ to evaluate the easiness of charge transfer. The inverse decay length $\\beta$ for exponential fits $k(d)$, where $d$ is the charge transfer distance, and the exponent $\\eta$ for power law fits $k(N)$ are computed; generally power law fits are better. We illustrate that increasing the number of different parameters involved in the TB description, the fall of $k(d)$ or $k(N)$ becomes steeper and show the range covered by $\\beta$ and $\\eta$. Finally, both for the time-...

  4. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2013-11-01

    Full Text Available The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT and organic photovoltaic cell (OPV, etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

  5. Charge photogeneration and transport in side-chain carbazole polymers and co-polymers

    KAUST Repository

    Li, Huawei

    2011-07-01

    The photoconductivity, hole mobility and charge photogeneration efficiency of a series of side-chain carbazole homopolymers and copolymers (with azo side-chains) have been investigated. Cyclic voltammetry measurement of frontier orbitals energies show that the HOMO energy is determined by the nature and the position of attachment of the linker between the main chain and the carbazole, the azo-moiety being not relevant in this respect. Hole mobility is not influenced by the HOMO energy but seems to depend on the degree of conformational mobility of the side-chains, reaching values of the order of 10-3cm2V-1s-1 in the best cases. The HOMO energy is instead extremely important when considering photogeneration efficiency, that can change by 10 orders of magnitude depending on the density of the carbazole side-chains in co-polymers and on the linker nature and attachment position. © 2011 Elsevier B.V. All rights reserved.

  6. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry.

    Science.gov (United States)

    Baytekin, H Tarik; Baytekin, Bilge; Hermans, Thomas M; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A

    2013-09-20

    Even minute quantities of electric charge accumulating on polymer surfaces can cause shocks, explosions, and multibillion-dollar losses to electronic circuitry. This paper demonstrates that to remove static electricity, it is not at all necessary to "target" the charges themselves. Instead, the way to discharge a polymer is to remove radicals from its surface. These radicals colocalize with and stabilize the charges; when they are scavenged, the surfaces discharge rapidly. This radical-charge interplay allows for controlling static electricity by doping common polymers with small amounts of radical-scavenging molecules, including the familiar vitamin E. The effectiveness of this approach is demonstrated by rendering common polymers dust-mitigating and also by using them as coatings that prevent the failure of electronic circuitry.

  7. Direct observation of ultrafast long-range charge separation at polymer:fullerene heterojunctions

    Science.gov (United States)

    Silva, Carlos

    2014-03-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This effect results in distinctive signatures in the vibrational modes of the polymer. We probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 200 fs, which is nearly two orders of magnitude faster than exciton localisation in the neat polymer film. Surprisingly, further vibrational evolution on polarons is not significantly different from that in equilibrium. This suggests that charges are free from their mutual Coulomb potential, under which vibrational dynamics would report charge-pair relaxation. Our work addresses current debates on the photocarrier generation mechanism at organic semiconductor heterojunctions, and is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials.

  8. Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions

    Science.gov (United States)

    Provencher, Françoise; Bérubé, Nicolas; Parker, Anthony W.; Greetham, Gregory M.; Towrie, Michael; Hellmann, Christoph; Côté, Michel; Stingelin, Natalie; Silva, Carlos; Hayes, Sophia C.

    2014-07-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 300 fs. Surprisingly, further structural evolution on ≲50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not significantly different from that near equilibrium. We interpret this as suggestive that charges are free from their mutual Coulomb potential because we would expect rich vibrational dynamics associated with charge-pair relaxation. We address current debates on the photocarrier generation mechanism at molecular heterojunctions, and our work is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials.

  9. A general relationship between disorder, aggregation and charge transport in conjugated polymers

    KAUST Repository

    Noriega, Rodrigo

    2013-08-04

    Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. © 2013 Macmillan Publishers Limited. All rights reserved.

  10. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.

    Science.gov (United States)

    Kumar, Sugam; Ray, D; Aswal, V K; Kohlbrecher, J

    2014-10-01

    Small-angle neutron scattering (SANS) studies have been carried out to examine the evolution of interaction and structure in a nanoparticle (silica)-polymer (polyethylene glycol) system. The nanoparticle-polymer solution interestingly shows a reentrant phase behavior where the one-phase charged stabilized nanoparticles go through a two-phase system (nanoparticle aggregation) and back to one-phase as a function of polymer concentration. Such phase behavior arises because of the nonadsorption of polymer on nanoparticles and is governed by the interplay of polymer-induced attractive depletion with repulsive nanoparticle-nanoparticle electrostatic and polymer-polymer interactions in different polymer concentration regimes. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. However, the increase in polymer concentration enhances the depletion attraction to give rise to the nanoparticle aggregation in the two-phase system. Further, the polymer-polymer repulsion at high polymer concentrations is believed to be responsible for the reentrance to one-phase behavior. The SANS data in polymer contrast-matched conditions have been modeled by a two-Yukawa potential accounting for both repulsive and attractive parts of total interaction potential between nanoparticles. Both of these interactions (repulsive and attractive) are found to be long range. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the depletion interaction leading to reentrant phase behavior. The nanoparticle clusters in the two-phase system are characterized by the surface fractal with simple cubic packing of nanoparticles within the clusters. The effect of varying ionic strength and polymer size in tuning the interaction has also been examined.

  11. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  12. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    OpenAIRE

    Haiyang Wang; Yaozhuo Xu; Xinhong Yu; Rubo Xing; Jiangang Liu; Yanchun Han

    2013-01-01

    The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT) and organic photovoltaic cell (OPV), etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecula...

  13. Energy and charge control in mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Nasioudis, A.

    2011-01-01

    Synthetic polymers are the products of humans’ attempts to imitate nature’s gigantic molecular chain architectures. The extended variety of building blocks and reaction mechanisms resulted in a plethora of different polymeric architectures. The biggest challenge for polymer chemists is to develop an

  14. Ultrafast Charge Separation in Low Band-Gap Polymer Blend for Photovoltaics

    Directory of Open Access Journals (Sweden)

    Egelhaaf Hans-J.

    2013-03-01

    Full Text Available We track ultrafast charge dissociation in a particularly promising low-band-gap- polymer:fullerene blend for organic photovoltaics. Impulsive photoexcitation with excess energy leads to a 30-fs formation of an hot charge transfer state, precursor of free carriers.

  15. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    Science.gov (United States)

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems.

  16. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  17. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  18. Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters.

    Science.gov (United States)

    Lämmerhofer, M; Tobler, E; Lindner, W

    2000-07-28

    Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and

  19. Elucidation of charge storage characteristics of conducting polymer film using redox reaction

    CERN Document Server

    Contractor, Asfiya Q

    2013-01-01

    A general technique to investigate charge storage characteristics of conducting polymer films has been developed. A redox reaction is conducted on a polymer film on a rotating disk electrode under potentiostatic condition so that the rate of charging of the film equals the rate of removal of the charge by the reaction. In an experiment on polyaniline film deposited on platinum substrate, using Fe2+/Fe3+ in HCl as the redox system, the voltammogram shows five distinct linear segments (bands) with discontinuity in the slope at specific transition potentials. These bands are the same as those indicated by ESR/Raman spectroscopy with comparable transition potentials. From the dependence of the slopes of the bands on concentration of ferrous and ferric ions, it was possible to estimate the energies of the charge carrier in different bands. It is shown that the charge storage in the film is capacitive.

  20. Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media.

    Science.gov (United States)

    Khalily, Mohammad Aref; Bakan, Gokhan; Kucukoz, Betul; Topal, Ahmet Emin; Karatay, Ahmet; Yaglioglu, H Gul; Dana, Aykutlu; Guler, Mustafa O

    2017-07-25

    Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack π-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type β-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A-D-A unit cells having an association constant (KA) of 5.18 × 10(5) M(-1). In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.

  1. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  2. Effective Charge on Polymer Colloids Obtained Using a Renormalization Model.

    Science.gov (United States)

    Quesada-Pérez; Callejas-Fernández; Hidalgo-Álvarez

    1998-10-01

    Static light scattering has been used to study the electrostatic interaction between colloidal particles. Experiments were carried out using a latex with a very small diameter, allowing structure determination at high particle concentration. The obtained effective charge characterizing this interaction is found to be smaller than the bare charge determined from titration. A renormalization model connecting both values has been used. The agreement between the renormalized charge and that obtained from scattering data seems to point out that this model operates well. Copyright 1998 Academic Press.

  3. Piezo- and pyroelectricity of a polymer-foam space-charge electret

    Science.gov (United States)

    Neugschwandtner, Gerhard S.; Schwödiauer, Reinhard; Bauer-Gogonea, Simona; Bauer, Siegfried; Paajanen, Mika; Lekkala, Jukka

    2001-04-01

    Charged closed-cell polypropylene polymer foams are highly sensitive and broadband piezoelectric materials with a quasistatic piezoelectric d33 coefficient about 250 pC/N and a dynamic d33 coefficient of 140 pC/N at 600 kHz. The piezoelectric coefficient is much larger than that of ferroelectric polymers, like polyvinylidene fluoride, and compares favorably with ferroelectric ceramics, such as lead zirconate titanate. The pyroelectric coefficient p3=0.25 μC/m2 K is small in comparison to ferroelectric polymers and ferroelectric ceramics. The low density, small pyroelectric coefficient and high piezoelectric sensitivity make charged polymer foams attractive for a wide range of sensor and transducer applications in acoustics, air-borne ultrasound, medical diagnostics, and nondestructive testing.

  4. Charge-carrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field

    Science.gov (United States)

    Meisel, K. D.; Pasveer, W. F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P. A.; Blom, P. W. M.; de Leeuw, D. M.; Michels, M. A. J.

    2006-02-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Our results are used in calculating current-voltage characteristics of hole-only polymer diodes. It is found that very good fits to experimental current-voltage characteristics can be obtained at different temperatures, with reasonable fitting parameters for the width of the Gaussian density of states and the lattice constant. In agreement with the experiments we find that the density dependence is dominant over the field dependence. Only at high fields and low temperatures the field dependence becomes noticeable. The potential and current distribution show strong inhomogeneities, which may have important consequences for the operation of polymer opto-electronic devices.

  5. Effect of deposition charges on the wettability performance of electrochromic polymers

    Science.gov (United States)

    Çağlar, Aysel; Cengiz, Uğur; Yıldırım, Mehmet; Kaya, İsmet

    2015-03-01

    Electrochromic polymers have been designed as future candidates for electrochromic displays (ECDs) and smart windows. This class of conducting polymers has been studied with their several optical properties as well as spectroelectrochemical stabilities. In practical use their contamination and abrasion could be expected to be main problem as exposed to moisture and other possible pollutants. In this study, we present a perspective to well-known electrochromic polymers in the words of their durable use. For this aim, a series of electrochromic polymers are deposited on indium tin oxide (ITO) coated glass plates by bulk electrolysis. Polymeric films are deposited by varied deposition charges (Qs) ranging from 62 to 620 mC cm-2 for comparison. Equilibrium water contact angle (θwaterequ) measurements of the prepared surfaces are measured by Attention Theta Optical Tensiometer. Surface roughness parameters (RMS) are determined by atomic force microscopy (AFM) technique and used for interpretation of hydrophobic-hydrophilic characteristics. The results clearly indicate that; poly(ethylenedioxythiophene) (PEDOT) has a hydrophilic surface whose hydrophilicity is increased by applied deposition charge and becomes a superhydrophile at high deposition charges. Among the tested polymers polycarbazole (PCarb) is the most promising long lifetime candidate due to its relatively hydrophobic character. Also, the hydrophobicity of PCarb is linearly increased by increasing deposition charge and reaches an optimum point at a particular condition.

  6. Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Tracey M.; Shoaee, Safa; Soon, Ying W.; Durrant, James R. [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Ballantyne, Amy; Nelson, Jenny [Centre for Plastic Electronics, Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Duffy, Warren; Heeney, Martin; McCulloch, Iain [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Merck Chemicals, Chilworth Science Park, Southampton SO16 7QD (United Kingdom)

    2010-12-07

    Charge photogeneration: The correlation between the efficiency of photogeneration of dissociated polarons and photocurrent densities for organic solar cells based on polymer:fullerene blend films is investigated. Optical assays of polaron yield measured in films without electrodes show a remarkably clear correlation with short circuit density and quantum yield measured in complete devices. For the blend films studied herein, the primary determinant of photocurrent generation is the efficiency of dissociation of photogenerated charges away from the polymer/fullerene interface and the primary loss pathway is geminate recombination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries.

    Science.gov (United States)

    Han, Mina; Kim, Dong-Won; Kim, Yeong-Cheol

    2016-10-05

    A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.

  8. Photoconductivity and Charge-Carrier Photogeneration in Photorefractive Polymers

    NARCIS (Netherlands)

    Däubler, Thomas K.; Kulikovsky, Lazar; Neher, Dieter; Cimrová, Vera; Hummelen, J.C.; Mecher, Erwin; Bittner, Reinhard; Meerholz, Klaus; Lawson, M.; Meerholz, Klaus

    2002-01-01

    We have studied photogeneration, transport, trapping and recombination as the governing mechanisms for the saturation field strength and the time response of the photorefractive (PR) effect in PVK-based PR materials, utilizing xerographic discharge and photoconductivity experiments. Both the charge

  9. Photoconductivity and Charge-Carrier Photogeneration in Photorefractive Polymers

    NARCIS (Netherlands)

    Däubler, Thomas K.; Kulikovsky, Lazar; Neher, Dieter; Cimrová, Vera; Hummelen, J.C.; Mecher, Erwin; Bittner, Reinhard; Meerholz, Klaus; Lawson, M.; Meerholz, Klaus

    2002-01-01

    We have studied photogeneration, transport, trapping and recombination as the governing mechanisms for the saturation field strength and the time response of the photorefractive (PR) effect in PVK-based PR materials, utilizing xerographic discharge and photoconductivity experiments. Both the charge

  10. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    Science.gov (United States)

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

  11. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid Triblock Copolymer and Oppositely Charged Surfactant

    Directory of Open Access Journals (Sweden)

    Sun Yuelong

    2009-01-01

    Full Text Available Abstract The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid-b-poly(ethylene oxide-b-poly(acrylic acid (PAA-b-PEO-b-PAA triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN by turbidimetry, dynamic light scattering (DSL,ζ-potential measurement, and atomic force microscope (AFM. The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core–shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA-b-PEO-b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  12. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer

    NARCIS (Netherlands)

    Kort, De Daan W.; Veen, Sandra J.; As, Van Henk; Bonn, Daniel; Velikov, Krassimir P.; Duynhoven, Van John P.M.

    2016-01-01

    The shear flow of microfibrillated cellulose dispersions is still not wholly understood as a consequence of their multi-length-scale heterogeneity. We added carboxymethyl cellulose, a charged polymer, that makes cellulose microfibril dispersions more homogeneous at the submicron and macro scales.

  13. Enhancement of charge-transport characteristics in polymeric films using polymer brushes

    DEFF Research Database (Denmark)

    Whiting, G.L.; Snaith, H.J.; Khodabakhsh, S.

    2006-01-01

    We show that charge-transporting polymer chains in the brush conformation can be synthesized from a variety of substrates of interest, displaying a high degree of stretching and showing up to a 3 orders of magnitude increase in current density normal to the substrate as compared with a spin-coated...

  14. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  15. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.

    Science.gov (United States)

    Chun, Honggu; Chung, Taek Dong; Ramsey, J Michael

    2010-07-15

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

  16. Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells.

    Science.gov (United States)

    Li, Zhe; Wang, Weiyuan; Greenham, Neil C; McNeill, Christopher R

    2014-12-21

    A key consideration for the efficient operation of hybrid solar cells based upon conjugated polymers and inorganic semiconductor nanocrystals is charge transport in the nanocrystal phase. Here we report the results of a study into the charge transport kinetics of polymer/nanocrystal solar cells based on blends poly(3-hexylthiophene) (P3HT) with either CdSe nano-dots or CdSe nano-tetrapods. Transient photocurrent measurements reveal significant differences in the charge transport kinetics of nano-dot and nano-tetrapod hybrid cells, with the charge collection of the P3HT/CdSe nano-dot device severely limited by charge trapping. In comparison the nano-tetrapod cell exhibits significantly reduced charge trapping compared to the nano-dot cell accounting for the improved fill-factor and overall device efficiency. Transient photovoltage measurements have also been employed that demonstrate slower recombination rates in the P3HT/CdSe tetrapod device compared to the P3HT/CdSe dot device. These observations directly identify nanoparticle shape as a critical factor influencing the charge transport and hence recombination in this benchmark hybrid system, confirming the hypothesis that the use of tetrapods improves device performance through an improvement in electron transport in the nanocrystal phase.

  17. Probing spin-charge relation by magnetoconductance in one-dimensional polymer nanofibers

    Science.gov (United States)

    Park, Yung Woo

    2013-03-01

    Polymer nanofibers are one dimensional (1-D) organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge).

  18. Unraveling the Electronic Heterogeneity of Charge Traps in Conjugated Polymers by Single-Molecule Spectroscopy.

    Science.gov (United States)

    Adachi, Takuji; Vogelsang, Jan; Lupton, John M

    2014-02-06

    Charge trapping is taken for granted in modeling the characteristics of organic semiconductor devices, but very few techniques actually exist to spectroscopically pinpoint trap states. For example, trap levels are often assumed to be discrete in energy. Using the well-known keto defect in polyfluorene as a model, we demonstrate how single-molecule spectroscopy can directly track the formation of charge and exciton traps in conjugated polymers in real time, providing crucial information on the energetic distribution of trap sites relative to the polymer optical gap. Charge traps with universal spectral fingerprints scatter by almost 1 eV in depth, implying that substantial heterogeneity must be taken into account when modeling devices.

  19. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    CERN Document Server

    Hofmann, Felix J; Lupton, John M

    2016-01-01

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process, or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The resul...

  20. Charge transport in photochemically modified molecularly doped polymers

    Science.gov (United States)

    Stasiak, James W.; Storch, Teresa J.; Mao, Erji

    1995-08-01

    Hole mobilities in p-diethylaminobenzaldehyde diphenylhydrazone (DEH) doped polycarbonate films are determined using the time-of-flight transient photocurrent technique. Measurements of hole transport parameters are determined over a range of electric fields before and after the samples are deliberately irradiated with UV light. UV irradiation of the hole transport molecule DEH results in the creation of a photoproduct, 1-phenyl-3-(4- diethylamino-1-phenyl)-1, 3-indazole with moderately high efficiency. Once formed, this photoproduct has been shown to act as a barrier to hole conduction. We exploit this photochemical reaction to examine the hole transport properties in a molecularly doped polymer system containing DEH doped polycarbonate. We propose that the increase in concentration of the photoproduct modifies the intrinsic order of the system and provides a unique probe to distinguish between the disorder formalism of Baessler and coworkers and models which propose polaron formation.

  1. MODELLING OF CHARGE CARRIER MOBILITY FOR TRANSPORT BETWEEN ELASTIC POLYACETYLENE-LIKE POLYMER NANORODS

    Directory of Open Access Journals (Sweden)

    M. Mensik

    2017-03-01

    Full Text Available A quantum model solving the charge carrier mobility between polyacetylene-like polymer nanorods is presented. The model assumes: a Quantum mechanical calculation of hole on-chain delocalization involving electron-phonon coupling leading to the Peierls instability, b Hybridization coupling between the polymer backbone and side-groups (or environmental states, which act as hole traps, and c Semiclassical description of the inter-chain hole transfer in an applied voltage based on Marcus theory. We have found that mobility resonantly depends on the hybridization coupling between polymer and linked groups. We observed also non-trivial mobility dependences on the difference of energies of the highest occupied molecular orbitals localized on the polymer backbone and side-groups, respectively, and hole concentration. Those findings are important for optimization of hybrid opto-electronic devices.

  2. Charge Transfer Channels in Formation of Exciplex in Polymer Blends

    Institute of Scientific and Technical Information of China (English)

    DOU Fei; ZHANG Xin-Ping

    2011-01-01

    The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylBuorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctyl6uorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-l,4- phenylenediamine) (PFB) on the excitation wavelengths and morphology is investigated. The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend Sim. Furthermore, energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex. This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices.%@@ The strong dependence of photoluminescence of charge transfer excited states or exciplex in a blend film of poly(9,9'-dioctylfluorene-co-benzothiadiazole)(F8BT)and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine)(PFB)on the excitation wavelengths and morphology is investigated.The experimental results reveal that electron transfer in the LUMOs from PFB to F8BT is more efficient than hole transfer in the HOMOs from PFB to F8BT for the formation of exciplex at the interfacial junctions between these two types of molecules in the blend film.Furthermore,energy transfer from the blue-emitting PFB to the green-emitting F8BT at the interfaces introduces an additional two-step channel and thus enhances the formation of an exciplex.This is important for understanding of charge generation and separation in organic bulk heterojunctions and for design of optoelectronic devices.

  3. Charge carrier mobility in conjugated organic polymers: simulation of an electron mobility in a carbazole-benzothiadiazole-based polymer

    Science.gov (United States)

    Li, Yaping; Lagowski, Jolanta B.

    2011-08-01

    Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.

  4. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.

    Science.gov (United States)

    Rauda, Iris E; Augustyn, Veronica; Dunn, Bruce; Tolbert, Sarah H

    2013-05-21

    Growing global energy demands coupled with environmental concerns have increased the need for renewable energy sources. For intermittent renewable sources like solar and wind to become available on demand will require the use of energy storage devices. Batteries and supercapacitors, also known as electrochemical capacitors (ECs), represent the most widely used energy storage devices. Supercapacitors are frequently overlooked as an energy storage technology, however, despite the fact that these devices provide greater power, much faster response times, and longer cycle life than batteries. Their limitation is that the energy density of ECs is significantly lower than that of batteries, and this has limited their potential applications. This Account reviews our recent work on improving pseudocapacitive energy storage performance by tailoring the electrode architecture. We report our studies of mesoporous transition metal oxide architectures that store charge through surface or near-surface redox reactions, a phenomenon termed pseudocapacitance. The faradaic nature of pseudocapacitance leads to significant increases in energy density and thus represents an exciting future direction for ECs. We show that both the choice of material and electrode architecture is important for producing the ideal pseudocapacitor device. Here we first briefly review the current state of electrode architectures for pseudocapacitors, from slurry electrodes to carbon/metal oxide composites. We then describe the synthesis of mesoporous films made with amphiphilic diblock copolymer templating agents, specifically those optimized for pseudocapacitive charge storage. These include films synthesized from nanoparticle building blocks and films made from traditional battery materials. In the case of more traditional battery materials, we focus on using flexible architectures to minimize the strain associated with lithium intercalation, that is, the accumulation of lithium ions or atoms between the

  5. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    Science.gov (United States)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  6. Calculating charge-carrier mobilities in disordered semiconducting polymers: Mean field and beyond

    Science.gov (United States)

    Cottaar, J.; Bobbert, P. A.

    2006-09-01

    We model charge transport in disordered semiconducting polymers by hopping of charges on a regular cubic lattice of sites. A large on-site Coulomb repulsion prohibits double occupancy of the sites. Disorder is introduced by taking random site energies from a Gaussian distribution. Recently, it was demonstrated that this model leads to a dependence of the charge-carrier mobilities on the density of charge carriers that is in agreement with experimental observations. The model is conveniently solved within a mean-field approximation, in which the correlation between the occupational probabilities of different sites is neglected. This approximation becomes exact in the limit of vanishing charge-carrier densities, but needs to be checked at high densities. We perform this check by dividing the lattice in pairs of neighboring sites and taking into account the correlation between the sites within each pair explicitly. This pair approximation is expected to account for the most important corrections to the mean-field approximation. We study the effects of varying temperature, charge-carrier density, and electric field. We demonstrate that in the parameter regime relevant for semiconducting polymers used in practical devices the corrections to the mobilities calculated from the mean-field approximation will not exceed a few percent, so that this approximation can be safely used.

  7. Roughening Conjugated Polymer Surface for Enhancing the Charge Collection Efficiency of Sequentially Deposited Polymer/Fullerene Photovoltaics

    Directory of Open Access Journals (Sweden)

    Yoonhee Jang

    2015-08-01

    Full Text Available A method that enables the formation of a rough nano-scale surface for conjugated polymers is developed through the utilization of a polymer chain ordering agent (OA. 1-Chloronaphthalene (1-CN is used as the OA for the poly(3-hexylthiophene-2,5-diyl (P3HT layer. The addition of 1-CN to the P3HT solution improves the chain ordering of the P3HT during the film formation process and increases the surface roughness of the P3HT film compared to the film prepared without 1-CN. The roughened surface of the P3HT film is utilized to construct a P3HT/fullerene bilayer organic photovoltaic (OPV by sequential solution deposition (SqSD without thermal annealing process. The power conversion efficiency (PCE of the SqSD-processed OPV utilizing roughened P3HT layer is 25% higher than that utilizing a plain P3HT layer. It is revealed that the roughened surface of the P3HT increases the heterojunction area at the P3HT/fullerene interface and this resulted in improved internal charge collection efficiency, as well as light absorption efficiency. This method proposes a novel way to improve the PCE of the SqSD-processed OPV, which can be applied for OPV utilizing low band gap polymers. In addition, this method allows for the reassessment of polymers, which have shown insufficient performance in the BSD process.

  8. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  9. Photoelectrochemical reaction in conducting polymers for solar energy harvesting and charge storage

    Science.gov (United States)

    Rahimi, Fatemeh; Tevi, Tete; Takshi, Arash

    2016-09-01

    Energy storage is an essential ground for solar energy systems, particularly for the off-grid applications. Concurrent energy harvesting and charge storage in a photoactive supercapacitor has already been demonstrated. The key element in such a device is a conducting polymer which stores the charge via change in its redox states. In this work, we have studied the photoelectrochemical reactions in composites of polyaniline (PANI). We used the electrochemical deposition method for the polymer growth. The results of the current study indicate that the photo-reactivity of the materials largely depends on the electrolyte and the type of the dye molecule. Among different synthetic dyes, methylene blue has shown the strongest photoelectrochemical reaction in an HCl electrolyte. The cyclic voltammetry (CV) results showed that the amplitude of the redox peaks changes significantly upon illumination. The amount of stored charges in the polymer was estimated from the CV results. The results encourage the application of PANI for charge storage in a photoactive supercapacitor.

  10. Charge carrier photogeneration in conjugated polymer PhPPV/R6G composite system

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; TIAN Wenjing

    2005-01-01

    The spectral and polarity dependence of the quantum yield of charge carrier photo-generation was studied by steady-state photocurrent measurement in a single layer PhPPV film, double layer film of PhPPV and R6G and doped film of PhPPV with R6G. The intrinsic and extrinsic charge carrier photogeneration was observed. The result indicates that the quantum efficiency of the double layer device is higher than that of single layer device under reverse bias, but it is opposite under forward bias. The yield of charge carrier photogeneration of the doped film is higher than that of the other two films at both forward and reverse bias because of the increased interface area between the electron donor and acceptor.

  11. From electrode charges on dielectric elastomers to trapped charges and electric dipoles in electrets and ferroelectrets: fundamental and applications-relevant aspects of diversity in electroactive polymers

    Science.gov (United States)

    Gerhard, Reimund

    2016-04-01

    Some recent developments in the areas of soft and basically incompressible electro-electrets (dielectric elastomers) with large strains, of anisotropic polymer ferro- or piezo-electrets with quasi-ferroelectric behavior, of moleculardipole electrets with significant ferro-, pyro- and piezo-electricity, and of space-charge polymer electrets with locally stabilised charges are described. Such materials may be applied, e.g., in soft actuators, energy harvesters and flexible and stretchable sensors for devices such as artificial muscles, electrically controllable refractive and diffractive optics, flexible pyroelectric detectors, motion and displacement sensors, earphones and microphones, ultrasonic transducers, air filters, radiation dosimeters, etc. The performance of dielectric elastomers for actuator, energy-harvester and sensor applications relies on a high relative permittivity and a low elastic modulus. High densities of electric charges in the electrodes are required in order to provide large Maxwell stresses or high energy densities. Significant amounts of localised or trapped charges, as well as electric dipoles from pairs of charges, lead to useful electro-mechanical and mechano-electrical effects (or inverse and direct piezoelectricity, respectively) if they are properly arranged in dielectric materials with extremely low conductivities. Space-charge electret films and ferroelectret systems should exhibit thermal and long-term stability of the trapped charges within the respective materials. Ferroelectric polymers and other polar polymers show useful piezo- and pyroelectric properties if their polymer-chain conformations allow for parallel packing of the molecular dipoles. Space-charge and molecular-dipole electrets are widely applied, e.g. in microphones, air filters, radiation dosimeters, ultrasonic transducers, etc. Basically, the performance of all electro-active polymers relies on the attraction (and repulsion) of electric charges and thus directly on

  12. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... is usually limited by the most difficult hopping processes and is therefore dominated by the disordered matrix, resulting in low charge-carrier mobilities(2) (less than or equal to 10(-5) cm(2)V(-1)s(-1)). Here we use thin-film, field-effect transistor structures to probe the transport properties...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...

  13. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion.

    Science.gov (United States)

    Buyukcakir, Onur; Je, Sang Hyun; Choi, Dong Shin; Talapaneni, Siddulu Naiudu; Seo, Yongbeom; Jung, Yousung; Polychronopoulou, Kyriaki; Coskun, Ali

    2016-01-18

    Porous cationic polymers (PCPs) with surface areas up to 755 m(2) g(-1) bearing positively charged viologen units in their backbones and different counteranions have been prepared. We have demonstrated that by simply varying counteranions both gas sorption and catalytic properties of PCPs can be tuned for metal-free capture and conversion of CO2 into value-added products such as cyclic carbonates with excellent yields.

  14. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  15. TITANIUM DIOXIDE TRIADS FOR IMPROVED CHARGE-SEPARATION USING CONDUCTIVE POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, T.M.; Gaylor, T.N.; de la Garza, L.; Rajh, T.

    2009-01-01

    Dye-sensitized solar cells are potentially one of the best solutions to solar energy conversion because of the low cost of required materials and production processes. Titanium dioxide (TiO2) nanoparticulate fi lms are the basis for one of these types of cells, providing large surface area for dye-sensitizer adsorption. Because TiO2 nanoparticulate fi lms develop defects caused by oxygen defi ciency, deep reactive electron traps are formed. With the addition of an enediol ligand, these electron traps are deliberately removed, enhancing the conduction of electrons within the fi lm. In this project, TiO2 nanoparticulate fi lms made by a layer-by-layer dip coating method were modifi ed with 3,4-dihydroxyphenylacetic acid (DOPAC). DOPAC binds to the titanium atoms on the surface of the nanoparticles, restoring their octahedral geometry. This restructuring of the surface shifts the spectral properties of the TiO2 to the visible spectrum and improves the separation of charges which is observed using photoelectrochemistry. Furthermore, DOPAC enables the electronic attachment of other molecules to the surface of TiO2 fi lms, such as the conductive polymer polyaniline base. This conductive polymer provides an extended separation of charges which increases photocurrent production by forming a triad with the TiO2 semiconductor through the 3,4-dihydroxyphenylacetic acid linker. The photocurrent increases due to the donor properties of the conductive polymer thereby decreasing charge pair recombination.

  16. Charge-carrier mobilities in disordered semiconducting polymers: effects of carrier density and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, K.D.; Pasveer, W.F.; Cottaar, J.; Bobbert, P.A.; Michels, M.A.J. [Group Polymer Physics, Eindhoven Polymer Laboratories and Dutch Polymer Institute, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Tanase, C.; Blom, P.W.M. [Materials Science Centre and Dutch Polymer Institute, Nijenborgh 4, 9747 AG Groningen (Netherlands); Coehoorn, R.; Leeuw, D.M. de [Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven (Netherlands)

    2006-02-01

    We model charge transport in disordered semiconducting polymers by hopping of charge carriers on a square lattice of sites with Gaussian on-site energy disorder, using Fermi-Dirac statistics. From numerically exact solutions of the Master equation, we study the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Our results are used in calculating current-voltage characteristics of hole-only polymer diodes. It is found that very good fits to experimental current-voltage characteristics can be obtained at different temperatures, with reasonable fitting parameters for the width of the Gaussian density of states and the lattice constant. In agreement with the experiments we find that the density dependence is dominant over the field dependence. Only at high fields and low temperatures the field dependence becomes noticeable. The potential and current distribution show strong inhomogeneities, which may have important consequences for the operation of polymer opto-electronic devices. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Molecular imprinted polymer with positively charged, assistant recognition polymer chains for adsorption/enrichment of low content target protein

    Institute of Scientific and Technical Information of China (English)

    LONG Yi; SUN Yang; WANG Ying; XING XiaoCui; ZHAO Zhuo; WANG ChunHong; FAN YunGe; MI HuaiFeng

    2008-01-01

    Here, we introduce a new type of molecular imprinted polymer (MIP) with immobilized assistant recog-nition polymer chains (ARPCs) to create effective recognition sites and with bacterial cloned protein as template for adsorbing the low content target protein from cell extract. In this work, cloned pig cyclo-philin 18 (pCyP18), a peptidyl-prolyl cis/trans-isomerase, was used as template. The template protein was selectively assembled with ARPCs from their library, which consists of numerous limited length polymer chains with randomly distributed recognition sites of positively charged amino groups and immobilizing sites. These assemblies were adsorbed by porous microsphers and immobilized on them.After removing the template, binding sites complementary to the target protein in size, shape and the position of recognition groups were exposed, and their confirmation was preserved by the cross-linked structure. The synthesized MIP was used to adsorb the cellular pCyP18, and its proportional content was enriched more than hundred times. The extended experiment on imprinting bovine serum albumin (BSA) with ARPCs shows that this method is also suitable for large protein.

  18. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials.

    Science.gov (United States)

    Chapela, Gustavo A; del Río, Fernando; Alejandre, José

    2013-02-07

    The liquid-vapor phase diagrams of equal size diameter σ binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Ferńandez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006); A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006)]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length κ. Caballero found stability for values of κσ up to 20 while Fortini reported stability for κσ up to 20 while Fortini reported stability for κσ ≤ 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of κσ. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of κσ > 20 and that the critical temperatures have a maximum value at around κσ = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials.

  19. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials

    Science.gov (United States)

    Chapela, Gustavo A.; del Río, Fernando; Alejandre, José

    2013-02-01

    The liquid-vapor phase diagrams of equal size diameter σ binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Ferńandez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006), 10.1063/1.2159481; A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006), 10.1063/1.2335453]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length κ. Caballero found stability for values of κσ up to 20 while Fortini reported stability for κσ up to 20 while Fortini reported stability for κσ ⩽ 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of κσ. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of κσ > 20 and that the critical temperatures have a maximum value at around κσ = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials.

  20. The relationship between nanoscale architecture and charge transport in conjugated nanocrystals bridged by multichromophoric Polymers.

    Science.gov (United States)

    Dabirian, Reza; Palermo, Vincenzo; Liscio, Andrea; Schwartz, Erik; Otten, Matthijs B J; Finlayson, Chris E; Treossi, Emanuele; Friend, Richard H; Calestani, Gianluca; Müllen, Klaus; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2009-05-27

    We report on the self-assembly and the electrical characterization of bicomponent films consisting of an organic semiconducting small molecule blended with a rigid polymeric scaffold functionalized in the side chains with monomeric units of the same molecule. The molecule and polymer are a perylene-bis(dicarboximide) monomer (M-PDI) and a perylene-bis(dicarboximide)-functionalized poly(isocyanopeptide) (P-PDI), which have been codeposited on SiO(x) and mica substrates from solution. These bicomponent films have been characterized by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM), revealing the relationship between architecture and function for various supramolecular nanocrystalline arrangements at a nanometer spatial resolution. Monomer-polymer interactions can be controlled by varying solvent and/or substrate polarity, so that either the monomer packing dictates the polymer morphology or vice versa, leading to a morphology exhibiting M-PDI nanocrystals connected with each other by P-PDI polymer wires. Compared to pure M-PDI or P-PDI films, those bicomponent films that possess polymer interconnections between crystallites of the monomer display a significant improvement in electrical connectivity and a 2 orders of magnitude increase in charge carrier mobility within the film, as measured in thin film transistor (TFT) devices. Of a more fundamental interest, our technique allows the bridging of semiconducting crystals, without the formation of injection barriers at the connection points.

  1. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    Science.gov (United States)

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments.

  3. Direct detection of photoinduced charge transfer complexes in polymer fullerene blends

    Science.gov (United States)

    Behrends, Jan; Sperlich, Andreas; Schnegg, Alexander; Biskup, Till; Teutloff, Christian; Lips, Klaus; Dyakonov, Vladimir; Bittl, Robert

    2012-03-01

    We report transient electron paramagnetic resonance (trEPR) measurements with submicrosecond time resolution performed on a polymer:fullerene blend consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at low temperatures. The trEPR spectrum immediately following photoexcitation reveals signatures of spin-correlated polaron pairs. The pair partners (positive polarons in P3HT and negative polarons in PCBM) can be identified by their characteristic g values. The fact that the polaron pair states exhibit strong non-Boltzmann population unambiguously shows that the constituents of each pair are geminate, i.e., originate from one exciton. We demonstrate that coupled polaron pairs are present even several microseconds after charge transfer and suggest that they embody the intermediate charge transfer complexes that form at the donor/acceptor interface and mediate the conversion from excitons into free charge carriers.

  4. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties.

  5. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  6. Polymer micelles with hydrophobic core and ionic amphiphilic corona. 1. Statistical distribution of charged and nonpolar units in corona.

    Science.gov (United States)

    Lysenko, Evgeny A; Kulebyakina, Alevtina I; Chelushkin, Pavel S; Rumyantsev, Artem M; Kramarenko, Elena Yu; Zezin, Alexander B

    2012-12-11

    Polymer micelles with hydrophobic polystyrene (PS) core and ionic amphiphilic corona from charged N-ethyl-4-vinylpyridinium bromide (EVP) and uncharged 4-vinylpyridine (4VP) units spontaneously self-assembled from PS-block-poly(4VP-stat-EVP) macromolecules in mixed dimethylformamide/methanol/water solvent. The fraction of statistically distributed EVP units in corona-forming block is β = [EVP]/([EVP]+[4VP]) = 0.3-1. Micelles were transferred into water via dialysis technique, and pH was adjusted to 9, where 4VP is insoluble. Structural characteristics of micelles were investigated both experimentally and theoretically as a function of corona composition β. Methods of dynamic and static light scattering, electrophoretic mobility measurements, sedimentation velocity, transmission electron microscopy, and UV spectrophotometry were applied. All micelles possessed spherical morphology. The aggregation number, structure, and electrophoretic mobility of micelles changed in a jumplike manner near β ~ 0.6-0.75. Below and above this region, micelle characteristics were constant or insignificantly changed upon β. Theoretical dependencies for micelle aggregation number, corona dimensions, and fraction of small counterions outside corona versus β were derived via minimization the micelle free energy, taking into account surface, volume, electrostatic, and elastic contributions of chain units and translational entropy of mobile counterions. Theoretical estimations also point onto a sharp structural transition at a certain corona composition. The abrupt reorganization of micelle structure at β ~ 0.6-0.75 entails dramatic changes in micelle dispersion stability in the presence of NaCl or in the presence of oppositely charged polymeric (sodium polymethacrylate) or amphiphilic (sodium dodecyl sulfate) complexing agents.

  7. Charge and excitation dynamics in semiconducting polymer layers doped with emitters and charge carrier traps; Ladungstraeger- und Anregungsdynamik in halbleitenden Polymerschichten mit eingemischten Emittern und Ladungstraegerfallen

    Energy Technology Data Exchange (ETDEWEB)

    Jaiser, F.

    2006-06-15

    Light-emitting diodes generate light from the recombination of injected charge carriers. This can be obtained in inorganic materials. Here, it is necessary to produce highly ordered crystalline structures that determine the properties of the device. Another possibility is the utilization of organic molecules and polymers. Based on the versatile organic chemistry, it is possible to tune the properties of the semiconducting polymers already during synthesis. In addition, semiconducting polymers are mechanically flexible. Thus, it is possible to construct flexible, large-area light sources and displays. The first light-emitting diode using a polymer emitter was presented in 1990. Since then, this field of research has grown rapidly up to the point where first products are commercially available. It has become clear that the properties of polymer light-emitting diodes such as color and efficiency can be improved by incorporating multiple components inside the active layer. At the same time, this gives rise to new interactions between these components. While components are often added either to improve the charge transport or to change the emission, it has to made sure that other processes are not influenced in a negative manner. This work investigates some of these interactions and describes them with simple physical models. First, blue light-emitting diodes based on polyfluorene are analyzed. This polymer is an efficient emitter, but it is susceptible to the formation of chemical defects that can not be suppressed completely. These defects form electron traps, but their effect can be compensated by the addition of hole traps. The underlying process, namely the changed charge carrier balance, is explained. In the following, blend systems with dendronized emitters that form electron traps are investigated. The different influence of the insulating shell on the charge and energy transfer between polymer host and the emissive core of the dendrimers is examined. In the

  8. Optimization of thermoelectric performance in semiconducting polymers for understanding charge transport and flexible thermoelectric applications

    Science.gov (United States)

    Glaudell, Anne; Chabinyc, Michael

    2014-03-01

    Organic electronic materials have been widely considered for a variety of energy conversion applications, from photovoltaics to LEDs. Only very recently have organic materials been considered for thermoelectric applications - converting between temperature gradients and electrical potential. The intrinsic disorder in semiconducting polymers leads to an inherently low thermal conductivity, a key parameter in thermoelectric performance. The ability to solution deposit on flexible substrates opens up niche applications including personal cooling and conformal devices. Here work is presented on the electrical conductivity and thermopower of thin film semiconducting polymers, including P3HT and PBTTT-C14. Thermoelectric properties are explored over a wide range of conductivities, from nearly insulating to beyond 100 S/cm, enabled by employing different doping mechanisms, including molecular charge-transfer doping with F4TCNQ and vapor doping with a fluoroalkyl trichlorosilane (FTS). Temperature-dependent measurements suggest competing charge transport mechanisms, likely due to the mixed ordered/disordered character of these polymers. These results show promise for organic materials for thermoelectric applications, and recent results on thin film devices will also be presented.

  9. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    Science.gov (United States)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  10. Polymer-Free Carbon Nanotube Thermoelectrics with Improved Charge Carrier Transport and Power Factor

    Energy Technology Data Exchange (ETDEWEB)

    Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; Avery, Azure D.; Owczarczyk, Zbyslaw R.; Ferguson, Andrew J.; Blackburn, Jeffrey L.

    2016-12-09

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstrate that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of approximately 400 uW m-1K-2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date.

  11. Ultrafast charge- and energy-transfer dynamics in conjugated polymer: cadmium selenide nanocrystal blends.

    Science.gov (United States)

    Morgenstern, Frederik S F; Rao, Akshay; Böhm, Marcus L; Kist, René J P; Vaynzof, Yana; Greenham, Neil C

    2014-02-25

    Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.

  12. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling.

    Science.gov (United States)

    Yandi, Wetra; Mieszkin, Sophie; di Fino, Alessio; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A; Tyson, Lyndsey; Clare, Anthony S; Ederth, Thomas

    2016-07-01

    The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces.

  13. Origin and impact of recombination via charge transfer excitons in polymer/fullerene solar cells

    Science.gov (United States)

    Hallermann, Markus; da Como, Enrico; Feldmann, Jochen

    2010-03-01

    To further advance the performances of organic photovoltaic cells a thorough understanding of loss mechanisms in polymer/fullerene blends is mandatory. Recombination via charge transfer excitons (CTEs) appears to be a fundamental loss, potentially impacting the open circuit voltage (VOC) and the short circuit current (ISC) of cells. We unravel the origin of CTEs forming in polymer/fullerene blends and discuss their importance in recombination processes considering binding energy [1], polymer conformation [2], and energetic position. CTE photoluminescence (PL) is observed in material combinations such as P3HT and PPV blended with fullerene acceptors. By combining electron microscopy and PL spectroscopy, we show that CTE recombination is only slightly influenced by the mesoscopic morphology, whereas strongly by the polymer chain conformation [2]. By shifting the orbital energies of the fullerene, we tune the CTE PL characteristics. High energy CTE emission results in cells with a beneficial increase in VOC. On the other hand, high energy CTE emission leads to a more efficient recombination impacting directly the ISC. The results highlight a fundamental limit in the efficiency of organic solar cells with CTE recombination. [1] Hallermann et al. APL 2008 [2] Hallermann et al. AFM 2009

  14. Influence of intensity on the steady and transient state space-charge fields in photorefractive polymers

    Institute of Scientific and Technical Information of China (English)

    袁保红; 孙秀冬; 姜永远; 周忠祥; 姚凤凤; 李焱

    2002-01-01

    We have proven theoretically that there are sublinear, linear and superlinear relations between the response ratesand total incident intensity for different cases of traps in photorefractive polymer materials. These relations wereobserved in inorganic photorefractive crystals many years ago. Also, the steady-state space-charge field is a functionof the total incident intensity, which has also been found in inorganic photorefractive crystals. We have measured therelations of the steady-state diffraction efficiency and the response rate with respect to the total incident intensity in thephotorefractive composite consisting of the polymer (N-vinylcarbazole) (PVK) doped with 4,4'-n-pentylcyanobiphenyl(5CB) and C60. The results obtained show that the composite belongs to the case of low trap density.

  15. Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers

    Science.gov (United States)

    Pasveer, W. F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P. A.; Blom, P. W.; de Leeuw, D. M.; Michels, M. A.

    2005-05-01

    From a numerical solution of the master equation for hopping transport in a disordered energy landscape with a Gaussian density of states, we determine the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Experimental current-voltage characteristics in devices based on semiconducting polymers are excellently reproduced with this unified description of the mobility. At room temperature it is mainly the dependence on carrier density that plays an important role, whereas at low temperatures and high fields the electric field dependence becomes important. Omission in the past of the carrier-density dependence has led to an underestimation of the hopping distance and the width of the density of states in these polymers.

  16. Large and broadband piezoelectricity in smart polymer-foam space-charge electrets

    Science.gov (United States)

    Neugschwandtner, G. S.; Schwödiauer, R.; Vieytes, M.; Bauer-Gogonea, S.; Bauer, S.; Hillenbrand, J.; Kressmann, R.; Sessler, G. M.; Paajanen, M.; Lekkala, J.

    2000-12-01

    Charged closed-cell microporous polypropylene foams are shown to exhibit piezoelectric resonance modes in the dielectric function, coupled with a large anisotropy in the electromechanical and elastic material properties. Strong direct and converse dynamic piezoelectricity with a piezoelectric d33 coefficient of 140 pC/N at 600 kHz is identified. The piezoelectric d33 coefficient exceeds that of the ferroelectric polymer polyvinylidene fluoride by a factor of 5 and compares favorably with ferroelectric ceramics. Applications of similar concepts should provide a broad class of easily fabricated "soft" piezoelectric materials.

  17. The role of emissive charge transfer states in two polymer-fullerene organic photovoltaic blends : tuning charge photogeneration through the use of processing additives

    NARCIS (Netherlands)

    Clarke, Tracey M.; Peet, Jeff; Lungenschmied, Christoph; Drolet, Nicolas; Lu, Xinhui; Ocko, Benjamin M.; Mozer, Attila J.; Loi, Maria Antonietta

    2014-01-01

    The role of charge transfer (CT) states in organic photovoltaic systems has been debated in the recent literature. In this paper the device performances of two structurally analogous polymers PDTSiTTz (also known as KP115) and PCPDTTTz blended with PCBM are investigated, focusing on the effect the p

  18. The role of ionic functionality on charge injection processes in conjugated polymers and fullerenes

    Science.gov (United States)

    Weber, Christopher David

    Understanding the fundamental chemistry of conjugated polymers and fullerenes has been the subject of intense research for the last three decades, with the last ten years seeing increased research toward the application of these materials into functional organic electronic devices such as organic photovoltaic devices (OPVs). This field has seen significant advances is cell efficiency in just the last few years (to >10%), in large part due to the development of new donor and acceptor materials, the fine tuning of fabrication parameters to control material nanostructure, as well as the introduction of new interfacial materials such as ionically functionalized conjugated polymers, also known as conjugated polyelectrolytes (CPEs). This dissertation aims to further understand the fundamental chemistry associated with charge injection processes in CPEs and ionically functionalized fullerenes. The role of ionic functionality on electrochemical, chemical, and interfacial charge injection processes is explored. The results presented demonstrate the use of ionic functionality to control the spatial doping profile of a bilayer structure of anionically and cationically functionalized CPEs to fabricate a p-n junction (Chapter II). The role of ionic functionality on chemical charge injection processes is explored via the reaction of polyacetylene and polythiophene based CPEs with molecular oxygen (Chapters III and IV). The results show the dramatic effect of ionic functionality, as well as the specific role of the counterion, on the photooxidative stability of CPEs. The control of reaction pathway via counterion charge density is also explored (Chapter IV) and shows a continuum of reaction pathways based on the charge density of the counter cation. Finally, the role of ionic functionality on interfacial charge injection processes in a functional OPV is explored using a cationically functionalized fullerene derivative (Chapters V and VI). Cell performance increases due to an

  19. Universal crossover of the charge carrier fluctuation mechanism in different polymer/carbon nanotubes composites

    Energy Technology Data Exchange (ETDEWEB)

    Barone, C., E-mail: cbarone@unisa.it; Mauro, C.; Pagano, S. [Dipartimento di Fisica “E.R. Caianiello” and CNR-SPIN Salerno, Università di Salerno, I-84084 Fisciano, Salerno (Italy); Landi, G.; Neitzert, H. C. [Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano, Salerno (Italy)

    2015-10-05

    Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions deriving from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.

  20. Charging dynamics of a polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results

    Institute of Scientific and Technical Information of China (English)

    Cao Meng; Wang Fang; Liu Jing; Zhang Hai-Bo

    2012-01-01

    We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV.The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons.The dynamic spatial distribution of charges is obtained and validated by existing experimental data.Our simulations show that excess negative charges are concentrated near the edge of the electron range.However,the formed region of high charge density may extend to the surface and bottom of a kapton sample,due to the effects of the electric field on electron scattering and charge transport,respectively.Charge trapping is then demonstrated to significantly influence the charge motion.The charge distribution can be extended to the bottom as the trap density decreases.Charge accumulation is therefore balanced by the appearance and increase of leakage current.Accordingly,our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.

  1. Long-lived charge carrier dynamics in polymer/quantum dot blends and organometal halide perovskites

    Science.gov (United States)

    Nagaoka, Hirokazu

    Solution-processable semiconductors offer a potential route to deploy solar panels on a wide scale, based on the possibility of reduced manufacturing costs by using earth-abundant materials and inexpensive production technologies, such as inkjet or roll-to-roll printing. Understanding the fundamental physics underlying device operation is important to realize this goal. This dissertation describes studies of two kinds of solar cells: hybrid polymer/PbS quantum dot solar cells and organometal halide perovskite solar cells. Chapter two discusses details of the experimental techniques. Chapter three and four explore the mechanisms of charge transfer and energy transfer spectroscopically, and find that both processes contribute to the device photocurrent. Chapter four investigates the important question of how the energy level alignment of quantum dot acceptors affects the operation of hybrid polymer/quantum dot solar cells, by making use of the size-tunable energy levels of PbS quantum dots. We observe that long-lived charge transfer yield is diminished at larger dot sizes as the energy level offset at the polymer/quantum dot interface is changed through decreasing quantum confinement using a combination of spectroscopy and device studies. Chapter five discusses the effects of TiO2 surface chemistry on the performance of organometal halide perovskite solar cells. Specifically, chapter five studies the effect of replacing the conventional TiO2 electrode with Zr-doped TiO2 (Zr-TiO2). We aim to explore the correlation between charge carrier dynamics and device studies by incorporating zirconium into TiO2. We find that, compared to Zr-free controls, solar cells employing Zr-TiO2 give rise to an increase in overall power conversion efficiency, and a decrease in hysteresis. We also observe longer carrier lifetimes and higher charge carrier densities in devices on Zr-TiO2 electrodes at microsecond times in transient photovoltage experiments, as well as at longer persistent

  2. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps.

    Science.gov (United States)

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R

    2015-06-18

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.

  3. Analytical and numerical studies of photo-injected charge transport in molecularly-doped polymers

    Science.gov (United States)

    Roy Chowdhury, Amrita

    The mobility of photo-injected charge carriers in molecularly-doped polymers (MDPs) exhibits a commonly observed, and nearly universal Poole-Frenkel field dependence, mu exp√(beta0E), that has been shown to arise from the correlated Gaussian energy distribution of transport sites encountered by charges undergoing hopping transport through the material. Analytical and numerical studies of photo-injected charge transport in these materials are presented here with an attempt to understand how specific features of the various models developed to describe these systems depend on the microscopic parameters that define them. Specifically, previously published time-of-flight mobility data for the molecularly doped polymer 30% DEH:PC (polycarbonate doped with 30 wt.% aromatic hydrazone DEH) is compared with direct analytical and numerical predictions of five disorder-based models, the Gaussian disorder model (GDM) of Bassler, and four correlated disorder models introduced by Novikov, et al., and by Parris, et al. In these numerical studies, disorder parameters describing each model were varied from reasonable starting conditions, in order to give the best overall fit. The uncorrelated GDM describes the Poole-Frenkel field dependence of the mobility only at very high fields, but fails for fields lower than about 64 V/mum. The correlated disorder models with small amounts of geometrical disorder do a good over-all job of reproducing a robust Poole-Frenkel field dependence, with correlated disorder theories that employ polaron transition rates showing qualitatively better agreement with experiment than those that employ Miller-Abrahams rates. In a separate study, the heuristic treatment of spatial or geometric disorder incorporated in existing theories is critiqued, and a randomly-diluted lattice gas model is developed to describe the spatial disorder of the transport sites in a more realistic way.

  4. Preparation and characterization of polymer composites based on charge-transfer complex of phenothiazine–iodine in polystyrene

    Indian Academy of Sciences (India)

    R A Singh; R K Gupta; S K Singh

    2005-08-01

    Polymer composites based on charge-transfer complex of phenothiazine and iodine with polystyrene have been prepared in different weight ratios and characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as a.c.). These composites show semiconducting behaviour as the conductivity increases with increasing temperature. Low percolation threshold (10% wt CTC) has been found indicating that processable conducting polymers with improved mechanical properties can be prepared by this method.

  5. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  6. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells

    Science.gov (United States)

    Müller, J. G.; Lupton, J. M.; Feldmann, J.; Lemmer, U.; Scharber, M. C.; Sariciftci, N. S.; Brabec, C. J.; Scherf, U.

    2005-11-01

    We investigate the nature of ultrafast exciton dissociation and carrier generation in acceptor-doped conjugated polymers. Using a combination of two-pulse femtosecond spectroscopy with photocurrent detection, we compare the exciton dissociation and geminate charge recombination dynamics in blends of two conjugated polymers, MeLPPP [methyl-substituted ladder-type poly( p -phenylene)] and MDMO-PPV [poly(2-methoxy,5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene], with the electron accepting fullerene derivative PCBM [1-(3-methoxycarbonyl)-propyl-1-phenyl- (6,6)C61 ]. This technique allows us to distinguish between free charge carriers and Coulombically bound polaron pairs. Our results highlight the importance of geminate pair recombination in photovoltaic devices, which limits the device performance. The comparison of different materials allows us to address the dependence of geminate recombination on the film morphology directly at the polymer:fullerene interface. We find that in the MeLPPP:PCBM blend exciton dissociation generates Coulombically bound geminate polaron pairs with a high probability for recombination, which explains the low photocurrent yield found in these samples. In contrast, in the highly efficient MDMO-PPV:PCBM blend the electron transfer leads to the formation of free carriers. The anisotropy dynamics of electronic transitions from neutral and charged states indicate that polarons in MDMO-PPV relax to delocalized states in ordered domains within 500fs . The results suggest that this relaxation enlarges the distance of carrier separation within the geminate pair, lowering its binding energy and favoring full dissociation. The difference in geminate pair recombination concurs with distinct dissociation dynamics. The electron transfer is preceded by exciton migration towards the PCBM sites. In MeLPPP:PCBM the exciton migration time decays smoothly with increasing PCBM concentration, indicating a trap-free exciton hopping. In MDMO-PPV:PCBM, however

  7. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin

    2015-06-17

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  8. Supramolecular ionics: electric charge partition within polymers and other non-conducting solids

    Directory of Open Access Journals (Sweden)

    FERNANDO GALEMBECK

    2001-12-01

    Full Text Available Electrostatic phenomena in insulators have been known for the past four centuries, but many related questions are still unanswered, for instance: which are the charge-bearing species in an electrified organic polymer, how are the charges spatially distributed and which is the contribution of the electrically charged domains to the overall polymer properties? New scanning probe microscopies were recently introduced, and these are suitable for the mapping of electric potentials across a solid sample thus providing some answers for the previous questions. In this work, we report results obtained with two of these techniques: scanning electric potential (SEPM and electric force microscopy (EFM. These results were associated to images acquired by using analytical electron microscopy (energy-loss spectroscopy imaging in the transmission electron microscope, ESI-TEM for colloid polymer samples. Together, they show domains with excess electric charges (and potentials extending up to hundreds of nanometers and formed by large clusters of cations or anions, reaching supramolecular dimensions. Domains with excess electric charge were also observed in thermoplastics as well as in silica, polyphosphate and titanium oxide particles. In the case of thermoplastics, the origin of the charges is tentatively assigned to their tribochemistry, oxidation followed by segregation or the Mawell-Wagner-Sillars and Costa Ribeiro effects.A eletrificação de sólidos é conhecida há quatro séculos, mas há muitas questões importantes sobre este assunto, ainda não respondidas: por exemplo, quais são as espécies portadoras de cargas em um polímero isolante eletrificado, como estas cargas estão espacialmente distribuídas e qual é a contribuição destas cargas para as propriedades do polímero? Técnicas microscópicas introduzidas recentemente são apropriadas para o mapeamento de potenciais elétricos ao longo de uma superfície sólida, portanto podem responder a

  9. Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu [Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448 (United States)

    2016-06-15

    The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competition can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not

  10. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer.

    Science.gov (United States)

    de Kort, Daan W; Veen, Sandra J; Van As, Henk; Bonn, Daniel; Velikov, Krassimir P; van Duynhoven, John P M

    2016-05-25

    The shear flow of microfibrillated cellulose dispersions is still not wholly understood as a consequence of their multi-length-scale heterogeneity. We added carboxymethyl cellulose, a charged polymer, that makes cellulose microfibril dispersions more homogeneous at the submicron and macro scales. We then compared the yielding and flow behavior of these dispersions to that of typical thixotropic yield-stress fluids. Despite the apparent homogeneity of the dispersions, their flow velocity profiles in cone-plate geometry, as measured by rheo-MRI velocimetry, differ strongly from those observed for typical thixotropic model systems: the viscosity across the gap is not uniform, despite a flat stress field across the gap. We describe these velocity profiles with a nonlocal model, and attribute the non-locality to persistent micron-scale structural heterogeneity.

  11. Verification of the dispersive charge transport in a hydrazone:polycarbonate molecularly doped polymer.

    Science.gov (United States)

    Tyutnev, Andrey P; Saenko, Vladimir S; Pozhidaev, Evgenii D; Kolesnikov, Vladislav A

    2009-03-18

    We report results of specially planned experiments intended to verify the dispersive character of the charge carrier transport in polycarbonate molecularly doped with hydrazone at 30 wt% loading, using for this purpose samples specifically featuring a well-defined plateau on a linear-linear plot. For this purpose we propose a new variant of the time-of-flight technique which allows easy changing of the generation zone width from about 0.5 µm (surface excitation) through intermediate values to full sample thickness (bulk excitation). To achieve this, we use electron pulses of 3-50 keV energy rather than traditional light pulses provided by lasers. Experimental results corroborated by numerical calculations uniquely prove that carrier transport in this molecularly doped polymer is dispersive, with the dispersion parameter equal to 0.75. Nevertheless, the mobility field dependence follows the famous Poole-Frenkel law.

  12. Photo-induced charge transfer and relaxation of persistent charge carriers in polymer/nanocrystal composites for applications in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Marc Daniel; Zutz, Folker; Kolny-Olesiak, Joanna; Borchert, Holgert; Riedel, Ingo; Parisi, Juergen [University of Oldenburg, Department of Physics, Energy and Semiconductor Research Laboratory, Oldenburg (Germany); Maydell, Karsten von [EWE Research Center for Energy Technology, Oldenburg (Germany)

    2009-12-09

    The photo-induced charge transfer and the dynamics of persistent charge carriers in blends of semiconducting polymers and nanocrystals are investigated. Regioregular poly(3-hexylthiophene) (P3HT) is used as the electron donor material, while the acceptor moiety is established by CdSe nanocrystals (nc-CdSe) prepared via colloidal synthesis. As a reference system, organic blends of P3HT and [6,6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) are studied as well. The light-induced charge transfer between P3HT and the acceptor materials is studied by photoluminescence (PL), photo-induced absorption (PIA) and light-induced electron spin resonance spectroscopy (LESR). Compared to neat P3HT samples, both systems show an intensified formation of polarons in the polymer upon photo-excitation, pointing out successful separation of photogenerated charge carriers. Additionally, relaxation of the persistent charge carriers is investigated, and significant differences are found between the hybrid composite and the purely organic system. While relaxation, reflected in the transient signal decay of the polaron signal, is fast in the organic system, the hybrid blends exhibit long-term persistence. The appearance of a second, slow recombination channel indicates the existence of deep trap states in the hybrid system, which leads to the capture of a large fraction of charge carriers. A change of polymer conformation due to the presence of nc-CdSe is revealed by low temperature LESR measurements and microwave saturation techniques. The impact of the different recombination behavior on the photovoltaic efficiency of both systems is discussed. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    Science.gov (United States)

    Dell'Erba, Giorgio; Luzio, Alessandro; Natali, Dario; Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu; Noh, Yong-Young; Caironi, Mario

    2014-04-01

    Ambipolar semiconducting polymers, characterized by both high electron (μe) and hole (μh) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μh = 0.29 cm2/V s and μe = 0.001 cm2/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μe = 0.12 cm2/V s and μh = 8 × 10-4 cm2/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  14. Transparent and Electrically Conductive Carbon Nanotube-Polymer Nanocomposite Materials for Electrostatic Charge Dissipation

    Science.gov (United States)

    Dervishi, E.; Biris, A. S.; Biris, A. R.; Lupu, D.; Trigwell, S.; Miller, D. W.; Schmitt, T.; Buzatu, D. A.; Wilkes, J. G.

    2006-01-01

    In recent years, nanocomposite materials have been extensively studied because of their superior electrical, magnetic, and optical properties and large number of possible applications that range from nano-electronics, specialty coatings, electromagnetic shielding, and drug delivery. The aim of the present work is to study the electrical and optical properties of carbon nanotube(CNT)-polymer nanocomposite materials for electrostatic charge dissipation. Single and multi-wall carbon nanotubes were grown by catalytic chemical vapor deposition (CCVD) on metal/metal oxide catalytic systems using acetylene or other hydrocarbon feedstocks. After the purification process, in which amorphous carbon and non-carbon impurities were removed, the nanotubes were functionalized with carboxylic acid groups in order to achieve a good dispersion in water and various other solvents. The carbon nanostructures were analyzed, both before and after functionalization by several analytical techniques, including microscopy, Raman spectroscopy, and X-Ray photoelectron spectroscopy. Solvent dispersed nanotubes were mixed (1 to 7 wt %) into acrylic polymers by sonication and allowed to dry into 25 micron thick films. The electrical and optical properties of the films were analyzed as a function of the nanotubes' concentration. A reduction in electrical resistivity, up to six orders of magnitude, was measured as the nanotubes' concentration in the polymeric films increased, while optical transparency remained 85 % or higher relative to acrylic films without nanotubes.

  15. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S [Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB (Canada); Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M, E-mail: thomson@ee.umanitoba.ca, E-mail: michael_freund@umanitoba.ca [Department of Chemistry, University of Manitoba, Winnipeg, MB (Canada)

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy{sup 0}DBS{sup -}Li{sup +} (PPy: polypyrrole; DBS{sup -}: dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  16. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Parul Chawla

    2014-08-01

    Full Text Available In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO and tri-n-octylphosphine (TOP and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern–Volmer quenching constant (KSV and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor–acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe. Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  17. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    Science.gov (United States)

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  18. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  19. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    Science.gov (United States)

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

  20. Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk-Heterojunction Solar Cells

    KAUST Repository

    Dyer-Smith, Clare

    2015-05-01

    Poly(benzo[1,2-b:4,5-b′]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors with linear side-chains yield bulk-heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub-nanosecond geminate recombination. In turn the yield of long-lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X-ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin-film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.

  1. Effect of intrachain sulfonic acid dopants on the solid-state charge mobility of a model radical polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Holly; Wang, Yucheng; Boudouris, Bryan W., E-mail: boudouris@purdue.edu

    2015-02-27

    Radical polymers are an emerging class of non-conjugated, charge-conducting macromolecules that are capable of transporting charge through localized oxidation–reduction (redox) reactions that occur at the stable radical groups present as the pendant groups of the macromolecular chains. The chemical nature and oxidation state of these pendant radical groups are critical to the charge transporting abilities of radical polymers in the solid state. To date, however, the control of this chemistry has been limited to external oxidizing agents, and the concept of intramolecular dopants has not been explored fully. To this end, we have synthesized poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-co-poly(vinylsulfonic acid sodium salt) (PTMA-co-PVS). Then, electron paramagnetic resonance spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy are implemented to evaluate the exact chemical nature of the pendant groups as a function of the PVS intramolecular dopants and exposure of the materials to external oxidation reactions. We correlate these changes in pendant group chemistry to charge transport ability, and we establish that the inclusion of a moderate amount of PVS dopants can improve the solid-state hole mobility of the material. Conversely, a large amount of sulfonic acidic dopants can be detrimental to the transport of the polymer relative to the homopolymer PTMA. Therefore, refinement of pendant group chemistry and careful addition of intramolecular dopants can enhance the solid-state transport ability of a radical polymer system. These fundamental principles, in turn, provide a vital foothold by which to optimize the solid-state charge transporting ability of current and next-generation radical polymer designs. - Highlights: • Sulfonic acid groups are copolymerized within the backbone of radical polymer chain. • Addition of the sulfonic acid groups alters the pendant group oxidation state. • Exact oxidation states are

  2. Mécanismes d'écoulement des charges à la surface des polymères granulaires

    Directory of Open Access Journals (Sweden)

    M. Kachi

    2014-09-01

    Full Text Available Les forces électriques s’exerçant sur des polymères granulaires chargés sont mises à profit dans plusieurs processus électrostatiques. La dynamique de charges de surface de ces matériaux est très importante pour ce type de processus. Le but de ce papier est d’analyser l’écoulement des charges à la surface de couches compactes de polymères granulaires, en interprétant les mesures sans contact réalisées par trois sondes de potentiel, de champ et de charge, ayant chacune une taille différente. Des mesures du profile de potentiel à différents instants sont également réalisées afin d’expliquer les différences entre les vitesses de déclin de potentiel, de champ et de charge mesurées par les trois sondes. Les résultats mettent en évidence un écoulement transversal et longitudinal de la charge surfacique.

  3. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  4. Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells

    Science.gov (United States)

    2015-07-29

    and voltage-dependence of radical polymer thin films was found to be quite robust; this was despite the lone electron nature of the radical site...respect to many oft-used conjugated polymers . Because of these advantageous properties, radical polymer thin films have been included in a number of...radical polymers is temperature-independent if the radical polymer thin film is in the glassy state. This observation is in direct agreement with the

  5. Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Erba, Giorgio; Natali, Dario [Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy); Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Luzio, Alessandro; Caironi, Mario, E-mail: mario.caironi@iit.it, E-mail: yynoh@dongguk.edu [Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy); Kim, Juhwan; Khim, Dongyoon; Kim, Dong-Yu [Heeger Center for Advanced Materials, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Noh, Yong-Young, E-mail: mario.caironi@iit.it, E-mail: yynoh@dongguk.edu [Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-ga, Jung-gu, Seoul 100-715 (Korea, Republic of)

    2014-04-14

    Ambipolar semiconducting polymers, characterized by both high electron (μ{sub e}) and hole (μ{sub h}) mobility, offer the advantage of realizing complex complementary electronic circuits with a single semiconducting layer, deposited by simple coating techniques. However, to achieve complementarity, one of the two conduction paths in transistors has to be suppressed, resulting in unipolar devices. Here, we adopt charge injection engineering through a specific interlayer in order to tune injection into frontier energy orbitals of a high mobility donor-acceptor co-polymer. Starting from field-effect transistors with Au contacts, showing a p-type unbalanced behaviour with μ{sub h} = 0.29 cm{sup 2}/V s and μ{sub e} = 0.001 cm{sup 2}/V s, through the insertion of a caesium salt interlayer with optimized thickness, we obtain an n-type unbalanced transistor with μ{sub e} = 0.12 cm{sup 2}/V s and μ{sub h} = 8 × 10{sup −4} cm{sup 2}/V s. We applied this result to the development of the basic pass-transistor logic building blocks such as inverters, with high gain and good noise margin, and transmission-gates. In addition, we developed and characterized information storage circuits like D-Latches and D-Flip-Flops consisting of 16 transistors, demonstrating both their static and dynamic performances and thus the suitability of this technology for more complex circuits such as display addressing logic.

  6. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  7. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    Science.gov (United States)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  8. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    Science.gov (United States)

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility

    KAUST Repository

    Mondal, Rajib

    2011-01-01

    A strategic side-chain engineering approach leads to the two orders of magnitude enhancement of charge carrier mobility in phenanthrene based fused aromatic thienopyrazine polymers. Hole carrier mobility up to 0.012 cm 2/Vs can be obtained in thin film transistor devices. Polymers were also utilized to fabricate bulk heterojunction photovoltaic devices and the maximum PCE obtained in these OPV\\'s was 1.15%. Most importantly, performances of the devices were correlated with thin morphological analysis performed by atomic force microscopy and grazing incidence X-ray scattering. © 2011 The Royal Society of Chemistry.

  10. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge.

    Science.gov (United States)

    Tandon, Vishal; Bhagavatula, Sharath K; Nelson, Wyatt C; Kirby, Brian J

    2008-03-01

    This paper combines new experimental data for electrokinetic characterization of hydrophobic polymers with a detailed discussion of the putative origins of charge at water-hydrophobe interfaces. Complexities in determining the origin of charge are discussed in the context of design and modeling challenges for electrokinetic actuation in hydrophobic microfluidic devices with aqueous working fluids. Measurements of interfacial charge are complicated by slip and interfacial water structuring phenomena (see Part 2, this issue). Despite these complexities, it is shown that (i) several hydrophobic materials, such as Teflon and Zeonor, have predictable electrokinetic properties and (ii) electrokinetic data for hydrophobic microfluidic systems is most consistent with the postulate that hydroxyl ion adsorption is the origin of charge.

  11. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    Science.gov (United States)

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  12. Grafted polymers layers: neutral chains to charged chains; Couches de polymeres greffes: des chaines neutres aux chaines chargees

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Y.

    1995-09-29

    This work concerns an experimental study, by small angle neutrons scattering, of neutral or charged grafted polymers layers structures. The method consisted in exploiting the acknowledges got on neutral brushes, to reach the problem of grafted polyelectrolyte layers. The difficulty of charged layers making has been, until this day, an important obstacle to the experimental study of these systems. It has been partially resolved in the case of sodium sulfonate polystyrene layers, and allowed to study their structure. (N.C.). 72 refs., 74 figs., 24 tabs.

  13. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  14. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  15. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    Science.gov (United States)

    Spruijt, Evan; Biesheuvel, P. M.; de Vos, Wiebe M.

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and chemical interactions between polymer chains and the surface. We compare our model predictions to data of a classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding energy of about 1.3 kBT per PVP segment at low p H . As the p H increases, the Si-OH groups become increasingly dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the adsorbed amount dropping sharply at a critical p H . Using this model for adsorption data on silica surfaces cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density of silanol groups.

  16. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Wu, Ke; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt [Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bell, Michael; Oakes, Andrew; Benicewicz, Brian C. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2016-08-07

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.

  17. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Science.gov (United States)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  18. Charge transport effects in field emission from carbon nanotube-polymer composites

    OpenAIRE

    Smith, RC; Carey, JD; Murphy, RJ; Blau, WJ; Coleman, JN; Silva, SRP

    2006-01-01

    Electron field emission measurements have been made on multiwall arc discharge carbon nanotubes embedded in a conjugated polymer host. Electron emission at low nanotube content is observed and attributed to an enhancement of the applied electric field at the polymer/nanotube/vacuum interface where the electron supply through the film is attributed to fluctuation induced tunneling in a disordered percolation network. A high network resistance is attributed to a polymer coating surrounding each...

  19. The Weak Interaction of Surfactants with Polymer Brushes and Its Impact on Lubricating Behavior

    NARCIS (Netherlands)

    Zhang, Ran; Ma, Shuanhong; Wei, Qiangbing; Ye, Qian; Yu, Bo; Gucht, Van Der Jasper; Zhou, Feng

    2015-01-01

    We study the weak interaction between polymers and oppositely charged surfactants and its effect on the lubricating behavior and wettability of polymer brush-covered surfaces. For cationic (PMETAC) and anionic (PSPMA) brushes, a gradual transition from ultralow friction to ultrahigh friction was

  20. Understanding the relationship between molecular order and charge transport properties in conjugated polymer based organic blend photovoltaic devices.

    Science.gov (United States)

    Wood, Sebastian; Kim, Jong Soo; James, David T; Tsoi, Wing C; Murphy, Craig E; Kim, Ji-Seon

    2013-08-14

    We report a detailed characterization of the thin film morphology of all-polymer blend devices by applying a combined analysis of physical, chemical, optical, and charge transport properties. This is exemplified by considering a model system comprising poly(3-hexylthiophene) (P3HT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). We show that the interactions between the two conjugated polymer components can be controlled by pre-forming the P3HT into highly ordered nanowire structures prior to blending with F8BT, and by varying the molecular weight of the F8BT. As a result, it is possible to produce films containing highly ordered P3HT with hole mobilities enhanced by three orders of magnitude over the pristine blends. Raman spectroscopy under resonant excitation conditions is used to probe the molecular order of both P3HT and F8BT phases within the blend films and these morphological studies are complemented by measurements of photocurrent generation. The resultant increase in photocurrent is associated with the enhanced charge carrier mobilities. The complementary analytical method demonstrated here is applicable to a wide range of polymer blend systems for all applications where the relationships between morphology and device performance are of interest.

  1. Interplay of electron hopping and bounded diffusion during charge transport in redox polymer electrodes.

    Science.gov (United States)

    Akhoury, Abhinav; Bromberg, Lev; Hatton, T Alan

    2013-01-10

    Redox polymer electrodes (RPEs) have been prepared both by attachment of random copolymers of hydroxybutyl methacrylate and vinylferrocene (poly(HBMA-co-VF)) to carbon substrates by grafting either "to" or "from" the substrate surfaces, and by impregnation of porous carbon substrates with redox polymer gels of similar composition. An observed linear dependence of peak current on the square root of the applied voltage scan rate in cyclic voltammetry (CV) led to the conclusion that the rate controlling step in the redox process was the diffusive transfer of electrons through the redox polymer layer. The variation in the peak current with increasing concentration of the redox species in the polymer indicated that the electron transport transitioned from bounded diffusion to electron hopping. A modified form of the Blauch-Saveant equation for apparent diffusivity of electrons through a polymer film indicated that bounded diffusion was the dominant mechanism of electron transport in RPEs with un-cross-linked polymer chains at low concentrations of the redox species, but, as the concentration of the redox species increased, electron hopping became more dominant, and was the primary mode of electron diffusion above a certain concentration level of redox species. In the cross-linked polymer gels, bounded diffusion was limited because of the restricted mobility of the polymer chains. Electron hopping was the primary mode of electron diffusion in such systems at all concentrations of the redox species.

  2. Conjugated polymer charge-transfer complexes : A new route to low-bandgap photostable materials

    NARCIS (Netherlands)

    Bakulin, Artem A.; Pshenichnikov, Maxim S.; Van Loosdrecht, Paul H M; Golovnin, Ilya V.; Paraschuk, Dmitry Yu

    2010-01-01

    Polymer solar cells have high potential to convert solar energy into electricity in a cost-effective way. To date, the best polymer solar cells show the efficiency about 5%, and significant efforts are underway to increase their efficiency to the level of practical applications. One of the key strat

  3. Dispersion of iron oxide particles in industrial waters. The influence of polymer structure, ionic charge, and molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Amjad, Z. [Goodrich (B.F.) Co., Brecksville, OH (United States)

    1999-01-01

    This paper deals with studies on the influence of polymeric and non-polymeric materials on the dispersion of iron oxide particles in aqueous system. The aim of the work was to evaluate the performance of a variety of additives as iron oxide dispersants. The polymers investigated include homopolymers of acrylamide, vinylpyrrolidone, actylic acid, maleic acid, 2-acrylamido-2-methylpropane sulfonic acid, and acrylic acid based copolymers containing a variety of functional groups. It has been found that the addition of low levels of copolymers to the iron oxide suspension has a marked effect in dispersing iron oxide particles. The dispersancy data of several polymers indicate that the performance of the polymer depends upon the functional group, molecular weight, composition, and the ionic charge of the polymer. The results on non-polymeric materials such as polyphosphates, phosphonates, and surfactants show that these additives, compared to copolymers are ineffective as iron oxide dispersants. (orig.) [Deutsch] In dieser Arbeit wird der Einfluss von polymeren und nichtpolymeren Stoffen auf die Dispergierung von Eisenoxidpartikeln in waessrigen Systemen untersucht. Ziel dieser Arbeit war es, die Wirkung verschiedener Additive als Eisenoxiddispergatoren zu bewerten. Die untersuchten Polymere waren homopolymeres Acrylamid, Vinylpyrrolidon, Acrylsaeure, Maleinsaeure, 2-Acrylamido-2-Methylpropansulfonsaeure und Copolymere auf Acrylsaeurebasis mit verschiedenen fuktionellen Gruppen. Die Zugabe von geringen Mengen Copolymeren zur Eisenoxidsuspension hat einen deutlichen Einfluss auf die Dispergierung dieser Partikel. Die Daten zum Dispergierverhalten einiger Polymere zeigen, dass die Wirkung eines Polymers von der fuktionellen Gruppe, dem Molgewicht, der Zusammensetzung und der Ionenladung des Polymers abhaengt. Ergebnisse, die mit nichtpolymeren Substanzen wie Polyphosphaten, Phosphonaten und Tensiden erhalten wurden, zeigen, dass sich diese Additive nicht so gut als

  4. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  5. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  6. Charged polymers in the attractive regime: a first order transition from Brownian scaling to four points localization

    CERN Document Server

    Hu, Yueyun; Wouts, Marcel

    2010-01-01

    We study a quenched charged-polymer model, introduced by Garel and Orland in 1988, that reproduces the folding/unfolding transition of biopolymers. We prove that, below the critical inverse temperature, the polymer is delocalized in the sense that: (1) The rescaled trajectory of the polymer converges to the Brownian path; and (2) The partition function remains bounded. At the critical inverse temperature, we show that the maximum time spent at points jumps discontinuously from 0 to a positive fraction of the number of monomers, in the limit as the number of monomers tends to infinity. Finally, when the critical inverse temperature is large, we prove that the polymer collapses in the sense that a large fraction of its monomers live on four adjacent positions, and its diameter grows only logarithmically with the number of the monomers. Our methods also provide some insight into the annealed phase transition and at the transition due to a pulling force; both phase transitions are shown to be discontinuous.

  7. Mass and charge transfer on various relevant scales in polymer electrolyte fuel cells[Dissertation 16991

    Energy Technology Data Exchange (ETDEWEB)

    Freunberger, S. A.

    2007-07-01

    This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt

  8. Study of charge transport in highly conducting polymers based on a random resistor network

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Liping [Department of Physics, Suzhou University, Suzhou 215006 (China)]. E-mail: lipichow@hotmail.com; Liu Bo [Department of Physics, Suzhou University, Suzhou 215006 (China); Department of Physics, Jiangsu Teachers University of Technology, Changzhou 213001 (China); Li Zhenya [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Department of Physics, Suzhou University, Suzhou 215006 (China)]. E-mail: zyli@suda.edu.cn

    2004-12-06

    Based on a random resistor network (RRN), we study the unusual ac conductivity {sigma}({omega}) of highly conducting polymer such as PF{sub 6} doped polypyrrole. The system is modeled as a composite medium consisting of metallic regions randomly distributed in the amorphous parts. Within the metallic regions, the polymer chains are regularly and densely packed, outside which the poorly arranged chains form amorphous host. The metallic grains are connected by resonance quantum tunneling, which occurs through the strongly localized states in the amorphous media. {sigma}({omega}), calculated from this model, reproduces the main experimental features associated with the metal-insulator transition in these polymers.

  9. Band Bending in Conjugated Polymer Films: Role of Morphology and Implications for Bulk Charge Transport Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenderott, J. K. [University of Michigan; Dong, Ban Xuan [University of Michigan

    2017-08-14

    The performance of power conversion devices is impacted by the energy level alignment at the interface between the conjugated polymer and conductive substrate. While band bending has been known to vary between conjugated polymers, we show that the degree of band bending within the same polymer can be just as significant with morphology change. Specifically, a significant band bending effect, studied via Kelvin probe force microscopy (KPFM), was exhibited by poly(3-hexylthiophene) (P3HT) films fabricated using matrix assisted pulsed laser evaporation (MAPLE) in contrast to the conventional spin-cast P3HT films. This finding is associated with a broadening of the density of states (DOS) in the MAPLE-deposited P3HT films, originating from the more disordered structure of the film. These findings, to the best of our knowledge, illustrate for the first time a strong connection between morphology, energy level alignment, and bulk transport in conjugated polymer films.

  10. Ultrafast optical measurements of charge generation and transfer mechanisms of pi-conjugated polymers for solar cell applications

    Science.gov (United States)

    Holt, Joshua Michael

    Current developments in organic solar cells based on donor-acceptor blends require understanding and control of photoinduced charge transfer and electronic state dynamics. In this work the ultrafast dynamics of photoexcitations in pi-conjugated organic semiconductors were studied using a low-intensity, high-repetition rate laser system in the broad mid- to near-infrared (IR) spectral range from 0.25 to 1.1 eV, and a high-intensity, low-repetition rate laser system in the spectral range from 1.2 to 2.5 eV, in the time domain up to 1 ns with 150 fs resolution. We also applied CW photomodulation spectroscopy along with excitation spectrum, modulation frequency sweeps, photoluminescence and electroabsorption to study the excited states of pi-conjugated polymers and acceptor-donor blends. One current drawback to organic solar cell efficiency is negligible absorption in the near infrared spectral range of the solar spectrum. We provide and compare evidence that poly(2-methoxy-5(2'-ethyl)hexoxy-phenylenevinylene) (MEH-PPV) [electron donor] blended with 2,4,7-trinitrofluorenone (TNF) [strong electron acceptor] form a below-gap charge transfer complex (CTC) state that can extend absorption into the near infrared. The transient PA measurements also show that significant charge species are initially photogenerated, a majority of which geminately recombine within 8-10 ps, but the few that escape geminate recombination are subsequently captured in long-lived traps. In addition polarons could be also photogenerated with high efficiency at near-IR excitation, with similar fate. This demonstrates that a CTC state exists below the MEH-PPV polymer optical gap, but with low dissociation efficiency. We compare our results to those in blends of MEH-PPV/C60 where apparently a charge transport pathway to the electrodes is formed and the obtained CTC state has higher dissociation efficiency. The most efficient all-organic photovoltaic (OPV) cells to date (˜6% power conversion efficiency

  11. Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers

    OpenAIRE

    Shimomura, Satoru; Kitagawa, Susumu

    2011-01-01

    The significant progress of porous coordination polymers (or metal–organic frameworks) has been attracting the attention of a lot of scientists in various disciplines and encouraging their entry into this field. The synergy of diverse scientific senses brings further spread of the chemistry of porous coordination polymers. In this review, we introduced the recent developments in PCPs resulting from the hybridization with TCNQ chemistry. Electronic and structural diversities of TCNQ provide no...

  12. Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\\sqrt{s} = $ 13 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rabady, Dinyar; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Stoykova, Stefka; Sultanov, Georgi; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Khalil, Shaaban; Mohamed, Amr; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Rurua, Lali; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Roland, Benoit; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bianco, Michele; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Glege, Frank; Gulhan, Doga; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Auzinger, Georg; Bainbridge, Robert; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-01-01

    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at $\\sqrt{s} = $ 13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500-1770 GeV are excluded at the 95%...

  13. Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers

    NARCIS (Netherlands)

    Pasveer, W.F.; Cottaar, J.; Tanase, C.; Coehoorn, R.; Bobbert, P.A.; Blom, P.W.M.; De Leeuw, D.M.; Michels, M.A.J.

    2005-01-01

    From a numerically exact solution of the Master equation for hoppingtransport in a disordered energy landscape with a Gaussian densityof states, we determine the dependence on temperature, carrier density, and electric field of the charge carrier mobility. Experimentalspace-charge limited currents i

  14. The Development of Conductive Nanoporous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    Directory of Open Access Journals (Sweden)

    Pei-Ru Chen

    2013-01-01

    Full Text Available We present the development of conductive nanoporous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxylfluorescein (CF, substance P, and tumor necrosis factor-alpha (TNF-α. The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nanotubes, respectively. These nanoporous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive potential was applied. The permeation selectivity of these membranes is reversed by converting the polarity of applied potential into negative. Based on this principle, charged molecules (carboxylfluorescein, substance P, and TNF-α are successfully filtered through these membranes. This system shows 30 times more selective for CF than substance P as positive potential was applied, while 2.5 times more selective for substance P than CF as negative potential was applied.

  15. Ultrafast photogeneration of charged polarons on conjugated polymer chains in dilute solution

    Science.gov (United States)

    Miranda, Paulo B.; Moses, Daniel; Heeger, Alan J.

    2004-08-01

    Ultrafast photoinduced absorption by infrared-active vibrational modes is used to study the photogeneration of polarons on semiconducting polymer chains in dilute solutions and in solid films of a soluble derivative of poly(para-phenylene vinylene). In dilute solutions, polaron pairs are photogenerated on the conjugated polymer within less than 250fs with quantum efficiencies ϕch˜3% , about one-third of that for solid films of the same polymer. The excitation spectra of ϕch for both solutions and films show that ϕch is weakly dependent on photon energy between 2.2eV (the onset of absorption) and 4.7eV . The recombination dynamics of polarons is very fast and highly dependent on the excitation density for polymer films, but it is significantly slower and less sensitive to pump intensity for the semiconducting polymer in dilute solution. We conclude that the positive and negative polarons on a single chain in solution are typically separated by hundreds of monomer repeat units and that their one-dimensional diffusion along the chain is inhibited by the intervening excitons. This, together with the suppression of interchain recombination, explains the surprisingly slower polaron recombination in isolated chains.

  16. Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation.

    Science.gov (United States)

    Lienkamp, Karen; Madkour, Ahmad E; Kumar, Kushi-Nidhi; Nüsslein, Klaus; Tew, Gregory N

    2009-11-02

    The synthesis and characterization of a series of poly(oxanorbornene)-based synthetic mimics of antimicrobial peptides (SMAMPs) is presented. In the first part, the effect of different organic counterions on the antimicrobial properties of the SMAMPs was investigated. Unexpectedly, adding hydrophobicity by complete anion exchange did not increase the SMAMPs' antimicrobial activity. It was found by dye-leakage studies that this was due to the loss of membrane activity of these polymers caused by the formation of tight ion pairs between the organic counterions and the polymer backbone. In the second part, the effect of molecular charge density on the biological properties of a SMAMP was investigated. The results suggest that, above a certain charge threshold, neither minimum inhibitory concentration (MIC90) nor hemolytic activity (HC50) is greatly affected by adding more cationic groups to the molecule. A SMAMP with an MIC90 of 4 microg mL(-1) against Staphylococcus aureus and a selectivity (=HC50/MIC90) of 650 was discovered, the most selective SMAMP to date.

  17. Physically adsorbed fullerene layer on positively charged sites on zinc oxide cathode affords efficiency enhancement in inverted polymer solar cell.

    Science.gov (United States)

    Cheng, Yu-Shan; Liao, Sih-Hao; Li, Yi-Lun; Chen, Show-An

    2013-07-24

    We present a novel idea for overcoming the drawback of poor contact between the ZnO cathode and active layer interface in an inverted polymer solar cell (i-PSC), simply by incorporating an electron-acceptor self-assembled monolayer (SAM)--tetrafluoroterephthalic acid (TFTPA)--on the ZnO cathode surface to create an electron-poor surface of TFTPA on ZnO. The TFTPA molecules on ZnO are anchored on the ZnO surface by reacting its carboxyl groups with hydroxyl groups on the ZnO surface, such that the tetrafluoroterephthalate moieties lay on the surface with plane-on electron-poor benzene rings acting as positive charge centers. Upon coating a layer of fullerenes on top of it, the fullerene molecules can be physically adsorbed by Coulombic interaction and facilitate a promoted electron collection from the bulk. The active layer is composed of the mid bandgap polymer poly(3-hexylthiophene) (P3HT) or low bandgap polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl

  18. Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation.

    Science.gov (United States)

    Hou, Wenpeng; Zhao, Ning-Jiu; Meng, Dongli; Tang, Jing; Zeng, Yi; Wu, Yu; Weng, Yangziwan; Cheng, Chungui; Xu, Xiulai; Li, Yi; Zhang, Jian-Ping; Huang, Yong; Bielawski, Christopher W; Geng, Jianxin

    2016-05-24

    The installation of heterojunctions on the surfaces of carbon nanotubes (CNTs) is an effective method for promoting the charge separation processes needed for CNT-based electronics and optoelectronics applications. Conjugated polymers are proven state-of-the-art candidates for modifying the surfaces of CNTs. However, all previous attempts to incorporate conjugated polymers to CNTs resulted in unordered interfaces. Herein we show that well-defined chains of regioregular poly(3-hexylthiophene) (P3HT) were successfully grown from the surfaces of multiwalled CNTs (MWNTs) using surface-initiated Kumada catalyst-transfer polycondensation. The polymerization was found to proceed in a controlled manner as chains of tunable lengths were prepared through variation of the initial monomer-to-initiator ratio. Moreover, it was determined that large-diameter MWNTs afforded highly ordered P3HT aggregates, which exhibited a markedly bathochromically shifted optical absorption due to a high grafting density induced planarization of the polymer chains. Using ultrafast spectroscopy, the heterojunctions formed between the MWNTs and P3HT were shown to effectively overcome the binding energy of excitons, leading to photoinduced electron transfer from P3HT to MWNTs. Finally, when used as prototype devices, the individual MWNT-g-P3HT core-shell structures exhibited excellent photoresponses under a low illumination density.

  19. Mass and charge transfer on various relevant scales in polymer electrolyte fuel cells[Dissertation 16991

    Energy Technology Data Exchange (ETDEWEB)

    Freunberger, S. A.

    2007-07-01

    This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt

  20. Oppositional Defiant Disorder (ODD)

    Science.gov (United States)

    ... separation or divorce and differences in expectations and parenting styles. Your child's key medical information, including other physical ... way to prevent oppositional defiant disorder. However, positive parenting and ... child's self-esteem and rebuild a positive relationship between you and ...

  1. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.

    Science.gov (United States)

    Jhong, Jheng-Fong; Sin, Mei-Chan; Kung, Hsiao-Han; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Chang, Yung

    2014-01-01

    In this study, a pseudozwitterionic surface bearing positively and negatively mixed charged moieties was developed as a potential hemocompatible material for biomedical applications. In this work, hemocompatility of pseudozwitterionic surface prepared from copolymerization of negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) was delineated. Mixed charge distribution in the prepared poly(TMA-co-SA)-grafted surface can be controlled by regulating TMA and SA monomer ratios via surface-initiated atom transfer radical polymerization. The effects of grafting composition and charge bias variations on blood compatibility of poly(TMA-co-SA)-grafted surface were reported. The protein adsorption on different poly(TMA-co-SA)-grafted surfaces from human plasma protein (fibrinogen, HSA, and γ-globulin) solutions was evaluated using an enzyme-linked immunosorbent assay. Blood platelet adhesion and time measurements on plasma clotting were conducted to determine the platelet activation on the grafted surface. It was found that the protein resistance and anti-blood cell adhesion of prepared surface can be precisely controlled by controlling the charge balance of TMA/SA compositions. In addition, different charge bias variations on the poly(TMA-co-SA)-grafted surface would induce electrostatic interactions between plasma proteins and prepared surfaces which lead to adsorptions of interfacial protein and blood cells, plasma clotting, and blood cell hemolysis. Results from this study suggest that the hemocompatility of mixed charged poly(TMA-co-SA)-grafted surface depends on the charge bias level. This provides a great potential for designing biomaterial with unique surface chemical structure which could be used in contact with human blood.

  2. Electromechanical characterization of non-uniform charged ionic polymer-metal composites (IPMC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, B; Branco, P J C [Institute Superior Tecnico, DEEC - Energia, Lisboa 1096-001 (Portugal)], E-mail: pbranco@ist.utl.pt

    2008-08-15

    Research on electromechanical characterization of non-uniformly charged IPMCs is quasi-absent. This has limited their use to only those devices where the IPMC is completely covered with electrode surfaces (uniformly charged). In this paper, we develop a theoretical study for electromechanical characterization of non-uniformly charged IPMCs. A continuum model taking into account the gravitational forces, important for large IPMCs, is presented. Based on this approach, FEM analysis of IPMC devices using Comsol Multiphysics is introduced in a very simple way. Three devices have been studied, comparing the analytical model results with those ones obtained from a FEM analysis.

  3. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  4. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells

    Science.gov (United States)

    2015-01-15

    high-efficiency PSCs and PVSCs. 15. SUBJECT TERMS Nanocomposites, Polymer Composites, Organic Photovoltaic Cells, Polymer Solar Cells 16...activation process. FPI can also serve as a dopant to dope PC61BM to achieve high conductivity (3.2 x 10-2 S/cm) in thin film as well. Thereby, the...Perovskite Thin Films ” ACS Nano 2014, 8, 10640-10654. 11. L. J. Zuo, C. C. Chueh, Y. X. Xu, K. S. Chen, Y. Zang, C. Z. Li, H. Z. Chen, A. K.-Y. Jen

  5. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  6. Dopant-induced crossover from 1D to 3D charge transport in conjugated polymers

    OpenAIRE

    Reedijk, JA; Martens, HCF; Brom, HB Hans; Michels, MAJ Thijs

    1999-01-01

    The interplay between inter- and intra-chain charge transport in bulk polythiophene in the hopping regime has been clarified by studying the conductivity as a function of frequency (up to 3 THz), temperature and doping level. We present a model which quantitatively explains the observed crossover from quasi-one-dimensional transport to three-dimensional hopping conduction with increasing doping level. At high frequencies the conductivity is dominated by charge transport on one-dimensional con...

  7. 2D Coherent Charge Transport in Highly Ordered Conducting Polymers Doped by Solid State Diffusion

    OpenAIRE

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-ichi; Sirringhaus, Henning

    2016-01-01

    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group. Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially sepa...

  8. Statics and dynamics of strongly charged soft matter

    Energy Technology Data Exchange (ETDEWEB)

    Boroudjerdi, H. [Physics Department, TU Munich, 85748 Garching (Germany); Kim, Y.-W. [Physics Department, TU Munich, 85748 Garching (Germany); Naji, A. [Physics Department, TU Munich, 85748 Garching (Germany); Netz, R.R. [Physics Department, TU Munich, 85748 Garching (Germany)]. E-mail: netz@ph.tum.de; Schlagberger, X. [Physics Department, TU Munich, 85748 Garching (Germany); Serr, A. [Physics Department, TU Munich, 85748 Garching (Germany)

    2005-09-01

    Soft matter materials, such as polymers, membranes, proteins, are often electrically charged. This makes them water soluble, which is of great importance in technological application and a prerequisite for biological function. We discuss a few static and dynamic systems that are dominated by charge effects. One class comprises complexation between oppositely charged objects, for example the adsorption of charged ions or charged polymers on oppositely charged substrates of different geometry. Here the main questions are whether adsorption occurs and what the effective charge of the resulting complex is. We explicitly discuss the adsorption behavior of polyelectrolytes on substrates of planar, cylindrical and spherical geometry with specific reference to DNA adsorption on supported charged lipid layers, DNA adsorption on oppositely charged cylindrical dendro-polymers, and DNA binding on globular histone proteins, respectively. In all these systems salt plays a crucial role, and some of the important features can already be obtained on the linear Debye-Hueckel level. The second class comprises effective interactions between similarly charged objects. Here the main theme is to understand the experimental finding that similarly and highly charged bodies attract each other in the presence of multi-valent counterions. This is demonstrated using field-theoretic arguments as well as Monte-Carlo simulations for the case of two homogeneously charged bodies. Realistic surfaces, on the other hand, are corrugated and also exhibit modulated charge distributions, which is important for static properties such as the counterion-density distribution, but has even more pronounced consequences for dynamic properties such as the counterion mobility. More pronounced dynamic effects are obtained with highly condensed charged systems in strong electric fields. Likewise, an electrostatically collapsed highly charged polymer is unfolded and oriented in strong electric fields. All charged

  9. Surfactant mediated self-assembly of weakly charged polymer on hydrophobic polymeric substrate

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2011-03-01

    Molecular Dynamics (MD) simulations are carried out to understand the physical aspects of different bulk morphologies formed in charged diblock copolymers. It has been seen that the bulk morphologies formed by charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) - 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation are substantially different from their diblock counterparts. In this study we show how the bulk morphologies change from the uncharged diblock counterparts and also how morphology can be tuned with volume fraction of the charged block and with a change in dielectric constant. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained. The 75/25 diblock shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even by changing the dielectric of the medium. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  10. Role of Balanced Charge Carrier Transport in Low Band Gap polymer : fullerene Bulk Heterojunction Solar Cells

    NARCIS (Netherlands)

    Kotlarski, Jan D.; Moet, Date J. D.; Blom, Paul W. M.

    2011-01-01

    Lowering of the optical band gap of conjugated polymers in bulk heterojunction solar cells not only leads to an increased absorption but also to an increase of the optimal active layer thickness due to interference effects at longer wavelengths. The increased carrier densities due to the enhanced ab

  11. Synthesis and Charge Transport Properties of Polymers Derived from Oxidation of 1-H-1’(6-pyrrol-1-yl)-hexyl-4,4’-bipyridinium

    Science.gov (United States)

    1988-08-15

    platinized poly(3- methylthiophene),7b a viologen /quinone polymer, 9 ferrocyanide-loaded protonated poly(4-vinylpyridine),l 0 and electroactive metal oxides...article describes the synthesis and electrochemical properties of redox polymers, having a poly- pyrrole backbone and viologen subunits, derived from...study aspects of the charge transport behavior of the viologen redox system. Poly(P-V-Me2 ) and poly(P-V-H2+ ) have been used to investigate the

  12. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  13. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  14. Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\\sqrt{s} = $ 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-09-26

    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at $\\sqrt{s} = $ 13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500-1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980-1200 GeV are excluded depending on the mass of the next-to-lightest neutralino.

  15. Structural origin of gap states in semicrystalline polymers and the implications for charge transport

    KAUST Repository

    Rivnay, Jonathan

    2011-03-16

    We quantify the degree of paracrystalline disorder in the π-π stacking direction of crystallites of a high performing semicrystalline semiconducting polymer with advanced x-ray line-shape analysis. Using density functional theory calculations to provide input to a simple tight-binding model, we obtain the density of states of a system of π-π stacked polymer chains with increasing amounts of paracrystalline disorder. We find that, for an aligned film of PBTTT, the paracrystalline disorder is 7.3%. This type of disorder induces a tail of trap states with a breadth of ∼100 meV as determined through calculation. This finding agrees with previous device modeling and provides physical justification for the mobility edge model. © 2011 American Physical Society.

  16. Photoinduced charge and energy transfer in dye-doped conjugated polymers

    NARCIS (Netherlands)

    Veldman, D.; Bastiaansen, J.J.A.M.; Langeveld-Voss, B.M.W.; Sweelssen, J.; Koetse, M.M.; Meskers, S.C.J.; Janssen, R.A.J.

    2006-01-01

    Conjugated polymer-molecular dye blends of MDMO-PPV (poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]) and PF1CVTP (poly[9,9-dioctylfluorene-2,7-diyl-alt-2,5-bis(2-thienyl-1-cyanovinyl)-1-(3′,7′-dimethyloctyloxy)-4-methoxybenzene-5″,5″-diyl]) with three dipyrrometheneboron difluoride

  17. Unified description of charge-carrier mobilities in disordered semiconducting polymers

    NARCIS (Netherlands)

    Pasveer, WF; Cottaar, J; Tanase, C; Coehoorn, R; Bobbert, PA; Blom, PWM; de Leeuw, DM; Michels, MAJ

    2005-01-01

    From a numerical solution of the master equation for hopping transport in a disordered energy landscape with a Gaussian density of states, we determine the dependence of the charge-carrier mobility on temperature, carrier density, and electric field. Experimental current-voltage characteristics in d

  18. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NARCIS (Netherlands)

    Bhattacharjee, S.; Opstal, van E.J.; Alink, G.M.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/s

  19. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sawle, Lucas; Ghosh, Kingshuk, E-mail: kghosh@du.edu [Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208 (United States)

    2015-08-28

    A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R{sup 2} = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found—with high statistical significance—to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.

  20. Concentration and mobility of charge carriers in thin polymers at high temperature determined by electrode polarization modeling

    Science.gov (United States)

    Diaham, Sombel; Locatelli, Marie-Laure

    2012-07-01

    Charge carrier concentration (n0) and effective mobility (μeff) are reported in two polymer films (dielectric spectroscopy data. It is shown that the glass transition temperature (Tg) occurrence has a strong influence on the temperature dependence of n0 and μeff. We carry out that n0 presents two distinct Arrhenius-like behaviors below and above Tg, while μeff exhibits a Vogel-Fulcher-Tamman behavior only above Tg whatever the polymer under study. For polyimide films, n0 varies from 1 × 1014 to 4 × 1016 cm-3 and μeff from 1 × 10-8 to 2 × 10-6 cm2 V-1 s-1 between 200 °C to 400 °C. Poly(amide-imide) films show n0 values between 6 × 1016 and 4 × 1018 cm-3 from 270 °C to 400 °C, while μeff varies between 1 × 10-10 and 2 × 10-7 cm2 V-1 s-1. Considering the activation energies of these physical parameters in the temperature range of investigation, n0 and μeff values appear as coherent with those reported in the literature at lower temperature (Polyimide films appear as good candidates due to nS values less than 1011 cm-2 up to 300 °C.

  1. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    Science.gov (United States)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  2. Adsorption of the Inflammatory Mediator High-Mobility Group Box 1 by Polymers with Different Charge and Porosity

    Directory of Open Access Journals (Sweden)

    Carla Tripisciano

    2014-01-01

    Full Text Available High-mobility group box 1 protein (HMGB1 is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation, interaction with other plasma proteins or anticoagulants (e.g., heparin, or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.

  3. Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection.

    Science.gov (United States)

    Shaw-Stewart, James; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2011-02-01

    Laser-induced forward transfer (LIFT) has been used to print 0.6 mm × 0.5 mm polymer light-emitting diode (PLED) pixels with poly[2-methoxy, 5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as the light-emitting polymer. The donor substrate used in the LIFT process is covered by a sacrificial triazene polymer (TP) release layer on top of which the aluminium cathode and functional MEH-PPV layers are deposited. To enhance electron injection into the MEH-PPV layer, a thin poly(ethylene oxide) (PEO) layer on the Al cathode or a blend of MEH-PPV and PEO was used. These donor substrates have been transferred onto both plain indium tin oxide (ITO) and bilayer ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) blend) receiver substrates to create the PLED pixels. For comparison, devices were fabricated in a conventional manner on ITO substrates coated with a PEDOT:PSS hole-transporting layer. Compared to multilayer devices without PEO, devices with ITO/PEDOT:PSS/MEH-PPV:PEO blend/Al architecture show a 100 fold increase of luminous efficiency (LE) reaching a maximum of 0.45 cd/A for the blend at a brightness of 400 cd/m(2). A similar increase is obtained for the polymer light-emitting diode (PLED) pixels deposited by the LIFT process, although the maximum luminous efficiency only reaches 0.05 cd/A for MEH-PPV:PEO blend, which we have attributed to the fact that LIFT transfer was carried out in an ambient atmosphere. For all devices, we confirm a strong increase in device performance and stability when using a PEDOT:PSS film on the ITO anode. For PLEDs produced by LIFT, we show that a 25 nm thick PEDOT:PSS layer on the ITO receiver substrate considerably reduces the laser fluence required for pixel transfer from 250 mJ/cm(2) without the layer to only 80 mJ/cm(2) with the layer.

  4. Charge Transfer Complexes of Polymers%高分子电荷转移复合物

    Institute of Scientific and Technical Information of China (English)

    赵扬; 邱家白

    1986-01-01

    @@ 电荷转移复合物(charge transfer complex, CTC)的研究,始于本世纪二十年代。然而对CTC理论的阐述,及其实际应用方面,长期未取得实质性进展。1952年R. S. Mulliken在J. H. Hildebrand的实验基础上首创共振模型,引入电荷转移(charge transfer,CT)这一术语,奠定了CTO的理论基础。从此,对CT现象的研究不断深入,开拓的领域日益广阔,已成为世界性的研究课题。

  5. Pressure dependence of space charge deposition in piezoelectric polymer foams: simulations and experimental verification

    Science.gov (United States)

    Harris, Scott; Mellinger, Axel

    2012-06-01

    The piezoelectric activity of PQ-50 cellular polypropylene (PP) foam (an example of a so-called ferroelectret) is measured after repeated charging in a nitrogen atmosphere at a range of pressures between 61 and 381 kPa. The results are compared against simulations using a multilayer electromechanical model based on Townsend's model of Paschen breakdown and a realistic distribution of void heights determined from scanning electron micrographs. The modeled piezoelectric coefficients versus pressure are in good agreement with experimental data when adjusted Paschen coefficients are used, indicating that the Paschen curve for electric breakdown in gases needs to be modified for dielectric barrier discharges in microcavities. The highest d 33 coefficients were achieved for pressures above 251 kPa. For previously uncharged PP foam, the model predicts an optimal charging pressure of 186 kPa.

  6. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  7. Charged Metalloporphyrin Polymers for Cooperative Synthesis of Cyclic Carbonates from CO2 under Ambient Conditions.

    Science.gov (United States)

    Chen, Yaju; Luo, Rongchang; Xu, Qihang; Jiang, Jun; Zhou, Xiantai; Ji, Hongbing

    2017-06-09

    A facile and one-pot synthesis of metalloporphyrin-based ionic porous organic polymers (M-iPOPs) was performed through a typical Yamamoto-Ullmann coupling reaction for the first time. We used various characterization techniques to demonstrate that these strongly polar Al-based materials (Al-iPOP) possessed a relatively uniform microporosity, good swellable features, and a good CO2 capture capacity. If we consider the particular physicochemical properties, heterogeneous Al-iPOP, which bears both a metal active center and halogen anion, acted as a bifunctional catalyst for the solvent- and additive-free synthesis of cyclic carbonates from various epoxides and CO2 with an excellent activity and good recyclability under mild conditions. Interestingly, these CO2 -philic materials could catalyze the cycloaddition reaction smoothly by using simulated flue gas (15 % CO2 in N2 , v/v) as a raw material, which indicates that a stable local microenvironment and polymer swellability might promote the transformation. Thus, the introduction of polar ionic liquid units into metalloporphyrin-based porous materials is regarded as a promising new strategy for the chemical conversion of CO2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formation of polaron pairs and time-resolved photogeneration of free charge carriers in π-conjugated polymers

    Science.gov (United States)

    Frankevich, Eugene; Ishii, Hisao; Hamanaka, Yasushi; Yokoyama, Takahiro; Fuji, Akihiko; Li, Sergey; Yoshino, Katsumi; Nakamura, Arao; Seki, Kazuhiko

    2000-07-01

    We have performed in the present work time-resolved experiments on poly(3-dodecyl-thiophene) (P3DDT) and poly(2,5-dioctyloxy-p-phenylene vinylene) (OO-PPV) films by directly probing the formation of charge carriers responsible for the cw photoconductivity within the time domain of -10 ps to 1 ns. Laser light pulses of 400 nm wavelength, 150 fs width, induced photoconductivity in a sample with a frequency 1 kHz. Red 800 nm light pulses delayed in respect to blue ones were revealed to affect the photoconductivity. The effect of the second pulses increased with the delay time. Red light induced changes of the photoconductivity were positive in OO-PPV, and negative in P3DDT. These results are rationalized as an evidence of delayed not immediate formation of free charge carriers. The carriers seem to be formed within 10 ps after the pumping pulse. A mechanism of formation of free polarons from polaron pair is suggested, which has permitted to explain main feature of the results including different signs of the effect of the red light in different polymers.

  9. Investigation of charge injection and transport behavior in multilayer structure consisted of ferromagnetic metal and organic polymer under external fields

    Science.gov (United States)

    Zhao, Hua; Meng, Wei-Feng

    2017-10-01

    In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.

  10. Functionalized 2D-MoS2-Incorporated Polymer Ternary Solar Cells: Role of Nanosheet-Induced Long-Range Ordering of Polymer Chains on Charge Transport.

    Science.gov (United States)

    Ahmad, Razi; Srivastava, Ritu; Yadav, Sushma; Chand, Suresh; Sapra, Sameer

    2017-09-19

    In this paper, we demonstrated the enhancement in power conversion efficiency (PCE) of solar cells based on poly(3-hexylthiophene-2,5-diyl) (P3HT)/[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) by incorporation of functionalized 2D-MoS2 nanosheets (NSs) as an additional charge-transporting material. The enhancement in PCE of ternary solar cells arises due to the synergic enhancement in exciton dissociation and the improvement in mobility of both electrons and holes through the active layer of the solar cells. The improved hole mobility is attributed to the formation of the long-range ordered nanofibrillar structure of polymer phases and improved crystallinity in the presence of 2D-MoS2 NSs. The improved electron mobility arises due to the highly conducting 2D network of MoS2 NSs which provides additional electron transport channels within the active layer. The nanosheet-incorporated ternary blend solar cells exhibit 32% enhancement in PCE relative to the binary blend P3HT/PC71BM.

  11. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  12. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  13. Spatial profile of charge storage in organic field-effect transistor nonvolatile memory using polymer electret

    Science.gov (United States)

    She, Xiao-Jian; Liu, Jie; Zhang, Jing-Yu; Gao, Xu; Wang, Sui-Dong

    2013-09-01

    Spatial profile of the charge storage in the pentacene-based field-effect transistor nonvolatile memories using poly(2-vinyl naphthalene) electret is probed. The electron trapping into the electret after programming can be space dependent with more electron storage in the region closer to the contacts, and reducing the channel length is an effective approach to improve the memory performance. The deficient electron supply in pentacene is proposed to be responsible for the inhomogeneous electron storage in the electret. The hole trapping into the electret after erasing is spatially homogeneous, arising from the sufficient hole accumulation in the pentacene channel.

  14. Iterative Deconvolution of PEA Measurements for Enhancing the Spatial Resolution of Charge Profile in Space Polymers

    Directory of Open Access Journals (Sweden)

    Mohamad Arnaout

    2016-01-01

    Full Text Available This work aims to improve the PEA calibration technique through defining a well-conditioned transfer matrix. To this end, a numerical electroacoustic model that allows determining the output voltage of the piezoelectric sensor and the acoustic pressure is developed with the software COMSOL®. The proposed method recovers the charge distribution within the sample using an iterative deconvolution method that uses the transfer matrix obtained with the new calibration technique. The obtained results on theoretical and experimental signals show an improvement in the spatial resolution compared with the standard method usually used.

  15. Characterization of the charge transport and electrical properties in solution-processed semiconducting polymers

    Institute of Scientific and Technical Information of China (English)

    WANG LiGuo; ZHANG HuaiWu; TANG XiaoLi; LI YuanXun; ZHONG ZhiYong

    2012-01-01

    The conventional charge transport models based on density- and field-dependent mobility,only having a non-Arrhenius temperature dependence,cannot give good current-voltage characteristics of poly (2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) hole-only devices.In this paper,we demonstrate that the current-voltage characteristics can give a good unified description of the temperature,carrier density and electric field dependence of mobility based on both the Arrhenius temperature dependence and the non-Arrhenius temperature dependence.Furthermore,we perform a systematic study of charge transport and electrical properties for MEH-PPV.It is shown that the boundary carrier density has an important effect on the current-voltage characteristics.Too large or too small values of boundary carder density will lead to incorrect current-voltage characteristics.The numerically calculated carrier density is a decreasing function of the distance to the interface,and the numerically calculated electric field is an increasing function of the distance.Both the maximum of carrier density and the minimum of electric field appear near the interface.

  16. Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes.

    Science.gov (United States)

    Jeon, Ju-Won; O'Neal, Josh; Shao, Lin; Lutkenhaus, Jodie L

    2013-10-23

    Polymeric electrodes that can achieve high doping levels and store charge reversibly are desired for electrochemical energy storage because they can potentially achieve high specific capacities and energies. One such candidate is the polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) complex, a water-processable complex obtained via template polymerization that is known to reversibly achieve high doping levels at potentials of up to 4.5 V versus Li/Li+. Here, for the first time, PANI:PAAMPSA is successfully incorporated into layer-by-layer (LbL) electrodes. This processing technique is chosen for its ability to blend species on a molecular level and its ability to conformally coat a substrate. Three different polyaniline-based LbL electrodes comprised of PANI/PAAMPSA, PANI/PANI:PAAMPSA, and linear poly(ethylenimine)/PANI:PAAMPSA are compared in terms of film growth, charge storage, and reversibility. We found that the reversibility of PANI:PAAMPSA is retained within the LbL electrodes and that the PANI/PANI:PAAMPSA electrode exhibits the best performance in terms of capacity and cycle life. These results provide general guidelines for the assembly of PANI:PAAMPSA in LbL films and also demonstrate their potential as electrochemically active components in electrodes.

  17. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  18. Ion implantation in conjugated polymers: mechanisms for generation of charge carriers

    Energy Technology Data Exchange (ETDEWEB)

    Moliton, A.; Lucas, B.; Moreau, C. (Limoges Univ., 87 (France)); Friend, R.H. (Cambridge Univ. (United Kingdom). Cavendish Lab.); Francois, B. (Institut Charles-Sandron (CNRS), Strasbourg (France))

    1994-06-01

    Ion implantation in conjugated polymers can produce both doping (with suitable choice of ions) and damage in the form of broken covalent bonds. We consider the electronic and transport properties as assessed from measurements on poly(paraphenylene) of d.c. conductivity, thermopower and a.c. conductivity studied against temperature for various implantation parameters. Damage is produced at high implantation energies and high doses, and we find that transport phenomena occur mainly in degenerate states near the Fermi energy, exhibiting a p-type thermopower. We propose a model in which the sp[sup 2] [sigma]-dangling-bond states formed as a result of bond scission are filled from the [pi] valence band. This partial emptying of the valence band is consistent with the transport properties. Lower implantation doses at lower energies induce doping in polaronic bands, with both p-type and n-type thermopower, depending on the ion implanted, although the effects of the defects present can appear, especially at low temperatures. (Author).

  19. Synthesis and Mechanism Insight of a Peptide-Grafted Hyperbranched Polymer Nanosheet with Weak Positive Charges but Excellent Intrinsically Antibacterial Efficacy.

    Science.gov (United States)

    Gao, Jingyi; Wang, Mingzhi; Wang, Fangyingkai; Du, Jianzhong

    2016-06-13

    Antimicrobial resistance is an increasingly problematic issue in the world and there is a present and urgent need to develop new antimicrobial therapies without drug resistance. Antibacterial polymers are less susceptible to drug resistance but they are prone to inducing serious side effects due to high positive charge. Herein we report a peptide-grafted hyperbranched polymer which can self-assemble into unusual nanosheets with highly effective intrinsically antibacterial activity but weak positive charges (+ 6.1 mV). The hyperbranched polymer was synthesized by sequential Michael addition-based thiol-ene and free radical mediated thiol-ene reactions, and followed by ring-opening polymerization of N-carboxyanhydrides (NCAs). The nanosheet structure was confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM) studies. Furthermore, a novel "wrapping and penetrating" antibacterial mechanism of the nanosheets was revealed by TEM and it is the key to significantly decrease the positive charges but have a very low minimum inhibitory concentration (MIC) of 16 μg mL(-1) against typical Gram-positive and Gram-negative bacteria. Overall, our synthetic strategy demonstrates a new insight for synthesizing antibacterial nanomaterials with weak positive charges. Moreover, the unique antibacterial mechanism of our nanosheets may be extended for designing next-generation antibacterial agents without drug resistance.

  20. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  1. Extraction of high charge density of states in electrolyte-gated polymer thin-film transistor with temperature-dependent measurements

    Science.gov (United States)

    Lee, Jiyoul

    2016-05-01

    Using temperature-dependent charge transport measurements, we investigated spectral density of states (DOS) in the bandgap of polythiophene thin-films under high carrier densities (Meyer-Neldel rule. The spectral DOS extracted from the electrolyte-gated polymer film lie in the range of 8.0 × 1019 cm-3 eV-1-8.0 × 1021 cm-3 eV-1, which are at least two orders of magnitude larger than the DOS extracted from the same polymer film at relatively low induced carrier densities by general oxide dielectrics.

  2. Controlling charge injection properties in polymer field-effect transistors by incorporation of solution processed molybdenum trioxide.

    Science.gov (United States)

    Long, Dang Xuan; Xu, Yong; Wei, Huai-xin; Liu, Chuan; Noh, Yong-Young

    2015-08-21

    A simply and facilely synthesized MoO3 solution was developed to fabricate charge injection layers for improving the charge-injection properties in p-type organic field-effect transistors (OFETs). By dissolving MoO3 powder in ammonium (NH3) solvent under an air atmosphere, an intermediate ammonium molybdate ((NH4)2MoO4) precursor is made stable, transparent and spin-coated to form the MoO3 interfacial layers, the thickness and morphology of which can be well-controlled. When the MoO3 layer was applied to OFETs with a cost-effective molybdenum (Mo) electrode, the field-effect mobility (μFET) was significantly improved to 0.17 or 1.85 cm(2) V(-1)s(-1) for polymer semiconductors, regioregular poly(3-hexylthiophene) (P3HT) or 3,6-bis-(5bromo-thiophen-2-yl)-N,N'-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole (DPPT-TT), respectively. Device analysis indicates that the MoO3-deposited Mo contact exhibits a contact resistance RC of 1.2 MΩ cm comparable to that in a device with the noble Au electrode. Kelvin-probe measurements show that the work function of the Mo electrode did not exhibit a dependence on the thickness of MoO3 film. Instead, ultraviolet photoemission spectroscopy results show that a doping effect is probably induced by casting the MoO3 layer on the P3HT semiconductor, which leads to the improved hole injection.

  3. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  4. Highly-efficient charge separation and polaron delocalization in polymer-fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study.

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L; Banks, Brian P; Grooms, Gregory M; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G

    2013-06-28

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Upon illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P(+), and negative, P(-), polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of (1)H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40-60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units for PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR

  5. Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Walter, S.; Dyakonov, V.; Deibel, C.

    2012-05-01

    We investigated photogeneration yield and recombination dynamics in blends of poly(3-hexyl thiophene) (P3HT) and poly[2-methoxy-5 -(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with [6,6]-phenyl-C61butyric acid methyl ester (PC61BM) by means of temperature dependent time delayed collection field measurements. In MDMO-PPV:PC61BM, we find a strongly field dependent polaron pair dissociation which can be attributed to geminate recombination in the device. Our findings are in good agreement with field dependent photoluminescence measurements published before, supporting a scenario of polaron pair dissociation via an intermediate charge transfer state. In contrast, polaron pair dissociation in P3HT:PC61BM shows only a very weak field dependence, indicating an almost field independent polaron pair dissociation or a direct photogeneration. Furthermore, we found Langevin recombination for MDMO-PPV:PC61BM and strongly reduced Langevin recombination for P3HT:PC61BM.

  6. Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Wang, Ying-Chiao; Li, Shao-Sian; Wen, Cheng-Yen; Chen, Liang-Yih; Ho, Kuo-Chuan; Chen, Chun-Wei

    2016-12-14

    Dye-sensitized solar cells (DSSCs) present low-cost alternatives to conventional wafer-based inorganic solar cells and have remarkable power conversion efficiency. To further enhance performance, we propose a new DSSC architecture with a novel dual-functional polymer interlayer that prevents charge recombination and facilitates ionic conduction, as well as maintaining dye loading and regeneration. Poly(vinylidene fluoride-trifluoroethylene) (p(VDF-TrFE)) was coated on the outside of a dye-sensitized TiO2 photoanode by a simple solution process that did not sacrifice the amount of adsorbed dye molecules in the DSSC device. Light-intensity-modulated photocurrent and photovoltage spectroscopy revealed that the proposed p(VDF-TrFE)-coated anode yielded longer electron lifetime and improved the injection of photogenerated electrons into TiO2, thereby reducing the electron transport time. Comparative cyclic voltammetry and UV-visible absorption spectroscopy based on a ferrocene-ferrocenium external standard material demonstrated that p(VDF-TrFE) enhanced the power conversion efficiency from 7.67% to 9.11%. This dual functional p(VDF-TrFE) interlayer is a promising candidate for improving the performance of DSSCs and can also be employed in other electrochemical devices.

  7. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  8. Quantification of hydrolytic charge loss of DMAEA-Q-based polyelectrolytes by proton NMR spectroscopy and implications for colloid titration.

    Science.gov (United States)

    Saveyn, Hans; Hendrickx, Pieter M S; Dentel, Steven K; Martins, José C; Van der Meeren, Paul

    2008-05-01

    Copolymers of acrylamide and quaternised dimethylaminoethyl acrylate (DMAEA-Q) constitute an economically important range of cationic polyelectrolytes used in sludge conditioning. The latter treatment involves charge neutralisation and bridging induced by these polymers. Since both of these phenomena rely on charge-driven sorption onto the negatively charged colloidal particles, the accurate assessment of their charge density is of primary importance in polyelectrolyte characterisation. The experimental determination of this characteristic generally relies on colloidal charge titration, in which the cationic polymer is titrated against an anionic polymer. Hereby, one of the requirements to have a stoichiometric reaction between the oppositely charged polymers is a sufficiently low polymer concentration. In this study, it is shown that such a low polymer concentration may entail a pronounced hydrolysis effect for DMAEA-Q-based polymers, which leads to a release of the cationic side groups and hence causes considerable errors on the charge titration results. Proton nuclear magnetic resonance spectroscopy was applied to investigate the fast hydrolysis kinetics of DMAEA-Q polymers together with time-dependent charge titration measurements. Diffusion NMR spectroscopy was used to assist in establishing the nature of the hydrolysis compounds. The results from both techniques indicate that a high degree of hydrolysis is reached within minutes after dilution of a concentrated polymer stock solution into aqueous solutions of slightly acidic to neutral pH values. Therefore, a modification to the classic colloid titration procedure is proposed, using a buffered dilution liquid to avoid polymer hydrolysis. It is shown that a buffer pH value of 4.5 avoids not only polymer hydrolysis effects but also possible protonation of the anionic titrant, thereby avoiding overestimation of the charge density. By means of this procedure, reproducible and time-independent charge titration

  9. Photoconductive properties of conjugated polymers

    CERN Document Server

    Halls, J J M

    1997-01-01

    The research described in my dissertation has involved the fabrication and characterisation of photovoltaic cells based on conjugated polymers, including the widely studied polymer poly(p-phenylenevinylene). These materials have semiconducting properties which arise from the delocalisation of electrons along the pi-electron systems of the polymer chains. Research into these materials is motivated both by their novel electronic properties, and also their potential for use in a wide range of applications including light-emitting diodes (LEDs), thin-film transistors, and photovoltaic cells (solar cells and light detectors). Light absorbed in a photovoltaic cell generates opposite charges which are collected at two different electrodes, giving rise to an electric current

  10. Charge-discharge studies on a lithium cell composed of PVdF-HFP polymer membranes prepared by phase inversion technique with a nanocomposite cathode

    Science.gov (United States)

    Manuel Stephan, A.; Teeters, Dale

    A novel polymer membrane of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) co-polymer was prepared by the phase inversion technique with two different non-solvents, 1-butanol or hexane. The prepared films were analyzed by scanning electron microscope (SEM) and nitrogen absorption/desorption techniques. The change in the morphology and pore diameter of the films prepared with different non-solvents correlates with the structure of the non-solvents used. This electrolyte membrane was coupled with a nanocomposite LiAl 0.01Co 0.99O 2 cathode which was prepared by a solid-state reaction method and subsequently by ball-milling. Lithium cells consisting of LiAl 0.01Co 0.99O 2/polymer electrolyte/Li were assembled and their charge-discharge studies were investigated.

  11. Impact of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE) on Morphology and Charge Conduction in Conjugated Polymer and Bulk Heterojunction Thin Films

    Science.gov (United States)

    Stiff-Roberts, Adrienne; McCormick, Ryan; Atewologun, Ayomide

    2014-03-01

    An approach to improve organic photovoltaic efficiency is to increase vertical charge conduction by promoting out-of-plane π- π stacking in conjugated polymers. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) features multiple growth parameters that can be varied to achieve a desired organic thin film property. In addition, RIR-MAPLE enables nanoscale domains in blended polymeric films and multi-layer polymeric films regardless of constituent solubility. Thus, RIR-MAPLE deposition is compared to solution-cast films as a possible approach to increase out-of-plane charge transport in polymers and bulk heterojunctions. Two common, solar cell polymers are investigated: P3HT and PCPDTBT. Materials characterization includes grazing-incidence, wide angle x-ray scattering (GIWAXS) for structural information and two techniques to determine hole mobility: organic field effect transistors to measure in-plane mobility and charge extraction by linearly increasing voltage to measure out-of-plane mobility. Initial indications are that the RIR-MAPLE films have a fundamentally different morphology compared to solution-cast films. In the case of P3HT, an enhancement in out-of-plane π- π stacking was observed by GIWAXS in RIR-MAPLE films compared to solution-cast films. A portion of this research was conducted at CNMS at ORNL.

  12. Interactions of silica nanoparticles with poly(ethylene oxide) and poly(acrylic acid): effect of the polymer molecular weight and of the surface charge.

    Science.gov (United States)

    Joksimovic, R; Prévost, S; Schweins, R; Appavou, M-S; Gradzielski, M

    2013-03-15

    The properties and the structure of polymer-modified silica nanoparticles were investigated by several characterization methods, with an emphasis on scattering techniques. Both bare and amino functionalized nanoparticles were used. To determine the effect of the charge, the polymer used was either nonionic poly(ethylene oxide) (PEO) or partially deprotonated poly(acrylic acid) (PAA). The particles coated with PEO were investigated by small-angle neutron scattering using the method of external contrast variation to observe the polymer coverage. The quantity adsorbed was found to be increasing with the molecular weight, and the surface type, bare or aminated, did not have a significant influence on the quantity adsorbed. The adsorption of PAA on positively charged aminated particles was investigated by dynamic light scattering and zeta potential measurements. A charge reversal, from positive to negative, was induced by the presence of PAA. Through the derivation of the structure factor, small-angle X-ray scattering provided significant information on the formation of aggregates at low PAA concentrations.

  13. Reversible Charge Trapping in Bis-Carbazole-Diimide Redox Polymers with Complete Luminescence Quenching Enabling Nondestructive Read-Out by Resonance Raman Spectroscopy

    Science.gov (United States)

    2017-01-01

    The coupling of substituted carbazole compounds through carbon–carbon bond formation upon one-electron oxidation is shown to be a highly versatile approach to the formation of redox polymer films. Although the polymerization of single carbazole units has been proposed earlier, we show that by tethering pairs of carbazoles double sequential dimerization allows for facile formation of redox polymer films with fine control over film thickness. We show that the design of the monomers and in particular the bridging units is key to polymer formation, with the diaminobenzene motif proving advantageous, in terms of the matching to the redox potentials of the monomer and polymer film and thereby avoiding limitations in film thickness (autoinsulation), but introduces unacceptable instability due to the intrinsic redox activity of this moiety. The use of a diimide protecting group both avoids complications due to p-diamino-benzene redox chemistry and provides for a redox polymer in which the photoluminescence of the bis-carbazole moiety can be switched reversibly (on/off) with redox control. The monomer design approach is versatile enabling facile incorporation of additional functional units, such as naphthalene. Here we show that a multicomponent carbazole/naphthalene containing monomer (APCNDI) can form redox polymer films showing both p- and n- conductivity under ambient conditions and allows access to five distinct redox states, and a complex electrochromic response covering the whole of the UV/vis–NIR spectral region. The highly effective quenching of the photoluminescence of both components in poly-APCNDI enables detailed characterization of the redox polymer films. The poly-APCNDI films show extensive charge trapping, which can be read out spectroscopically in the case of films and is characterized as kinetic rather than chemical in origin on the basis of UV/vis–NIR absorption and resonance Raman spectroscopic analyses. The strong resonantly enhanced Raman

  14. Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V2O5 interlayer.

    Science.gov (United States)

    Baeg, Kang-Jun; Bae, Gwang-Tae; Noh, Yong-Young

    2013-06-26

    Here we report high-performance polymer OFETs with a low-cost Mo source/drain electrode by efficient charge injection through the formation of a thermally deposited V2O5 thin film interlayer. A thermally deposited V2O5 interlayer is formed between a regioregular poly(3-hexylthiophene) (rr-P3HT) or a p-type polymer semiconductor containing dodecyl-substituted thienylenevinylene (TV) and dodecylthiophene (PC12TV12T) and the Mo source/drain electrode. The P3HT or PC12TV12T OFETs with the bare Mo electrode exhibited lower charge carrier mobility than those with Au owing to a large barrier height for hole injection (0.5-1.0 eV). By forming the V2O5 layer, the P3HT or PC12TV12T OFETs with V2O5 on the Mo electrode exhibited charge carrier mobility comparable to that of a pristine Au electrode. Best P3HT or PC12TV12T OFETs with 5 nm thick V2O5 on Mo electrode show the charge carrier mobility of 0.12 and 0.38 cm(2)/(V s), respectively. Ultraviolet photoelectron spectroscopy results exhibited the work-function of the Mo electrode progressively changed from 4.3 to 4.9 eV with an increase in V2O5 thickness from 0 to 5 nm, respectively. Interestingly, the V2O5-deposited Mo exhibits comparable Rc to Au, which mainly results from the decreased barrier height for hole carrier injection from the low-cost metal electrode to the frontier molecular orbital of the p-type polymer semiconductor after the incorporation of the transition metal oxide hole injection layer, such as V2O5. This enables the development of large-area, low-cost electronics with the Mo electrodes and V2O5 interlayer.

  15. Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition

    KAUST Repository

    Utzat, Hendrik

    2017-04-24

    A key challenge in achieving control over photocurrent generation by bulk-heterojunction organic solar cells is understanding how the morphology of the active layer impacts charge separation and in particular the separation dynamics within molecularly intermixed donor-acceptor domains versus the dynamics between phase-segregated domains. This paper addresses this issue by studying blends and devices of the amorphous silicon-indacenodithiophene polymer SiIDT-DTBT and the acceptor PCBM. By changing the blend composition, we modulate the size and density of the pure and intermixed domains on the nanometer length scale. Laser spectroscopic studies show that these changes in morphology correlate quantitatively with the changes in charge separation dynamics on the nanosecond time scale and with device photocurrent densities. At low fullerene compositions, where only a single, molecularly intermixed polymer-fullerene phase is observed, photoexcitation results in a ∼ 30% charge loss from geminate polaron pair recombination, which is further studied via light intensity experiments showing that the radius of the polaron pairs in the intermixed phase is 3-5 nm. At high fullerene compositions (≥67%), where the intermixed domains are 1-3 nm and the pure fullerene phases reach ∼4 nm, the geminate recombination is suppressed by the reduction of the intermixed phase, making the fullerene domains accessible for electron escape.

  16. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Brzozowska, A. M.; Spruijt, E.; de Keizer, A.; Stuart, M. A. Cohen; Norde, W.

    2011-01-01

    We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and pol

  17. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors

    KAUST Repository

    Gorenflot, Julien

    2017-09-28

    An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time-delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two-pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device-relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide-bandgap donor polymers: poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-3,4-thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices\\' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)-state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

  18. Radical polymer-wrapped SWNTs at a molecular level: High-rate redox mediation through a percolation network for a transparent charge-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wonsung; Nishide, Hiroyuki [Department of Applied Chemistry, Waseda University, Tokyo 169-8555 (Japan); Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology(GIST), Gwangju 500-712 (Korea, Republic of); Ohtani, Shota; Oyaizu, Kenichi [Department of Applied Chemistry, Waseda University, Tokyo 169-8555 (Japan); Geckeler, Kurt E. [Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology(GIST), Gwangju 500-712 (Korea, Republic of)

    2011-10-11

    A transparent nanocomposite of a radical polymer, the poly(2,2,6,6-tetramethylpiperidine-1-oxy-4-yl methacrylate) (PTMA), and single-walled carbon nanotubes (SWNTs) display a reversible charging and discharging, allowing for full discharging in seconds. This is ascribed to the reversible electrochemical reaction of the pendant radical group in PTMA aided by both PTMA wrapping at a molecular level and the SWNT network for electrical conduction. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    Science.gov (United States)

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  20. Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling

    Directory of Open Access Journals (Sweden)

    Ilenia De Luca

    2016-09-01

    Full Text Available Understanding the mechanisms by which mesenchymal stromal cells (MSCs interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior. The present study investigated the ability of two polymers (pHM1 and pHM3 with different positive surface charge densities to modulate the differentiation of MSCs into osteoblast-like phenotype via cell-cell ephrinB2/EphB4 signaling. Although pHM1 promoted the phosphorylation of EphB4, leading to cell differentiation, pHM3, characterized by a high positive surface charge density, had no significant effect on EphB4 activation or MSCs differentiation. When the MSCs were cultured on pHM1 in the presence of a forward signaling blocking peptide, the osteoblast differentiation was compromised. Our results demonstrated that the ephrinB2/EphB4 interaction was required for MSCs differentiation into an osteoblast-like phenotype and that the presence of a high positive surface charge density altered this interaction.

  1. Investigation of electric charge transport in conjugated polymer P3HT: PCBM solar cell with temperature dependent current and capacitance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peiqing; Mencaraglia, Denis; Darga, Arouna; Migan, Anne [Laboratoire de Genie Electrique de Paris, CNRS UMR 8507, SUPELEC, UPMC, Universite Paris VI, Universite Paris-Sud, 11 Rue Joliot Curie, Plateau de Moulon, 91192 Gif-Sur-Yvette Cedex (France); Rabdbeh, Roshanak; Ratier, Bernard; Moliton, Andre [Institut Carnot XLim, UMR 6172, CNRS, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France)

    2010-04-15

    We investigated quantitatively the electronic transport properties of a bulk heterojunction polymer/fullerene solar cell, based on structure Glass/ITO/P3HT:PCBM/Al. The current-voltage I-V characteristics in the intermediate positive bias and temperature regime (0.2 V {<=} V {<=} 1.5 V, 180 K {<=} T {<=} 250 K) can be well fitted by a modified Poole-Frenkel PF detrapping model. Combining these results with the high frequency capacitance measurements, we could then derive independently the absorber thickness and its dielectric constant. At low temperature (80 K {<=} T {<=} 170 K), the I-V data can be well accounted for with Space Charge Limited Current (SCLC) regimes. At intermediate positive bias (1 V {<=} V {<=} 2.3 V), the current is dominated by the trapped space charges with an exponential traps distribution, while at high positive bias (2.5 V {<=} V {<=} 4 V), the space charges due to injected free carrier play an important role for the conduction. From the fits to the two different SCLC models, we could then extract the electrically active defects parameters controlling the transport. These parameters were confirmed by space charge capacitance spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. ADHD and Oppositional Defiant Disorder

    OpenAIRE

    J Gordon Millichap

    2003-01-01

    The outcome of 131 children with ADHD (101 males, 30 females; mean age 5 years, range 3 to 7 years) with and without oppositional defiant disorder (ODD) was determined in a prospective study at the University of Goteborg, Sweden.

  3. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers.

    Science.gov (United States)

    Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin

    2015-05-27

    The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.

  4. The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells

    Science.gov (United States)

    Vasilopoulou, Maria

    2014-10-01

    In this work, the effect of surface hydrogenation of different metal oxides, in particular molybdenum and tungsten oxides widely used to enhance hole extraction and zinc and titanium oxides widely used to enhance electron extraction, on the nanomorphology and the charge generation efficiency of polymer blend solar cells is investigated. It was found that photoactive layers based on blends using different polymers, in particular poly(3-hexythiophene) (P3HT) and poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), which normally differ in both morphology and electronic structure, benefited, for both polymers, from deposition on metal oxides with high surface hydrogen content, in the sense that they exhibited improved crystallinity/order as revealed from X-ray diffraction, UV-vis absorption and elipsometric measurements. As a result, increased charge generation efficiencies and reduced recombination losses were measured in solar cells using metal oxides with highly hydrogenated surfaces at bottom electrodes and based on blends of either P3HT or PCDTBT, with a fullerene acceptor, as was verified by transient photocurrent measurements. The power conversion efficiency (PCE) of those cells reached values of 4.5% and 7.2%, respectively, an increase of about 30% compared with the cells using metal oxides with low surface hydrogen content.In this work, the effect of surface hydrogenation of different metal oxides, in particular molybdenum and tungsten oxides widely used to enhance hole extraction and zinc and titanium oxides widely used to enhance electron extraction, on the nanomorphology and the charge generation efficiency of polymer blend solar cells is investigated. It was found that photoactive layers based on blends using different polymers, in particular poly(3-hexythiophene) (P3HT) and poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2

  5. Diketopyrrolopyrrole-based Conjugated Polymer Entailing Triethylene Glycols as Side Chains with High Thin Film Charge Mobility without Post-Treatments.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Si-Fen; Liu, Zitong; Cai, Zheng-Xu; Dyson, Matthew J.; Stingelin, Natalie; Chen, Wei; Ju, Hua-Jun; Zhang, Guan-Xin; Zhang, De-Qing

    2017-08-01

    Side chain engineering of conjugated donor-acceptor polymers is a new way to manipulate their optoelectronic properties. Two new diketopyrrolopyrrole (DPP)-terthiophene-based conjugated polymers PDPP3T-1 and PDPP3T-2, with both hydrophilic triethylene glycol (TEG) and hydrophobic alkyl chains, are reported. It is demonstrated that the incorporation of TEG chains has a significant effect on the interchain packing and thin-film morphology with noticeable effect on charge transport. Polymer chains of PDPP3T-1 in which TEG chains are uniformly distributed can self-assemble spontaneously into a more ordered thin film. As a result, the thin film of PDPP3T-1 exhibits high saturated hole mobility up to 2.6 cm(2) V-1 s(-1) without any post-treatment. This is superior to those of PDPP3T with just alkyl chains and PDPP3T-2. Moreover, the respective field effect transistors made of PDPP3T-1 can be utilized for sensing ethanol vapor with high sensitivity (down to 100 ppb) and good selectivity.

  6. Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells.

    Science.gov (United States)

    Bansal, Neha; Reynolds, Luke X; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B; McCulloch, Iain; Rebois, Dylan G; Kirchartz, Thomas; Hill, Michael S; Molloy, Kieran C; Nelson, Jenny; Haque, Saif A

    2013-01-01

    The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used.

  7. Oppositions

    Science.gov (United States)

    Spindler, George; Spindler, Louise

    1984-01-01

    Sees Dobbert et al's model of cultural transmission (this issue) as generalizing, structural, mechanical, predetermined, formal, digital, and etic. Posits an alternative approach that is idiographic, processual, organic, open, nonformal, analogical, and attentive to emic data. Argues that the Dobbert model accounts inadequately for the implicit,…

  8. OPPOSITIONS CREATING HOMOUR IN JOKES

    Directory of Open Access Journals (Sweden)

    Umral Deveci

    2016-12-01

    Full Text Available Human beings, who perceive the reality of death however who do not know when it will happen, begin their life with this deficiency. Therefore, throughout their lives, they struggle to consummate and make up for the things that they perceive as deficiency or shortcomings through different ways. Humor is one of these means. The fact that deficiencies are eliminated results in superiority and relaxation. The sense of humor and relaxation simultaneously provide laughter. When theories of humor such as superiority, incongruous and relief are taken into consideration, it seems that these theories are related and support each other. Each text is whole with its form and content, which should be evaluated as a whole as much as possible. Hence this study dwells on shortcomings in jokes and in the lights of these shortcomings and theories of humor, it is intended tomake humor in stories, in terms of structural and semantic context, more concrete. Five stories/jokes randomly selected through samples are analyzed in this article. There are two basic types of opposition. The firstone is opposition that creates situation, the second one is thatcreates laughter. The first opposition depicts the shortcomings of knowledge, skill, patience arrogance and jealousyand prepares the second opposition. The opposition that creates laughter make up for shortcomings through cause and effect relationship and laughter comes out.

  9. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following Dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe.

    Science.gov (United States)

    Laopa, Praethong S; Vilaivan, Tirayut; Hoven, Voravee P

    2013-01-07

    As inspired by the Dot blot analysis, a well known technique in molecular biology and genetics for detecting biomolecules, a new paper-based platform for colorimetric detection of specific DNA sequences employing peptide nucleic acid (PNA) as a probe has been developed. In this particular study, a pyrrolidinyl PNA bearing a conformationally rigid d-prolyl-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) was used as a probe. The filter paper was modified to be positively charged with grafted polymer brushes of quaternized poly(dimethylamino)ethyl methacrylate (QPDMAEMA) prepared by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate from the filter paper via ARGET ATRP followed by quaternization with methyl iodide. Following the Dot blot format, a DNA target was first immobilized via electrostatic interactions between the positive charges of the QPDMAEMA brushes and negative charges of the phosphate backbone of DNA. Upon hybridization with the biotinylated pyrrolidinyl peptide nucleic acid (b-PNA) probe, the immobilized DNA can be detected by naked eye observation of the yellow product generated by the enzymatic reaction employing HRP-labeled streptavidin. It has been demonstrated that this newly developed assay was capable of discriminating between complementary and single base mismatch targets at a detection limit of at least 10 fmol. In addition, the QPDMAEMA-grafted filter paper exhibited a superior performance to the commercial membranes, namely Nylon 66 and nitrocellulose.

  10. Variable Charge Soils: Mineralogy and Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew; Baert, Geert

    2003-11-01

    ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.

  11. ADHD and Oppositional Defiant Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-10-01

    Full Text Available The outcome of 131 children with ADHD (101 males, 30 females; mean age 5 years, range 3 to 7 years with and without oppositional defiant disorder (ODD was determined in a prospective study at the University of Goteborg, Sweden.

  12. When Do Children Understand "Opposite"?

    Science.gov (United States)

    Phillips, Catherine I.; Pexman, Penny M.

    2015-01-01

    Purpose: The aims of the present research were to determine (a) the age at which children with typical development understand the concept of opposite, (b) whether this is related to other cognitive abilities or experiences, and (c) whether there is early implicit understanding of the concept. Method: Children (N = 204) between 3 and 5 years of age…

  13. Simple and rapid high performance liquid chromatography method for the determination of polidocanol as bulk product and in pharmaceutical polymer matrices using charged aerosol detection.

    Science.gov (United States)

    Ilko, David; Puhl, Sebastian; Meinel, Lorenz; Germershaus, Oliver; Holzgrabe, Ulrike

    2015-02-01

    Currently, neither the European nor the United States Pharmacopoeia provide a method for the determination of polidocanol (PD) content despite the fact that PD, besides being an excipient, is also used as an active pharmaceutical ingredient. We therefore developed a method where the PD content was determined using a Kinetex C18 column operated at 40°C with water-acetonitrile (15:85, v/v) as mobile phase. A Corona(®) charged aerosol detector was employed for the detection of PD that is lacking a suitable UV chromophore. The method was fully validated. Additionally, the method was applied for the determination of PD release from a pharmaceutical polymer matrix consisting of poly-ɛ-caprolactone and poly(lactic-co-glycolic acid) and PD.

  14. High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination.

    Science.gov (United States)

    Zeng, Qingsen; Hu, Lu; Cui, Jian; Feng, Tanglue; Du, Xiaohang; Jin, Gan; Liu, Fangyuan; Ji, Tianjiao; Li, Fenghong; Zhang, Hao; Yang, Bai

    2017-09-20

    Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

  15. Investigation of field-dependent charge carrier generation and recombination in polymer based solar cells by transient extraction currents

    Energy Technology Data Exchange (ETDEWEB)

    Kniepert, Juliane; Blakesley, James; Neher, Dieter [University of Potsdam (Germany)

    2011-07-01

    There is an ongoing discussion as to whether photoinduced charge transfer in P3HT:PCBM solar cells leads to fully separated electrons and holes, independent of an electric field, or Coulombically bound interfacial charge pairs. While recent studies by R.A. Marsh et al. with transient absorption spectroscopy gave clear evidence for the formation and field-induced dissociation of bound polaron pairs, measurements by I.A. Howard et al. were in favour of hot exciton dissociation. Here, we present the results of bias-dependent Time Delayed Collection Field (TDCF) measurements to access directly the density of free charge carriers in P3HT:PCBM blends coated from dichlorobenzene. Solvent annealing was applied to yield a phase-separated morphology and the corresponding solar cells exhibit high values for the external quantum efficiency and fill factor. Our setup allowed us to follow the generation and recombination of photogenerated charges with a so far unattained time resolution of 40 ns. Our experiments show that the number of collected carriers is independent of the applied bias during pulsed illumination implying that extractable carriers in P3HT:PCBM blends are not generated by the field-assisted separation of bound polaron pairs. In addition, our experiments support the view that bimolecular recombination of free carriers is strongly suppressed in phase-separated P3HT:PBCM blends.

  16. Opposite Degree Algorithm and Its Applications

    OpenAIRE

    Xiao-Guang Yue

    2015-01-01

    The opposite (Opposite Degree, referred to as OD) algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC) algorithm and opposite degree - Classification computation (OD-CC) algorithm.

  17. Opposite Degree Algorithm and Its Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Yue

    2015-12-01

    Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.

  18. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    Science.gov (United States)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  19. Fine-tuning of charge-conversion polymer structure for efficient endosomal escape of siRNA-loaded calcium phosphate hybrid micelles.

    Science.gov (United States)

    Maeda, Yoshinori; Pittella, Frederico; Nomoto, Takahiro; Takemoto, Hiroyasu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-07-01

    For efficient delivery of siRNA into the cytoplasm, a smart block copolymer of poly(ethylene glycol) and charge-conversion polymer (PEG-CCP) is developed by introducing 2-propionic-3-methylmaleic (PMM) amide as an anionic protective group into side chains of an endosome-disrupting cationic polyaspartamide derivative. The PMM amide moiety is highly susceptible to acid hydrolysis, generating the parent cationic polyaspartamide derivative at endosomal acidic pH 5.5 more rapidly than a previously synthesized cis-aconitic (ACO) amide control. The PMM-based polymer is successfully integrated into a calcium phosphate (CaP) nanoparticle with siRNA, constructing PEGylated hybrid micelles (PMM micelles) having a sub-100 nm size at extracellular neutral pH 7.4. Ultimately, PMM micelles achieve the significantly higher gene silencing efficiency in cultured cancer cells, compared to ACO control micelles, probably due to the efficient endosomal escape of the PMM micelles. Thus, it is demonstrated that fine-tuning of acid-labile structures in CCP improves the delivery performance of siRNA-loaded nanocarriers.

  20. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  1. Optimization of charge carrier transport balance for performance improvement of PDPP3T-based polymer solar cells prepared using a hot solution.

    Science.gov (United States)

    Wang, Jian; Zhang, Fujun; Zhang, Miao; Wang, Wenbin; An, Qiaoshi; Li, Lingliang; Sun, Qianqian; Tang, Weihua; Zhang, Jian

    2015-04-21

    Polymer solar cells (PSCs), with poly(diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the active layers, were fabricated using solutions of different temperatures. The best power conversion efficiency (PCE) of the PSCs prepared using a hot solution was about 6.22%, which is better than 5.54% for PSCs prepared using cool (room temperature) solutions and 5.85% for PSCs prepared using cool solutions with a 1,8-diiodooctane (DIO) solvent additive. The underlying reasons for the improved PCE of the PSCs prepared using a hot solution could be attributed to the more dispersive donor and acceptor distribution in the active layer, resulting in a better bi-continuous interpenetrating network for exciton dissociation and charge carrier transport. An enhanced and more balanced charge carrier transport in the active layer is obtained for the PSCs prepared using a hot solution, which can be determined from the J-V curves of the related hole-only and electron-only devices.

  2. Molecular Weight and Charge Density Asymmetry in Polyelectrolyte Complexation

    Science.gov (United States)

    Audus, Debra; Fredrickson, Glenn; Duechs, Dominik

    2009-03-01

    We investigate the phase diagram of oppositely charged polymers in a good solvent using a field-theoretic model. Mean-field solutions fail to predict the experimentally observed macroscopic phase separation into a solvent-rich phase and a dense liquid aggregate of polymers - a ``complex coacervate.'' We therefore study the model within a one-loop approximation, which accounts for Gaussian fluctuations in electrostatic and chemical potentials. Our particular focus is the effect of molecular weight, ionic strength, and charge asymmetry on the phase envelope. A set of dimensionless parameters is identified that dictate the size and shape of the two-phase region. Our results should be helpful in guiding experimental studies of coacervation.

  3. The Necessary Unity of Opposites

    DEFF Research Database (Denmark)

    Graham, Brian Russell

    For Frye, the history of ideas is characterized by sets of opposing views which result in repeated cyclical movements in that history. In this study, Brian Russell Graham argues that Frye's own thinking transcends the ordinary history of ideas and offers what might be thought of as a dialectical ......, The Necessary Unity of Opposites expertly clarifies Frye's dialectical thinking, while drawing attention to its structural connection to Blake, Frye's great preceptor....

  4. Exploiting Fluorescent Polymers To Probe the Self-Assembly of Virus-like Particles

    DEFF Research Database (Denmark)

    Caden-Nava, Ruben D.; Hu, Yufang; Garmann, Rees F.

    2011-01-01

    The inside surfaces of the protein shells of many viruses are positively charged, thereby enhancing the self-assembly of capsid proteins around their (oppositely charged) RNA genome. These proteins have been shown to organize similarly around a variety of nonbiological, negatively charged, polymers......), and that the total charge on the PSS exceeds that of the capsid protein by as much as a factor of 9. Here, we extend studies of this kind to PSS molecules that are sufficiently small that two or more can be packaged into VLPs. The use of 38 kDa PSS polymers that have been fluorescently labeled with Rhodamine B...... than that of the capsid protein by as much as a factor of 2. VLPs of this kind provide a versatile model system for determining the principles underlying self-assembly of controlled numbers of cargo molecules in nanocontainers of increasing size....

  5. Isolation and fractionation of CHO chromosomes in aqueous two phase systems using charged polymers and base specific macroligands.

    Science.gov (United States)

    Klaar, J; Kula, M R

    1986-02-01

    Chromosomes were isolated in a preparative scale by synchronisation of CHO cells with a double Thymidine block followed by an arrest in the metaphase by addition of Colcemid. Under proper cultivation conditions a mitotic index of 77% total cells could be routinely achieved. Bulk chromosome preparations free of nuclei and other subcellular particles have been obtained by low speed centrifugation followed by a 60 transfer countercurrent distribution using aqueous two phase systems composed of polyethylenglycol and dextran. The partition of CHO chromosomes previously purified in aqueous two phase systems were studied further to develop a protocol for the separation and isolation of individual chromosomes. Partition experiments with chromosomes changing the electrostatic phase potential by addition of charged PEG-derivatives suggest the existence of relatively highly charged chromosome groups. Most promising results with regard to separation were obtained using two PEG-derivatives, which interact specifically with the bases in DNA. For this affinity partitioning a GC- and AT-specific macroligand were employed. Comparing CCD's using each of these ligands information on the GC and AT content of exposed DNA in the chromosomes groups could be derived, demonstrating that specific sequences of DNA are accessible at the surface of metaphase chromosomes.

  6. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. II. Coulomb interaction effects in single conjugated polymer chains

    Science.gov (United States)

    Miranda, R. P.; Fisher, A. J.; Stella, L.; Horsfield, A. P.

    2011-06-01

    Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed.

  7. Solubilization of octane in cationic surfactant-anionic polymer complexes: effect of polymer concentration and temperature.

    Science.gov (United States)

    Zhang, Hui; Deng, Lingli; Zeeb, Benjamin; Weiss, Jochen

    2015-07-15

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effects of polymer concentration and temperature on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results showed that the CTAB binding capacity of carboxymethyl cellulose increased with increasing temperature from 301 to 323 K, and correspondingly the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to depend on temperature. The addition of carboxymethyl cellulose caused the solubilization in CTAB micelles to be less endothermic, and increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be mainly driven by enthalpy gains. Results suggest that increasing concentrations of the anionic polymer gave rise to a larger Gibbs energy decrease and a larger unfavorable entropy increase for octane solubilization in cationic surfactant micelles.

  8. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  9. FFAG lattice without opposite bends

    Science.gov (United States)

    Trbojevic, Dejan; Courant, Ernest D.; Garren, Al

    2000-08-01

    A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  10. FFAG lattice without opposite bends

    CERN Document Server

    Trbojevic, D; Garren, A

    2000-01-01

    A future 'neutrino factory' or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  11. Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The cationic charged water-soluble polyfluorenes containing 2,1,3-benzothiadiazole (BT) units (P1-3) have been synthesized and characterized. These polymers demonstrate intramolecular energy transfer from the fluorene units to the BT sites when oppositely charged hyaluronan is added due to the formation of electrostatic complexes, followed by a shift in emission color from blue to green or brown. Upon adding hyaluronidase, the hyaluronan is cleaved into fragments. The relatively weak electrostatic interactions of hyaluronan fragments with polyfluorenes keep their main chains separated and energy transfer from the fluorene units to the BT sites is inefficient, and the polyfluorenes recover their blue emissions. The complexes of conjugated polymers/hyaluronan can be utilized as probes for sensitive and facile fluorescence assays for hyaluronidase. The new assay method interfaces with the aggregation and light harvesting properties of conjugated polymers.

  12. Cationic conjugated polymers for homogeneous and sensitive fluorescence detection of hyaluronidase

    Institute of Scientific and Technical Information of China (English)

    AN LingLing; LIU LiBing; WANG Shu

    2009-01-01

    The cationic charged water-soluble polyfluorenee containing 2,1,3-benzothiadiazole (BT) units (P1--3) have been synthesized and characterized. These polymers demonstrate intramolecular energy transfer from the fluorene units to the BT sites when oppositely charged hyaluronan is added due to the forma-tion of electrostatic complexes, followed by a shift in emission color from blue to green or brown. Upon adding hyaluronidaee, the hyaluronan is cleaved into fragments. The relatively weak electrostatic in-teractions of hyaluronan fragments with polyfluorenes keep their main chains separated and energy transfer from the fluorene units to the BT sites is inefficient, and the polyfluorenes recover their blue emissions. The complexes of conjugated polymers/hyaluronan can be utilized as probes for sensitive and facile fluorescence assays for hyaluronidase. The new assay method interfaces with the aggrega-tion and light harvesting properties of conjugated polymers.

  13. A study of polymer-surfactant interactions by neutron reflectivity

    CERN Document Server

    Warren, N

    1999-01-01

    surfactants and their relative levels of interaction with the polymer. The surface behaviour of these systems was observed to be in many ways more remarkable than that of the bulk solution. In the high total surfactant concentration range, once all polymer molecules were associated with bound micelles, the extent of adsorption at the air-liquid interface was found to be dominated largely, as might be expected, by the solution monomer concentrations of the two surfactants. Prior to this, however, adsorption was dominated by the presence of a very surface active polymer-SDS complex which gave rise to enhanced SDS adsorption and low surface tensions compared with those found in polymer-free systems. The origin of this effect, being the stabilisation of the adsorbed SDS monolayer due to a reduction in the inter-headgroup repulsions through screening, by the charged polymer segments, suggests that this may be a characteristic feature of systems continuing a polyelectrolyte and an oppositely charged surfactant. In ...

  14. Charge mediation by ruthenium poly(pyridine) complexes in 'second-generation' glucose biosensors based on carboxymethylated beta-cyclodextrin polymer membranes.

    Science.gov (United States)

    Kosela, Edyta; Elzanowska, Hanna; Kutner, Wlodzimierz

    2002-04-01

    Four different poly(pyridine) complexes of ruthenium, viz. Ru(II)(trpy)(phen)(OH(2))](2+) (1), trans-[Ru(III)(2,2'bpy)(2)(OH(2))(OH)](2+) (2), [(2,2'bpy)(2)(OH)Ru(III)ORu(III)(OH)(2,2'bpy)(2)](4+) (3), and [Ru(II)(4,4'bpy)(NH(3))(5)](2+) (4) (2,2'bpy=2,2'-bipyridine, 4,4'bpy=4,4'-bipyridine, trpy=2,2',2"-terpyridine, phen=1,10-phenanthroline), were tested as non-physiological charge mediators of 'second-generation' glucose biosensors. The membranes for these biosensors were prepared by casting anionic carboxymethylated beta-cyclodextrin polymer films (beta-CDPA) directly onto the Pt or glassy carbon (GC) disk electrodes. Simultaneously, glucose oxidase (GOD) was immobilized in the films by covalent bonding and the Ru complexes were incorporated both by inclusion in the beta-CD molecular cavities and by ion exchange at the fixed carboxymethyl cation-exchange sites. The leakage of the mediator from the polymer has been minimized by adopting a suitable pre-treatment procedure. The biosensors catalytic activities increased in the order 1inclusion complex with beta-CD, the biosensor sensitivity was the highest and equal to 7.2 micro A mM(-1) cm(-2), detectability was as low as 1 mM, but the linear concentration range was limited only to 4 mM. In contrast, for complexes 2 and 3 the sensitivity was 0.4 and 3.2 micro A mM(-1) cm(-2), while the linear concentration range extended up to at least 24 and 14 mM glucose, respectively. Even though some common interfering substances, such as ascorbate, paracetamol or urea, are oxidized at potentials close to those of the Ru complex redox couples, their electro-oxidation currents at physiological concentrations are insignificant compared to those due to the biocatalytic oxidation of glucose. The biosensor response to glucose is reversible as demonstrated by the inhibition of GOD activity by Cu(II). That is, the Cu(II) concentration required to inhibit by half the response to glucose of the biosensor containing complex 2 was 1.0 m

  15. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels.

    Science.gov (United States)

    Kim, Sangsik; Huang, Jun; Lee, Yongjin; Dutta, Sandipan; Yoo, Hee Young; Jung, Young Mee; Jho, YongSeok; Zeng, Hongbo; Hwang, Dong Soo

    2016-02-16

    It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.

  16. Combating opposition in the Philippines.

    Science.gov (United States)

    Marcelino, A B

    1996-01-01

    The Philippine family planning movement has been in existence for 25 years. The Catholic Church, however, has launched a smear campaign against it with the shibboleths of antichild, antifamily, antilife, and pro-abortion that had to be countered by the association. At the Pro-Life's First Training Congress on Love, Life, and Family held in 1995 at the country's oldest Catholic university in Manila (University of Santo Tomas), charges were leveled against it and the International Planned Parenthood Federation as owners of multinational companies that manufacture infant formulas, contraceptives, and abortion machines. At the IPPF Members' Assembly in 1995 this anti-family planning campaign escalated with charges that the IPPF was the agent of free sex, promiscuity, and low morality. All this in the face of IPPF's strong commitment to reproductive rights embodied in the Cairo and Beijing conference concluding documents on reproductive health. The President of the Philippines also addressed this meeting and voiced his support for family planning as an integral part of national development. The major issues in this arena are the gender relations between men and women; prevailing cultural norms and beliefs; lack of information and education; inadequate health care delivery; and poverty. In this climate Pro-Life, Philippines and Human Life International are outspoken in their 1996-98 advocacy campaign to: 1) capture key local government positions and promote their anti-FP agenda; 2) to undertake grassroots education through the Church's Family Life Apostolate; and 3) to campaign for the removal of population education currently being introduced in public schools and replace them with anti-FP and anti-population control education modules. This campaign poses a major challenge for the Philippine FP organization to work toward: 1) changing the knowledge, attitudes, and practices of women and couples toward FP; 2) changing the knowledge, attitudes, and practices of decision

  17. The effect of charge on the release kinetics from polysaccharide–nanoclay composites

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, Stefano Del; Grifoni, Emanuele; Ridi, Francesca, E-mail: francesca.ridi@unifi.it; Baglioni, Piero, E-mail: piero.baglioni@unifi.it [University of Florence, Department of Chemistry “Ugo Schiff” and CSGI (Italy)

    2015-03-15

    The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

  18. The effect of charge on the release kinetics from polysaccharide-nanoclay composites

    Science.gov (United States)

    Del Buffa, Stefano; Grifoni, Emanuele; Ridi, Francesca; Baglioni, Piero

    2015-03-01

    The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

  19. Stability of complex coacervate core micelles containing metal coordination polymer.

    Science.gov (United States)

    Yan, Yun; de Keizer, Arie; Cohen Stuart, Martien A; Drechsler, Markus; Besseling, Nicolaas A M

    2008-09-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.

  20. Around and Beyond the Square of Opposition

    CERN Document Server

    Béziau, Jean-Yves

    2012-01-01

    aiThe theory of oppositions based on Aristotelian foundations of logic has been pictured in a striking square diagram which can be understood and applied in many different ways having repercussions in various fields: epistemology, linguistics, mathematics, psychology. The square can also be generalized in other two-dimensional or multi-dimensional objects extending in breadth and depth the original theory of oppositions of Aristotle. The square of opposition is a very attractive theme which has been going through centuries without evaporating. Since 10 years there is a new growing interest for

  1. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.

    Science.gov (United States)

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2014-03-18

    To understand interactions between polymer surfaces and different functional groups in proteins, interaction forces were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Various polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization as well-defined model surfaces to understand protein adsorption behavior. The polymer brush layers consisted of phosphorylcholine groups (zwitterionic/hydrophilic), trimethylammonium groups (cationic/hydrophilic), sulfonate groups (anionic/hydrophilic), hydroxyl groups (nonionic/hydrophilic), and n-butyl groups (nonionic/hydrophobic) in their side chains. The interaction forces between these polymer brush surfaces and different functional groups (carboxyl groups, amino groups, and methyl groups, which are typical functional groups existing in proteins) were quantitatively evaluated by force-versus-distance curve measurements using atomic force microscopy with a functional-group-functionalized cantilever. Furthermore, the amount of adsorbed protein on the polymer brush surfaces was quantified by surface plasmon resonance using albumin with a negative net charge and lysozyme with a positive net charge under physiological conditions. The amount of proteins adsorbed on the polymer brush surfaces corresponded to the interaction forces generated between the functional groups on the cantilever and the polymer brush surfaces. The weakest interaction force and least amount of protein adsorbed were observed in the case of the polymer brush surface with phosphorylcholine groups in the side chain. On the other hand, positive and negative surfaces generated strong forces against the oppositely charged functional groups. In addition, they showed significant adsorption with albumin and lysozyme, respectively. These results indicated that the interaction force at the functional group level might be

  2. Electrochemical characterization of surface-bound redox polymers derived from 1,1'-bis(((3-(triethoxysilyl)propyl)amino)carbonyl)cobaltocenium: charge transport, anion binding, and use in photoelectrochemical hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.A.; Mallouk, T.E.; Daube, K.A.; Wrighton, M.S.

    1985-09-25

    This paper describes the behavior of electrode-bound redox material derived from the hydrolysis of the -Si(OEt)/sub 3/ groups of 1,1'-bis(((3-(triethoxysilyl)propyl)amino)carbonyl)cobaltocenium (I). Surfaces of the conventional electrodes SnO/sub 2/ and Pt derivatized with I have a reversible electrochemical response in H/sub 2/O/electrolyte; the E/sup 0/' is pH independent at -0.62 V vs. SCE. The photoelectrochemical behavior of p-type Si photocathodes derivatized with I reveals that the photoreduction of the cobaltocenium derivative can be effected at an electrode potential approx. 500 mV more positive than on metallic electrodes, consistent with the known behavior of p-type Si photocathodes. When polymer from I is deposited on p-type Si and subsequently coated with a small amount of Rh or Pd (approx. 10/sup -7/ mol/cm/sup 2/), the photoelectrochemical generation of H/sub 2/ is possible with 632.8-nm (approx. 15 mW/cm/sup 2/) radiation and efficiencies in the vicinity of 2%. The polymer derived from I is more optically transparent and more durable at negative potentials than redox polymers derived from vilogen monomers. Potential-step measurements and steady-state-current measurements for mediated redox processes show that the charge-transport rate for the polymer derived from I is about the same as for polymers from viologen monomers. 32 references, 8 figures.

  3. Spacecraft dielectric material properties and spacecraft charging

    Science.gov (United States)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  4. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo

    2007-03-01

    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  5. Electrostatic wire stabilizing a charged particle beam

    Science.gov (United States)

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  6. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  7. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  8. Quasi-solid state polymer electrolytes for dye-sensitized solar cells. Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nazmutdinova, G.; Sensfuss, S.; Schroedner, M. [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany); Hinsch, A. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Sastrawan, R. [Freiburg Materials Research Center FMF, Stefan-Meier-Street 21, 79104 Freiburg (Germany); Gerhard, D.; Himmler, S.; Wasserscheid, P. [Friedrich-Alexander-University, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2006-11-30

    Quasi-solid state polymer electrolytes have been prepared from poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) as gelator for 1-ethyl-3-methylimidazolium based ionic liquids (with anions like trifluoromethanesulfonate [EMIM][TfO], bis(trifluoromethanesulfonyl)imide [EMIM][Tf{sub 2}N]) and polyacrylonitrile (PAN) for gelation of 1-ethyl-3-methylimidazolium dicyanamide [EMIM][DCA] as well as I{sup -}/I{sub 3}{sup -} as the redox couple. All electrolytes exhibit high ionic conductivity in the range of 10{sup -3} S/cm. The effect of gelation, redox couple concentration, I{sup -}/I{sub 3}{sup -} ratio, choice of cations and additives on the triiodide diffusion and charge-transfer resistance of the platinum/electrolyte interface (R{sub ct}) were studied. The apparent diffusion coefficient of triiodide ion (D(I{sub 3}{sup -})) at various iodide/triiodide ratios in liquid and gelified electrolytes has been calculated from measurements of the diffusion limited current (I{sub lim}) in electrochemical cell resembling the set-up of a dye-sensitized solar cell. The charge-transfer resistance of the platinum/electrolyte interface as well as the capacitance of the electrical double layer (C{sub dl}) have been calculated from impedance measurements. Electrolytes with reduced content of polymer (2.5 wt.%) were doped with Al{sub 2}O{sub 3} particles of different sizes (50 nm, 300 nm, 1 {mu}m). The dispersion of the particles proceeds by speedy stirring of the hot electrolyte and the addition of PAN provides a homogeneous suspension. The addition of Al{sub 2}O{sub 3} particles causes a slight increase of the triiodide diffusion constants. Furthermore the suggested enhancement of the charge transfer rate shows a dependence on the size of the particles. (author)

  9. Light-Modulation of the Charge Injection in a Polymer Thin-Film Transistor by Functionalizing the Electrodes with Bistable Photochromic Self-Assembled Monolayers.

    Science.gov (United States)

    Mosciatti, Thomas; Del Rosso, Maria G; Herder, Martin; Frisch, Johannes; Koch, Norbert; Hecht, Stefan; Orgiu, Emanuele; Samorì, Paolo

    2016-08-01

    High fatigue resistance, bistability, and drastic property changes among isomers allow efficient modulation of the current output of organic thin-film transistors (OTFTs) to be obtained by a photogating of the charge-injection mechanism.

  10. Reversible Charge Trapping in Bis-Carbazole-Diimide Redox Polymers with Complete Luminescence Quenching Enabling Nondestructive Read-Out by Resonance Raman Spectroscopy

    NARCIS (Netherlands)

    Kortekaas, Luuk; Lancia, Federico; Steen, Jorn D; Browne, Wesley R

    2017-01-01

    The coupling of substituted carbazole compounds through carbon-carbon bond formation upon one-electron oxidation is shown to be a highly versatile approach to the formation of redox polymer films. Although the polymerization of single carbazole units has been proposed earlier, we show that by

  11. Polymer Physics Prize Lecture: Polyelectrolyte complexes: New routes to useful soft materials

    Science.gov (United States)

    Tirrell, Matthew

    2012-02-01

    Mixtures of oppositely charged polyelectrolytes may form precipitates (phase-separated solids) or coacervates (phase-separated fluids). Coacervates have been known for a long time to have interesting properties such as very low interfacial tension with water and a resultant ability to coat surfaces, engulf particles and invade porous media. Most prior work on coacervate complexes has been done with structurally complex (e.g., gum Arabic), biologically derived macromolecules (e.g., gelation). Our work is focusing on phase behavior and self-assembly in classes of structurally simpler polymers. Polypeptides are one such class, where we can produce anionic, cationic and neutral, water-soluble polymers all with the some backbone and varying in small side-group structures. We are able to demonstrate very general patterns in phase behavior over different members of this class of polymers. Coacervate formation is the rule rather than the exception in these materials, with such formation quite strongly peaked at balanced stoichiometry of the polyelectrolyte components. One molar salt is usually sufficient to dissolve the coacervate phases that form. Block copolymer mixtures containing oppositely charged blocks can form self-assembled structures: micelles with diblocks and hydrogels with triblocks. The structure and properties of these assemblies can be tuned based on knowledge of the bulk phase behavior response to molecular weight, stoichiometry and salt concentration. Examples of phase behavior and structure-property relationship will be discussed.

  12. Direct observation of UV-induced charge accumulation in inverted-type polymer solar cells with a TiOx layer: Microscopic elucidation of the light-soaking phenomenon

    Science.gov (United States)

    Son, D.; Kuwabara, T.; Takahashi, K.; Marumoto, K.

    2016-09-01

    The mechanism of light-soaking phenomenon in inverted-type organic solar cells (IOSCs) with a structure of indium-tin-oxide/TiOx/P3HT:PCBM/Au was studied by electron spin resonance (ESR) spectroscopy. Charge accumulation in the cell during UV-light irradiation was observed using ESR, which was clearly correlated with the light-soaking phenomenon. The origin of the charge accumulation is clarified as holes that are deeply trapped at p-type P3HT polymer-chain ends with bromine after hole transfer from the band excitation in the TiOx layer. The holes are considered to be electrostatically attracted to trapped electrons in the TiOx layer after the band excitation. These accumulated charges are the origin of the light-soaking phenomenon. Our results strongly suggest that passivation of the residual OH groups in the TiOx layer is needed to avoid the light-soaking phenomenon by preventing electron trappings, a step that is indispensable in the operation of highly stable IOSCs without UV-light irradiation based on a low-cost and low-temperature device fabrication process using flexible plastic substrates.

  13. Understanding opposition in green advertising: The opposite does not always attract

    NARCIS (Netherlands)

    Bialkova, Svetlana; Bialkova, Svetlana; Hubner, Arlette; Fenko, Anna; Warlop, L.; Muylle, S.

    2015-01-01

    Opposition (contrasting images and/or verbal cues) is acknowledged as a powerful tool to increase ads recall. Yet, no evidence exists whether opposition may be efficiently used in green advertising. The current study addresses this issue. European consumers (N=120) were exposed to print ads. Type of

  14. Understanding opposition in green advertising: The opposite does not always attract

    NARCIS (Netherlands)

    Bialkova, Svetlana; Hubner, Arlette; Fenko, Anna; Warlop, L.; Muylle, S.

    2015-01-01

    Opposition (contrasting images and/or verbal cues) is acknowledged as a powerful tool to increase ads recall. Yet, no evidence exists whether opposition may be efficiently used in green advertising. The current study addresses this issue. European consumers (N=120) were exposed to print ads. Type of

  15. Physics of photorefraction in polymers

    CERN Document Server

    West, Dave

    2004-01-01

    Photorefractive polymer composites are an unusually sensitive class of photopolymers. Physics of Photorefraction in Polymers describes our current understanding of the physical processes that produce a photorefractive effect in key composite materials. Topics as diverse as charge generation, dispersive charge transport, charge compensation and trapping, molecular diffusion, organic composite structure, and nonlinear optical wave coupling are all developed from a physical perspective. Emphasis is placed on explaining how these physical processes lead to observable properties of the polymers, and the authors discuss various applications, including holographic archiving.

  16. Treating Depression and Oppositional Behavior in Adolescents

    Science.gov (United States)

    Jacobs, Rachel H.; Becker-Weidman, Emily G.; Reinecke, Mark A.; Jordan, Neil; Silva, Susan G.; Rohde, Paul; March, John S.

    2010-01-01

    Adolescents with depression and high levels of oppositionality often are particularly difficult to treat. Few studies, however, have examined treatment outcomes among youth with both externalizing and internalizing problems. This study examines the effect of fluoxetine, cognitive behavior therapy (CBT), the combination of fluoxetine and CBT, and…

  17. Oppositional Defiant Disorder in Adults with ADHD

    Science.gov (United States)

    Reimherr, Frederick W.; Marchant, Barrie K.; Olsen, John L.; Wender, Paul H.; Robison, Reid J.

    2013-01-01

    Objective: Oppositional defiant disorder (ODD) is the most common comorbid condition in childhood ADHD. This trial was prospectively designed to explore ODD symptoms in ADHD adults. Method: A total of 86 patients in this placebo-controlled, double-blind trial of methylphenidate transdermal system (MTS) were categorized based on the presence of ODD…

  18. Affiliation of Opposite-Sexed Strangers

    Science.gov (United States)

    Crouse, Bryant Bernhardt; Mehrabian, Albert

    1977-01-01

    Examines the effects of physical attractiveness on live verbal interactions between males and females. It was assumed that if opposite-sexed individuals primarily base their liking of the other on physical attractiveness, then subjects should be more positive and affiliative with attractive than unattractive others. (Author/RK)

  19. What is the opposite of cat?

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Leron, Uri

    2016-01-01

    the open and interactive teaching approach needed to achieve students' active participation and reflection. To demonstrate these challenges, and our experience of trying to cope with them, we have chosen the concept of "inverses" as used in group theory, and its common sense precursor "opposites". We...

  20. Comparing potato tuberization and sprouting: opposite phenomena

    NARCIS (Netherlands)

    Vreugdenhil, D.

    2004-01-01

    The regulation of tuber formation and tuber sprouting are compared. As a starting point it is hypothesized that these two phenomena are opposite to each other. This idea is tested from three points of view: hormonal regulation, gene expression, and carbohydrate metabolism. It is concluded that there

  1. Macrokinetic calculation of the ignition of a solid-fuel charge of glycidyl azide polymer in the mini-engine of a microelectromechanical system

    Science.gov (United States)

    Fut'ko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.

    2011-11-01

    The process of ignition of the solid fuel from glycidyl azide polymer in the mini-engine of a microelectromechanical system has been considered. Macrokinetic calculations of the self-ignition temperature of the fuel and the induction period for different heat transfer conditions have been made. On the basis of the critical thermal flux determination, recommendations on the choice of the minimum power and size of the thermistor in the igniter of the solid-fuel mini-engine have been formulated.

  2. Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhe; Gao, Feng; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom)

    2011-04-22

    We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3-hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl-C{sub 61}-butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,2-diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge-separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long-lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap-free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long-lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Neutrino Production of Opposite Sign Dimuons at the Fnal TEVATRON*.

    Science.gov (United States)

    Foudas, Constantinos

    Neutrino-Nucleon (nu-N) interactions with two opposite sign muons (mu ^-mu^+) in the final state have been studied using the CCFR Detector and the Fermilab Quad Triplet Beam (FNAL-E744). In a sample of 670,000 nu-N and 124,000 |nu -N charged-current interactions, a total of 1522 nu-induced and 275 | nu-induced mu^-mu ^+ events have been observed, with 30 GeV 9 GeV/c for both muons. The opposite sign dimuon data are consistent with the slow rescaling hypothesis of charm production in nu-N scattering, and within this formalism yield, a value of the charm quark mass parameter m_ c = 1.31_sp{ -0.48}{+0.64} GeV/c^2 . Using the opposite sign dimuon data after background subtraction we measured the strange quark content of the nucleon eta_ s = 0.057 _sp{-0.008}{+0.012} and the Kobayashi-Maskawa (KM) matrix element | V_{cd}| = 0.220_sp{ -0.018}{+0.015}. The nucleon momentum fraction carried by the strange quarks relative to non -strange quarks in the quark sea is kappa = 0.44_sp{-0.07}{+0.11 } which is approximately half that expected for an SU(3) flavor symmetric quark sea, and the strange quark momentum distribution is consistent with that of | u and | d. ftn*Research supported by the National Science Foundation. Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences, Columbia University.

  4. Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend

    NARCIS (Netherlands)

    Li, X.; Smaal, W.T.T.; Kjellander, C.; Putten, B. van der; Gualandris, K.; Smits, E.C.P.; Anthony, J.; Broer, D.J.; Blom, P.W.M.; Genoe, J.; Gelinck, G.H.

    2011-01-01

    We present a systematic study of the influence of material composition and ink-jet processing conditions on the charge transport in bottom-gate field-effect transistors based on blends of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-PEN) and polystyrene. After careful process optimizations of

  5. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  6. Effects of Acid and Ionic Aggregation on the Polymer Dynamics in Precise Ionomers

    Science.gov (United States)

    Middleton, Luri Robert; Tarver, Jacob; Azoulay, Jason; Murtagh, Dustin; Wagener, Ken; Cordaro, Joseph; Tyagi, Madhu; Soles, Christopher; Winey, Karen

    2015-03-01

    Interest in acid- and ion-containing polymers arises from applications as single-ion conductors for selectively transporting a counter ion of the opposite charge for energy applications. The relatively low dielectric constant of the organic polymer and strong ionic interactions leads to ionic aggregation. Ion aggregation anchors the polymer chain, decreasing the mobility of the ion and the polymer. In precise poly(ethylene-acrylic acid) copolymers and ionomers (pxAA-%Li) we report on the effect of carbon spacer length (x =9, 15, 21) between the acid groups and the effect of the percent of acid groups neutralized with Li on backbone dynamics. The polymer backbone motion is investigated through quasi-elastic neutron scattering measurements. At nano-second timescales a single relaxation fits the data. Systematic changes in dynamics were observed with increasing neutralization percent where polymer dynamics are confined due to anchoring effects. Intriguingly, systematic changes in the spacer lengths did not result in similar behavior. At pico-second timescales multiple overlapping relaxations are observed but even at these short timescales systematic changes in atomic motion are observed with ion content. NSF-DMR-1103858.

  7. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  9. Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor-Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation.

    Science.gov (United States)

    Jin, Shangbin; Supur, Mustafa; Addicoat, Matthew; Furukawa, Ko; Chen, Long; Nakamura, Toshikazu; Fukuzumi, Shunichi; Irle, Stephan; Jiang, Donglin

    2015-06-24

    By developing metallophthalocyanines and diimides as electron-donating and -accepting building blocks, herein, we report the construction of new electron donor-acceptor covalent organic frameworks (COFs) with periodically ordered electron donor and acceptor π-columnar arrays via direct polycondensation reactions. X-ray diffraction measurements in conjunction with structural simulations resolved that the resulting frameworks consist of metallophthalocyanine and diimide columns, which are ordered in a segregated yet bicontinuous manner to form built-in periodic π-arrays. In the frameworks, each metallophthalocyanine donor and diimide acceptor units are exactly linked and interfaced, leading to the generation of superheterojunctions-a new type of heterojunction machinery, for photoinduced electron transfer and charge separation. We show that this polycondensation method is widely applicable to various metallophthalocyanines and diimides as demonstrated by the combination of copper, nickel, and zinc phthalocyanine donors with pyrommellitic diimide, naphthalene diimide, and perylene diimide acceptors. By using time-resolved transient absorption spectroscopy and electron spin resonance, we demonstrated that the COFs enable long-lived charge separation, whereas the metal species, the class of acceptors, and the local geometry between donor and acceptor units play roles in determining the photochemical dynamics. The results provide insights into photoelectric COFs and demonstrate their enormous potential for charge separation and photoenergy conversions.

  10. On Peres' statement "opposite momenta lead to opposite directions", decaying systems and optical imaging

    CERN Document Server

    Struyve, W; De Neve, J; De Weirdt, S

    2004-01-01

    We re-examine Peres' statement ``opposite momenta lead to opposite directions''. It will be shown that Peres' statement is only valid in the large distance or large time limit. In the short distance or short time limit an additional deviation from perfect alignment occurs due to the uncertainty of the location of the source. This error contribution plays a major role in Popper's orginal experimental proposal. Peres' statement applies rather to the phenomenon of optical imaging, which was regarded by him as a verification of his statement. This is because this experiment can in a certain sense be seen as occurring in the large distance limit. We will also reconsider both experiments from the viewpoint of Bohmian mechanics. In Bohmian mechanics particles with exactly opposite momenta will move in opposite directions. In addition it will prove particularly usefull to use Bohmian mechanics because the Bohmian trajectories coincide with the conceptual trajectories drawn by Pittman et al. In this way Bohmian mechan...

  11. 典型空间聚合物介质的抗内带电改性技术%Internal charging protection technology of typical space polymer dielectric material

    Institute of Scientific and Technical Information of China (English)

    王金锋; 郑晓泉; 李盛涛; 白婧婧

    2011-01-01

    消除航天器介质内带电所产生脉冲放电威胁的最佳方式,除有效屏蔽外,就是研制不会产生脉冲放电的介质材料和绝缘结构件.通过对航天器用聚酰亚胺、环氧树脂和聚四氟乙烯等几种典型聚合物的改性研究发现,采用微米级无机粉料对聚合物介质材料进行改性,只要添加剂的电导率显著低于聚合物的电导率,该复合介质材料即可产生显著的非线性电阻率特性,可以实现在介质内带电程度达到放电阈值时迅速以非脉冲电导电流方式释放掉所储存的危险电荷,有可能达到消除脉冲放电的目标;当该添加剂含有微量"施主"杂质时甚至还可以提高介质材料在正常情况下的电阻率.对复合介质非线性电阻特性的产生机理进行了分析.%Besides efficient shield, the best method for eliminating the pulsed discharge induced by the deep charge of spacecraft dielectric was to use dielectric materials or insulation structural components that never produce any pulsed discharges. By non-linearity modification experiment research on several typical polymer dielectrics like Polyimide, Epoxide resin and Teflon, it was found that through the addition of the inorganic powder that possess a conductivity much higher than that of the polymer, the composite dielectric material would produce a remarkable non-linearity conductance character. By this way,the excessive charges would be discharged as a method of non-pulsed conducting current before the deep dielectric charging reaches the discharge threshold. It was proved that, even the normal resistance could be increased by this method. Finally,the mechanism on the non-linearity conductance of the composite material was investigated.

  12. 两种典型星用聚合物介质抗内带电改性防护技术研究%STUDY ON THE DEEP DIELECTRIC CHARGING PROTECTION TECHNOLOGY OF TWO TYPICAL POLYMERS ON SPACECRAFT

    Institute of Scientific and Technical Information of China (English)

    乌江; 康亚丽; 张振军; 郑晓泉

    2012-01-01

    空间高能电子辐射易造成星用聚合物介质内带电水平过高,是卫星运行可靠性的潜在威胁因素.对航天器介质材料进行非线性电导改性是提高航天器介质材料自释电荷能力,进而降低内带电水平的有效方法.实验选用半导电无机添加剂对典型空间聚合物材料聚四氟乙烯、聚酰亚胺进行改性工艺和电导特性研究,测量了常态体电导率与添加剂含量关系,不同含量添加剂下复合材料体电导率随温度与电场的变化规律以及复合材料的导热性能参数.实验表明,添加剂含量会显著影响复合材料的体电导特性及导热特性,特别是复合材料的非线性电导特性阈值电场降低最为明显.这种既能保持高绝缘性能又具有良好非线性电导特性的新型复合介质材料,有希望成为从根本上解决星用聚合物介质深层带电问题的有效措施.%The high-energy electron radiation can easily lead to the high level of deep dielectric charging in spacecraft used polymers, which is the potential threat to the operation of spacecraft. The conduction modification is an effective method to raise the charge releasing ability of the material and lower down the level of deep dielectric charging. A kind of semi-conductive inorganic filler is doped into the two typical spacecraft polymers, polytetrafluoroethylene ( PTFE) and polyimide ( PI) , and the processing technology and conduction properties of the composites were studied. The normal state conductivity, the temperature-dependent conduction property, the nonlinear conduction property and the thermal conductivity of the composites with different filler contents were measured. The experimental results indicate that, the electrical conduction and the thermal conduction are both influenced by the inorganic filler, especially the threshold field of the nonlinear conduction property drops obviously. The composites, possessing the high insulation and nonlinear

  13. A Study of Binary Opposites in The Great Gatsby

    Institute of Scientific and Technical Information of China (English)

    宋天祎

    2015-01-01

    <正>1.Introduction to Binary Opposition A binary opposition is a pair of related terms or concepts that are opposite in meaning.It refers to a system in which two theoretical opposites are strictly defined and set off against one another.It is the contrast between two mutually exclusive terms,such as on and off,up and down,left and right.Binary opposition is also an important concept of modern

  14. Photorefractive polymers with low intrinsic trap density

    NARCIS (Netherlands)

    Bolink, HJ; Krasnikov, VV; Hadziioannou, G; Ducharme, S; Stasiak, JW

    1997-01-01

    Two novel photorefractive polymers are presented, based on the charge transport molecule N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD). In one polymer the TPD unit is chemically modified so that it can function both as charge transport and as electro-optic molecule. In

  15. Electrochemical analysis of the alterations in copper pigments using charge transfer coefficient/peak potential diagrams. Application to microsamples of baroque wall paintings attached to polymer film electrodes.

    Science.gov (United States)

    Doménech-Carbó, A; Doménech-Carbó, M T; Gimeno-Adelantado, J V; Bosch-Reig, F; Saurí-Peris, M C; Casas-Catalán, M J

    2001-04-01

    The alteration of copper pigments in art samples was studied by linear scan and cyclic voltammetry using sample-modified Elvacite 2044 film electrodes on the basis of two-dimensional diagrams of charge transfer coefficients calculated from Tafel plots of reductive dissolution processes vs. peak potential. Characteristic voltammetric peaks were obtained for pigments used in the baroque vault frescoes of the Basílica de la Virgen de los Desamparados painted by Antonio Palomino. Results obtained by voltammetric techniques were compared with those from SEM/EDX and FT-IR analysis obtaining a good agreement and leaving to an unambiguous identification of pigments used by Palomino and their alteration products.

  16. Nonlocality and entanglement as opposite properties

    CERN Document Server

    Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A

    2011-01-01

    We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.

  17. Russia and Human Rights: Incompatible Opposites?

    Directory of Open Access Journals (Sweden)

    Bill Bowring

    2009-04-01

    Full Text Available The Article raises in his article “Russia and human rights: incompatible opposites?” the question, if the currently complicated relations between Russia and the CoE concerning Russia’s obligations under the ECHR are at breaking-point. In regard to this issue he gives a description of the history of law in Russia to prove the pre-existing tradition of argument about human rights.

  18. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  19. Conjugate polymers and electronic conductive polymers; Polymeres conjugues et polymeres conducteurs electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Attias, A.J. [Universite Pierre et Marie Curie, Lab. de Chimie Macromoleculaire, UMR 7610 - CNRS, 75 - Paris (France)

    2002-05-01

    In some certain conditions a plastic material can become conductive (synthetic metal). To become conductive, a polymer must be conjugate (alternance of simple and multiple bonds) and doped (electron removal or addition). This article presents the recent advances and trends of the research on conductive polymers. The role of {pi} electrons in the conjugate systems is recalled in a first part. The description of energy states of conjugate polymers in terms of bands structure allow to consider them as organic semiconductors. Thus, it is possible to generate charged species by doping, charge injection or photo-excitation. These charge carriers, the conduction mechanisms and the related applications are presented. The chemistry and synthesis of these polymers are presented in a second part: 1 - evolution of research; 2 - physics of conductive polymers (role of {pi} electrons in conjugate polymers, {pi}-electrons conjugate compounds, influence of conjugation length and notion of bands structure, charges-doping generation, conductive polymers, chemical doping and electrical conduction, charge injection at the conjugate semiconductor metal-polymer interface: electro-luminescent polymers, charge creation by photo-excitation: polymers for photovoltaic cells); 3 - chemistry of conductive polymers (role of synthesis, monomers choice, other trends). (J.S.)

  20. Rain Drop Charge Sensor

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  1. Substrate Temperature Effect on Charge Transport Performance of ZnO Electron Transport Layer Prepared by a Facile Ultrasonic Spray Pyrolysis in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiang Cheng

    2015-01-01

    Full Text Available A novel ultrasonic spray pyrolysis for high-quality ZnO films based on zinc-ammonia solution was achieved in air. To investigate the structural and optical properties as well as the performance of polymer solar cells (PSCs, ZnO films at different substrate temperatures and thicknesses were prepared. The performance of poly(3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM based PSC was found to be improved due to the ZnO films. The crystal structure and roughness of the ZnO films fabricated at different temperatures were found to affect the performance of PSCs. The optimized power conversion efficiency was found to be maximum for PSCs with ZnO films prepared at 200°C. The growth process of these ZnO films is very simple, cost-effective, and compatible for larger-scale PSC preparation. The precursor used for spray pyrolysis is environmentally friendly and helps to achieve ZnO film preparation at a relative low temperature.

  2. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM.

    Science.gov (United States)

    Pradeep, U W; Villani, M; Calestani, D; Cristofolini, L; Iannotta, S; Zappettini, A; Coppedè, N

    2017-01-20

    Hole collection and transport are crucial physical processes in bulk-heterojunction (BHJ) solar cells, which represent major bottlenecks due to their limitations in power conversion efficiency (PCE). Hence, a more efficient alternative is needed to accept and transport holes to the collection electrode in BHJ solar cells. Here, we bring both electron and hole collection centres close to the point of exciton generation by infiltrating P3HT poly(3-hexylthiophene):PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) blend into a highly porous interconnected p-type NiO-nanoparticle (NiO-np) network, through solvent-assisted grafting. In this study, a hybrid polymer solar cell is demonstrated with a P3HT:PCBM:NiO-np triple-heterojunction active layer which showed greatly improved rectification behaviour, long electron lifetime and generated higher PCE of 4% under AM 1.5 solar illumination with a 75% increase in PCE with respect to the P3HT:PCBM device. The optimum NiO-np amount and active-layer thickness were found to be 2% and 250 nm, respectively.

  3. Charge-separation enhancement in inverted polymer solar cells by molecular-level triple heterojunction: NiO-np:P3HT:PCBM

    Science.gov (United States)

    Pradeep, U. W.; Villani, M.; Calestani, D.; Cristofolini, L.; Iannotta, S.; Zappettini, A.; Coppedè, N.

    2017-01-01

    Hole collection and transport are crucial physical processes in bulk-heterojunction (BHJ) solar cells, which represent major bottlenecks due to their limitations in power conversion efficiency (PCE). Hence, a more efficient alternative is needed to accept and transport holes to the collection electrode in BHJ solar cells. Here, we bring both electron and hole collection centres close to the point of exciton generation by infiltrating P3HT poly(3-hexylthiophene):PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) blend into a highly porous interconnected p-type NiO-nanoparticle (NiO-np) network, through solvent-assisted grafting. In this study, a hybrid polymer solar cell is demonstrated with a P3HT:PCBM:NiO-np triple-heterojunction active layer which showed greatly improved rectification behaviour, long electron lifetime and generated higher PCE of 4% under AM 1.5 solar illumination with a 75% increase in PCE with respect to the P3HT:PCBM device. The optimum NiO-np amount and active-layer thickness were found to be 2% and 250 nm, respectively.

  4. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Taraneh [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada); Laurent, Sophie; Stanicki, Dimitri [University of Mons, Laboratory of NMR and Molecular Imaging (Belgium); Raphael, Wendell; Tavares, Jason Robert, E-mail: jason.tavares@polymtl.ca [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada)

    2015-12-15

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract.

  5. Evaluation of the flocculation and de-flocculation performance and mechanism of polymer flocculants.

    Science.gov (United States)

    Ponou, Josiane; Ide, Tomohito; Suzuki, Akiko; Tsuji, Hideyuki; Wang, Li Pang; Dodbiba, Gjergj; Fujita, Toyohisa

    2014-01-01

    Understanding the interaction mechanism between polymeric flocculants and solid particles in two oppositely charged solutions: bentonite and calcium fluoride, is of great practical and fundamental importance. In this work, inorganic flocculants based on aluminum(III) or iron(III); cationic, anionic and non-ionic organic flocculants were used. The solution pH, which highly influenced the flocculation performance of the system, has been used as a function of turbidity removal, sediment volume and velocity. Results show that the flocculation of inorganic polymers does not depend on the zeta potential but on the solution pH, contrary for cationic and anionic polymers. Non-ionic polymer was independent on both. By varying the final pH of the heterogeneous solution formed of flocs-liquid, it was found for inorganic polymers, the optimum condition of pH flocculant particles from flocs. Inductively coupled plasma atomic emission spectrometer and X-ray fluorescence analysis proved the reversibility of flocculation process by indicating the concentration of flocculant representative atom (Al or Fe) in the flocs and in the emerging solutions when the flocculation was optimized and the reversibility was effective. As results, weak forces were suggested as responsible for inorganic polymers flocculation where electrostatic interaction and hydrogen bonds may enroll the mechanism of organic flocculants.

  6. Evaluation of Prosopis africana Seed Gum as an Extended Release Polymer for Tablet Formulation.

    Science.gov (United States)

    Nadaf, Sameer; Nnamani, Petra; Jadhav, Namdeo

    2015-06-01

    In the present work, an attempt has been made to screen Prosopis africana seed gum (PG), anionic polymer for extended release tablet formulation. Different categories of drugs (charge basis) like diclofenac sodium (DS), chlorpheniramine maleate (CPM), and ibuprofen (IB) were compacted with PG and compared with different polymers (charge basis) like xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC-K100M), and chitosan (CP). For each drug, 12 batches of tablets were prepared by wet granulation technique, and granules were evaluated for flow properties, compressibility, and compactibility by Heckel and Leuenberger analysis, swelling index, in vitro dissolution studies, etc. It has been observed that granules of all batches showed acceptable flowability. According to Heckel and Leuenberger analysis, granules of PG-containing compacts showed similar and satisfactory compressibility and compactibility compared to granules of other polymers. PG showed significant swelling (P < 0.05) compared to HPMC, and better than CP and XG. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) study showed no interaction between drugs and polymers. From all PG-containing compacts of aforesaid drugs, drug release was sustained for 12 h following anomalous transport. Especially, polyelectrolyte complex formation retarded the release of oppositely charged drug (CPM-PG). However, extended release was noted in both anionic (DS) and nonionic (IB) drugs, maybe due to swollen gel. All compacts were found to be stable for 3-month period during stability study. This concludes that swelling and release retardation of PG has close resemblance to HPMC, so it can be used as extended release polymer for all types of drugs.

  7. Studies on Novel Polymer Materials Prepared through Intermacromolecular Complexation

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; GAO Jun; DAN Yi; CHEN Zhe

    2004-01-01

    complexation of the oppositely charged polyions through Coulomb forces,which shows much higher viscosity and better resistance to temperature, shear rate and salt than its constituents, and has potential application in enhanced oil recovery.

  8. Balancing former opposites as mutual preconditions?

    DEFF Research Database (Denmark)

    Holmström, Susanne

    2013-01-01

    structurally determined (in)sensitivity to life and nature reaches a critical mass, it provokes new ideals of balancing society’s logics on the one hand with considerations of life and nature on the other, as in the triple bottom line concept (Luhmann 1989). Third, the increasing diversity and speciali......). An intersubjective and a social systemic public relations paradigm. Journal of Com-munications Management, 2(1), 24–39. Holmström, S. (2002). Public relations reconstructed as part of society’s evolutionary learning processes. In D. Vercic, B. van Ruler, I. Jensen, D. Moss, & J. White (Eds.), The status of public......Focus of this chapter is society’s megatrends as they transform the frames for organisational legitimacy in a way which implies that decision-making paradoxically should balance as mutual preconditions what was formerly seen as opposites. Society’s turbulence strikes in organisations. As society...

  9. The Loyal Opposition & The Practice of Aikido

    Directory of Open Access Journals (Sweden)

    Jonathan Miller-Lane

    2012-07-01

    Full Text Available Discussions regarding martial arts often focus on the unique manner in which different styles respond to a set of common attacks. Indeed, it is in these unique responses that most martial arts distinguish themselves. However, this paper examines the role of the aggressor during training; specifically, in the martial art of Aikido and draws an analogy between the role of an aggressor during Aikido practice and the actions of a member of the loyal opposition in a democracy. A commitment to a set of rules that govern and protect the participants and a commitment to maintain a rich, creative tension mark both the vibrant interactions of an Aikido dojo and democratic life in a multicultural society.

  10. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  11. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  12. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  13. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    Science.gov (United States)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu.; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.

    Visible-pump-IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  14. The square of opposition a cornerstone of thought

    CERN Document Server

    Basti, Gianfranco

    2017-01-01

    This is a collection of new investigations and discoveries on the theory of opposition (square, hexagon, octagon, polyhedra of opposition) by the best specialists from all over the world. The papers range from historical considerations to new mathematical developments of the theory of opposition including applications to theology, theory of argumentation and metalogic.

  15. Electrostatic wire for stabilizing a charged particle beam

    Science.gov (United States)

    Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  16. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  17. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  18. Microsparks Generated by Charged Particles in Dielectric Liquids

    Science.gov (United States)

    Geiger, Robert

    2012-10-01

    The electrodynamics of charged particles in dielectric liquids have been described by several authors [1,2]. As a charged particle approaches an electrode of opposite charge the local electric field eventually exceeds the dielectric strength of the liquid and a microspark is generated. These plasmas can be very small, about Angew. Chem., Int. Ed. 47, 8020.

  19. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  20. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  1. Polymers and surfactants at fluid interfaces studied with specular neutron reflectometry.

    Science.gov (United States)

    Braun, Larissa; Uhlig, Martin; von Klitzing, Regine; Campbell, Richard A

    2017-07-12

    This review addresses the advances made with specular neutron reflectometry in studies of aqueous mixtures of polymers and surfactants at fluid interfaces during the last decade (or so). The increase in neutron flux due to improvements in instrumentation has led to routine measurements at the air/water interface that are faster and involve samples with lower isotopic contrast than in previous experiments. One can now resolve the surface excess of a single deuterated component on the second time scale and the composition of a mixture on the minute time scale, and information about adsorption processes and dynamic rheology can also be accessed. Research areas addressed include the types of formed equilibrium surface structures, the link to foam film stability and the range of non-equilibrium effects that dominate the behavior of oppositely charged polyelectrolyte/surfactant mixtures, macroscopic film formation in like-charged polymer/surfactant mixtures, and the properties of mixtures of bio-polymers with surfactants and lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Prevalence of oppositional defiant disorder in Spain.

    Science.gov (United States)

    López-Villalobos, José Antonio; Andrés-De Llano, Jesús María; Rodríguez-Molinero, Luis; Garrido-Redondo, Mercedes; Sacristán-Martín, Ana María; Martínez-Rivera, María Teresa; Alberola-López, Susana; Sánchez-Azón, María Isabel

    2014-01-01

    Oppositional defiant disorder (ODD) is characterized by a pattern of negative, defiant, disobedient and hostile behavior toward authority figures. ODD is one of the most frequent reasons for clinical consultation on mental health during childhood and adolescence. ODD has a high morbidity and dysfunction, and has important implications for the future if not treated early. To determine the prevalence of ODD in schoolchildren aged 6-16 years in Castile and Leon (Spain). Population study with a stratified multistage sample, and a proportional cluster design. Sample analyzed: 1,049. Cases were defined according to DSM-IV criteria. An overall prevalence rate of 5.6% was found (95% CI: 4.2%-7%). Male gender prevalence=6.8%; female=4.3%. Prevalence in secondary education=6.2%; primary education=5.3%. No significant differences by gender, age, grade, type of school, or demographic area were found. ODD prevalence without considering functional impairment, such as is performed in some research, would increase the prevalence to 7.4%. ODD cases have significantly worse academic outcomes (overall academic performance, reading, maths and writing), and worse classroom behavior (relationship with peers, respect for rules, organizational skills, academic tasks, and disruption of the class). Castile and Leon has a prevalence rate of ODD slightly higher to that observed in international publications. Depending on the distribution by age, morbidity and clinical dysfunctional impact, an early diagnosis and a preventive intervention are required for health planning. Copyright © 2013 SEP y SEPB. Published by Elsevier España. All rights reserved.

  4. The Attractiveness of Opposites: Agonists and Antagonists.

    LENUS (Irish Health Repository)

    O'Brien, Tony

    2015-02-02

    ABSTRACT Opioid-induced bowel dysfunction, of which constipation is the most common aspect, is a major limiting factor in the use of opioids for pain management. The availability of an oral, long-acting formulation of oxycodone and naloxone represents a highly significant development in pain management. The combination of an opioid analgesic with an opioid antagonist offers reliable pain control with a significant reduction in the burden of opioid-induced constipation. This report is adapted from paineurope 2014; Issue 3, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http:\\/\\/www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.

  5. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  6. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA.

    Science.gov (United States)

    Bishop, Corey J; Tzeng, Stephany Y; Green, Jordan J

    2015-01-01

    Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells.

  7. The Political Opposition: notes for a theoretical discussion

    Directory of Open Access Journals (Sweden)

    Fernando Barrientos

    2015-12-01

    Full Text Available Opposition is a role that, in democracies, is usually played by political parties. Its importance is that it is the controlling factor of the governments in turn and they are the alternative for the formation of new governments. But the opposition gets wider connotations depending on the position that particular groups take across the political system. This paper presents an analytical model to distinguish the opposition types in political systems with special attention to Western democracies.

  8. A molecular view of the role of chirality in charge-driven polypeptide complexation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K. Q.; Perry, S. L.; Leon, L.; Priftis, D.; Tirrell, M.; de Pablo, J. J.

    2015-01-01

    Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality along the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.

  9. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    oxygen since their EPR and conductivity data indicated the presence of unpaired charges. On the other hand, intramolecular CT complexes have recently...been reported for polythiophene [2], where weak CT occurs from a polymer unit cell to the covalently bonded acceptor molecule. Nevertheless, it was...intracavity optical doubler (532 nm), diode lasers (670, 810 nm) and light emitting diodes (490, 630 nm). Measurements were conducted for pump intensity 0.1

  10. Electrostatic interactions of asymmetrically charged membranes

    Science.gov (United States)

    Ben-Yaakov, Dan; Burak, Yoram; Andelman, David; Safran, S. A.

    2007-08-01

    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged, planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict —for any ratio of the charges on the surfaces— that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as a function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte.

  11. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  12. Oppositional Culture Theory and the Delusion of Colorblindness

    Science.gov (United States)

    Berlowitz, Marvin J.; Hutchins, Brandi N.; Jenkins, Derrick J.; Mussman, Mark P.; Schneider, Carri A.

    2006-01-01

    Oppositional culture theory is a widely accepted explanation for disparities in academic performance between middle class Whites and middle class African Americans. The authors make the case that oppositional culture theory has its roots in cultural deficit theory popularized in the early 1960s and present a significant body of evidence to refute…

  13. Advances in the study of lunar opposition effect

    Institute of Scientific and Technical Information of China (English)

    LIU Jian; OUYANG Ziyuan; LI Chunlai; ZOU Yongliao

    2005-01-01

    Photometry is one of the main methods of planetary remote sensing. The opposition effect is a sharp surge in brightness around zero phase angles. Research on opposition effect is an important branch of photometry and also is an important tool in remote sensing of the Moon. In this paper, we reviewed the main laboratory experiments, which depend on simulate samples, lunar soil samples, telescope observations and spacecraft data, performed by all kinds of work on the lunar opposition effect. And we also reviewed the theoretical development of the lunar opposition effect (i.e., the major causes of the lunar opposition effect): the shadow hiding mechanism causes the lunar opposition effect, which includes the famous models (Hapke model and Lumme & Bowell model); then, the coherent backscatter mechanism; and now, the model combining the shadow hiding and coherent backscatter. China has sponsored the Chang'e plan of lunar exploration, and the plan along with the SMART-1 gives a good chance to lunar opposition effect research when the data on the opposition surge at very small phase angles are obtained by the spacecrafts.

  14. Preparation and characterization of organic polymer modified composite polyaluminum chloride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Compared with traditional aluminum salts, polyaluminum chloride (PACl) has better coagulation-flocculation performance in turbidity removal. However, it is still inferior to organic polymers in terms of bridging function. In order to improve the aggregating property of PACl, different composite PACl flocculants were prepared with various organic polymers. The effect of organic polymer on the distribution of Al (Ⅲ) species in composite flocculants was studied using 27Al NMR and Al-ferron complexation methods. The charge neutralization and surface adsorption characteristics of composite flocculants were also investigated. Jar tests were conducted to evaluate the turbidity removal efficacy of organic polymer modified composite flocculants. The study shows that cationic polymer and anionic polymer have significant influences on the coagulation-flocculation behaviors of PACl. Both cationic and anionic polymers can improve the turbidity removal performance of PACl but the mechanisms are much different: cationic organic polymer mainly increases the charge neutralization ability, but anionic polymer mainly enhances the bridging function.

  15. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    Science.gov (United States)

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

  16. Combustion simulation and key parameter optimization for opposite axial piston engine in small-scale

    Institute of Scientific and Technical Information of China (English)

    张雷; 徐海军; 潘存云; 徐小军

    2015-01-01

    As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD (computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 kW, which fits the power need of the portable electric generators completely.

  17. Polymer translocation through a nanopore: DPD study.

    Science.gov (United States)

    Yang, Kan; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-04-04

    Translocation of a polymer chain through a narrow pore is explored using 3D explicit solvent dissipative particle dynamics simulation. We study the dependence of the translocation dynamics and translocation time τ on the chain length N, driving force magnitude E, and solvent quality. Two types of driving forces are considered: uniform hydrostatic force, which is applied equally to the chain and solvent particles, and uniform electrostatic force, which is applied selectively to the charged particles in the chain and oppositely charged counterions in the solvent. We concluded that the scaling correlations τ ~ E(-ξ) and τ ~ N(β) are valid only for coil-like chains. For globular chains, the exponents ξ and β could not be identified with a reasonable accuracy. While the found value of ξ agrees with published experimental results and does not depend on the driving force type, the exponent β depends on the driving force and solvent quality. This is explained by nonequilibrium effects, as in the systems considered, the time of translocation is comparable with the time of chain relaxation. These effects, manifested in the changes of chain conformation in the process of translocation, were analyzed on the basis of the variation of the gyration radii of cis and trans segments of the chain in normal and lateral directions. A prominent chain expansion was observed for coils and was insignificant for globules. This work demonstrates the feasibility of the 3D dissipative particle dynamics modeling of translocation phenomena and accounting for the electrostatic interactions with explicit counterions, as well as for the solvent quality, in a computationally efficient manner.

  18. Irreversible structural transitions in mixed micelles of oppositely charged diblock copolymers in aqueous solution

    NARCIS (Netherlands)

    Voets, I.K.; Keizer, de A.; Cohen Stuart, M.A.; Justynska, J.; Schlaad, H.

    2007-01-01

    Using light scattering (titration) measurements, we have shown that micelles can be formed in aqueous solutions of a mixture of poly(4-(2-amino hydrochloride-ethylthio)butylene)-block-poly(ethylene oxide), PAETB(49)-b-PEO212, and poly(4-(2-sodium carboxylate-ethylthio)butylene)-block-poly(ethylene

  19. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  20. Foaming behaviour of polymer-surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-MartInez, Alfredo [Departamento de Investigacion en PolImeros y Materiales, Universidad de Sonora, Apartado Postal 130, 83000 Hermosillo, Sonora (Mexico); Maldonado, Amir [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, 83000 Hermosillo, Sonora (Mexico)

    2007-06-20

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  1. Transducer model produces facilitation from opposite-sign flanks

    Science.gov (United States)

    Solomon, J. A.; Watson, A. B.; Morgan, M. J.

    1999-01-01

    Small spots, lines and Gabor patterns can be easier to detect when they are superimposed upon similar spots, lines and Gabor patterns. Traditionally, such facilitation has been understood to be a consequence of nonlinear contrast transduction. Facilitation has also been reported to arise from non-overlapping patterns with opposite sign. We point out that this result does not preclude the traditional explanation for superimposed targets. Moreover, we find that facilitation from opposite-sign flanks is weaker than facilitation from same-sign flanks. Simulations with a transducer model produce opposite-sign facilitation.

  2. Fractional lattice charge transport

    Science.gov (United States)

    Flach, Sergej; Khomeriki, Ramaz

    2017-01-01

    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  3. Nonplanar electrostatic shock waves in an opposite polarity dust plasma with nonextensive electrons and ions

    Indian Academy of Sciences (India)

    M AMINA; S A EMA; A A MAMUN

    2017-06-01

    A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-acoustic shock waves (DASHWs) in a collisionless four-component unmagnetized dusty plasmasystem containing massive, micron-sized, positively and negatively charged inertial dust grains along with $q$ (nonextensive) distributed electrons and ions. The well-known reductive perturbation technique has been used to derive the modified Burgers equation (which describes the shock wave properties) and its numerical solution. It has been observed that the effects of charged dust grains of opposite polarity, nonextensivity of electrons and ions, and different dusty plasma parameters have significantly modified the fundamental properties (viz., polarity, amplitude, width, etc.) of the shock waves. The properties of DASHWs in nonplanar geometry are found tobe significantly different from those in one-dimensional planar geometry. The findings of our results from this theoretical investigation may be useful in understanding the nonlinear features of localized electrostatic disturbancesin both space and laboratory dusty plasmas.

  4. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  5. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    Science.gov (United States)

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  6. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  7. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  8. Étude rhéo-optique des mécanismes de dispersion de mélanges sous cisaillement simple. 1 Mélanges concentrés de polymères immiscibles. 2 Mélanges polymères-charges poreuse

    OpenAIRE

    Astruc, Marianne

    2001-01-01

    Rheo-optical tools (optical microscopy) were developed and used to study in-situ dispersion mechanisms in complex blends: concentrated immiscible polymer blends and polymer-porous filler blends. Concerning concentrated polymer blends, a phase inversion mechanism induced by a simple shear was studied in polydimethylsiloxane-acqueous solution of hydroxypropylcellulose blends. The phase inversion was induced by a change of shear rate, due to viscosity ratio inversion. It is a long mechanism pass...

  9. Neural markers of opposite-sex bias in face processing

    Directory of Open Access Journals (Sweden)

    Alice Mado eProverbio

    2010-10-01

    Full Text Available Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (ORE; Caldara et al., 2004, little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women who were engaged in a secondary perceptual task (landscape detection. The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP to same-sex faces. Analysis of intra-cortical neural generators (swLORETA showed that facial processing-related (FG, BA37, BA20/21 and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24 had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  10. Paired structures and other opposite-based models

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco, Camilo; Gómez, Daniel;

    2015-01-01

    In this paper we present a new class of fuzzy sets, paired fuzzy sets, that tries to overcome any conflict between families of fuzzy sets that share a main characteristic: that they are generated from two basic opposite fuzzy sets. Hence, the first issue is to formalize the notion of opposition, ...... as a particular paired structure when the classical fuzzy negation is considered; on the other hand, the relationship of this model with bipolarity is reconsidered from our paired view....

  11. A brief argument in opposition to the Orgel hypothesis.

    Science.gov (United States)

    Baird, M G; Samis, H V; Massie, H R; Zimmerman, J A

    1975-01-01

    The Orgel hypothesis receives considerable attention as a possible explanation for the phenomenon of senescence. Experimental observations which argue in favor of the Orgel hypothesis are discussed, and critized in part. This is followed by a presentation of experimental data which argue in opposition to the notion. On the basis of the considerable body of data which argue in opposition to the Orgel theory, a call for reappraisal of the applicability of this theory to the phenomenon of senescence is suggested.

  12. Binary Opposition Relations of Characters in “Araby”

    Institute of Scientific and Technical Information of China (English)

    高洁

    2014-01-01

    “Araby” is a wel-known short story written.According to Greimas’ theory,narratives contain six aspects which form three binary oppositions:Subject/Object,Sender/Receiver,and Helper/Opponent.In this thesis,the author wil work out the binary opposition relations between the characters in “Araby” based on A.J.Greimas’ “Actantial Model”.

  13. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering.

    Science.gov (United States)

    Murata, Hironobu; Cummings, Chad S; Koepsel, Richard R; Russell, Alan J

    2014-07-14

    Atom transfer radical polymerization (ATRP)-based protein engineering of chymotrypsin with a cationic polymer was used to tune the substrate specificity and inhibitor binding. Poly(quaternary ammonium) was grown from the surface of the enzyme using ATRP after covalent attachment of a protein reactive, water-soluble ATRP-initiator. This "grafting from" conjugation approach generated a high density of cationic ammonium ions around the biocatalytic core. Modification increased the surface area of the protein over 40-fold, and the density of modification on the protein surface was approximately one chain per 4 nm(2). After modification, bioactivity was increased at low pH relative to the activity of the native enzyme. In addition, the affinity of the enzyme for a peptide substrate was increased over a wide pH range. The massively cationic chymotrypsin, which included up to 2000 additional positive charges per molecule of enzyme, was also more stable at extremes of temperature and pH. Most interestingly, we were able to rationally control the binding of two oppositely charged polypeptide protease inhibitors, aprotinin and the Bowman-Birk trypsin-chymotrypsin inhibitor from Glycine max, to the cationic derivative of chymotrypsin. This study expands upon our efforts to use polymer-based protein engineering to predictably engineer enzyme properties without the need for molecular biology.

  14. Conducting Polymers: Emerging Commercial Materials

    Directory of Open Access Journals (Sweden)

    N. Kumar

    1996-04-01

    Full Text Available Conducting polymers are materials of recent origin. They are obtained by polymerisation of simple organic monomers and doping with electron acceptor or donor species and show conductivity ranging from that of a semiconductor to that of metal. These materials are now available with unique electronic and optical properties of metals and semiconductors in combination with the attractive mechanical and processable advantages of polymers. The field has progressed to a level of maturity consistent with a new set of opportunities to develop Wide range of applications based upon conducting polymers as materials for industrial products.Examples include: static charge dissipation, EMI shielding, flexible light emitting diodes, transparent electrodes, batteries, gas sensors, gas separators, etc. Many of the conducting polymers and devices based on them are now available commercially.

  15. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    Science.gov (United States)

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  16. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid.

    Science.gov (United States)

    Im, Do Jin; Ahn, Myung Mo; Yoo, Byeong Sun; Moon, Dustin; Lee, Dong Woog; Kang, In Seok

    2012-08-14

    We have experimentally investigated the electrostatic charging of a water droplet on an electrified electrode surface to explain the detailed inductive charging processes and use them for the detection of droplet position in a lab-on-a-chip system. The periodic bouncing motion of a droplet between two planar electrodes has been examined by using a high-resolution electrometer and an image analysis method. We have found that this charging process consists of three steps. The first step is inductive charge accumulation on the opposite electrode by the charge of a droplet. This induction process occurs while the droplet approaches the electrode, and it produces an induction current signal at the electrometer. The second step is the discharging of the droplet by the accumulated induced charge at the moment of contact. For this second step, there is no charge-transfer detection at the electrometer. The third step is the charging of the neutralized droplet to a certain charged state while the droplet is in contact with the electrode. The charge transfer of the third step is detected as the pulse-type signal of an electrometer. The second and third steps occur simultaneously and rapidly. We have found that the induction current by the movement of a charged droplet can be accurately used to measure the charge of the droplet and can also be used to monitor the position of a droplet under actuation. The implications of the current findings for understanding and measuring the charging process are discussed.

  17. Polymers & People

    Science.gov (United States)

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  18. Opposition effect of the Moon from LROC WAC data

    Science.gov (United States)

    Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden

    2016-09-01

    LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.

  19. Effect of charge memory in organic composites

    Science.gov (United States)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  20. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict the forma......The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...

  1. In situ polarization of polymer films in microsensors

    Science.gov (United States)

    Kranz, M.; Allen, M. G.; Hudson, T.

    2012-04-01

    Electret and polymer piezoelectric films have been previously integrated into Micro Electro Mechanical System (MEMS) acoustic sensors and energy harvesters. Common techniques employed in MEMS polymer integration include corona discharge [1] and backlighted thyratron [2], followed by macro-scale assembly of the polymer into the micro device. In contrast, this paper reports a method for post-fabrication in-situ polarization of polymer films embedded within the MEMS device itself. The method utilizes microplasma discharges with self-aligned charging grids integrated within the device to charge fluoropolymer films in a fashion similar to the common corona discharge technique. This in-situ approach enables the integration of uncharged polymer films into MEMS and subsequent post-fabrication and post-packaging polarization, simultaneously enabling the formation of buried or encapsulated electrets as well as eliminating the need to restrict fabrication and packaging processes that might otherwise discharge pre-charged materials. Using the in situ approach, a microscale charging grid structure is fabricated and suspended a short distance above the polymer film. After fabrication of the charging grid, standard microfabrication steps are performed to build MEMS sensors. After completing the entire fabrication and packaging flow, the polarization process is performed. When energized by a high voltage, the sharp metal edges of the charging grid lead to high dielectric fields that ionize the air in the gap and force electric charge onto the polymer surface. This paper presents modeling and results for this in situ polarization process.

  2. THEORY OF OPPOSITE ACUPOINTS AND ITS CLINICAL APPLICATION

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-xin

    2006-01-01

    In the light of the position character, acupoints situating on the corresponding medial and lateral sides of the limbs or in the front and back parts of the body trunk are called as "opposite acupoints". In the present paper, the author expounds its theoretical basis from yin-yang theory, investigates its origin from the location of acupoints and ancient clinical application, and introduces its current application in clinical practice. In addition, the author lists 4 typical cases about treatment of hysteric convulsion, pregnant hypertension, child bed-wetting and leucorrhagia with opposite acupoints. Clinical practice demonstrates that opposite acupoints therapy is fewer in taking acupoints for one session of treatment, simple in operation, and good in the therapeutic effect for treatment of various diseases of different systems in the human body.

  3. Paired fuzzy sets and other opposite-based models

    DEFF Research Database (Denmark)

    Montero, Javier; Gómez, Daniel; Tinguaro Rodríguez, J.

    2016-01-01

    In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts that are ......In this paper we stress the relevance of those fuzzy models that impose a couple of simultaneous views in order to represent concepts. In particular, we point out that the basic model to start with should contain at least two somehow opposite valuations plus a number of neutral concepts...

  4. Two consecutive levels of unilateral cervical spondylolysis on opposite sides

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Kyeong Hwa; Kim, Seon Jeong; KIm Ok Hwa; Kim, Seung Ho; Lee, Kwang Hwi; Beak, Hye Jin; Lee, Ye Daun [Dept. of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan (Korea, Republic of); Cha, Yoon Ki [Dept. of Radiology, Dongguk University College of Medicine, Ilsan Hospital, Goyang (Korea, Republic of)

    2015-09-15

    Cervical spondylolysis, with or without spondylolisthesis, is a rare condition defined as a corticated cleft between the superior and inferior articular facets of the articular pillar. The defect occurs predominantly at C6, and is usually bilateral in up to two-thirds of cases. Multilevel involvement is uncommon, however, to date, no case of two consecutive levels of unilateral cervical spondylolysis on opposite sides has been reported. Here, we report a rare case of a patient affected by two consecutive levels of unilateral cervical spondylolysis at C5 and C6 on opposite sides in a 19-year-old male complaining of neck pain.

  5. Fatal attraction: the intuitive appeal of GMO opposition.

    Science.gov (United States)

    Blancke, Stefaan; Van Breusegem, Frank; De Jaeger, Geert; Braeckman, Johan; Van Montagu, Marc

    2015-07-01

    Public opposition to genetically modified organisms (GMOs) remains strong. By contrast, studies demonstrate again and again that GM crops make a valuable contribution to the development of a sustainable type of agriculture. The discrepancy between public opinion and the scientific evidence requires an explanation. We argue that intuitive expectations about the world render the human mind vulnerable to particular misrepresentations of GMOs. We explain how the involvement of particular intuitions accounts for the popularity, persistence, and typical features of GM opposition and tackle possible objections to our approach. To conclude, we discuss the implications for science education, science communication, and the environmental movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Unity of Opposite between Harry Potter and Voldemort

    Institute of Scientific and Technical Information of China (English)

    宋紫珍

    2016-01-01

    Series Harry Potter belongs to novel of magic realism. Although series Harry Potter is divided into children's literary works, it attracts people in all age groups. As hero of Harry Potter, Harry, a boy who mature gradually, has unusual experience of resisting Dark Lord Voldemort. Obviously, Harry and Voldemort, who stand for justice and evil separately, are important roles in novel. J.K Rowling designs many connect and coincidence between Harry and Voldemort to lead the development of plot. In fact, Harry and Voldemort are in a unity of opposite. Therefore, the work presented in this paper will focus on unity of opposite between Harry Potter and Voldemort.

  7. Significant enhancement of the charging efficiency in the cavities of ferroelectrets through gas exchange during charging

    Science.gov (United States)

    Qiu, Xunlin

    2016-11-01

    Ferroelectrets are non-polar polymer foams or polymer systems with internally charged cavities. They are charged through a series of dielectric barrier discharges (DBDs) that are caused by the electrical breakdown of the gas inside the cavities. Thus, the breakdown strength of the gas strongly influences the charging process of ferroelectrets. A gas with a lower breakdown strength has a lower threshold voltage, thus decreasing the onset voltage for DBD charging. However, a lower threshold voltage also leads to a lower value for the remanent polarization, as back discharges that are caused by the electric field of the internally deposited charges can take place already at lower charge levels. On this basis, a charging strategy is proposed where the DBDs start in a gas with a lower breakdown strength (in the present example, helium) and are completed at a higher breakdown strength (e.g., nitrogen or atmospheric air). Thus, the exchange of the gas in the cavities during charging can significantly enhance the charging efficiency, i.e., yield much higher piezoelectric coefficients in ferroelectrets at significantly lower charging voltages.

  8. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  9. Unified Hamiltonian for conducting polymers

    Science.gov (United States)

    Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi

    2011-11-01

    Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.

  10. Polymers All Around You!

    Science.gov (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  11. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  12. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  13. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  14. Binary Opposition of the Characterization of David in Bible

    Institute of Scientific and Technical Information of China (English)

    游伟

    2013-01-01

    Characters in Bible are like the coin possessing two sides. David, the most complicated figure in Bible, is just a case in point. From this perspective, this paper tries to use the principle of binary opposition to analyze the characterization of David in Bible, that is, David’s tolerance vs. vengeance, piety vs. impiety, and iron heart vs. sentiment.

  15. The Power of Opposition Parliamentary Party Groups in European Scrutiny

    NARCIS (Netherlands)

    Holzhacker, Ronald

    2005-01-01

    This paper investigates the power of opposition parliamentary party groups when scrutinising their governments' decision-making concerning European Union issues, an important component in assuring democracy within the emerging multi-level system of governance in the EU. It first sets out the advanta

  16. Burnout and Work Engagement: Independent Factors or Opposite Poles?

    Science.gov (United States)

    Gonzalez-Roma, Vicente; Schaufeli, Wilmar B.; Bakker, Arnold B.; Lloret, Susana

    2006-01-01

    Burnout researchers have proposed that the conceptual opposites of emotional exhaustion and cynicism (the core dimensions of burnout) are vigor and dedication (the core dimensions of engagement), respectively (Maslach & Leiter, 1997; Schaufeli, Salanova, Gonzalez-Roma, & Bakker, 2002). We tested this proposition by ascertaining whether two sets of…

  17. Will the Real Tunisian Opposition Please Stand Up?

    DEFF Research Database (Denmark)

    Haugbølle, Rikke Hostrup; Cavatorta, Francesco

    2011-01-01

    ABSTRACT This contribution examines the reasons behind the failure of Tunisia’s opposition to forge effective coordination and collaborative links during Ben Ali’s reign, focusing specifically on the inability and unwillingness of political parties to act in concert in order to challenge his...

  18. Racial Threat and White Opposition to Bilingual Education in Texas

    Science.gov (United States)

    Hempel, Lynn M.; Dowling, Julie A.; Boardman, Jason D.; Ellison, Christopher G.

    2013-01-01

    This study examines local contextual conditions that influence opposition to bilingual education among non-Hispanic Whites, net of individual-level characteristics. Data from the Texas Poll (N = 615) are used in conjunction with U.S. Census data to test five competing hypotheses using binomial and multinomial logistic regression models. Our…

  19. The Politics of the Classroom: Toward an Oppositional Pedagogy.

    Science.gov (United States)

    Marcroft, Minette

    1990-01-01

    In the current conservative climate of higher education, questioning students' political beliefs is imperative for a real democratization of knowledge. Oppositional pedagogy pressures the assumptions of the existing system--the dominant knowledges and institutional and social arrangements derived from them--and enables students to change their…

  20. Perspectives on Oppositional Defiant Disorder, Conduct Disorder, and Psychopathic Features

    Science.gov (United States)

    Loeber, Rolf; Burke, Jeffrey; Pardini, Dustin A.

    2009-01-01

    This paper presents a few perspectives on oppositional defiant disorder (ODD), conduct disorder (CD), and early forms of psychopathy. The developmental changes and stability of each, and the interrelationship between the three conditions are reviewed, and correlates and predictors are highlighted. The paper also examines effective interventions…

  1. Organic photovoltaic devices produced from conjugated polymer/methanofullerene bulk heterojunctions

    NARCIS (Netherlands)

    Brabec, C.J.; Shaheen, S.E.; Fromherz, T.; Padinger, F.; Hummelen, J.C.; Dhanabalan, A.; Janssen, R.A.J.; Sariciftci, N.S.

    2001-01-01

    Organic photovoltaic devices have been fabricated utilizing the photoinduced electron transfer with long-living charge separation in conjugated polymer/methanofullerene thin films. The performance of such "bulk heterojunction" photovoltaic devices is critically dependent on the charge transport prop

  2. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Science.gov (United States)

    Hu, D. M.; Cao, Q. Q.; Zuo, C. C.

    2017-03-01

    We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  3. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Directory of Open Access Journals (Sweden)

    D. M. Hu

    2017-03-01

    Full Text Available We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  4. High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Michael G [ORNL; Wang, Hsin [ORNL; Ivanov, Ilia N [ORNL; Hu, Bin [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Conductive polymers are of particular interest for thermoelectric applications due to their low thermal conductivity and relatively high electrical conductivity. In this study, commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used in a hybrid metal/polymer/metal thin film design in order to achieve a high Seebeck coefficient with the value of 252lV/k on a relatively low temperature scale. Polymer film thickness was varied in order to investigate its influence on the Seebeck effect. The high Seebeck coefficient indicates that the metal/polymer/metal design can develop a large entropy difference in internal energy of charge carriers between high and low-temperature metal electrodes to develop electrical potential due to charge transport in conducting polymer film through metal/polymer interface. Therefore, the metal/polymer/metal structure presents a new design to combine inorganic metals and organic polymers in thin-film form to develop Seebeck devices

  5. Solitary waves in a self-gravitating opposite polarity dust-plasma medium

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, A. A.; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2015-10-15

    A more general and realistic dusty plasma model, namely, self-gravitating opposite polarity dust-plasma system (containing inertial positive and negative dust, and inertialess ions and electrons following Maxwellian distribution) is considered. The possibility for the formation of solitary electrostatic and self-gravitational potential structures in such a dust-plasma system is thoroughly examined. The standard reductive perturbation method, which is valid for small but finite amplitude solitary structures, is employed. The parametric regimes for the existence of solitary electrostatic and self-gravitational potential structures, and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component and self-gravitational field. The applications of the present investigation in different space dusty plasma environments and laboratory dusty plasma devices are briefly discussed.

  6. Aqueous lubricating properties of charged (ABC) and neutral (ABA) triblock copolymer chains

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Patil, Navin J.

    2014-01-01

    Application of charged polymer chains as additives for lubricating neutral surfaces in aqueous envi- ronment, especially via polymer physisorption, is generally impeded by the electrostatic repulsion be- tween adjacent polymers on the surface. In this study, we have investigated the adsorption an...

  7. Light emitting conjugated polymers for use in biological detection platforms

    Science.gov (United States)

    Gaylord, Brent S.

    Recent interest in conjugated polymers has grown from their demonstrated utility in various "plastic" and/or "molecular" electronic applications to include organic light emitting diodes (OLED's), thin film transistors and photovoltaics. Due to their intrinsically delocalized electronic structure, these same materials show enormous potential as highly responsive optical reporters for chemical and biological interactions. Inter- and intra-chain energy migration, coupled with the formation of strong electrostatic complexes between opposite charged acceptors, allows for extraordinary modulation of their fluorescent response. When these properties are correlated with a specific biological recognition event, the result is a biosensor with optically enhanced or amplified performance. Such features are highly desirable in detection schemes where the target analyte is in limited supply, as is most often the case. Within these studies we demonstrate how variations in test media composition (i.e. surfactant, buffers, proteins, DNA, etc.) and molecular structure influence those photophysical properties of conjugated polymers related to biosensor design. To this end, both anionic polyphenylenevinylene (PPV) and cationic polyfluorene-cophenylene structures were examined. Model oligomer structures were employed throughout the study for delineating structure-property relationships, as such detailed correlation is inherently more difficult for the less defined polymeric structures (i.e. polydispersity, batch-to-batch variation, purity, etc.). Studies using light scattering and optical spectroscopy highlight the extensive aggregation of these fluorescent, amphiphilic polyelectrolytes in aqueous solution. Variations in chromophore size, charge and concentration provide interesting comparisons in quenching and/or energy transfer processes, as well as, in their interactions with biological molecules. Ultimately, this information was utilized to develop a novel platform for highly

  8. Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons

    Science.gov (United States)

    Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa

    2016-09-01

    The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.

  9. Interaction Between Charge Characteristics and Cu2+ Adsorption-Desorption of Soils with Variable or Permanent Charge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and per-manent charge (brown soil) and the relationship between them were studied by means of back-titration andadsorption equilibrium respectively. The amount of variable negative charge was much less in variable-chargesoil than in permanent-charge soil and increased with the pH in the system, but the opposite trend occurredin the points of zero charge (PZCs). The amount of Cu2+ ions sorbed by permanent-charge soil was morethan that by variable-charge soil and increased with the increase of Cu2+ concentration within a certainrange in the equilibrium solution. The amount of Cu2+ ions desorbed with KCl from permanent-chargesoil was more than that from variable-charge soil, but the amount of Cu2+ ions desorbed with de-ionizedwater from permanent-charge soil was extremely low whereas there was still a certain amount of desorptionfrom variable-charge soil. The increase of PZC of soils with variable or permanent charge varied with theincrement of Cu2+ ions added. When the same amount of Cu2+ ions was added, the increments of PZC andvariable negative surface charge of permanent-charge soil were different from those of variable-charge soil.

  10. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  11. Polymer inflation

    CERN Document Server

    Hassan, Syed Moeez; Seahra, Sanjeev S

    2014-01-01

    We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  12. Synthesis and study of conjugated polymers containing Di- or Triphenylamine

    Energy Technology Data Exchange (ETDEWEB)

    Sukwattanasinitt, M.

    1996-06-21

    This thesis consists of two separate parts. The first part addresses the synthesis and study of conjugated polymers containing di- or triphenylamine. Two types of polymers: linear polymers and dendrimers, were synthesized. The polymers were characterized by NMR, IR, UV, GPC, TGA and DSC. Electronic and optical properties of the polymers were studied through the conductivity measurements and excitation- emission spectra. the second part of this thesis deals with a reaction of electron-rich acetylenes with TCNE. The discovery of the reaction from charge transfer complex studies and the investigation of this reaction on various electron-rich acetylenes are presented.

  13. Charge injection and transport in quantum confined and disordered systems

    NARCIS (Netherlands)

    Houtepen, A.J.

    2007-01-01

    Quantum dots and conducting polymers are modern semiconductors with a high potential for applications such as lasers, LEDs, displays, solar cells etc. These applications require the controlled addition of charge carriers into the material and knowledge of the details of charge transport. This thesis

  14. Opto-electronic properties of charged conjugated molecules

    NARCIS (Netherlands)

    Fratiloiu, S.

    2007-01-01

    The aim of this thesis is to provide fundamental insight into the nature and opto-electronic properties of charge carriers on conjugated oligomers and polymers. Electronic structure, optical absorption properties and distribution of charge carriers along the chains of different conjugated materials

  15. Charge injection and transport in quantum confined and disordered systems

    NARCIS (Netherlands)

    Houtepen, A.J.

    2007-01-01

    Quantum dots and conducting polymers are modern semiconductors with a high potential for applications such as lasers, LEDs, displays, solar cells etc. These applications require the controlled addition of charge carriers into the material and knowledge of the details of charge transport. This thesis

  16. Synthesis and Characterization of a Novel Cyclomatrix Phosphazene Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhang Teng; Cai Qing; Wu Zhanpeng; Jin Riguang

    2006-01-01

    Novel phosphazene cyclomatrix network polymers were synthesized via the nucleophilic displacement of activated nitro groups of tri(4-nitrophenoxy)tri(phenoxy)cyclotriphosphazene and hexa(p-nitrophenoxy)cyclotriphosphazene with hydroxyls of bisphenol A.Both monomers and polymers were characterized by Fourier transform infrared spectroscopy,1H nuclear magnetic resonance,and elemental analysis measurements,and their structures were identified.Thermal properties of polymers were investigated using dynamic thermogravimetric analysis in air.The results demonstrated that both cyclomatrix phosphazene polymers 4 and 6 were of excellent thermal stability,and their char yields in air at 800℃ were 45.1 and 43.2%,respectively.According to combustion phenomenon,polymer 4 was supposed to be processed with a good flameretardant property because of its excellent crosslinked structure during pyrolysis or combustion.However,polymer 6 yielded the opposite result.

  17. Receptivity to sexual invitations from strangers of the opposite gender

    DEFF Research Database (Denmark)

    Hald, Gert Martin; Høgh-Olesen, Henrik

    2010-01-01

    This study investigated the primary conclusion from Clark and Hatfield's often cited field experiment ``Consent to Sex with a Stranger'' that men agree to sexual invitations from moderately attractive strangers of the opposite gender more readily than women do. In addition, this study investigated...... whether rates of consent are influenced by a subject's age, relationship status, rating of confederate attractiveness, and type of sexual invitation. A number of moderately attractive confederates of the opposite gender individually approached 173 men and 216 women. After a standard introduction...... than women consented to a sexual invitation. Specifically, significantly more men than women consented to the ``come to my place'' and ``go to bed with me'' conditions. For female subjects, higher ratings of confederate attractiveness were found to significantly increase the odds of consenting...

  18. Inattention, hyperactivity, oppositional-defiant symptoms and school failure.

    Science.gov (United States)

    Serra-Pinheiro, Maria Antonia; Mattos, Paulo; Regalla, Maria Angélica; de Souza, Isabella; Paixão, Cristiane

    2008-12-01

    Attention-deficit hyperactivity disorder (ADHD) is associated with school failure. Inattention has been mainly implicated for this association. Oppositional-defiant disorder's (ODD) impact on academic performance remains controversial, because of the high comorbidity between ODD and ADHD. To understand the role of inattention (IN), hyperactivity (H/I) and ODD in school failure. Parents and teachers filled out SNAP-IV questionnaires for 241 / 6th grade students. The associations of the scores of oppositional-defiant (OP), H/I and IN symptoms with school year failure were calculated. IN was strongly correlated with school failure. H/I and OP were not associated with school failure, when controlled for IN. OP and H/I symptoms do not play an important role in school failure, when controlled for IN symptoms. Our study supports the cross-cultural role of IN as a major predictor of school failure.

  19. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  20. A design principle of polymers processable into 2D homeotropic order

    Science.gov (United States)

    Chen, Zhen; Chan, Yi-Tsu; Miyajima, Daigo; Kajitani, Takashi; Kosaka, Atsuko; Fukushima, Takanori; Lobez, Jose M.; Aida, Takuzo

    2016-11-01

    How to orient polymers homeotropically in thin films has been a long-standing issue in polymer science because polymers intrinsically prefer to lie down. Here we provide a design principle for polymers that are processable into a 2D homeotropic order. The key to this achievement was a recognition that cylindrical polymers can be designed to possess oppositely directed local dipoles in their cross-section, which possibly force polymers to tightly connect bilaterally, affording a 2D rectangular assembly. With a physical assistance of the surface grooves on Teflon sheets that sandwich polymer samples, homeotropic ordering is likely nucleated and gradually propagates upon hot-pressing towards the interior of the film. Consequently, the 2D rectangular lattice is constructed such that its b axis (side chains) aligns along the surface grooves, while its c axis (polymer backbone) aligns homeotropically on a Teflon sheet. This finding paves the way to molecularly engineered 2D polymers with anomalous functions.

  1. Charged Water Droplets can Melt Metallic Electrodes

    Science.gov (United States)

    Elton, Eric; Rosenberg, Ethan; Ristenpart, William

    2016-11-01

    A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.

  2. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid

  3. Coherent Backscatter Opposition Effect from Scratches on Solid Surfaces

    Science.gov (United States)

    Hapke, B. W.; Piatek, J. L.; Nelson, R. M.; Smythe, W. D.; Hale, A. S.

    2003-05-01

    Shepard and Arvidson [1] discovered that the solid surfaces of rocks exhibit an opposition effect. We have measured the phase curve of a natural surface of a piece of solid basalt between 0.05 and 5 degrees in circularly polarized light using the JPL long arm goniometer and confirmed that it has an opposition effect. The circular polarization ratio (CPR) increased with decreasing phase angle, consistent with a coherent backscatter opposition effect (CBOE) Recent laboratory investigations of the CBOE in planetary regolith analogs [2,3,4] have revealed that the width of the peak is remarkably insensitive to particle size, in strong contrast to theoretical expectations. We have hypothesized that one of the reasons for this might be that multiple scattering between irregularities, such as scratches, on the surfaces of a particle could cause coherent backscatter, in addition to scattering between particles. To test this hypothesis we ground the surface of a piece of plate glass with 5 micrometer abrasive and measured its phase curve. As the phase angle decreases, the intensity increases and the CPR decreases, consistent with specular reflection. However, near zero phase there is a nonlinear rise about 2 degrees wide superimposed on the linear specular peak accompanied by an increase in CPR, showing that coherent backscatter is occuring. A piece of commercial diffusing glass exhibited the same phenomena. These results support our hypothesis and also provide a possible explanation for the observations of opposition effects from the solid surfaces of rocks. This research was supported by a grant from NASA's PGG Program References cited: [1] Shepard and Arvidson, Icarus, 141, 172-178 (1999). [2] Nelson et al, Icarus, 147, 545-558 (2000). [3] Nelson et al, Planet. Space Sci., 50, 849-856 (2002). [4] Piatek et al, Abstract, DPS Conference (2003).

  4. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    Science.gov (United States)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  5. Tracing developmental trajectories of oppositional defiant behaviors in preschool children.

    Directory of Open Access Journals (Sweden)

    Lourdes Ezpeleta

    Full Text Available Previous studies on developmental trajectories have used ad hoc definitions of oppositional defiant behaviors (ODB, which makes it difficult to compare results. This article defines developmental trajectories of ODB from ages 3-5 based on five different standard measurements derived from three separate instruments.A sample of 622 three-year-old preschoolers, followed up at ages 4, 5, and 6, was assessed with the five measures of oppositionality answered by parents and teachers. Growth-Mixture-Modeling (GMM estimated separate developmental trajectories for each ODB measure for ages 3 to 5.The number of classes-trajectories obtained in each GMM depended on the ODB measure, but two clear patterns emerged: four trajectories (persistent low, decreasers, increasers/high increasers, persistent moderate/persistent high or three trajectories (persistent low, decreasers, increasers/high increasers. Persistent high trajectories accounted for 4.4%-9.5% of the children. The trajectories emerging from the different ODB measures at ages 3 to 5 discriminated disruptive disorders, comorbidity, use of services, and impairment at age 6, and globally showed a similar pattern, summarizing longitudinal information on oppositionality in preschool children in a similar way.Trajectories resulting from standard scales of the questionnaires have predictive validity for identifying relevant clinical outcomes, but are measure-specific. The results contribute to knowledge about the development of ODB in preschool children.

  6. Opposition games: new approaches to teaching combat sports

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Carlos dos Santos

    2011-03-01

    Full Text Available AbstractThis research is motivated by our interest in knowing the importance of the Opposition Games, a new methodology where education struggles disclaim violence, through activities related to play, to take pleasure in doing and can be developed by students various age groups. Opposition Games are an end in itself - Leisure activity does not require extrinsic goals, on the contrary, it represents but the means to enjoy, have fun with their participation and overcome. Here we have a paradox: the game is an end in the meantime we use it as educational content. Meanwhile, the solution is in the analysis of the participants, who find the game as an end and we, educators use it as a learning tool.These methodological contents have been worked by the students of the Bachelor of Physical Education, Federal University of Parana (UFPR in Brazil and experienced in various public schools in Curitiba, Paraná, with total success.Key words: Games, Opposition combat sports

  7. Tracing developmental trajectories of oppositional defiant behaviors in preschool children.

    Science.gov (United States)

    Ezpeleta, Lourdes; Granero, Roser; de la Osa, Núria; Navarro, José Blas; Penelo, Eva; Domènech, Josep M

    2014-01-01

    Previous studies on developmental trajectories have used ad hoc definitions of oppositional defiant behaviors (ODB), which makes it difficult to compare results. This article defines developmental trajectories of ODB from ages 3-5 based on five different standard measurements derived from three separate instruments. A sample of 622 three-year-old preschoolers, followed up at ages 4, 5, and 6, was assessed with the five measures of oppositionality answered by parents and teachers. Growth-Mixture-Modeling (GMM) estimated separate developmental trajectories for each ODB measure for ages 3 to 5. The number of classes-trajectories obtained in each GMM depended on the ODB measure, but two clear patterns emerged: four trajectories (persistent low, decreasers, increasers/high increasers, persistent moderate/persistent high) or three trajectories (persistent low, decreasers, increasers/high increasers). Persistent high trajectories accounted for 4.4%-9.5% of the children. The trajectories emerging from the different ODB measures at ages 3 to 5 discriminated disruptive disorders, comorbidity, use of services, and impairment at age 6, and globally showed a similar pattern, summarizing longitudinal information on oppositionality in preschool children in a similar way. Trajectories resulting from standard scales of the questionnaires have predictive validity for identifying relevant clinical outcomes, but are measure-specific. The results contribute to knowledge about the development of ODB in preschool children.

  8. How to Demonstrate the Voltage on a charged object in Physics Laboratory

    CERN Document Server

    Baddi, Raju

    2013-01-01

    Common Objects like a comb or a pen get charged when rubbed against something like human hair or garment clothing. Charged objects exhibit noticeable attractive or repulsive force lifting small pieces of paper or pushing/pulling a suspended light object charged with the same/opposite(uncharged) polarity respectively. This indicates the strong electrical nature of charged objects. Flashes due to spark between oppositely charged objects can be seen in total darkness. Implying a large potential difference between these charged objects which is not possible at lower voltages. This article describes a method to measure the voltage on commonly charged objects with respect to earth using simple instrumentation based on capacitors and CMOS voltmeter. Once the potential difference is known the average charge on the object can be calculated as well. The article also suggests a simple femto-farad capacitance meter for electrostatics work.

  9. Stability of charge inversion, Thomson problem, and application to electrophoresis

    Science.gov (United States)

    Patra, Michael; Patriarca, Marco; Karttunen, Mikko

    2003-03-01

    We analyze charge inversion in colloidal systems at zero temperature using stability concepts, and connect this to the classical Thomson problem of arranging electrons on sphere. We show that for a finite microion charge, the globally stable, lowest-energy state of the complex formed by the colloid and the oppositely charged microions is always overcharged. This effect disappears in the continuous limit. Additionally, a layer of at least twice as many microions as required for charge neutrality is always locally stable. In an applied external electric field the stability of the microion cloud is reduced. Finally, this approach is applied to a system of two colloids at low but finite temperature.

  10. Polymer electrolytes, problems, prospects, and promises

    Energy Technology Data Exchange (ETDEWEB)

    Nagasubramanian, G.; Boone, D.

    1995-07-01

    Ionically conducting polymer electrolytes have generated, in recent years, wide-spread interest as candidate materials for a number of applications including high energy density and power lithium batteries. In the early 70s the first measurements of ionic conductivity in polyethylene oxide (PEO)-salt complexes were carried out. However, Armand was the first one to realize potential of these complexes (polymer-salt complexes) as practical ionically conducting materials for use as electrolytes in lithium batteries. Subsequent research efforts identified the limitations and constraints of the polymer electrolytes. These limitations include poor ionic conductivity at RT (< 10{sup {minus}8} S/cm), low cation transport number (<0.2) etc. Several different approaches have been made to improving the ionic conductivity of the polymer electrolytes while retaining the flexibility, processibility, ease of handling and relatively low impact on the environment that polymers inherently possess. This paper- reviews evolution of polymer electrolytes from conventional PEO-LiX slat complexes to the more conducting polyphosphazene and copolymers, gelled electrolytes etc. We also review the various chemical approaches including modifying PEO to synthesizing complicated polymer architecture. In addition, we discuss effect of various lithium salts on the conductivity of PEO-based polymers. Charge/discharge and cycle life data of polymer cells containing oxide and chalcogenide cathodes and lithium (Li) anode are reviewed. Finally, future research directions to improve the electrolyte properties are discussed.

  11. [Children's oppositional behaviour, practice of parental authority and temporal anomie].

    Science.gov (United States)

    Gadeau, L

    2014-02-01

    This article examines the relationship between children's oppositional behaviour and the exercise of parental authority. It seeks to explore the value of a heuristic approach to psychic temporality in exercising parental authority. The study aims to better understand the role of psychic temporality in operations producing symbolic law. It goes on to describe a disorder of temporality, known as temporal anomie, which may be involved in a child's oppositional disorders. Psychiatric or psychological consultations motivated by oppositional disorders in children have increased steadily in the past fifteen years in France. The primary reason for consultation is in the form of difficulties for children in accepting the social rules or constraints, but also the difficulties of parenting while coping with the opposition of their children. This increase is made in connection with the works analysing the social and psychological effects imposed by modernity and its acceleration. Correspondingly, we find that some parents do not prioritize their educational requirements, do not know when or how to frustrate their child, or even if it is legitimate to expect from him/her a certain type of behaviour. They seem more preoccupied with the fear of not being loved by their child more than their duty to educate. A general trend suggests an alteration of psychological time, characterized by: a) a disinvestment of links between present and past for the enjoyment of the moment and its extension in the immediate future ; b) a difficulty in supporting educational responses causing frustration for the child ; c) a lack of continuity and constancy in educational requirements. The author proposes to define temporal anomie as the psychical time that weakens the consistency of educational responses. A link between psychological temporality and the symbolic law is discussed. Specifically, the study notes that: in intersubjective relations, mastery of psychological time by parents is an

  12. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed.

  13. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  14. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Skaarup, Steen; West, Keld

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfo......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...

  15. Luminescent tunable polydots: Charge effects in confined geometry

    Science.gov (United States)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; Grest, Gary S.

    2017-06-01

    Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. We find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

  16. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  17. Review on Optical and Electrical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Manisha Bajpai

    2016-01-01

    Full Text Available We reviewed optical and electrical properties of conjugated polymers. The charge transport models to describe the hole and electron transport mechanism are also included in the electrical properties of conjugated polymers. The effect of optical and electrical properties after doping is also indexed in this paper.

  18. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  19. Interdigitated silver-polymer-based antibacterial surface system activated by oligodynamic iontophoresis - an empirical characterization study.

    Science.gov (United States)

    Shirwaiker, Rohan A; Wysk, Richard A; Kariyawasam, Subhashinie; Voigt, Robert C; Carrion, Hector; Nembhard, Harriet Black

    2014-02-01

    There is a pressing need to control the occurrences of nosocomial infections due to their detrimental effects on patient well-being and the rising treatment costs. To prevent the contact transmission of such infections via health-critical surfaces, a prophylactic surface system that consists of an interdigitated array of oppositely charged silver electrodes with polymer separations and utilizes oligodynamic iontophoresis has been recently developed. This paper presents a systematic study that empirically characterizes the effects of the surface system parameters on its antibacterial efficacy, and validates the system's effectiveness. In the first part of the study, a fractional factorial design of experiments (DOE) was conducted to identify the statistically significant system parameters. The data were used to develop a first-order response surface model to predict the system's antibacterial efficacy based on the input parameters. In the second part of the study, the effectiveness of the surface system was validated by evaluating it against four bacterial species responsible for several nosocomial infections - Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis - alongside non-antibacterial polymer (acrylic) control surfaces. The system demonstrated statistically significant efficacy against all four bacteria. The results indicate that given a constant total effective surface area, the system designed with micro-scale features (minimum feature width: 20 μm) and activated by 15 μA direct current will provide the most effective antibacterial prophylaxis.

  20. Polymer-Surfactant Mono and Bilayers Monocouches et bicouches de polymères et de tensioactifs

    Directory of Open Access Journals (Sweden)

    Langevin D.

    2006-12-01

    Full Text Available Although there are many studies of association of polymers and surfactants in solution, much less is known about their association at surfaces. In this paper, several examples will be presented : water insoluble polymers spread at the surface of surfactant aqueous solutions, water soluble polymers adsorbed with the surfactant at the surface of the solution. Examples of the first case will be given with PDMS (polydimethylsiloxane spread onto monolayers of surfactants of different chain lengths. The penetration of the polymer into the surfactant layer has been studied with different techniques (surface tension, ellipsometry, neutron reflectivity. Examples of the second case will be given with two different polyelectrolytes (polystyrene sulfonate PSS and polyacrylamide sulfonate PAMPS and various surfactants (ionic and nonionic. Surface tension measurements of the dilute solutions with a nonionic surfactant (C10E5 show that there is a strong interaction with PSS and no interaction with PAMPS. This is probably due to the larger hydrophobicity of the polymer backbone. X-Ray scattering and electron microscopy experiments on lamellar phases with PSS show that the polymer chains are embedded into the surfactant bilayers. The interaction of PSS and PAMPS with a cationic surfactant (DTAB, opposite charge has also been studied by surface tension and ellipsometry. An extended polymer-surfactant surface complex is formed at the surface of the solutions. Malgré de nombreux travaux sur les associations entre polymères et tensioactifs en solution, les associations localisées sur des surfaces ont été beaucoup moins étudiées. Dans cette présentation différents exemples seront présentés : des polymères non solubles dans l'eau étalés à la surface de solutions aqueuses de tensioactifs, des polymères hydrosolubles adsorbés avec des molécules de tensioactifs à la surface de la solution. La première situation sera illustrée par du PDMS (polydim

  1. Gastro retention using polymer cocoons.

    Science.gov (United States)

    Arnold, Julien; Hunkeler, David

    2015-02-01

    A gastro-retentive capsule has been prepared which is retained in the stomach for a period of 24h, providing a vehicle for the controlled delivery to the upper intestines. These "gastro cocoons" can resist passage through the sphincter of the stomach, and can retain a high drug payload (30%). They are made from oppositely charged polyelectrolytes and can swell to twice their initial volume. They are strong and also can resist 550 N of compressive force. They are based on filled pharmaceutical capsules which are visible to X-rays. Using ambroxol hydrochloride as a model drug linear, zero-order, release curves were obtained.

  2. A comparative study of interaction of ibuprofen with biocompatible polymers.

    Science.gov (United States)

    Khan, Iqrar A; Anjum, Kahkashan; Ali, Mohd Sajid; Kabir-ud Din

    2011-11-01

    In this paper we are reporting the interaction of a non-steroidal anti-inflammatory drug ibuprofen (IBF) with various biocompatible polymers. Being amphiphilic, the drug interacts with the polymers similar to the interaction of surfactants and polymers. Therefore, we have considered the polymer-amphiphile interaction approach using conductimetry. The polymers of different charges (cationic, anionic, and nonionic) have been taken for the study. It was found that the critical aggregation concentration (cac) decreases on increasing the polymer concentrations of cationic as well as nonionic polymers whereas it increases for anionic polymers. The results imply that anionic IBF interacts with cationic and nonionic polymers more strongly as compared to the anionic polymers. A possible anionic-anionic repulsion is responsible for the weak interaction of IBF with anionic polymers. On the other side, the critical micelle concentration (cmc) increases for all polymers which is a usual indication of the interaction between amphiphiles and polymers. Free energies of aggregation (ΔG(agg)) and micellization (ΔG(mic)) were also computed with the help of degrees of micelle ionization obtained from the specific conductivity - [IBF] isotherms.

  3. Three dimensions of oppositionality in autism spectrum disorder.

    Science.gov (United States)

    Mandy, William; Roughan, Laura; Skuse, David

    2014-02-01

    In autism spectrum disorder (ASD), symptoms of oppositional defiant disorder (ODD) are common but poorly understood. DSM-5 has adopted a tripartite model of ODD, parsing its features into 'angry and irritable symptoms' (AIS), 'argumentative and defiant behavior' (ADB) and 'vindictiveness'. This was based on findings in non-autistic populations that each of these dimensions of oppositionality has a distinct constellation of associations with internalising and externalising psychopathology. We applied the tripartite DSM-5 ODD model to ASD to test its generalisability beyond non-ASD populations; and to elucidate the nature of ODD symptoms in ASD. Participants were 216 verbally-fluent young people (mean age = 9.6 years, range 3.0 to 16.2 years, 82 % male) with ASD. Cross-sectional parent-and teacher-report data were analysed using bootstrap multiple regression to test the following predictions, derived from studies of non-ASD young people: (1) AIS will be the main predictor of internalising problems; (2) ADB will be the main predictor of ADHD symptoms; (3) all ODD traits will independently predict conduct disorder symptoms; (4) vindictiveness will be the main predictor of aggressive conduct problems. Our findings using both parent and teacher data were consistent with the non-ASD ODD literature. AIS were associated with internalising but not externalising problems; ADB and vindictiveness were associated with externalising but not internalising problems; and vindictiveness was the main predictor of aggression. The DSM-5 tripartite model of ODD appears to be generalisable to ASD: for people with an autistic disorder, AIS, ADB and vindictive dimensions of oppositionality have distinct associations with concurrent psychopathology, suggesting the need to assess them as separate constructs.

  4. Consolidity: Moving opposite to built-as-usual systems practices

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2013-06-01

    Full Text Available With the recent uncovering of the mystery of consolidity as an inner property of systems, it is demonstrated that this notion is an indispensable pillar of systems modeling, analysis, design and building. Based on the opposite mathematical relation between consolidity versus stability and controllability, a new conceptual life cycle (change pathway graph for natural and man-made built-as-usual systems is presented and thoroughly discussed. For the conceptual cycle development progress, it is logically conceived that system behavior changes rate has not accidentally happened, but is relatively influenced at the point of progress by the associated direct system consolidity index corresponding to the acting on-the-spot varying environments or effects. Such conceptual graph represents a real research advancement indicating that we have to move opposite to current systems building practices for solving many real life enigmatic problems. It is illustrated using stabilization of inverted pendulum problem that it is amenable by cleverly manipulating systems structure and parameters to attain new designed systems with aggregates of superiority of consolidity, stability and controllability principle. It is recommended that we have to seek new generation of innovative non-conventional systems structures moving opposite to conventional built-as-usual system practices that can enable providing directly such three aggregates of superiority requirements as their built-in self property. This will open the door towards solving many real life challenging dilemmas in various sciences and disciplines, such as engineering, space sciences, medicine, pharmacology, biology, ecology, life sciences, economy, operations research, humanities and social sciences that are believed to be attributed due to their systems inferior consolidity.

  5. CONTRAST AS EXPRESSIVE OPPOSITION IN DISCOURSE OF THE ORATOR

    Directory of Open Access Journals (Sweden)

    Zubkov Mikhail Dmitrievich

    2015-06-01

    Full Text Available The article deals with the notion of contrast in the orator's discourse on the example of speeches by the American pastor, leader of civil movement for human rights and public figure Martin Luther King Jr. Following the studies of M.Ya. Blokh and O.P. Martynova, the contrast in the discourse of the orator is regarded as expressive opposition with the help of which the orator exerts his influence over the audience. The dicteme, which was introduced by M.Ya. Blokh, is taken as a unit of analysis since it enables the author to better comprehend the ideas and meanings that the orator conveys. Based on the theory of contrast introduced by M.Ya. Blokh and O.P. Martynova, the three types of expressive opposition in the discourse of Martin Luther King Jr. are analysed, i.e. structural, semantic and compositional. The structural type includes contrast on the morphological and syntactic levels. The semantic type consists of contrast in the plot of the speech; and semantic and associative contrast by which the author means the opposition of the theme lines of the text. The composition type comprises contrast in the types of the speech and contrast in the composition types of the speech (introduction, basic part, conclusion. Contrast in stylistic devices is demonstrated on the example of antithesis and oxymoron. The use of contrast in the convergence of stylistic devices is also analyzed. The conclusion with regard to the role of contrast in the discourse of Martin Luther King Jr. is drawn.

  6. CONTRAST AS EXPRESSIVE OPPOSITION IN DISCOURSE OF THE ORATOR

    OpenAIRE

    Zubkov Mikhail Dmitrievich

    2015-01-01

    The article deals with the notion of contrast in the orator's discourse on the example of speeches by the American pastor, leader of civil movement for human rights and public figure Martin Luther King Jr. Following the studies of M.Ya. Blokh and O.P. Martynova, the contrast in the discourse of the orator is regarded as expressive opposition with the help of which the orator exerts his influence over the audience. The dicteme, which was introduced by M.Ya. Blokh, is taken as a unit of analysi...

  7. Rabbinic Discourse, Law and the Culture of Opposition

    Directory of Open Access Journals (Sweden)

    Geoffrey Skoll

    2012-12-01

    Full Text Available A style of discourse associated with a rabbinic tradition in Judaism exemplifies a core oppositional process of the persistent identity system of Jewish culture. Based in an interpretation of law as represented by Torah and Talmud, this style of discourse undermines central reifications of the Greco-Roman-Christian tradition, which constitutes the historical framework for contemporary Western cultural hegemony. A central precept is that identity is contingent and not, as in the predominant Western tradition, something that is natural, transcendent, and absolute. The implicit critique of Western identity allows rabbinic discourse to deconstruct and challenge the authority of law and governmentality.

  8. Opposition of Ego-Other: Aporia of Ethics

    OpenAIRE

    Hassan Fathzadeh

    2011-01-01

    “Understanding the other” is the paradoxical point of ethics: without it no ethics is possible, and with it I would take away the other it’s alterity. Modern philosophy involves us in such a paradoxical situation, especially in the opposition of Husserl and Levinas. Following their thoughts, we would come near its deep roots. We will show post-structuralism, by decentering of subject, would help us to get rid of this paradox. In Kant’s words, we want to find transcendental condition of ethics...

  9. Reactive ion etching of polymer materials for an energy harvesting device

    DEFF Research Database (Denmark)

    Wang, Fei; Bertelsen, Christian Vinther; Skands, Gustav

    2012-01-01

    In this paper, we have demonstrated deep reactive ion etching (RIE) of two MEMS compatible polymer materials CYTOP and TOPAS, which may be useful for energy harvesting devices. The CYTOP polymer was patterned and used as the electret for the following corona charging while the TOPAS polymer...

  10. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  11. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  12. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale

    Directory of Open Access Journals (Sweden)

    Nikolaus Knorr

    2011-06-01

    Full Text Available Though triboelectric charging of insulators is common, neither its mechanism nor the nature of the charge is well known. Most research has focused on the integral amount of charge transferred between two materials upon contact, establishing, e.g., a triboelectric series. Here, the charge distribution of tracks on insulating polymer films rubbed by polymer-covered pointed swabs is investigated in high resolution by Kelvin probe force microscopy. Pronounced bipolar charging was observed for all nine rubbing combinations of three different polymers, with absolute surface potentials of up to several volts distributed in streaks along the rubbing direction and varying in polarity on μm-length scales perpendicular to the rubbing direction. Charge densities increased considerably for rubbing in higher relative humidity, for higher rubbing loads, and for more hydrophilic polymers. The ends of rubbed tracks had positively charged rims. Surface potential decay with time was strongly accelerated in increased humidity, particularly for polymers with high water permeability. Based on these observations, a mechanism is proposed of triboelectrification by extrusions of prevalently hydrated protons, stemming from adsorbed and dissociated water, along pressure gradients on the surface by the mechanical action of the swab. The validity of this mechanism is supported by explanations given recently in the literature for positive streaming currents of water at polymer surfaces and by reports of negative charging of insulators tapped by accelerated water droplets and of potential built up between the front and the back of a rubbing piece, observations already made in the 19th century. For more brittle polymers, strongly negatively charged microscopic abrasive particles were frequently observed on the rubbed tracks. The negative charge of those particles is presumably due in part to triboemission of electrons by polymer chain scission, forming radicals and negatively

  13. Craniofacial skeletal dysplasia of opposite-sex dizygotic twins.

    Science.gov (United States)

    Chou, Szu-Ting; Tseng, Yu-Chuan; Pan, Chin-Yun; Chang, Jenny Zwei-Chieng; Chang, Hong-Po

    2011-05-01

    Craniofacial skeletal dysplasia can lead to different skeletal malocclusions. Both environmental factors and heredity contribute to the formation of malocclusions. There are strong familial tendencies in the development of Angle's Class II and III malocclusions. Cases such as opposite-typed (Class II and III) malocclusions with skeletal and dentoalveolar discordance in siblings or dizygotic (DZ) twins have seldom been reported. We describe the rare case of a pair of opposite-sex DZ twins with completely different skeletal malocclusions, and discuss the clinical considerations for treatment. The patients were twins aged 13 years and 4 months. The girl had mandibular prognathism and a Class III dentoskeletal relationship, whereas the boy had skeletal Class II with mandibular retrusion. Several morphological traits have been implicated with hormonal effect. However, there was no evidence of whether the masculinization effect had any impact on jaw size in the female fetus or whether this effect lasted into adolescence. We suggest that, although DZ twins share the same growth environment, genetic or other unknown extrinsic factors can result in discordance of characteristics of the craniofacial skeleton, dentition, and occlusion. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  14. Craniofacial Skeletal Dysplasia of Opposite-sex Dizygotic Twins

    Directory of Open Access Journals (Sweden)

    Szu-Ting Chou

    2011-05-01

    Full Text Available Craniofacial skeletal dysplasia can lead to different skeletal malocclusions. Both environmental factors and heredity contribute to the formation of malocclusions. There are strong familial tendencies in the development of Angle's Class II and III malocclusions. Cases such as opposite-typed (Class II and III malocclusions with skeletal and dentoalveolar discordance in siblings or dizygotic (DZ twins have seldom been reported. We describe the rare case of a pair of opposite-sex DZ twins with completely different skeletal malocclusions, and discuss the clinical considerations for treatment. The patients were twins aged 13 years and 4 months. The girl had mandibular prognathism and a Class III dentoskeletal relationship, whereas the boy had skeletal Class II with mandibular retrusion. Several morphological traits have been implicated with hormonal effect. However, there was no evidence of whether the masculinization effect had any impact on jaw size in the female fetus or whether this effect lasted into adolescence. We suggest that, although DZ twins share the same growth environment, genetic or other unknown extrinsic factors can result in discordance of characteristics of the craniofacial skeleton, dentition, and occlusion.

  15. Imaging enhancement of malignancy by cyclophosphamide: surprising chemotherapy opposite effects

    Science.gov (United States)

    Yamauchi, Kensuke; Yang, Meng; Hayashi, Katsuhiro; Jiang, Ping; Xu, Mingxu; Yamamoto, Norio; Tsuchiya, Hiroyuki; Tomita, Katsuro; Moossa, A. R.; Bouvet, Michael; Hoffman, Robert M.

    2008-02-01

    Although side effects of cancer chemotherapy are well known, "opposite effects" of chemotherapy which enhance the malignancy of the treated cancer are not well understood. We have observed a number of steps of malignancy that are enhanced by chemotherapy pre-treatment of mice before transplantation of human tumor cells. The induction of intravascular proliferation, extravasation, and colony formation by cancer cells, critical steps of metastasis was enhanced by pretreatment of host mice with the commonly-used chemotherapy drug cyclophosphamide. Cyclophosphamide appears to interfere with a host process that inhibits intravascular proliferation, extravasation, and extravascular colony formation by at least some tumor cells. Cyclophosphamide does not directly affect the cancer cells since cyclophosphamide has been cleared by the time the cancer cells were injected. Without cyclophosphamide pretreatment, human colon cancer cells died quickly after injection in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. However, when the host mice were pretreated with cyclophosphamide, the cancer cells survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the cancer cells. This review describes an important unexpected "opposite effects" of chemotherapy that enhances critical steps in malignancy rather than inhibiting them, suggesting that certain current approaches to cancer chemotherapy should be modified.

  16. Neutrino production of opposite sign dimuons in the NOMAD experiment

    CERN Document Server

    Astier, Pierre; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Ballocchi, G; Banner, M; Bassompierre, Gabriel; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S A; Camilleri, L L; Cardini, A; Cattaneo, Paolo Walter; Cavasinni, V; Cervera-Villanueva, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R D; Daniels, D C; Degaudenzi, H M; De Santo, A; Del Prete, T; Dignan, T; Di Lella, L; do Couto e Silva, E; Dumarchez, J; Ellis, M; Fazio, T; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, Vincenzo; Fraternali, M; Gaillard, Jean-Marc; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S N; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kirsanov, M M; Klimov, O L; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Kuznetsov, V; Lacaprara, S; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Manola-Poggioli, E; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Mossuz, L; Nédélec, P; Nefedov, Yu A; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, Alfredo; Pluquet, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rathouit, P; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sevior, M E; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Steininger, M; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, S; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Yu; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Verkindt, D; Vieira, J M; Vinogradova, T G; Vo, M K; Weber, F; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2000-01-01

    The NOMAD Collaboration presents a study of opposite sign dimuon events in the framework of Leading Order QCD. A total of 2714 neutrino- and 115 antineutrino-induced opposite sign dimuon events with $E_{\\mu 1}, E_{\\mu 2} > 4.5$ GeV, $15 1\\;(\\mbox{GeV}/\\mbox{c})^{2}$ are observed %in the data from the 1995 and 1996 runs. in the Front-Calorimeter of NOMAD during the 1995 and 1996 runs. The analysis yields a value for the charm quark mass of $m_{c} = 1.3^{+0.3\\;+0.3}_{-0.3\\;-0.3}\\;\\mbox{GeV}/\\m box{c}^{2}$ and for the average semileptonic branching ratio of $B_{c} = 0.095^{+0.007\\;+0.014}_{-0.007\\;-0.013}$. The ratio of the strange to non-strange sea in the nucleon is measured to be $\\kappa = 0.48^{+0.09 +0.17}_{-0.07 -0.12}$. The measured rate of charm-induced dimuon relative to single muon, as a function of neutrino energy, is consistent with the slow rescaling hypothesis of heavy quark production.

  17. Measurement of Bd mixing using opposite-side flavor tagging

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemad