WorldWideScience

Sample records for opioid peptide agonists

  1. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    Science.gov (United States)

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-09-08

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.

  2. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  3. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    Science.gov (United States)

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  4. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  5. Chimeric opioid peptides: Tools for identifying opioid receptor types

    International Nuclear Information System (INIS)

    Xie, G.; Miyajima, A.; Yokota, T.; Arai, K.; Goldstein, A.

    1990-01-01

    The authors synthesized several chimeric [125J-labelled] peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the κ opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surface or membrane preparation, these peptides could still bind specifically to the monoclonal antibody. These chimeric peptides should be useful for isolating μ, δ, and κ opioid receptors and for identifying opioid receptors on transfected cells in expression cloning procedures. The general approach using chimeric peptides should be applicable to other peptide receptors

  6. Synthesis and Pharmacology of Halogenated δ-Opioid-Selective [D-Ala2]Deltorphin II Peptide Analogues

    Science.gov (United States)

    Pescatore, Robyn; Marrone, Gina F.; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E.; Pasternak, Gavril W.; Wilson, Krista R.; Majumdar, Susruta

    2015-01-01

    Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-D-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [D-Ala2]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [35S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which 125I isincorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe3. The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology. PMID:25844930

  7. Synthesis and pharmacology of halogenated δ-opioid-selective [d-Ala(2)]deltorphin II peptide analogues.

    Science.gov (United States)

    Pescatore, Robyn; Marrone, Gina F; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E; Pasternak, Gavril W; Wilson, Krista R; Majumdar, Susruta

    2015-06-17

    Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-d-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [d-Ala(2)]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [(35)S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which (125)I is incorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe(3). The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology.

  8. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    Science.gov (United States)

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Chimeric opioid peptides: tools for identifying opioid receptor types.

    OpenAIRE

    Xie, G X; Miyajima, A; Yokota, T; Arai, K; Goldstein, A

    1990-01-01

    We synthesized several chimeric peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the kappa opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surf...

  10. The Relative Potency of Inverse Opioid Agonists and a Neutral Opioid Antagonist in Precipitated Withdrawal and Antagonism of Analgesia and Toxicity

    OpenAIRE

    Sirohi, Sunil; Dighe, Shveta V.; Madia, Priyanka A.; Yoburn, Byron C.

    2009-01-01

    Opioid antagonists can be classified as inverse agonists and neutral antagonists. In the opioid-dependent state, neutral antagonists are significantly less potent in precipitating withdrawal than inverse agonists. Consequently, neutral opioid antagonists may offer advantages over inverse agonists in the management of opioid overdose. In this study, the relative potency of three opioid antagonists to block opioid analgesia and toxicity and precipitate withdrawal was exa...

  11. The relative potency of inverse opioid agonists and a neutral opioid antagonist in precipitated withdrawal and antagonism of analgesia and toxicity.

    Science.gov (United States)

    Sirohi, Sunil; Dighe, Shveta V; Madia, Priyanka A; Yoburn, Byron C

    2009-08-01

    Opioid antagonists can be classified as inverse agonists and neutral antagonists. In the opioid-dependent state, neutral antagonists are significantly less potent in precipitating withdrawal than inverse agonists. Consequently, neutral opioid antagonists may offer advantages over inverse agonists in the management of opioid overdose. In this study, the relative potency of three opioid antagonists to block opioid analgesia and toxicity and precipitate withdrawal was examined. First, the potency of two opioid inverse agonists (naltrexone and naloxone) and a neutral antagonist (6beta-naltrexol) to antagonize fentanyl-induced analgesia and lethality was determined. The order of potency to block analgesia was naltrexone > naloxone > 6beta-naltrexol (17, 4, 1), which was similar to that to block lethality (13, 2, 1). Next, the antagonists were compared using withdrawal jumping in fentanyl-dependent mice. The order of potency to precipitate withdrawal jumping was naltrexone > naloxone 6beta-naltrexol (1107, 415, 1). The relative potencies to precipitate withdrawal for the inverse agonists compared with the neutral antagonist were dramatically different from that for antagonism of analgesia and lethality. Finally, the effect of 6beta-naltrexol pretreatment on naloxone-precipitated jumping was determined in morphine and fentanyl-dependent mice. 6beta-Naltrexol pretreatment decreased naloxone precipitated withdrawal, indicating that 6beta-naltrexol is a neutral antagonist. These data demonstrate that inverse agonists and neutral antagonists have generally comparable potencies to block opioid analgesia and lethality, whereas the neutral opioid antagonist is substantially less potent in precipitating opioid withdrawal. These results support suggestions that neutral antagonists may have advantages over inverse agonists in the management of opioid overdose.

  12. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    Science.gov (United States)

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  13. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    Science.gov (United States)

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  14. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  15. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2006-06-01

    delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.

  16. γ-endorphin and Nα-acetyl-γ-endorphin interfere with distinct dopaminergic systems in the nucleus accumbens via opioid and non-opioid mechanisms

    NARCIS (Netherlands)

    Ree, J.M. van; Gaffori, O.; Kiraly, I.

    1984-01-01

    Low doses (10 ng) of the dopamine agonist apomorphine induced hypolocomotion when injected into the nucleus accumbens of rats. This behavioral response was antagonized by local treatment with either the opioid peptide γ-endorphin (γE) or the non-opioid peptide Nα-acetyl-γ-endorphin (AcγE) in a dose

  17. Respiratory depression after intravenous administration of delta-selective opioid peptide analogs.

    Science.gov (United States)

    Szeto, H H; Soong, Y; Wu, D; Olariu, N; Kett, A; Kim, H; Clapp, J F

    1999-01-01

    We compared the effects of three micro-(DAMGO, DALDA, TNPO) and three delta-(DPDPE, DELT, SNC-80) opioid agonists on arterial blood gas after IV administration in awake sheep. None of the mu agonists altered pO2, pCO2 or pH. All three mu agonists decreased pO2 increased pCO2 and decreased pO2, and this effect was not sensitive to naloxone or TIPPpsi, a delta-antagonist, suggesting that it is not mediated by beta-opioid receptors. When administered to pregnant animals, there were significant changes in fetal pCO2 and pH. It may be possible to develop delta-selective opioid agonists which do not produce respiratory depression.

  18. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    International Nuclear Information System (INIS)

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced [ 3 H]-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of [ 3 H]-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand [ 3 H]-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity

  19. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  20. Evaluation of the Tolerability of Switching Patients on Chronic Full ?-Opioid Agonist Therapy to Buccal Buprenorphine

    OpenAIRE

    Webster, Lynn; Gruener, Daniel; Kirby, Todd; Xiang, Qinfang; Tzanis, Evan; Finn, Andrew

    2016-01-01

    Objective?Assess whether patients with chronic pain receiving 80 to 220?mg oral morphine sulfate equivalent of a full ?-opioid agonist could be transitioned to buccal buprenorphine at approximately 50% of their full dose without inducing opioid withdrawal or sacrificing analgesic efficacy. Methods.?A randomized, double-blind, double-dummy, active-controlled, two-period crossover study in adult patients receiving around-the-clock full opioid agonist therapy and confirmed to be opioid dependent...

  1. TRV0109101, a G Protein-Biased Agonist of the µ-Opioid Receptor, Does Not Promote Opioid-Induced Mechanical Allodynia following Chronic Administration.

    Science.gov (United States)

    Koblish, Michael; Carr, Richard; Siuda, Edward R; Rominger, David H; Gowen-MacDonald, William; Cowan, Conrad L; Crombie, Aimee L; Violin, Jonathan D; Lark, Michael W

    2017-08-01

    Prescription opioids are a mainstay in the treatment of acute moderate to severe pain. However, chronic use leads to a host of adverse consequences including tolerance and opioid-induced hyperalgesia (OIH), leading to more complex treatment regimens and diminished patient compliance. Patients with OIH paradoxically experience exaggerated nociceptive responses instead of pain reduction after chronic opioid usage. The development of OIH and tolerance tend to occur simultaneously and, thus, present a challenge when studying the molecular mechanisms driving each phenomenon. We tested the hypothesis that a G protein-biased µ -opioid peptide receptor (MOPR) agonist would not induce symptoms of OIH, such as mechanical allodynia, following chronic administration. We observed that the development of opioid-induced mechanical allodynia (OIMA), a model of OIH, was absent in β -arrestin1 -/- and β -arrestin2 -/- mice in response to chronic administration of conventional opioids such as morphine, oxycodone and fentanyl, whereas tolerance developed independent of OIMA. In agreement with the β -arrestin knockout mouse studies, chronic administration of TRV0109101, a G protein-biased MOPR ligand and structural analog of oliceridine, did not promote the development of OIMA but did result in drug tolerance. Interestingly, following induction of OIMA by morphine or fentanyl, TRV0109101 was able to rapidly reverse allodynia. These observations establish a role for β -arrestins in the development of OIH, independent of tolerance, and suggest that the use of G protein-biased MOPR ligands, such as oliceridine and TRV0109101, may be an effective therapeutic avenue for managing chronic pain with reduced propensity for opioid-induced hyperalgesia. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Science.gov (United States)

    Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-01

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106

  3. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2018-01-01

    Full Text Available Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  4. Sympathoadrenal, cardiovascular and blood gas responses to highly selective mu and delta opioid peptides.

    Science.gov (United States)

    Kiritsy-Roy, J A; Marson, L; Van Loon, G R

    1989-12-01

    The relative importance of mu and delta opioid receptors in brain regulation of sympathoadrenal, cardiovascular and respiratory function was investigated using highly selective mu and delta opioid peptide analogs. Groups of conscious rats received i.c.v. injections of either the mu-selective agonist, [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO) or the delta-selective agonist, [D-Pen2, D-Pen5]enkephalin (DPDPE). Blood pressure and heart rate were recorded continuously via a chronic catheter in the carotid artery, and arterial blood samples were taken at intervals through the same catheter for determination of blood pH, pCO2, pO2 and plasma catecholamine concentrations. Both DAMGO and DPDPE increased plasma catecholamine levels and blood pressure in a dose-related manner. The slopes of the dose-response lines were parallel, but the delta compound was about 250 times less potent than DAMGO. Only the highest dose of 5 nmol of DAMGO caused a significant bradycardia, mediated by parasympathetic (vagal) activation. DAMGO and DPDPE also induced dose-dependent acidosis, with DAMGO again being much more potent than DPDPE. The effects of both DAMGO and DPDPE on plasma catecholamines, blood pressure and blood gases were antagonized by a mu-selective dose of naloxone (0.4 mg/kg i.a.). Intracerebroventricular administration of the delta-selective antagonist, ICI 174,864, only partially attenuated sympathoadrenal and blood gas responses to DAMGO or DPDPE. The pressor responses to DAMGO or DPDPE were resistant to antagonism by ICI 174,864. These results indicate that brain opioid receptors regulating autonomic outflow, cardiovascular and respiratory function are mainly of the mu type, although a delta opioid system may contribute to sympathoadrenal and respiratory effects of opioids.

  5. Association of opioid agonist therapy with lower incidence of hepatitis C virus infection in young adult injection drug users.

    Science.gov (United States)

    Tsui, Judith I; Evans, Jennifer L; Lum, Paula J; Hahn, Judith A; Page, Kimberly

    2014-12-01

    Injection drug use is the primary mode of transmission for hepatitis C virus (HCV) infection. Prior studies suggest opioid agonist therapy may reduce the incidence of HCV infection among injection drug users; however, little is known about the effects of this therapy in younger users. To evaluate whether opioid agonist therapy was associated with a lower incidence of HCV infection in a cohort of young adult injection drug users. Observational cohort study conducted from January 3, 2000, through August 21, 2013, with quarterly interviews and blood sampling. We recruited young adult (younger than 30 years) injection drug users who were negative for anti-HCV antibody and/or HCV RNA. Substance use treatment within the past 3 months, including non-opioid agonist forms of treatment, opioid agonist (methadone hydrochloride or buprenorphine hydrochloride) detoxification or maintenance therapy, or no treatment. Incident HCV infection documented with a new positive result for HCV RNA and/or HCV antibodies. Cumulative incidence rates (95% CI) of HCV infection were calculated assuming a Poisson distribution. Cox proportional hazards regression models were fit adjusting for age, sex, race, years of injection drug use, homelessness, and incarceration. Baseline characteristics of the sample (n = 552) included median age of 23 (interquartile range, 20-26) years; 31.9% female; 73.1% white; 39.7% who did not graduate from high school; and 69.2% who were homeless. During the observation period of 680 person-years, 171 incident cases of HCV infection occurred (incidence rate, 25.1 [95% CI, 21.6-29.2] per 100 person-years). The rate ratio was significantly lower for participants who reported recent maintenance opioid agonist therapy (0.31 [95% CI, 0.14-0.65]; P = .001) but not for those who reported recent non-opioid agonist forms of treatment (0.63 [95% CI, 0.37-1.08]; P = .09) or opioid agonist detoxification (1.45 [95% CI, 0.80-2.69]; P = .23). After adjustment for

  6. Optimisation of in silico derived 2-aminobenzimidazole hits as unprecedented selective kappa opioid receptor agonists

    DEFF Research Database (Denmark)

    Sasmal, Pradip K; Krishna, C Vamsee; Sudheerkumar Adabala, S

    2015-01-01

    Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR a...... of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified....

  7. Endomorphin-2: a biased agonist at the μ-opioid receptor.

    Science.gov (United States)

    Rivero, Guadalupe; Llorente, Javier; McPherson, Jamie; Cooke, Alex; Mundell, Stuart J; McArdle, Craig A; Rosethorne, Elizabeth M; Charlton, Steven J; Krasel, Cornelius; Bailey, Christopher P; Henderson, Graeme; Kelly, Eamonn

    2012-08-01

    Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the μ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.

  8. CXCL10 Controls Inflammatory Pain via Opioid Peptide-Containing Macrophages in Electroacupuncture

    Science.gov (United States)

    Wang, Ying; Gehringer, Rebekka; Mousa, Shaaban A.; Hackel, Dagmar; Brack, Alexander; Rittner, Heike L.

    2014-01-01

    Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture. PMID:24732949

  9. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    Science.gov (United States)

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-08-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy.

  10. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.

    1985-01-01

    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.

  11. Sex work involvement among women with long-term opioid injection drug dependence who enter opioid agonist treatment.

    Science.gov (United States)

    Marchand, Kirsten; Oviedo-Joekes, Eugenia; Guh, Daphne; Marsh, David C; Brissette, Suzanne; Schechter, Martin T

    2012-01-25

    Substitution with opioid-agonists (e.g., methadone) has shown to be an effective treatment for chronic long-term opioid dependency. Survival sex work, very common among injection drug users, has been associated with poor Opioid Agonist Treatment (OAT) engagement, retention and response. Therefore, this study was undertaken to determine factors associated with engaging in sex work among long-term opioid dependent women receiving OAT. Data from a randomized controlled trial, the North American Opiate Medication Initiative (NAOMI), conducted in Vancouver and Montreal (Canada) between 2005-2008, was analyzed. The NAOMI study compared the effectiveness of oral methadone to injectable diacetylmorphine or injectable hydromorphone, the last two on a double blind basis, over 12 months. A research team, independent of the clinic services, obtained outcome evaluations at baseline and follow-up (3, 6, 9, 12, 18 and 24 months). A total 53.6% of women reported engaging in sex work in at least one of the research visits. At treatment initiation, women who were younger and had fewer years of education were more likely to be engaged in sex work. The multivariate logistic generalized estimating equation regression analysis determined that psychological symptoms, and high illicit heroin and cocaine use correlated with women's involvement in sex work during the study period. After entering OAT, women using injection drugs and engaging in sex work represent a particularly vulnerable group showing poorer psychological health and a higher use of heroin and cocaine compared to women not engaging in sex work. These factors must be taken into consideration in the planning and provision of OAT in order to improve treatment outcomes. NCT00175357.

  12. Sex work involvement among women with long-term opioid injection drug dependence who enter opioid agonist treatment

    Directory of Open Access Journals (Sweden)

    Marchand Kirsten

    2012-01-01

    Full Text Available Abstract Background Substitution with opioid-agonists (e.g., methadone has shown to be an effective treatment for chronic long-term opioid dependency. Survival sex work, very common among injection drug users, has been associated with poor Opioid Agonist Treatment (OAT engagement, retention and response. Therefore, this study was undertaken to determine factors associated with engaging in sex work among long-term opioid dependent women receiving OAT. Methods Data from a randomized controlled trial, the North American Opiate Medication Initiative (NAOMI, conducted in Vancouver and Montreal (Canada between 2005-2008, was analyzed. The NAOMI study compared the effectiveness of oral methadone to injectable diacetylmorphine or injectable hydromorphone, the last two on a double blind basis, over 12 months. A research team, independent of the clinic services, obtained outcome evaluations at baseline and follow-up (3, 6, 9, 12, 18 and 24 months. Results A total 53.6% of women reported engaging in sex work in at least one of the research visits. At treatment initiation, women who were younger and had fewer years of education were more likely to be engaged in sex work. The multivariate logistic generalized estimating equation regression analysis determined that psychological symptoms, and high illicit heroin and cocaine use correlated with women's involvement in sex work during the study period. Conclusions After entering OAT, women using injection drugs and engaging in sex work represent a particularly vulnerable group showing poorer psychological health and a higher use of heroin and cocaine compared to women not engaging in sex work. These factors must be taken into consideration in the planning and provision of OAT in order to improve treatment outcomes. Trial Registration NCT00175357.

  13. NeuroD Modulates Opioid Agonist-Selective Regulation of Adult Neurogenesis and Contextual Memory Extinction

    OpenAIRE

    Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee

    2013-01-01

    Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate o...

  14. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    Science.gov (United States)

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  15. The impact of therapeutic opioid agonists on driving-related psychomotor skills assessed by a driving simulator or an on-road driving task: A systematic review.

    Science.gov (United States)

    Ferreira, Diana H; Boland, Jason W; Phillips, Jane L; Lam, Lawrence; Currow, David C

    2018-04-01

    Driving cessation is associated with poor health-related outcomes. People with chronic diseases are often prescribed long-term opioid agonists that have the potential to impair driving. Studies evaluating the impact of opioids on driving-related psychomotor skills report contradictory results likely due to heterogeneous designs, assessment tools and study populations. A better understanding of the effects of regular therapeutic opioid agonists on driving can help to inform the balance between individual's independence and community safety. To identify the literature assessing the impact of regular therapeutic opioid agonists on driving-related psychomotor skills for people with chronic pain or chronic breathlessness. Systematic review reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis statement; PROSPERO Registration CRD42017055909. Six electronic databases and grey literature were systematically searched up to January, 2017. Inclusion criteria were as follows: (1) empirical studies reporting data on driving simulation, on-the-road driving tasks or driving outcomes; (2) people with chronic pain or chronic breathlessness; and (3) taking regular therapeutic opioid agonists. Critical appraisal used the National Institutes of Health's quality assessment tools. From 3809 records screened, three studies matched the inclusion criteria. All reported data on people with chronic non-malignant pain. No significant impact of regular therapeutic opioid agonists on people's driving-related psychomotor skills was reported. One study reported more intense pain significantly worsened driving performance. This systematic review does not identify impaired simulated driving performance when people take regular therapeutic opioid agonists for symptom control, although more prospective studies are needed.

  16. Electroacupuncture-Induced Dynamic Processes of Gene Expression Levels of Endogenous Opioid Peptide Precursors and Opioid Receptors in the CNS of Goats

    Directory of Open Access Journals (Sweden)

    Li-Li Cheng

    2013-01-01

    Full Text Available In order to investigate the dynamic processes of mRNA levels of proenkephalin, proopiomelanocortin, prodynorphin, and opioid receptors (δ-, μ-, and κ-receptor induced by electroacupuncture (EA in the central nerve system, goats were stimulated by EA of 60 Hz for 0.5 h at a set of Baihui, Santai, Ergen, and Sanyangluo points. The pain threshold was measured using the method of potassium iontophoresis. The mRNA levels of the three opioid peptide precursors and three opioid receptors were determined with quantitative real-time PCR and the levels of Met-enkephalin with SABC immunohistochemistry at 0.5 h before and at 0, 2, 4, 6, 8, 12, and 24 h after EA. The results showed that the pain threshold correlated (P<0.01 with Met-enkephalin immunoactivities in the measured nuclei and areas of goats. The analgesic aftereffect lasted for 12 h at least. The mRNA levels of the three opioid peptide precursors and three opioid receptors began to increase at 0 h, reached the peak during the time from 4 h to 6 h or at 12 h, and remained higher at 24 h after EA was discontinued. These results suggested that the initiation of gene expression of opioid peptides and the three receptors may be associated with EA-induced analgesic aftereffect.

  17. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    Science.gov (United States)

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  18. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  19. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    Science.gov (United States)

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  20. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  1. Medicaid Coverage for Methadone Maintenance and Use of Opioid Agonist Therapy in Specialty Addiction Treatment.

    Science.gov (United States)

    Saloner, Brendan; Stoller, Kenneth B; Barry, Colleen L

    2016-06-01

    This study examined differences in opioid agonist therapy (OAT) utilization among Medicaid-enrolled adults receiving public-sector opioid use disorder treatment in states with Medicaid coverage of methadone maintenance, states with block grant funding only, and states without public coverage of methadone. Person-level treatment admission data, which included information on reason for treatment and use of OAT from 36 states were linked to state-level Medicaid policies collected in a 50-state survey. Probabilities of OAT use among Medicaid enrollees in opioid addiction treatment were calculated, with adjustment for demographic characteristics and patterns of substance use. In adjusted analysis, 45.0% of Medicaid-enrolled individuals in opioid addiction treatment in states with Medicaid coverage for methadone maintenance used OAT, compared with 30.1% in states with block grant coverage only and 17.0% in states with no coverage. Differences were widest in nonintensive outpatient settings. Medicaid methadone maintenance coverage is critical for encouraging OAT among individuals with opioid use disorders.

  2. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Maneckjee, R.; Minna, J.D.

    1990-01-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for μ, δ, and κ opioid agonists and for nicotine and α-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas μ, δ, and κ opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides (β-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer

  3. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maneckjee, R.; Minna, J.D. (National Cancer Institute-Navy Medical Oncology Branch, Bethesda, MD (USA) Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  4. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  5. Spinal antinociceptive effects of [D-Ala2]deltorphin II, a novel and highly selective delta-opioid receptor agonist.

    Science.gov (United States)

    Improta, G; Broccardo, M

    1992-01-01

    Pharmacological assays in isolated tissues and binding tests have recently shown that two peptides, with the sequence Tyr-D-Ala-Phe-Asp-(or Glu)- Val-Val-Gly-NH2, isolated from skin extracts of Phyllomedusa bicolor and named [D-Ala2]deltorphin I and II, respectively, possess a higher affinity and selectivity for delta-opioid receptors than any other known natural compound. Since much evidence supports the role of spinal delta-opioid sites in producing antinociceptive effects, we investigated whether analgesia might be detected by direct spinal cord administration of [D-Ala2]deltorphin II (DADELT II) in the rat. The thermal antinociceptive effects of intrathecal DADELT II and dermorphin, a potent mu-selective agonist, were compared at different postinjection times by means of the tail-flick test. The DADELT II produced a dose-related inhibition of the tail-flick response, which lasted 10-60 min depending on the dose and appeared to be of shorter duration than the analgesia produced in rats after intrathecal injection of dermorphin (20-120 min). The analgesic effect of infused or injected DADELT II was completely abolished by naltrindole, the highly selective delta antagonist. These results confirm the involvement of delta receptors in spinal analgesic activity in the rat.

  6. Regulation of ventilation and oxygen consumption by delta- and mu-opioid receptor agonists.

    Science.gov (United States)

    Schaeffer, J I; Haddad, G G

    1985-09-01

    To study the effect of endorphins on metabolic rate and on the relationship between O2 consumption (VO2) and ventilation, we administered enkephalin analogues (relatively selective delta-receptor agonists) and a morphiceptin analogue (a highly selective mu-receptor agonist) intracisternally in nine unanesthetized chronically instrumented adult dogs. Both delta- and mu-agonists decreased VO2 by 40-60%. delta-Agonists induced a dose-dependent decrease in mean instantaneous minute ventilation (VT/TT) associated with periodic breathing. The decrease in VT/TT started and resolved prior to the decrease and returned to baseline of VO2, respectively. In contrast, the mu-agonists induced an increase in VT/TT associated with rapid shallow breathing. Arterial PCO2 increased and arterial PO2 decreased after both delta- and mu-agonists. Low doses of intracisternal naloxone (0.002-2.0 micrograms/kg) reversed the opioid effect on VT/TT but not on VO2; higher doses of naloxone (5-25 micrograms/kg) reversed both. Naloxone administered alone had no effect on VT/TT or VO2. These data suggest that 1) both delta- and mu-agonists induce alveolar hypoventilation despite a decrease in VO2, 2) this hypoventilation results from a decrease in VT/TT after delta-agonists but an increase in dead space ventilation after mu-agonists, and 3) endorphins do not modulate ventilation and metabolic rate tonically, but we speculate that they may do so in response to stressful stimulation.

  7. Identification of novel selective V2 receptor non-peptide agonists.

    Science.gov (United States)

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  8. Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    S. Stevens Negus

    2012-01-01

    Full Text Available Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+-4-[(αR-α-((2S,5R-4-allyl-2,5-dimethyl-1-piperazinyl-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine. Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg. SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception.

  9. Radioreceptor assay of opioid peptides in selected canine brain regions

    International Nuclear Information System (INIS)

    Desiderio, D.M.; Takeshita, H.

    1985-01-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D- 2 ala, D- 5 leu leucine enkephalin ( 3 H-DADL) and the broader-specificity ligand 3 H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex

  10. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2012-05-01

    Full Text Available Abstract The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.

  11. A Phase 3 Placebo-Controlled, Double Blind, Multi-Site Trial of the alpha-2-adrenergic Agonist, Lofexidine, for Opioid Withdrawal

    Science.gov (United States)

    Yu, Elmer; Miotto, Karen; Akerele, Evaristo; Montgomery, Ann; Elkashef, Ahmed; Walsh, Robert; Montoya, Ivan; Fischman, Marian W.; Collins, Joseph; McSherry, Frances; Boardman, Kathy; Davies, David K.; O’Brien, Charles P.; Ling, Walter; Kleber, Herbert; Herman, Barbara H.

    2008-01-01

    Context Lofexidine is an alpha-2-A noradrenergic receptor agonist that is approved in the United Kingdom for the treatment of opioid withdrawal symptoms. Lofexidine has been reported to have more significant effects on decreasing opioid withdrawal symptoms with less hypotension than clonidine. Objective To demonstrate that lofexidine is well tolerated and effective in the alleviation of observationally-defined opioid withdrawal symptoms in opioid dependent individuals undergoing medically supervised opioid detoxification as compared to placebo. Design An inpatient, Phase 3, placebo-controlled, double blind, randomized multi-site trial with three phases: (1) Opioid Agonist Stabilization Phase (days 1–3), (2) Detoxification/Medication or Placebo Phase (days 4–8), and (3) Post Detoxification/Medication Phase (days 9–11). Subjects Sixty-eight opioid dependent subjects were enrolled at three sites with 35 randomized to lofexidine and 33 to placebo. Main Outcome Measure Modified Himmelsbach Opiate Withdrawal Scale (MHOWS) on study day 5 (2nd opioid detoxification treatment day). Results Due to significant findings, the study was terminated early. On the study day 5 MHOWS, subjects treated with lofexidine had significantly lower scores (equating to fewer/less severe withdrawal symptoms) than placebo subjects (Least squares means 19.5 ± 2.1 versus 30.9 ± 2.7; p=0.0019). Lofexidine subjects had significantly better retention in treatment than placebo subjects (38.2% versus 15.2%; Log rank test p=0.01). Conclusions Lofexidine is well tolerated and more efficacious than placebo for reducing opioid withdrawal symptoms in inpatients undergoing medically supervised opioid detoxification. Trial Registration trial registry name A Phase 3 Placebo-Controlled, Double-Blind Multi-Site Trial of Lofexidine for Opiate Withdrawal, registration number NCT00032942, URL for the registry http://clinicaltrials.gov/ct/show/NCT00032942?order=4. PMID:18508207

  12. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    Science.gov (United States)

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  13. Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction.

    Science.gov (United States)

    Bakhtazad, Atefeh; Vousooghi, Nasim; Garmabi, Behzad; Zarrindast, Mohammad Reza

    2016-10-01

    It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10mg/kg) morphine, acute high-dose morphine (80mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2 Agonists

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2013-04-01

    Full Text Available The formyl peptide receptor 2 (FPR2 is a remarkably versatile transmembrane protein belonging to the G-protein coupled receptor (GPCR family. FPR2 is activated by an array of ligands, which include structurally unrelated lipids and peptide/proteins agonists, resulting in different intracellular responses in a ligand-specific fashion. In addition to the anti-inflammatory lipid, lipoxin A4, several other endogenous agonists also bind FPR2, including serum amyloid A, glucocorticoid-induced annexin 1, urokinase and its receptor, suggesting that the activation of FPR2 may result in potent pro- or anti-inflammatory responses. Other endogenous ligands, also present in biological samples, include resolvins, amyloidogenic proteins, such as beta amyloid (Aβ-42 and prion protein (Prp106–126, the neuroprotective peptide, humanin, antibacterial peptides, annexin 1-derived peptides, chemokine variants, the neuropeptides, vasoactive intestinal peptide (VIP and pituitary adenylate cyclase activating polypeptide (PACAP-27, and mitochondrial peptides. Upon activation, intracellular domains of FPR2 mediate signaling to G-proteins, which trigger several agonist-dependent signal transduction pathways, including activation of phospholipase C (PLC, protein kinase C (PKC isoforms, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway, the mitogen-activated protein kinase (MAPK pathway, p38MAPK, as well as the phosphorylation of cytosolic tyrosine kinases, tyrosine kinase receptor transactivation, phosphorylation and nuclear translocation of regulatory transcriptional factors, release of calcium and production of oxidants. FPR2 is an attractive therapeutic target, because of its involvement in a range of normal physiological processes and pathological diseases. Here, we review and discuss the most significant findings on the intracellular pathways and on the cross-communication between FPR2 and tyrosine kinase receptors triggered by different FPR2

  15. Radioreceptor assay of opioid peptides in selected canine brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Desiderio, D.M.; Takeshita, H.

    1985-09-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D-/sup 2/ala, D-/sup 5/leu leucine enkephalin (/sup 3/H-DADL) and the broader-specificity ligand /sup 3/H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex.

  16. NeuroD modulates opioid agonist-selective regulation of adult neurogenesis and contextual memory extinction.

    Science.gov (United States)

    Zheng, Hui; Zhang, Yue; Li, Wen; Loh, Horace H; Law, Ping-Yee

    2013-04-01

    Addictive drugs, including opioids, modulate adult neurogenesis. In order to delineate the probable implications of neurogenesis on contextual memory associated with addiction, we investigated opioid agonist-selective regulation of neurogenic differentiation 1 (NeuroD) activities under the conditioned place preference (CPP) paradigm. Training mice with equivalent doses of morphine and fentanyl produced different CPP extinction rates without measurable differences in the CPP acquisition rate or magnitude. Fentanyl-induced CPP required much longer time for extinction than morphine-induced CPP. We observed a parallel decrease in NeuroD activities and neurogenesis after morphine-induced CPP, but not after fentanyl-induced CPP. Increasing NeuroD activities with NeuroD-lentivirus (nd-vir) injection at the dentate gyrus before CPP training reversed morphine-induced decreases in NeuroD activities and neurogenesis, and prolonged the time required for extinction of morphine-induced CPP. On the other hand, decreasing NeuroD activities via injection of miRNA-190-virus (190-vir) reversed the fentanyl effect on NeuroD and neurogenesis and shortened the time required for extinction of fentanyl-induced CPP. Another contextual memory task, the Morris Water Maze (MWM), was affected similarly by alteration of NeuroD activities. The reduction in NeuroD activities either by morphine treatment or 190-vir injection decreased MWM task retention, while the increase in NeuroD activities by nd-vir prolonged MWM task retention. Thus, by controlling NeuroD activities, opioid agonists differentially regulate adult neurogenesis and subsequent contextual memory retention. Such drug-related memory regulation could have implications in eventual context-associated relapse.

  17. Role of endogenous opioid peptides in the pathogenesis of motion sickness

    International Nuclear Information System (INIS)

    Yasnetsov, V.V.; Il'ina, S.L.; Karsanova, S.K.; Medvedev, O.S.; Mokrousova, A.V.; Sabaev, V.V.; Shashkov, V.A.; Tigranyan, R.A.; Vakulina, O.P

    1986-01-01

    This paper examines the pathogenesis of motion sickness and the role of the various neurochemical systems of the body in the genesis of the condition. It has been shown that the endogenous opioid system participates in the genesis of several pathological processes; this was the motivation for the study. The plasma beta-endorphin level was determined in samples from 19 clinically healthy males. Considering the positive prophylactic and therapeutic effect of naloxone against motion sickness it can be postulated that endogenous opioid peptides participate in the genesis of the vestibulo-autonomic disorders in motion sickness

  18. Role of endogenous opioid peptides in the pathogenesis of motion sickness

    Energy Technology Data Exchange (ETDEWEB)

    Yasnetsov, V.V.; Il' ina, S.L.; Karsanova, S.K.; Medvedev, O.S.; Mokrousova, A.V.; Sabaev, V.V.; Shashkov, V.A.; Tigranyan, R.A.; Vakulina, O.P

    1986-01-01

    This paper examines the pathogenesis of motion sickness and the role of the various neurochemical systems of the body in the genesis of the condition. It has been shown that the endogenous opioid system participates in the genesis of several pathological processes; this was the motivation for the study. The plasma beta-endorphin level was determined in samples from 19 clinically healthy males. Considering the positive prophylactic and therapeutic effect of naloxone against motion sickness it can be postulated that endogenous opioid peptides participate in the genesis of the vestibulo-autonomic disorders in motion sickness.

  19. The role of opioid antagonist efficacy and constitutive opioid receptor activity in the opioid withdrawal syndrome in mice

    OpenAIRE

    Navani, Dipesh M.; Sirohi, Sunil; Madia, Priyanka A.; Yoburn, Byron C.

    2011-01-01

    On the basis of efficacy, opioid antagonists are classified as inverse opioid agonists (e.g. naltrexone) or neutral opioid antagonists (e.g. 6β-naltrexol). This study examined the interaction between naltrexone and 6β-naltrexol in the precipitated opioid withdrawal syndrome in morphine dependent mice. Furthermore, the possible contribution of constitutive opioid receptor activity to precipitated withdrawal was evaluated using increasing levels of morphine dependence. In the first experiment, ...

  20. Non-canonical Opioid Signaling Inhibits Itch Transmission in the Spinal Cord of Mice

    Directory of Open Access Journals (Sweden)

    Admire Munanairi

    2018-04-01

    Full Text Available Summary: Chronic itch or pruritus is a debilitating disorder that is refractory to conventional anti-histamine treatment. Kappa opioid receptor (KOR agonists have been used to treat chronic itch, but the underlying mechanism remains elusive. Here, we find that KOR and gastrin-releasing peptide receptor (GRPR overlap in the spinal cord, and KOR activation attenuated GRPR-mediated histamine-independent acute and chronic itch in mice. Notably, canonical KOR-mediated Gαi signaling is not required for desensitizing GRPR function. In vivo and in vitro studies suggest that KOR activation results in the translocation of Ca2+-independent protein kinase C (PKCδ from the cytosol to the plasma membrane, which in turn phosphorylates and inhibits GRPR activity. A blockade of phospholipase C (PLC in HEK293 cells prevented KOR-agonist-induced PKCδ translocation and GRPR phosphorylation, suggesting a role of PLC signaling in KOR-mediated GRPR desensitization. These data suggest that a KOR-PLC-PKCδ-GRPR signaling pathway in the spinal cord may underlie KOR-agonists-induced anti-pruritus therapies. : Munanairi et al. show that the kappa opioid receptor (KOR agonists inhibit nonhistaminergic itch transmission by attenuating the function of the gastrin-releasing peptide receptor (GRPR, an itch receptor in the spinal cord. KOR activation causes the translocation of PKCδ from plasma to membrane, which phosphorylates GRPR to dampen itch transmission. Keywords: KOR, GRPR, itch, PKC, phosphorylation, GPCR cross-signaling, spinal cord, mouse

  1. Does the kappa opioid receptor system contribute to pain aversion?

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    2014-11-01

    Full Text Available The kappa opioid receptor (KOR and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.

  2. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    Science.gov (United States)

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Opioid adjuvant strategy: improving opioid effectiveness.

    Science.gov (United States)

    Bihel, Frédéric

    2016-01-01

    Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-D-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.

  4. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    Science.gov (United States)

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  5. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans.

    Science.gov (United States)

    Lofwall, Michelle R; Babalonis, Shanna; Nuzzo, Paul A; Elayi, Samy Claude; Walsh, Sharon L

    2016-07-01

    The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21h before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. Oxycodone produced prototypic opioid agonist effects (i.e. suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.

    Science.gov (United States)

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi

    2017-02-01

    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form

  7. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    Science.gov (United States)

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  9. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor.

    Science.gov (United States)

    Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W

    1992-11-15

    A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans.

  10. Differential activation of G-proteins by μ-opioid receptor agonists

    Science.gov (United States)

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  11. Nalfurafine hydrochloride, a selective κ opioid receptor agonist, has no reinforcing effect on intravenous self-administration in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Kaoru Nakao

    2016-01-01

    Full Text Available Nalfurafine hydrochloride [(E-N-[17-(cyclopropylmethyl-4,5α-epoxy-3,14-dihydroxymorphinan-6β-yl]-3-(furan-3-yl-N-methylprop-2-enamide monohydrochloride; nalfurafine] is used in Japan as an antipruritic for the treatment of intractable pruritus in patients undergoing hemodialysis or with chronic liver disease. It is a potent and selective agonist at the κ opioid receptor, but also has weak and partial agonist activity at μ opioid receptors. Opioids, especially those acting at μ receptors, carry a risk of abuse. This is an important factor in the consideration of therapeutic risk vs. benefit in clinical use and the potential for misuse as a public health problem. It is therefore necessary to carefully evaluate the reinforcing effects of nalfurafine. To this end, we investigated intravenous self-administration of nalfurafine in rhesus monkeys. The number of self-administration of nalfurafine at doses of 0.0625, 0.125 and 0.25 μg/kg/infusion was not higher than that of saline in rhesus monkeys that frequently self-administered pentazocine (0.25 mg/kg/infusion. These results indicate that nalfurafine has no reinforcing effect in rhesus monkeys in the intravenous self-administration paradigm.

  12. Suboxone (buprenorphine/naloxone) as an agonist opioid treatment in Spain: a budgetary impact analysis.

    Science.gov (United States)

    Martínez-Raga, José; González Saiz, Francisco; Pascual, César; Casado, Miguel A; Sabater Torres, Francisco J

    2010-01-01

    To evaluate the economic impact of buprenorphine/naloxone (B/N) as an agonist opioid treatment for opiate dependence. A budgetary impact analysis model was designed to calculate the annual costs (drugs and associated costs) to the Spanish National Healthcare System of methadone versus B/N. Data for the model were obtained from official databases and expert panel opinion. It was estimated that 86,017 patients would be in an agonist opioid treatment program each of the 3 years of the study. No increase in the number of patients is expected with the introduction of B/N combination. The budgetary impact (drugs and associated costs) for agonist opiate treatment in the first year of the study would be 89.53 million EUR. In the first year of B/N use, the budgetary impact would rise by 4.39 million EUR (4.6% of the total impact), with an incremental cost of 0.79 million EUR (0.9% of the total impact). The budgetary increase would be 0.6% (0.48 million EUR increase) and 0.6% (0.49 million EUR increase) in the second and third years of use, respectively. The mean cost per patient in the first year with and without B/N would be EUR 1,050 and 1,041, respectively. The most influential variables in the sensitivity analysis were logistics and production costs of methadone and the percentage use of B/N. With an additional cost of only EUR 9 per patient, B/N is an efficient addition to the therapeutic arsenal in the drug treatment of opiate dependence, particularly when considering clinical aspects of novel pharmacotherapy. Copyright 2009 S. Karger AG, Basel.

  13. New insights on mu/delta selectivity of opioid peptides: conformational analysis of deltorphin analogues.

    Science.gov (United States)

    Tancredi, T; Temussi, P A; Picone, D; Amodeo, P; Tomatis, R; Salvadori, S; Marastoni, M; Santagada, V; Balboni, G

    1991-05-01

    The message domain of dermorphin (Tyr-D-Ala-Phe), a natural mu-opioid heptapeptide, has long been considered the main cause of the high mu selectivity of this peptide and of its analogues. The recent discovery, in the skin of Phyllomedusa sauvagei (i.e., the same natural source of dermorphin) and of Phyllomedusa bicolor of deltorphins, challenges this belief. Deltorphins, in fact, are three heptapeptides characterized by a message domain typical of mu-selective peptides, but endowed of an extremely high delta selectivity, the highest of all natural opioid peptides. A conformational analysis of dermorphin and deltorphins, based on nmr studies in DMSO and cryoprotective mixtures and internal energy calculations, showed that the enormous differences in receptor selectivity can be interpreted on the basis of receptor models for mu and delta opioids that recognize the same beta-turn in the N-terminal part, but discriminate for the conformation and polarity of the C-terminal part. Here we present the synthesis, biological activity, and conformational analysis in solution of three deltorphin analogues with very similar constitution, but with different net charge, different location of negative residues, or even without negative residues, which confirm these hypotheses and show that His4 can play a specific structural role.

  14. Stereochemical Basis for a Unified Structure Activity Theory of Aromatic and Heterocyclic Rings in Selected Opioids and Opioid Peptides

    Directory of Open Access Journals (Sweden)

    Joel S. Goldberg

    2010-02-01

    Full Text Available This paper presents a novel unified theory of the structure activity relationship of opioids and opioid peptides. It is hypothesized that a virtual or known heterocyclic ring exists in all opioids which have activity in humans, and this ring occupies relative to the aromatic ring of the drug, approximately the same plane in space as the piperidine ring of morphine. Since the rings of morphine are rigid, and the aromatic and piperidine rings are critical structural components for morphine’s analgesic properties, the rigid morphine molecule allows for approximations of the aromatic and heterocyclic relationships in subsequent drug models where bond rotations are common. This hypothesis and five propositions are supported by stereochemistry and experimental observations. Proposition #1 The structure of morphine provides a template. Proposition #2 Steric hindrance of some centric portion of the piperidine ring explains antagonist properties of naloxone, naltrexone and alvimopam. Proposition #3 Methadone has an active conformation which contains a virtual heterocyclic ring which explains its analgesic activity and racemic properties. Proposition #4 The piperidine ring of fentanyl can assume the morphine position under conditions of nitrogen inversion. Proposition #5 The first 3 amino acid sequences of beta endorphin (l-try-gly-gly and the active opioid dipeptide, l-tyr-pro, (as a result of a peptide turn and zwitterion bonding form a virtual piperazine-like ring which is similar in size, shape and location to the heterocyclic rings of morphine, meperidine, and methadone. Potential flaws in this theory are discussed. This theory could be important for future analgesic drug design.

  15. Salvinorin A, a kappa-opioid receptor (KOP-r agonist hallucinogen: Pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Eduardo eButelman

    2015-09-01

    Full Text Available Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins in higher functions, including cognition, and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A- containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and drug reinforcers (including drugs of abuse. KOPr activation (including by salvinorin A can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike all other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects, with a reduced burden of undesirable effects associated with salvinorin A.

  16. nor-BNI Antagonism of Kappa Opioid Agonist-Induced Reinstatement of Ethanol-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Erin Harshberger

    2016-01-01

    Full Text Available Recent work suggests that the dynorphin (DYN/kappa opioid receptor (KOR system may be a key mediator in the behavioral effects of alcohol. The objective of the present study was to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI to attenuate relapse to ethanol seeking due to priming injections of the KOR agonist U50,488 at time points consistent with KOR selectivity. Male Wistar rats were trained to self-administer a 10% ethanol solution, and then responding was extinguished. Following extinction, rats were injected with U50,488 (0.1–10 mg/kg, i.p. or saline and were tested for the reinstatement of ethanol seeking. Next, the ability of the nonselective opioid receptor antagonist naltrexone (0 or 3.0 mg/kg, s.c. and nor-BNI (0 or 20.0 mg/kg, i.p. to block U50,488-induced reinstatement was examined. Priming injections U50,488 reinstated responding on the previously ethanol-associated lever. Pretreatment with naltrexone reduced the reinstatement of ethanol-seeking behavior. nor-BNI also attenuated KOR agonist-induced reinstatement, but to a lesser extent than naltrexone, when injected 24 hours prior to injections of U50,488, a time point that is consistent with KOR selectivity. While these results suggest that activation of KORs is a key mechanism in the regulation of ethanol-seeking behavior, U50,488-induced reinstatement may not be fully selective for KORs.

  17. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.

    Science.gov (United States)

    Trompette, Aurélien; Claustre, Jean; Caillon, Fabienne; Jourdan, Gérard; Chayvialle, Jean Alain; Plaisancié, Pascale

    2003-11-01

    Intestinal mucus is critically involved in the protection of the mucosa. An enzymatic casein hydrolysate and beta-casomorphin-7, a mu-opioid peptide generated in the intestine during bovine casein digestion, markedly induce mucus discharge. Because shorter mu-opioid peptides have been described, the effects of the opioid peptides in casein, beta-casomorphin-7, -6, -4, -4NH2 and -3, and of opioid neuropeptides met-enkephalin, dynorphin A and (D-Ala2,N-Me-Phe4,glycinol5)enkephalin (DAMGO) on intestinal mucus secretion were investigated. The experiments were conducted with isolated perfused rat jejunum. Mucus secretion under the influence of beta-casomorphins and opioid neuropeptides administered intraluminally or intra-arterially was evaluated using an ELISA for rat intestinal mucus. Luminal administration of beta-casomorphin-7 (1.2 x 10(-4) mol/L) provoked a mucus discharge (500% of controls) that was inhibited by naloxone, a specific opiate receptor antagonist. Luminal beta-casomorphin-6, -4 and -4NH2 did not modify basal mucus secretion, whereas intra-arterial administration of beta-casomorphin-4 (1.2 x 10(-6) mol/L) induced a mucus discharge. In contrast, intra-arterial administration of the nonopioid peptide beta-casomorphin-3 did not release mucus. Among the opioid neuropeptides, intra-arterial infusion of Met-enkephalin or dynorphin-A did not provoke mucus secretion. In contrast, beta-endorphin (1.2 x 10(-8) to 1.2 x 10(-6) mol/L) induced a dose-dependent release of mucus (maximal response at 500% of controls). DAMGO (1.2 x 10(-6) mol/L), a mu-receptor agonist, also evoked a potent mucus discharge. Our findings suggest that mu-opioid neuropeptides, as well as beta-casomorphins after absorption, modulate intestinal mucus discharge. Milk opioid-derived peptides may thus be involved in defense against noxious agents and could have dietary and health applications.

  18. Role and psychological dependenci arrangement of opioid by type of reseptor opioid

    OpenAIRE

    Arif Nurrochmad, Arif Nurrochmad

    2015-01-01

    Opioid receptor can be classified as p., 8, and K-opioid receptor that widely expressed in the CNS. The development of selective receptor agonist and cloning of each receptor have contributed greatly to our increasing knowledge of the neuropharmacological profile of each opioid receptor type. This review focuses on the functional interaction among these opioid receptor types that contribute to opioid dependence especially in psychological dependence. Several lines of evidence provide argument...

  19. Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine.

    Science.gov (United States)

    Yang, Hai-Yu; Wu, Zhi-Yuan; Bian, Jin-Song

    2014-09-01

    Hyperalgesia often occurs in opioid-induced withdrawal syndrome. In the present study, we found that three hourly injections of DAMGO (a μ-opioid receptor agonist) followed by naloxone administration at the fourth hour significantly decreased rat paw nociceptive threshold, indicating the induction of withdrawal hyperalgesia. Application of NaHS (a hydrogen sulfide donor) together with each injection of DAMGO attenuated naloxone-precipitated withdrawal hyperalgesia. RT-PCR and Western blot analysis showed that NaHS significantly reversed the gene and protein expression of up-regulated spinal calcitonin gene-related peptide (CGRP) in naloxone-treated animals. NaHS also inhibited naloxone-induced cAMP rebound and cAMP response element-binding protein (CREB) phosphorylation in rat spinal cord. In SH-SY5Y neuronal cells, NaHS inhibited forskolin-stimulated cAMP production and adenylate cyclase (AC) activity. Moreover, NaHS pre-treatment suppressed naloxone-stimulated activation of protein kinase C (PKC) α, Raf-1, and extracellular signal-regulated kinase (ERK) 1/2 in rat spinal cord. Our data suggest that H2S prevents the development of opioid withdrawal-induced hyperalgesia via suppression of synthesis of CGRP in spine through inhibition of AC/cAMP and PKC/Raf-1/ERK pathways.

  20. Trends in opioid agonist therapy in the Veterans Health Administration: is supply keeping up with demand?

    Science.gov (United States)

    Oliva, Elizabeth M; Trafton, Jodie A; Harris, Alex H S; Gordon, Adam J

    2013-03-01

    Opioid agonist therapy (OAT) through addiction specialty clinic settings (clinic-based OAT) using methadone or buprenorphine or office-based settings using buprenorphine (office-based OAT) is an evidence-based treatment for opioid dependence. The low number of clinic-based OATs available to veterans (N = 53) presents a barrier to OAT access; thus, the expansion in office-based OAT has been encouraged. To examine trends in office-based OAT utilization over time and whether availability of office-based OAT improved the proportion of veterans with opioid use disorders treated with OAT. We examined Veterans Health Administration (VHA) administrative data for evidence of buprenorphine prescribing and clinic-based OAT clinic stops from October 2003 through September 2010 [fiscal years (FY) 2004-2010]. The number of patients receiving buprenorphine increased from 300 at 27 facilities in FY2004 to 6147 at 118 facilities in FY2010. During this time, the number of patients diagnosed with an opioid use disorder increased by 45%; however, the proportion of opioid use disorder patients receiving OAT remained relatively stable, ranging from 25% to 27%. Office-based OAT utilization and the number of opioid use disorder veterans treated with OAT are increasing at the same rate over time, suggesting that office-based OAT is being used to meet the growing need for OAT care. Although office-based OAT is increasingly being used within the VHA and may be one way the VHA is keeping up with the demand for OAT, more research is needed to understand how to engage a greater proportion of opioid use disorder patients in treatment.

  1. An investigation into the receptor-regulating effects of the acute administration of opioid agonists and an antagonist on beta adrenergic receptors in the rat cerebral cortex

    International Nuclear Information System (INIS)

    Roper, I.

    1987-01-01

    Past and current research indicated that biochemical deviations which might be involved in the etiology and pathophysiology of depression, included abnormalities or imbalances in the noradrenergic, serotonergic, hormonal and possibly in the endogenous opioid, dopaminergic, histaminergic, cholinergic and trace amine systems. In order to investigate a possible link between the noradrenergic system and opioids, it was decided to test the acute effects of opioid administration on cortical beta adrenoceptor numbers and affinity. As these receptors have been most consistently downregulated by antidepressant treatment, they may be involved in the mechanism of antidepressant action of these agents. It was decided to investigate beta adrenoceptor-regulatory effects of opioid treatment. Naloxone was tested alone, with a view to suppressing any possible endogenous opioid influences upon beta receptor status and revealing an effect which would possibly be the opposite of that brought about by the administration of opioid agonists. Naloxone was administered together with morphine to demonstrate that any beta receptor up- or downregulation which might be measured, had indeed been opioid-receptor mediated. It was found that the acute administration of four different mu opioid agonists, naloxone and naloxone plus morphine, did not cause any statistically significant alterations in cortical beta adrenergic receptor numbers or affinity in the rat. A radioactive ligand, the beta adrenoceptor-labelling compound referred to as DHA (L-dihydroalprenolol HCI) was used in this study

  2. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    Science.gov (United States)

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family

  3. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  4. Dextromethorphan differentially affects opioid antinociception in rats

    Science.gov (United States)

    Chen, Shiou-Lan; Huang, Eagle Yi-Kung; Chow, Lok-Hi; Tao, Pao-Luh

    2005-01-01

    Opioid drugs such as morphine and meperidine are widely used in clinical pain management, although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate (NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may have some therapeutic benefits when coadministered with morphine. In the present study, we investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated the possible pharmacokinetic mechanisms involved. The antinociceptive effects of the μ-opioid receptor agonists morphine (5 mg kg−1, s.c.), meperidine (25 mg kg−1, s.c.) and codeine (25 mg kg−1, s.c.), and the κ-opioid agonists nalbuphine (8 mg kg−1, s.c.) and U-50,488H (20 mg kg−1, s.c.) were studied using the tail-flick test in male Sprague–Dawley rats. Coadministration of DM (20 mg kg−1, i.p.) with these opioids was also performed and investigated. The pharmacokinetic effects of DM on morphine and codeine were examined, and the free concentration of morphine or codeine in serum was determined by HPLC. It was found that DM potentiated the antinociceptive effects of some μ-opioid agonists but not codeine or κ-opioid agonists in rats. DM potentiated morphine's antinociceptive effect, and acutely increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect of codeine and decreased the serum concentration of its active metabolite (morphine). The pharmacokinetic interactions between DM and opioids may partially explain the differential effects of DM on the antinociception caused by opioids. PMID:15655510

  5. Central effects of some peptide and non-peptide opioids and naloxone on thermoregulation in the rabbit

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The effects of several peptide and non-peptide opiods and naloxone on induced hyperthermia is studied in rabbits. The effect of tyical mu, kappa, and sigma receptor antagonists (morphine, ketocyclazcine and SKF 10,0 10, 047) and some opioid peptides (Beta-endorphin /BE/, methionine-enkaphalin /ME/, and D-Ala2-methionine-enkaphalin-amide /DAME/ are determined. The role of prostaglandins (PG), cAMP, and norepinephrine (NE) in morphine, BE, and DAME induced hyperthermia is investigated. In addition, the effect of naloxone on pyrogen, arachidonic acid, PGE2, prostacyclin, dibutyryl cAMP, and NE induced hyperthermia is determined. Among other results, it is found that the three receptor antagonists induced hyperthermia in rabbits. BE, ME, and DAME were also found to cause hyperthermia, and it is suggested that they act on the same type of receptor. It is also determined that neither NE nor cAMP is involved in the hyperthermia due to morphine, BE, and DAME. It is suggested that an action of endogenous peptides on naloxone sensitive receptors plays little role in normal thermoregulation or in hyperthermia.

  6. Stereospecific effects of morphine on plasma opioid peptide levels and nociception in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Morris, D.L.; Dewey, W.L.

    1986-03-05

    ..beta..-endorphin, (met)enkephalin, and (leu)enkephalin were quantitated in canine plasma by radioimmunoassay (RIA) after extraction of the peptides on Sep Pak C18 cartridges. Plasma samples were taken one hour after a 10 mg/kg s.c. injection of (-)-morphine SO/sub 4/ or (+)-morphine HBr. Antinociception, measured by a dog tail-flick test, and morphine-induced emesis, salivation, diarrhea, and ataxia were quantitated before sampling. Control levels for each dog were taken one week earlier at the same time of day after saline injections. Antinociception, morphine signs, and opioid peptide levels in plasma were significantly increased by (-)-morphine. Antinociception increased from zero to 83.54 +/- 11.0%. The number of morphine signs increased from zero to 2.9 +/- 0.28 per dog. ..beta..-endorphin levels increased from 44.52 +/- 4.25 to 90.6 +/- 7.38 pg/ml; (met)enkephalin levels increased from 253.56 +/- 22.04 to 497.1 +/- 58.12 pg/ml; (leu)-enkephalin increased from 141.65 +/- 12.9 to 313.24 +/- 35.95 pg/ml. None of these effects were observed in the dogs that received (+)-morphine. The conclude that morphine stereospecifically inhibits nociception, induces observable signs, and increases plasma opioid peptide levels in dogs.

  7. Stereospecific effects of morphine on plasma opioid peptide levels and nociception in dogs

    International Nuclear Information System (INIS)

    Adams, M.L.; Morris, D.L.; Dewey, W.L.

    1986-01-01

    β-endorphin, [met]enkephalin, and [leu]enkephalin were quantitated in canine plasma by radioimmunoassay (RIA) after extraction of the peptides on Sep Pak C18 cartridges. Plasma samples were taken one hour after a 10 mg/kg s.c. injection of (-)-morphine SO 4 or (+)-morphine HBr. Antinociception, measured by a dog tail-flick test, and morphine-induced emesis, salivation, diarrhea, and ataxia were quantitated before sampling. Control levels for each dog were taken one week earlier at the same time of day after saline injections. Antinociception, morphine signs, and opioid peptide levels in plasma were significantly increased by (-)-morphine. Antinociception increased from zero to 83.54 +/- 11.0%. The number of morphine signs increased from zero to 2.9 +/- 0.28 per dog. β-endorphin levels increased from 44.52 +/- 4.25 to 90.6 +/- 7.38 pg/ml; [met]enkephalin levels increased from 253.56 +/- 22.04 to 497.1 +/- 58.12 pg/ml; [leu]-enkephalin increased from 141.65 +/- 12.9 to 313.24 +/- 35.95 pg/ml. None of these effects were observed in the dogs that received (+)-morphine. The conclude that morphine stereospecifically inhibits nociception, induces observable signs, and increases plasma opioid peptide levels in dogs

  8. Enhanced efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor

    International Nuclear Information System (INIS)

    Schiller, P.W.; Lemieux, C.; Nguyen, T.M.D.; Maziak, L.A.

    1986-01-01

    Side-chain to end group cyclized enkephalin analogs (e.g. H-Tyr-cyclo[-D-Lys-Gly-Phe-Leu-] and cyclic opioid peptide analogs obtained through covalent linkage of two side-chains (e.g. H-Tyr-D-Cys-Gly-Phe-Cys-NH 2 or H-Tyr-D-Lys-Gly-Phe-Glu-NH 3 ) were tested in the μ-receptor-representative guinea pig ileum (GPI) bioassay and in a binding assay based on displacement of the μ-ligand [ 3 H]DAGO from rat brain membranes. The cyclic analogs were 5 to 70 times more potent in the GPI assay than in the binding assay, whereas linear analogs showed equal potency in the two assays. These results suggest that the efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor is increased as a consequence of the conformation constraint imposed through ring closure. This effect was most pronounced in analogs containing a long hydrophobic sidechain as part of the ring structure in the 2-position of the peptide sequence. Further experimental evidence ruled out the possibilities that these potency discrepancies may be due to differences in enzymatic degradation, dissimilar exposure of the receptors in their lipid environment or interaction with different receptor types in the two assay systems. It can be hypothesized that the semi-rigid cyclic analogs may induce a more productive conformational change in the receptor protein than the linear peptides

  9. MDAN-21: A Bivalent Opioid Ligand Containing mu-Agonist and Delta-Antagonist Pharmacophores and Its Effects in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    Mario D. Aceto

    2012-01-01

    Full Text Available MDAN-21, 7′-{2-[(7-{2-[({(5α,6α-4,5-Epoxy-3,14-dihydroxy-17-methylmorphin-6-yl}-aminocarbonylmetoxy]-acetylamino}-heptylaminocarbonyl-methoxy]-acetylamino}-naltrindole, a bivalent opioid ligand containing a mu-opioid receptor agonist (derived from oxymorphone linked to the delta-opioid receptor antagonist (related to naltrindole by a spacer of 21 atoms, was reported to have potent analgesic properties in mice. Tolerance, physical dependence, and conditioned place preference were not evident in that species. The finding that bivalent ligands in this series, with spacers 19 atoms or greater, were devoid of tolerance and dependence led to the proposal that MDAN-21 targets heteromeric mu-delta-opioid receptors. The present study focused on its effects in nonhuman primates (Macaca mulatta, a species with a physiology and behavioral repertoire not unlike humans. With regard to opioids, this species usually better predicts clinical outcomes. MDAN-21 substituted for morphine in morphine-dependent monkeys in the remarkably low dose range 0.006–0.032 mg/kg, subcutaneously. Although MDAN-21 failed to produce reliable thermal analgesia in the dose range 0.0032–0.032 mg/kg, intramuscularly, it was active in the same dose range and by the same route of administration, in the capsaicin-induced thermal allodynia assay. The results suggest that MDAN-21 may be useful in the treatment of opioid dependence and allodynia. The data provide additional evidence that opioid withdrawal is associated with sensitized pain.

  10. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  11. Induction of synaptic long-term potentiation after opioid withdrawal.

    Science.gov (United States)

    Drdla, Ruth; Gassner, Matthias; Gingl, Ewald; Sandkühler, Jürgen

    2009-07-10

    mu-Opioid receptor (MOR) agonists represent the gold standard for the treatment of severe pain but may paradoxically also enhance pain sensitivity, that is, lead to opioid-induced hyperalgesia (OIH). We show that abrupt withdrawal from MOR agonists induces long-term potentiation (LTP) at the first synapse in pain pathways. Induction of opioid withdrawal LTP requires postsynaptic activation of heterotrimeric guanine nucleotide-binding proteins and N-methyl-d-aspartate receptors and a rise of postsynaptic calcium concentrations. In contrast, the acute depression by opioids is induced presynaptically at these synapses. Withdrawal LTP can be prevented by tapered withdrawal and shares pharmacology and signal transduction pathways with OIH. These findings provide a previously unrecognized target to selectively combat pro-nociceptive effects of opioids without compromising opioid analgesia.

  12. The impact of cannabis use on patients enrolled in opioid agonist therapy in Ontario, Canada.

    Science.gov (United States)

    Franklyn, Alexandra M; Eibl, Joseph K; Gauthier, Graham J; Marsh, David C

    2017-01-01

    With the Canadian government legalizing cannabis in the year 2018, the potential harms to certain populations-including those with opioid use disorder-must be investigated. Cannabis is one of the most commonly used substances by patients who are engaged in medication-assisted treatment for opioid use disorder, the effects of which are largely unknown. In this study, we examine the impact of baseline and ongoing cannabis use, and whether these are impacted differentially by gender. We conducted a retrospective cohort study using anonymized electronic medical records from 58 clinics offering opioid agonist therapy in Ontario, Canada. One-year treatment retention was the primary outcome of interest and was measured for patients who did and did not have a cannabis positive urine sample in their first month of treatment, and as a function of the proportion of cannabis-positive urine samples throughout treatment. Our cohort consisted of 644 patients, 328 of which were considered baseline cannabis users and 256 considered heavy users. Patients with baseline cannabis use and heavy cannabis use were at increased risk of dropout (38.9% and 48.1%, respectively). When evaluating these trends by gender, only female baseline users and male heavy users are at increased risk of premature dropout. Both baseline and heavy cannabis use are predictive of decreased treatment retention, and differences do exist between genders. With cannabis being legalized in the near future, physicians should closely monitor cannabis-using patients and provide education surrounding the potential harms of using cannabis while receiving treatment for opioid use disorder.

  13. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    Science.gov (United States)

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  14. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  15. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor.

    Directory of Open Access Journals (Sweden)

    Xiaojing Cong

    Full Text Available Atomistic descriptions of the μ-opioid receptor (μOR noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP and hydromorphone (HMP, are investigated using molecular dynamics (MD simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.

  16. Newer approaches to opioid detoxification

    Directory of Open Access Journals (Sweden)

    Siddharth Sarkar

    2012-01-01

    Full Text Available Opioid use disorders present with distressing withdrawal symptoms at the time of detoxification. The pharmacological agents and methods currently in use for detoxification mainly include buprenorphine, methadone, and clonidine. Many other pharmacological agents have been tried for opioid detoxification. This review takes a look at the newer pharmacological options, both opioid agonists and non-agonist medications that have been utilized for detoxification. Peer reviewed articles were identified using PubMed and PsychInfo databases. The keywords included for the search were a combination of ′opioid′ and ′detoxification′ and their synonyms. All the articles published in the last 10 years were screened for. Relevant data was extracted from identified studies. Many newer pharmacological agents have been tried in detoxification of opioids. However, the quest for a safe, efficacious, cost-effective pharmacological option which requires minimal monitoring still continues. The role of non-pharmacological measures and alternative medicine needs further evaluation.

  17. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  18. Analgesic synergy between opioid and α2 -adrenoceptors.

    Science.gov (United States)

    Chabot-Doré, A-J; Schuster, D J; Stone, L S; Wilcox, G L

    2015-01-01

    Opioid and α2 -adrenoceptor agonists are potent analgesic drugs and their analgesic effects can synergize when co-administered. These supra-additive interactions are potentially beneficial clinically; by increasing efficacy and/or reducing the total drug required to produce sufficient pain relief, undesired side effects can be minimized. However, combination therapies of opioids and α2 -adrenoceptor agonists remain underutilized clinically, in spite of a large body of preclinical evidence describing their synergistic interaction. One possible obstacle to the translation of preclinical findings to clinical applications is a lack of understanding of the mechanisms underlying the synergistic interactions between these two drug classes. In this review, we provide a detailed overview of the interactions between different opioid and α2 -adrenoceptor agonist combinations in preclinical studies. These studies have identified the spinal cord as an important site of action of synergistic interactions, provided insights into which receptors mediate these interactions and explored downstream signalling events enabling synergy. It is now well documented that the activation of both μ and δ opioid receptors can produce synergy with α2 -adrenoceptor agonists and that α2 -adrenoceptor agonists can mediate synergy through either the α2A or the α2C adrenoceptor subtypes. Current hypotheses surrounding the cellular mechanisms mediating opioid-adrenoceptor synergy, including PKC signalling and receptor oligomerization, and the evidence supporting them are presented. Finally, the implications of these findings for clinical applications and drug discovery are discussed. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  19. [The endogenous opioid system and drug addiction].

    Science.gov (United States)

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  20. The quantum chemical causality of pMHC-TCR biological avidity: Peptide atomic coordination data and the electronic state of agonist N termini

    Directory of Open Access Journals (Sweden)

    Georgios S.E. Antipas

    2015-06-01

    Full Text Available The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC and a T cell receptor (TCR is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1 peptide along with three artificially altered variants, all of which were presented by the (Class I HLA-A201 protein in complexation with the human (CD8+ A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist and peptide pair distribution function (PDF. In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3+ terminal group while antagonist peptides are not.

  1. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  2. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  3. Reward systems and food intake: role of opioids.

    Science.gov (United States)

    Gosnell, B A; Levine, A S

    2009-06-01

    Humans eat for many reasons, including the rewarding qualities of foods. A host of neurotransmitters have been shown to influence eating behavior and some of these appear to be involved in reward-induced eating. Endogenous opioid peptides and their receptors were first reported more than 30 years ago, and studies suggesting a role of opioids in the regulation of food intake date back nearly as far. Opioid agonists and antagonists have corresponding stimulatory and inhibitory effects on feeding. In addition to studies aimed at identifying the relevant receptor subtypes and sites of action within the brain, there has been a continuing interest in the role of opioids on diet/taste preferences, food reward, and the overlap of food reward with others types of reward. Data exist that suggest a role for opioids in the control of appetite for specific macronutrients, but there is also evidence for their role in the stimulation of intake based on already-existing diet or taste preferences and in controlling intake motivated by hedonics rather than by energy needs. Finally, various types of studies indicate an overlap between mechanisms mediating drug reward and palatable food reward. Preference or consumption of sweet substances often parallels the self-administration of several drugs of abuse, and under certain conditions, the termination of intermittent access to sweet substances produces symptoms that resemble those observed during opiate withdrawal. The overconsumption of readily available and highly palatable foods likely contributes to the growing rates of obesity worldwide. An understanding of the role of opioids in mediating food reward and promoting the overconsumption of palatable foods may provide insights into new approaches for preventing obesity.

  4. The effect of various opiate receptor agonists on the seizure threshold in the rat. Is dynorphin an endogenous anticonvulsant?

    Science.gov (United States)

    Przewłocka, B; Stala, L; Lasoń, W; Przewłocki, R

    1983-01-01

    The effects of various opiate receptor agonists on the seizure threshold after an intravenous infusion of pentylenetetrazol were investigated in rats. The mu- and epsilon-receptor agonists, morphine (20-40 micrograms) and beta-endorphin (5-10 micrograms) show proconvulsant properties towards clonic and tonic seizures. The delta-receptor agonist (D-Ala2,D-Leu5-enkephalin, DADL 5-40 micrograms) and alpha-neoendorphin (20-40 micrograms) show pro- and anticonvulsant properties towards clonic and tonic seizures, respectively. Anticonvulsant properties of DADL are possibly due to its action on the spinal cord, since after the intrathecal injection this effect is still observed. Similarities between DADL and alpha-neoendorphin suggest that they may act through the same receptor. The kappa-receptor agonist dynorphin A (5-20 micrograms) and its degradation-resistant analogue D-Arg-dynorphin1-13 (10 micrograms) show significant anticonvulsant properties. Our present results suggest that the kappa-receptor agonist dynorphin may act physiologically as an endogenous anticonvulsant, in contrast to other opioid peptides.

  5. The cardiovascular effects of a chimeric opioid peptide based on morphiceptin and PFRTic-NH2.

    Science.gov (United States)

    Li, Meixing; Zhou, Lanxia; Ma, Guoning; Cao, Shuo; Dong, Shouliang

    2013-01-01

    MCRT (YPFPFRTic-NH(2)) is a chimeric opioid peptide based on morphiceptin and PFRTic-NH(2). In order to assess the cardiovascular effect of MCRT, it was administered by intravenous (i.v.) injection targeting at the peripheral nervous system and by intracerebroventricular (i.c.v.) injection targeting at the central nervous system. Naloxone and L-NAME were injected before MCRT to investigate possible interactions with MCRT. Results show that administration of MCRT by i.v. or i.c.v. injection could induce bradycardia and decrease in mean arterial pressure (MAP) at a greater degree than that with morphiceptin and PFRTic-NH(2). When MCRT and NPFF were coinjected, we observed a dose-dependent weakening of these cardiovascular effects by MCRT. Because naloxone completely abolished the cardiovascular effects of MCRT, we conclude that opioid receptors are involved in regulating the MAP of MCRT regardless of modes of injection. The effect of MCRT on heart rate is completely dependent on opioid receptors when MCRT was administered by i.c.v. instead of i.v. The central nitric oxide (NO) pathway is involved in regulating blood pressure by MCRT under both modes of injection, but the peripheral NO pathway had no effect on lowering blood pressure mediated by MCRT when it was administered by i.c.v. Based on the results from different modes of injection, the regulation of heart rate by MCRT mainly involves in the central NO pathway. Lastly, we observed that the cardiovascular effects of MCRT such as bradycardia and decrease of blood pressure, were stronger than that of its parent peptides. Opioid receptors and the NO pathway are involved in the cardiovascular regulation by MCRT, and their degree of involvement differs between intravenous and intracerebroventricular injection. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline

  7. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Jessica E Potts

    Full Text Available To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus.Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo in adults with type 2 diabetes and a mean body mass index ≥ 25 kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator.In the mixed treatment comparison (27 trials, the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2 mg/week: -1.62 kg (95% CrI: -2.95 kg, -0.30 kg, exenatide 20 μg: -1.37 kg (95% CI: -222 kg, -0.52 kg, liraglutide 1.2 mg: -1.01 kg (95%CrI: -2.41 kg, 0.38 kg and liraglutide 1.8 mg: -1.51 kg (95% CI: -2.67 kg, -0.37 kg compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss.This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed.

  8. Role of Endogenous Opioid System in Ischemic-Induced Late Preconditioning.

    Directory of Open Access Journals (Sweden)

    Jan Fraessdorf

    Full Text Available Opioid receptors (OR are involved in myocardial late preconditioning (LPC induced by morphine and δ1-opioid receptor (δ1-OR agonists. The role of OR in ischemic-induced LPC is unknown. We investigated whether 1 OR are involved in the trigger and/or mediation phase of LPC and 2 a time course effect on the expression of different opioid receptors and their endogenous ligands exists.Male Wistar rats were randomly allocated to four groups (each group n = 8. Awake animals were ischemic preconditioned by a 5 minutes coronary occlusion. 24 hours later, anesthetized animals underwent 25 minutes coronary occlusion followed by 2 hours of reperfusion. The role of OR was investigated by treatment with intraperitoneal naloxone (Nal 10 minutes prior to LPC (Nal-LPC; trigger phase or 10 min prior to sustained ischemia (LPC-Nal; mediation phase.LPC reduced infarct size from 61±10% in controls to 25±9% (P<0.001. Naloxone during trigger or mediation phase completely abolished LPC-induced cardioprotection (59±9% and 62±9%; P<0.001 vs. LPC. 8, 12 and 24 hours after the ischemic stimulus, expression of δ-OR in the heart was increased, whereas μ-opioid receptor (μ-OR and κ-opioid receptor (κ-OR were not. Plasma concentrations of β-endorphin and leu-enkephalin but not dynorphin were increased by LPC.Ischemic LPC is triggererd and mediated by OR. Expression of δ-OR and plasma levels of endogenous opioid peptides are increased after ischemic LPC.

  9. Is tapentadol different from classical opioids? A review of the evidence.

    Science.gov (United States)

    Langford, Richard M; Knaggs, Roger; Farquhar-Smith, Paul; Dickenson, Anthony H

    2016-11-01

    Tapentadol is a single molecule able to deliver analgesia by two distinct mechanisms, a feature which differentiates it from many other analgesics. Pre-clinical data demonstrate two mechanisms of action: mu-opioid receptor agonist activity and noradrenaline re-uptake inhibition. From these, one may predict that tapentadol would be applicable across a broad spectrum of pain from nociceptive to neuropathic. The evidence in animal models suggests that norepinephrine re-uptake inhibition (NRI) is a key mechanism and may even predominate over opioid actions in chronic (and especially neuropathic) pain states, reinforcing that tapentadol is different to classical opioids and may, therefore, be an a priori choice for the treatment of neuropathic and mixed pain. The clinical studies and subsequent practice experience and surveillance support the concept of opioid and non-opioid mechanisms of action. The reduced incidence of some of the typical opioid-induced side effects, compared to equianalgesic doses of classical opioids, supports the hypothesis that tapentadol analgesia is only partially mediated by opioid agonist mechanisms. Both the pre-clinical and clinical profiles appear to be differentiated from those of classical opioids.

  10. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    Science.gov (United States)

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  11. Willingness to pay for opioid agonist treatment among opioid dependent people who inject drugs in Ukraine.

    Science.gov (United States)

    Makarenko, Iuliia; Mazhnaya, Alyona; Marcus, Ruthanne; Bojko, Martha J; Madden, Lynn; Filippovich, Sergii; Dvoriak, Sergii; Altice, Frederick L

    2017-07-01

    In the context of decreasing external and limited Ukrainian governmental funding for opioid agonist treatments (OAT) for opioid dependent people who inject drugs in Ukraine, information on sustainable financial models is needed. Data on 855 opioid dependent people who inject drugs (PWID) were drawn from a cross-sectional nationwide survey of 1613 PWID. They comprised 434 participants who were receiving OAT and 421 who were on OAT in the past or have never been on OAT and were interested in receiving the treatment. Multivariate logistic regression was used to examine factors associated with willingness-to-pay (WTP) for OAT, stratified by OAT experience. Variation in the price which respondents were willing to pay for OAT and its effect on their monthly income among PWID with different OAT experience were assessed as a continuous variable using one-way ANOVA and Kruskal-Wallis test. Overall, 378 (44%) expressed WTP for OAT. Factors independently associated with WTP differed by OAT experience. Among those using OAT, independent predictors of WTP included: city (Dnipro - aOR=1.9; 95%CI=1.1-4.8 and Lviv - (aOR=2.2; 95%CI=1.1-4.8) compared to those elsewhere in Ukraine), higher income (aOR=1.8; 95%CI=1.2-2.7) and receiving psychosocial counseling (aOR=1.8; 95%CI=1.2-2.7). Among those who had previously been on OAT, positive attitude towards OAT (aOR=1.3; 95%CI=1.1-1.6) and family support of OAT (aOR=2.5; 95%CI=1.1-5.7) were independently associated with WTP. Among PWID who had never been on OAT, being male (aOR=2.2; 95%CI=1.1-4.2), younger age (aOR=1.9; 95%CI=1.2-3.2), higher income (aOR=2.0; 95%CI=1.2-3.4) and previous unsuccessful attempts to enter OAT (aOR=2.3; 95%CI=1.1-4.7) were independently associated with WTP. PWID were willing to commit a large percentage of their monthly income for OAT, which, however, varied significantly based on OAT experience: current OAT: 37% of monthly income, previous OAT: 53%, and never OAT: 60% (p-value=0.0009). WTP for OAT was

  12. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    OpenAIRE

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-01-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and ...

  13. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    Science.gov (United States)

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  14. Long-term outcomes from the National Drug Abuse Treatment Clinical Trials Network Prescription Opioid Addiction Treatment Study.

    Science.gov (United States)

    Weiss, Roger D; Potter, Jennifer Sharpe; Griffin, Margaret L; Provost, Scott E; Fitzmaurice, Garrett M; McDermott, Katherine A; Srisarajivakul, Emily N; Dodd, Dorian R; Dreifuss, Jessica A; McHugh, R Kathryn; Carroll, Kathleen M

    2015-05-01

    Despite the growing prevalence of prescription opioid dependence, longitudinal studies have not examined long-term treatment response. The current study examined outcomes over 42 months in the Prescription Opioid Addiction Treatment Study (POATS). POATS was a multi-site clinical trial lasting up to 9 months, examining different durations of buprenorphine-naloxone plus standard medical management for prescription opioid dependence, with participants randomized to receive or not receive additional opioid drug counseling. A subset of participants (N=375 of 653) enrolled in a follow-up study. Telephone interviews were administered approximately 18, 30, and 42 months after main-trial enrollment. Comparison of baseline characteristics by follow-up participation suggested few differences. At Month 42, much improvement was seen: 31.7% were abstinent from opioids and not on agonist therapy; 29.4% were receiving opioid agonist therapy, but met no symptom criteria for current opioid dependence; 7.5% were using illicit opioids while on agonist therapy; and the remaining 31.4% were using opioids without agonist therapy. Participants reporting a lifetime history of heroin use at baseline were more likely to meet DSM-IV criteria for opioid dependence at Month 42 (OR=4.56, 95% CI=1.29-16.04, popioid abstinence. Eight percent (n=27/338) used heroin for the first time during follow-up; 10.1% reported first-time injection heroin use. Long-term outcomes for those dependent on prescription opioids demonstrated clear improvement from baseline. However, a subset exhibited a worsening course, by initiating heroin use and/or injection opioid use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Characterisation of the Novel Mixed Mu-NOP Peptide Ligand Dermorphin-N/OFQ (DeNo.

    Directory of Open Access Journals (Sweden)

    Mark F Bird

    Full Text Available Opioid receptors are currently classified as Mu (μ, Delta (δ, Kappa (κ plus the opioid related nociceptin/orphanin FQ (N/OFQ peptide receptor (NOP. Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ.We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii stimulate the binding of GTPγ[35S], (iii inhibit cAMP formation, (iv activate MAPKinase, (v stimulate receptor-G protein and arrestin interaction using BRET, (vi electrically stimulated guinea pig ileum (gpI assay and (vii ability to produce analgesia via the intrathecal route in rats.DeNo bound to Mu (pKi; 9.55 and NOP (pKi; 10.22 and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69, increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50 and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02. cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19. For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63 that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats.Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu and N/OFQ (NOP. This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this study DeNo displays only weak antinociceptive

  16. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies.

    Science.gov (United States)

    Melichar, Jan K; Hume, Susan P; Williams, Tim M; Daglish, Mark R C; Taylor, Lindsay G; Ahmad, Rabia; Malizia, Andrea L; Brooks, David J; Myles, Judith S; Lingford-Hughes, Anne; Nutt, David J

    2005-01-01

    Substitute methadone prescribing is one of the main modes of treatment for opioid dependence with established evidence for improved health and social outcomes. However, the pharmacology underpinning the effects of methadone is little studied despite controversies about dosing in relation to outcome. We therefore examined the relationship between methadone dose and occupation of opioid receptors in brain using the positron emission tomography (PET) radioligand [(11)C]diprenorphine in humans and rats. Eight opioid-dependent subjects stable on their substitute methadone (18-90 mg daily) had an [(11)C]diprenorphine PET scan at predicted peak plasma levels of methadone. These were compared with eight healthy controls. No difference in [(11)C]diprenorphine binding was found between the groups, with no relationship between methadone dose and occupancy. Adult male Sprague-Dawley rats that had been given an acute i.v. injection of methadone hydrochloride (0.35, 0.5, 0.7, or 1.0 mg kg(-1)) before [(11)C]diprenorphine showed a dose-dependent increase in biodistribution but no reduction in [(11)C]diprenorphine binding. We suggest that the lack of a dose-dependent relationship between methadone dose, either given chronically in human or acutely in rat, and occupancy of opioid receptor measured with [(11)C]diprenorphine PET is related to efficacy of this opioid agonist at very low levels of opioid receptor occupancy. This has implications for understanding the actions of methadone in comparison with other opioid drugs such as partial agonists and antagonists.

  17. Pain Therapy Guided by Purpose and Perspective in Light of the Opioid Epidemic

    Directory of Open Access Journals (Sweden)

    Amie L. Severino

    2018-04-01

    Full Text Available Prescription opioid misuse is an ongoing and escalating epidemic. Although these pharmacological agents are highly effective analgesics prescribed for different types of pain, opioids also induce euphoria, leading to increasing diversion and misuse. Opioid use and related mortalities have developed in spite of initial claims that OxyContin, one of the first opioids prescribed in the USA, was not addictive in the presence of pain. These claims allayed the fears of clinicians and contributed to an increase in the number of prescriptions, quantity of drugs manufactured, and the unforeseen diversion of these drugs for non-medical uses. Understanding the history of opioid drug development, the widespread marketing campaign for opioids, the immense financial incentive behind the treatment of pain, and vulnerable socioeconomic and physical demographics for opioid misuse give perspective on the current epidemic as an American-born problem that has expanded to global significance. In light of the current worldwide opioid epidemic, it is imperative that novel opioids are developed to treat pain without inducing the euphoria that fosters physical dependence and addiction. We describe insights from preclinical findings on the properties of opioid drugs that offer insights into improving abuse-deterrent formulations. One finding is that the ability of some agonists to activate one pathway over another, or agonist bias, can predict whether several novel opioid compounds bear promise in treating pain without causing reward among other off-target effects. In addition, we outline how the pharmacokinetic profile of each opioid contributes to their potential for misuse and discuss the emergence of mixed agonists as a promising pipeline of opioid-based analgesics. These insights from preclinical findings can be used to more effectively identify opioids that treat pain without causing physical dependence and subsequent opioid abuse.

  18. Pain Therapy Guided by Purpose and Perspective in Light of the Opioid Epidemic

    Science.gov (United States)

    Severino, Amie L.; Shadfar, Arash; Hakimian, Joshua K.; Crane, Oliver; Singh, Ganeev; Heinzerling, Keith; Walwyn, Wendy M.

    2018-01-01

    Prescription opioid misuse is an ongoing and escalating epidemic. Although these pharmacological agents are highly effective analgesics prescribed for different types of pain, opioids also induce euphoria, leading to increasing diversion and misuse. Opioid use and related mortalities have developed in spite of initial claims that OxyContin, one of the first opioids prescribed in the USA, was not addictive in the presence of pain. These claims allayed the fears of clinicians and contributed to an increase in the number of prescriptions, quantity of drugs manufactured, and the unforeseen diversion of these drugs for non-medical uses. Understanding the history of opioid drug development, the widespread marketing campaign for opioids, the immense financial incentive behind the treatment of pain, and vulnerable socioeconomic and physical demographics for opioid misuse give perspective on the current epidemic as an American-born problem that has expanded to global significance. In light of the current worldwide opioid epidemic, it is imperative that novel opioids are developed to treat pain without inducing the euphoria that fosters physical dependence and addiction. We describe insights from preclinical findings on the properties of opioid drugs that offer insights into improving abuse-deterrent formulations. One finding is that the ability of some agonists to activate one pathway over another, or agonist bias, can predict whether several novel opioid compounds bear promise in treating pain without causing reward among other off-target effects. In addition, we outline how the pharmacokinetic profile of each opioid contributes to their potential for misuse and discuss the emergence of mixed agonists as a promising pipeline of opioid-based analgesics. These insights from preclinical findings can be used to more effectively identify opioids that treat pain without causing physical dependence and subsequent opioid abuse. PMID:29740351

  19. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus

    DEFF Research Database (Denmark)

    Botfield, Hannah F; Uldall, Maria S; Westgate, Connar S J

    2017-01-01

    Current therapies for reducing raised intracranial pressure (ICP) under conditions such as idiopathic intracranial hypertension or hydrocephalus have limited efficacy and tolerability. Thus, there is a pressing need to identify alternative drugs. Glucagon-like peptide-1 receptor (GLP-1R) agonists...

  20. An overview of once-weekly glucagon-like peptide-1 receptor agonists--available efficacy and safety data and perspectives for the future

    DEFF Research Database (Denmark)

    Madsbad, S; Kielgast, U; Asmar, M

    2011-01-01

    Incretin-based therapies, such as the injectable glucagon-like peptide-1 (GLP-1) receptor agonists and orally administered dipeptidyl peptidase-4 (DPP-4) inhibitors, have recently been introduced into clinical practice. At present, the GLP-1 receptor agonists need to be administered once or twice...

  1. Advances in the delivery of buprenorphine for opioid dependence

    Directory of Open Access Journals (Sweden)

    Rosenthal RN

    2017-08-01

    Full Text Available Richard N Rosenthal,1 Viral V Goradia2 1Department of Psychiatry, Addiction Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, 2Department of Psychiatry, Upstate Medical University, Syracuse, NY, USA Abstract: Opioid use disorders (OUDs have long been a global problem, but the prevalence rates have increased over 20 years to epidemic proportions in the US, with concomitant increases in morbidity and all-cause mortality, but especially opioid overdose. These increases are in part attributable to a several-fold expansion in the prescription of opioid pain medications over the same time period. Opioid detoxification and psychosocial treatments alone have each not yielded sufficient efficacy for OUD, but μ-opioid receptor agonist, partial agonist, and antagonist medications have demonstrated the greatest overall benefit in OUD treatment. Buprenorphine, a μ-opioid receptor partial agonist, has been used successfully on an international basis for several decades in sublingual tablet and film preparations for the treatment of OUD, but the nature of formulation, which is typically self-administered, renders it susceptible to nonadherence, diversion, and accidental exposure. This article reviews the clinical trial data for novel buprenorphine delivery systems in the form of subcutaneous depot injections, transdermal patches, and subdermal implants for the treatment of OUD and discusses both the clinical efficacy of longer-acting formulations through increasing consistent medication exposure and their potential utility in reducing diversion. These new delivery systems also offer new dosing opportunities for buprenorphine and strategies for dosing intervals in the treatment of OUD. Keywords: opioid use disorder, buprenorphine, drug diversion, drug implants, depot medications, maintenance therapy, treatment adherence

  2. Pain Management in the Opioid-Dependent Pregnant Woman.

    Science.gov (United States)

    Safley, Rebecca R; Swietlikowski, Jamie

    Opioid dependence is an epidemic in the United States, and the percentage of pregnant women who are opioid dependent has increased dramatically in the last decade. Pain management, already a concern for intrapartum and postpartum care, is complicated in the context of opioid dependence. This clinical review surveys the literature on pain management in opioid-dependent pregnant women to summarize current consensus and evidence to guide clinical practice. Points of consensus for pain management in opioid-dependent pregnant women include continual opioid maintenance therapy throughout the pregnancy and the postpartum period; adequate management of acute pain; the contraindication of opioid agonist-antagonists for pain management; and the need for interdisciplinary teams using a multimodal approach to provide optimal care to opioid-dependent pregnant women.

  3. Opioid receptor mediated anticonvulsant effect of pentazocine.

    Science.gov (United States)

    Khanna, N; Khosla, R; Kohli, J

    1998-01-01

    Intraperitoneal (i.p.) administration of (+/-) pentazocine (10, 30 & 50 mg/kg), a Sigma opioid agonist, resulted in a dose dependent anticonvulsant action against maximal electroshock seizures in mice. This anticonvulsant effect of pentazocine was not antagonized by both the doses of naloxone (1 and 10 mg/kg) suggesting thereby that its anticonvulsant action is probably mediated by Sigma opiate binding sites. Its anticonvulsant effect was potentiated by both the anticonvulsant drugs viz. diazepam and diphenylhydantoin. Morphine, mu opioid agonist, on the other hand, failed to protect the animals against maximal electroshock seizures when it was given in doses of 10-40 mg/kg body wt.

  4. Treatment of type 2 diabetes with glucagon-like peptide-1 receptor agonists

    DEFF Research Database (Denmark)

    Hansen, K B; Knop, F K; Holst, Jens Juul

    2009-01-01

    of hypoglycaemia with GLP-1 receptor agonists is low, the compounds have clinically relevant effects on body weight, and data are suggesting beneficial effects on cardiovascular risk factors. Exenatide was released in 2005 for the treatment of type 2 diabetes and liraglutide is expected to be approved by the Food......The incretin system is an area of great interest for the development of new therapies for the management of type 2 diabetes. Existing antidiabetic drugs are often insufficient at getting patients to glycaemic goals. Furthermore, current treatment modalities are not able to prevent the continued...... ongoing decline in pancreatic beta-cell function and, lastly, they have a number of side effects including hypoglycaemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of pharmacological agents, which improve glucose homeostasis in a multifaceted way. Their effects...

  5. μ opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive.

    Science.gov (United States)

    Levitt, Erica S; Abdala, Ana P; Paton, Julian F R; Bissonnette, John M; Williams, John T

    2015-10-01

    In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker-Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post-inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid-induced respiratory disturbances, particularly the impairment of upper airways. Opioid-induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker-Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi-intact rats, injection of opioid agonists DAMGO or [Met(5) ]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart-brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post-inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid-induced hyperpolarization reduced the excitability of

  6. Exenatide, a Glucagon-like Peptide-1 Receptor Agonist, Acutely Inhibits Intestinal Lipoprotein Production in Healthy Humans

    NARCIS (Netherlands)

    Xiao, Changting; Bandsma, Robert H. J.; Dash, Satya; Szeto, Linda; Lewis, Gary F.

    Objective-Incretin-based therapies for the treatment of type 2 diabetes mellitus improve plasma lipid profiles and postprandial lipemia, but their exact mechanism of action remains unclear. Here, we examined the acute effect of the glucagon-like peptide-1 receptor agonist, exenatide, on intestinal

  7. Satiety and the role of μ-opioid receptors in the portal vein.

    Science.gov (United States)

    De Vadder, Filipe; Gautier-Stein, Amandine; Mithieux, Gilles

    2013-12-01

    Mu-opioid receptors (MORs) are known to influence food intake at the brain level, through their involvement in the food reward system. MOR agonists stimulate food intake. On the other hand, MOR antagonists suppress food intake. MORs are also active in peripheral organs, especially in the small intestine where they control the gut motility. Recently, an indirect role in the control of food intake was ascribed to MORs in the extrinsic gastrointestinal neural system. MORs present in the neurons of the portal vein walls sense blood peptides released from the digestion of dietary protein. These peptides behave as MOR antagonists. Their MOR antagonist action initiates a gut-brain circuitry resulting in the induction of intestinal gluconeogenesis, a function controlling food intake. Thus, periportal MORs are a key mechanistic link in the satiety effect of protein-enriched diets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. South African guideline for the use of chronic opioid therapy for ...

    African Journals Online (AJOL)

    pain and chronic pain associated with cancer and at the end of life. Although .... Opioid drugs are agonists that bind to endogenous opioid receptors and mimic ..... interstitial cystitis/painful bladder syndrome, chronic prostate pain, and irritable ...

  9. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.

    Science.gov (United States)

    Che, Tao; Majumdar, Susruta; Zaidi, Saheem A; Ondachi, Pauline; McCorvy, John D; Wang, Sheng; Mosier, Philip D; Uprety, Rajendra; Vardy, Eyal; Krumm, Brian E; Han, Gye Won; Lee, Ming-Yue; Pardon, Els; Steyaert, Jan; Huang, Xi-Ping; Strachan, Ryan T; Tribo, Alexandra R; Pasternak, Gavril W; Carroll, F Ivy; Stevens, Raymond C; Cherezov, Vadim; Katritch, Vsevolod; Wacker, Daniel; Roth, Bryan L

    2018-01-11

    The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The effectiveness of telemedicine-delivered opioid agonist therapy in a supervised clinical setting.

    Science.gov (United States)

    Eibl, Joseph K; Gauthier, Graham; Pellegrini, David; Daiter, Jeffery; Varenbut, Michael; Hogenbirk, John C; Marsh, David C

    2017-07-01

    Opioid use disorder has been declared a public health crisis across North America and opioid agonist therapy (OAT) is the standard of care for these patients. Despite the increasing adoption of telemedicine as a delivery method for OAT, its effectiveness has not yet been evaluated against traditional in-person treatment. This study compared treatment outcomes for in-person versus telemedicine-delivered OAT. We conducted a non-randomized cohort comparison study using an administrative database for patients who commenced OAT between 2011 and 2012 across 58 clinic sites in the province of Ontario, Canada. Patients were stratified by primary treatment modality as being: in-person (telemedicine), mixed (25-75% by telemedicine), or via telemedicine (>75% appointments by telemedicine). The primary outcome was continuous retention in treatment as defined by one year of uninterrupted therapy, based on pharmacy dosing records. A total of 3733 OAT initiating patients were identified. Patients treated via telemedicine were more likely to be retained in therapy than patients treated in-person (n=1590; aOR=1.27; 95% CI 1.14-1.41; pTelemedicine patients demonstrated a retention rate of 50% at one year whereas in-person patients were retained at a rate of 39%. The mixed group also had higher likelihood of retention than the in-person group (n=418; aOR=1.26; 95% CI 1.08-1.47; p=0.001) and had a retention rate of 47% at one year. Telemedicine may be an effective alternative to delivering in person OAT, and it has the potential to expand access to care in rural, remote, and urban regions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Molecular Docking, Molecular Dynamics, and Structure-Activity Relationship Explorations of 14-Oxygenated N-Methylmorphinan-6-ones as Potent μ-Opioid Receptor Agonists.

    Science.gov (United States)

    Noha, Stefan M; Schmidhammer, Helmut; Spetea, Mariana

    2017-06-21

    Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3-7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.

  12. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo

    Science.gov (United States)

    Pastor-Cavada, Elena; Pardo, Leticia M.; Kandil, Dalia; Torres-Fuentes, Cristina; Clarke, Sarah L.; Shaban, Hamdy; McGlacken, Gerard P.; Schellekens, Harriet

    2016-11-01

    Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.

  13. Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling

    DEFF Research Database (Denmark)

    Holst, Birgitte; Brandt, Erik; Bach, Anders

    2005-01-01

    Two nonpeptide (L692,429 and MK-677) and two peptide [GH-releasing peptide (GHRP)-6 and ghrelin] agonists were compared in binding and in signal transduction assays: calcium mobilization, inositol phosphate turnover, cAMP-responsive element (CRE), and serum-responsive element (SRE) controlled tra...

  14. The opioid crisis: past, present and future policy climate in Ontario, Canada.

    Science.gov (United States)

    Morin, Kristen A; Eibl, Joseph K; Franklyn, Alexandra M; Marsh, David C

    2017-11-02

    Addressing opioid use disorder has become a priority in Ontario, Canada, because of its high economic, social and health burden. There continues to be stigma and criticism relating to opioid use disorder and treatment options. The result has been unsystematic, partial, reactive policies and programs developed based on divergent points of view. The aim of this manuscript is to describe how past and present understandings, narratives, ideologies and discourse of opioid use, have impacted policies over the course of the growing opioid crisis. Assessing the impact of policy is complex. It involves consideration of conceptual issues of what impacts policy change. In this manuscript we argue that the development of polices and initiatives regarding opioids, opioid use disorder and opioid agonist treatment in the last decade, have been more strongly associated with the evolution of ideas, narratives and discourses rather than research relating to opioids. We formulate our argument using a framework by Sumner, Crichton, Theobald, Zulu, and Parkhurs. We use examples from the Canadian context to outline our argument such as: the anti- drug legislation from the Canadian Federal Conservative government in 2007; the removal of OxyContin™ from the drug formulary in 2012; the rapid expansion of opioid agonist treatment beginning in the early 2000s, the unilateral decision made regarding fee cuts for physicians providing opioid agonist treatment in 2015; and the most recent implementation of a narcotics monitoring system, which are all closely linked with the shifts in public opinion and discourse at the time of which these policies and programs are implemented. We conclude with recommendations to consider a multifactorial response using evidence and stakeholder engagement to address the opioid crisis, rather than a reactive policy approach. We suggest that researchers have an important role in shaping future policy by reframing ideas through knowledge translation, formation of

  15. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Cold, Frederik; Gluud, Lise L

    2017-01-01

    Glucagon-like peptide-1 receptor agonist (GLP-1RAs) labels warn about acute pancreatitis (AP) and impose upon doctors the obligation to inform patients about symptoms of AP. Here we systematically reviewed the risk of AP in randomized placebo-controlled trials (RCTs) investigating the effect of GLP...

  16. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area.

    Science.gov (United States)

    Meye, Frank J; van Zessen, Ruud; Smidt, Marten P; Adan, Roger A H; Ramakers, Geert M J

    2012-11-14

    μ-Opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive activity is highly relevant in the mouse VTA, as it regulates GABAergic input to dopamine neurons. Specifically, suppression of MOR constitutive activity with the inverse agonist KC-2-009 enhanced GABAergic neurotransmission onto VTA dopamine neurons. This inverse agonistic effect was fully blocked by the specific MOR neutral antagonist CTOP, which had no effect on GABAergic transmission itself. We next show that withdrawal from chronic morphine further increases the magnitude of inverse agonistic effects at the MOR, suggesting enhanced MOR constitutive activity. We demonstrate that this increase can be an adaptive response to the detrimental elevation in cAMP levels known to occur during morphine withdrawal. These findings offer important insights in the physiological occurrence and function of MOR constitutive activity, and have important implications for therapeutic strategies aimed at normalizing MOR signaling during addiction and opioid overdose.

  17. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function.

    Science.gov (United States)

    Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Mendelowitz, David

    2007-08-01

    Opioids evoke respiratory depression, bradycardia, and reduced respiratory sinus arrhythmia, whereas serotonin (5-HT) agonists stimulate respiration and cardiorespiratory interactions. This study tested whether serotonin agonists can prevent the inhibitory effects of opioids on cardiorespiratory function. Spontaneous and rhythmic inspiratory-related activity and gamma-aminobutyric acid (GABA) neurotransmission to premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus were recorded simultaneously in an in vitro thick slice preparation. The mu-opioid agonist fentanyl inhibited respiratory frequency. The 5-hydroxytryptamine 1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin increased respiratory frequency by itself and also prevented the fentanyl-induced respiratory depression. The 5-hydroxytryptamine 4alpha agonist BIMU-8 did not by itself change inspiratory activity but prevented the mu-opioid-mediated respiratory depression. Both spontaneous and inspiratory-evoked GABAergic neurotransmission to cardiac vagal neurons were inhibited by fentanyl. 8-Hydroxy-2-(di-n-propylamino)tetralin inhibited spontaneous but not inspiratory-evoked GABAergic activity to parasympathetic cardiac neurons. However, 8-hydroxy-2-(di-n-propylamino)tetralin differentially altered the opioid-mediated depression of inspiratory-evoked GABAergic activity but did not change the opioid-induced reduction in spontaneous GABAergic neurotransmission. In contrast, BIMU-8 did not alter GABAergic neurotransmission to cardiac vagal neurons by itself but prevented the fentanyl depression of both spontaneous and inspiratory-elicited GABAergic neurotransmission to cardiac vagal neurons. In the presence of tetrodotoxin, the inhibition of GABAergic inhibitory postsynaptic currents with fentanyl is prevented by coapplication of BIMU-8, indicating that BIMU-8 acts at presynaptic GABAergic terminals to prevent fentanyl-induced depression. These results suggest that activation of 5

  18. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human.

    Science.gov (United States)

    Morgan, Michael M; Christie, MacDonald J

    2011-10-01

    Opioid agonists are the most effective treatment for pain, but their use is limited by side effects, tolerance and fears of addiction and dependence. A major goal of opioid research is to develop agonists that have high analgesic efficacy and a low profile for side effects, tolerance, addiction and dependence. Unfortunately, there is a serious lack of experimental data comparing the degree to which different opioids produce these effects in humans. In contrast, a wide range of experimental techniques from heterologous expression systems to behaviour assessment in whole animals have been developed to study these problems. The objective of this review is to describe and evaluate these techniques as they are used to study opioid efficacy, tolerance, addiction and dependence. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  19. Safety of oral dronabinol during opioid withdrawal in humans.

    Science.gov (United States)

    Jicha, Crystal J; Lofwall, Michelle R; Nuzzo, Paul A; Babalonis, Shanna; Elayi, Samy Claude; Walsh, Sharon L

    2015-12-01

    Opioid dependence remains a significant public health problem worldwide with only three FDA-approved treatments, all targeting the mu-opioid receptor. Dronabinol, a cannabinoid (CB) 1 receptor agonist, is currently under investigation as a novel opioid withdrawal treatment. This study reports on safety outcomes of dronabinol among adults in opioid withdrawal. Twelve adults physically dependent on short-acting opioids participated in this 5-week within-subject, randomized, double blind, placebo-controlled inpatient study. Volunteers were maintained on oral oxycodone 30 mg qid. Double-blind placebo substitutions occurred for 21 h before each of 7 experimental sessions in order to produce opioid withdrawal. A single oral test dose was administered each session (placebo, oxycodone 30 and 60 mg, dronabinol 5, 10, 20, and 30 mg [decreased from 40 mg]). Heart rate, blood pressure, respiratory outcomes and pupil diameter were assessed repeatedly. Dronabinol 40 mg produced sustained sinus tachycardia accompanied by anxiety and panic necessitating dose reduction to 30 mg. Sinus tachycardia and anxiety also occurred in one volunteer after dronabinol 20mg. Compared to placebo, dronabinol 20 and 30 mg produced significant increases in heart rate beginning 1h after drug administration that lasted approximately 2h (popioid agonist effects (e.g., miosis). Dronabinol 20mg and higher increased heart rate among healthy adults at rest who were in a state of opioid withdrawal, raising concern about its safety. These results have important implications for future dosing strategies and may limit the utility of dronabinol as a treatment for opioid withdrawal. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Opioid system and human emotions.

    Science.gov (United States)

    Nummenmaa, Lauri; Tuominen, Lauri

    2017-04-10

    Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. © 2017 The British Pharmacological Society.

  1. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation.

    Directory of Open Access Journals (Sweden)

    Tamara Antonio

    Full Text Available The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR-related G proteins by iboga alkaloids.Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC, a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio-triphosphate ([(35S]GTPγS binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices.In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine to 13 uM (noribogaine and 18MC. Noribogaine and 18-MC did not stimulate [(35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and

  2. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone, secreted in response to ingestion of nutrients, and has important effects on several of the pathophysiological features of type 2 diabetes (T2D). The effects include potentiation of insulin secretion, suppression of glucagon secretion...... effects. This review gives an overview of the clinical data on GLP-1R agonists that have been compared in head-to-head studies and focuses on relevant differences between the compounds. Highlighting these similarities and differences could be beneficial for physicians in choosing the best treatment......, slowing of gastric emptying and suppression of appetite. In circulation, GLP-1 has a half-life of approximately 2min due to rapid degradation by the enzyme dipeptidyl peptidase 4 (DPP-4). Because of this short half-life GLP-1 receptor (GLP-1R) agonists, resistant to degradation by DPP-4 have been...

  3. Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Lang, Manja; Brandt, Erik

    2006-01-01

    [D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P functions as a low-potency antagonist but a high-potency full inverse agonist on the ghrelin receptor. Through a systematic deletion and substitution analysis of this peptide, the C-terminal carboxyamidated pentapeptide wFwLX was identified as the core...... structure, which itself displayed relatively low inverse agonist potency. Mutational analysis at 17 selected positions in the main ligand-binding crevice of the ghrelin receptor demonstrated that ghrelin apparently interacts only with residues in the middle part of the pocket [i.e., between transmembrane...... upon both AspII:20 and GluIII:09. The identified pharmacophore can possibly serve as the basis for targeted discovery of also nonpeptide inverse agonists for the ghrelin receptor....

  4. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    Science.gov (United States)

    2016-07-01

    treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...al., J Neurosci Methods, 1994), starting with 0.1 g and ending with 2.0 g filament as cutoff value. As shown in Figure 2, our preliminary experiments

  5. Endogenous Opioid-Masked Latent Pain Sensitization

    DEFF Research Database (Denmark)

    Pereira, Manuel P; Donahue, Renee R; Dahl, Jørgen B

    2015-01-01

    UNLABELLED: Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chr...

  6. Effects of opioid drugs on dopamine mediated locomotor activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Leathern, L L

    1986-01-01

    Opioid drugs influence various behavioural parameters including locomotor activity in experimental animals. The interaction between the opioid and dopaminergic systems is one possible explanation for the effect of opioid drugs on locomotor activity. In this study behavioural and biochemical assays were done to investigate the interaction between the opioid and dopaminergic systems. Behavioural studies were done by measurement of locomotor activity (LA) of rats after acute or chronic pretreatment with opioid andor dopaminergic drugs. Biochemical studies were in the form of radioligand binding assays, the effect on the number (Bmax) and affinity (K/sub D/) of receptors was measured after chronic pretreatment with opioid andor dopaminergic drugs. The opioid drugs used are morphine, nalbuphine and naloxone. Dopaminergic drugs used included: agonists-apomorphine and piribedil; antagonists-pimozide, haloperidol, chlorpromazine. In the acute situation increased LA was obtained with morphine and the DA agonists. A correlation between the behavioural and biochemical assays was found. Chronic pretreatment with morphine enhanced apomorphine induced LA, this supersensitivity was also measured as an increased receptor density (Bmax) of D2 receptors in the striatum. Chronic morphine pretreatment caused a decrease in morphine induced LA, while this subsensitivity was not apparent in the ligand binding assays - where no change in receptor number was observed. Chronic naloxone pretreatment enhanced morphine induced LA, as well as increased the Bmax of opioid receptors in the whole brain. It is concluded that an interaction between the opioid and dopaminergic systems does exist, and may account for the mechanism of action of the opioids.

  7. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists

    OpenAIRE

    Uccellatore, Annachiara; Genovese, Stefano; Dicembrini, Ilaria; Mannucci, Edoardo; Ceriello, Antonio

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administratio...

  8. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Hiromasa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Nomiyama, Takashi, E-mail: tnomiyama@fukuoka-u.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Fujitani, Yoshio; Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan); Sportology Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421 (Japan)

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  9. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    International Nuclear Information System (INIS)

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-01-01

    Research highlights: → Exendin-4 reduces neointimal formation after vascular injury in a mouse model. → Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. → Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. → Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  10. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  11. Nitrous oxide as an opioid agonist: some experimental and clinical applications

    International Nuclear Information System (INIS)

    Gillman, M.A.

    1984-01-01

    The purpose of the present investigation is primarily to determine whether N 2 O at analgesic concentrations acts vid the opioid system. Interaction at an opioid receptor level will be studied by means of a ligand binding study. An in vitro study is presented in which the effect of 50% N 2 O mixed with 50% O 2 and 100% N 2 O on ( 3 H) naloxone binding is presented. Secondly, possible therapeutic and diagnostic applications of the use of N 2 O in conditions possibly related to abnormalities of the opioid system viz alcoholism, depression, schizophrenia and anxiety will be investigated. Thirdly, possible hematological abnormalities induced by the use of N 2 O will be studied

  12. The effects of opioid drugs on dopamine mediated locomotor activity in rats

    International Nuclear Information System (INIS)

    Leathern, L.L.

    1986-12-01

    Opioid drugs influence various behavioural parameters including locomotor activity in experimental animals. The interaction between the opioid and dopaminergic systems is one possible explanation for the effect of opioid drugs on locomotor activity. In this study behavioural and biochemical assays were done to investigate the interaction between the opioid and dopaminergic systems. Behavioural studies were done by measurement of locomotor activity (LA) of rats after acute or chronic pretreatment with opioid and/or dopaminergic drugs. Biochemical studies were in the form of radioligand binding assays, the effect on the number (Bmax) and affinity (K D ) of receptors was measured after chronic pretreatment with opioid and/or dopaminergic drugs. The opioid drugs used are morphine, nalbuphine and naloxone. Dopaminergic drugs used included: agonists-apomorphine and piribedil; antagonists-pimozide, haloperidol, chlorpromazine. In the acute situation increased LA was obtained with morphine and the DA agonists. A correlation between the behavioural and biochemical assays was found. Chronic pretreatment with morphine enhanced apomorphine induced LA, this supersensitivity was also measured as an increased receptor density (Bmax) of D2 receptors in the striatum. Chronic morphine pretreatment caused a decrease in morphine induced LA, while this subsensitivity was not apparent in the ligand binding assays - where no change in receptor number was observed. Chronic naloxone pretreatment enhanced morphine induced LA, as well as increased the Bmax of opioid receptors in the whole brain. It is concluded that an interaction between the opioid and dopaminergic systems does exist, and may account for the mechanism of action of the opioids

  13. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  14. Antagonist-agonist combinations as therapies for heroin addiction: back to the future?

    Science.gov (United States)

    Nutt, David J

    2010-02-01

    Psychopharmacology is a powerful approach to the treatment of many psychiatric disorders. In this article I discuss the conceptual and practical issues in relation to the use of mu opioid receptor agonist, antagonist and partial agonist drugs in the treatment of opioid addiction, as this is one therapeutic area where all three types of agents are currently available. The choice of pharmacological agent is largely determined by patient profile, existence of ongoing drug misuse, and the kinetics of the drugs available. These principles, however, can be applied to other disorders as and when other pharmacological approaches become refined in these areas.

  15. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors.

    Science.gov (United States)

    Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M

    2001-06-21

    The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.

  16. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    OpenAIRE

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-01-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affi...

  17. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant.

    Science.gov (United States)

    Itzoe, MariaLisa; Guarnieri, Michael

    2017-01-01

    Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine ® , which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed.

  18. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant

    Directory of Open Access Journals (Sweden)

    Itzoe M

    2017-05-01

    Full Text Available MariaLisa Itzoe, Michael Guarnieri Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA Abstract: Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT. For decades, oral or intravenous (IV MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone, antagonists (naltrexone, naloxone, and combinations of the two (buprenorphine/naloxone. While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016 is Probuphine®, which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed. Keywords: addiction, opioids, medication-assisted therapy, long-acting implant, buprenorphine, Probuphine®

  19. Click-Chemistry-Mediated Synthesis of Selective Melanocortin Receptor 4 Agonists

    DEFF Research Database (Denmark)

    Palmer, Daniel; Gonçalves, Juliana P.L.; Hansen, Louise V.

    2017-01-01

    The melanocortin receptor 4 (MC4R) subtype of the melanocortin receptor family is a target for therapeutics to ameliorate metabolic dysfunction. Endogenous MC4R agonists possess a critical pharmacophore (HFRW), and cyclization of peptide agonists often enhances potency. Thus, 17 cyclized peptides...

  20. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance.

    Science.gov (United States)

    Wang, Zi-Long; Li, Ning; Wang, Pei; Tang, Hong-Hai; Han, Zheng-Lan; Song, Jing-Jing; Li, Xu-Hui; Yu, Hong-Ping; Zhang, Ting; Zhang, Run; Xu, Biao; Zhang, Meng-Na; Fang, Quan; Wang, Rui

    2016-09-01

    Mounting evidences indicate the functional interactions between neuropeptide FF (NPFF) and opioids, including the endogenous opioids. In the present work, EN-9, a chimeric peptide containing the functional domains of the endogenous opioid endomorphin-2 (EM-2) and NPFF, was synthesized and pharmacologically characterized. In vitro cAMP assay demonstrated that EN-9 was a multifunctional agonist of κ-opioid, NPFF1 and NPFF2 receptors. In the mouse tail-flick test, intracerebroventricularly (i.c.v.) administration of EN-9 produced significant antinociception with an ED50 value of 13.44 nmol, which lasted longer than that of EM-2. In addition, EN-9 induced potent antinociception after both intravenous (i.v.) and subcutaneous (s.c.) injection. Furthermore, the experiments using the antagonists of opioid and NPFF receptors indicated that the central antinociception of EN-9 was mainly mediated by κ-opioid receptor, independently on NPFF receptors. Notably, the central antinociception of EN-9 was not reduced over a period of 6 days repeated i.c.v. injection. Repeated i.c.v. administration of EN-9 with the NPFF1 and NPFF2 receptors antagonist RF9 resulted in a progressive loss of analgesic potency, consistent with the development of tolerance. Moreover, central administration of EN-9 induced the place conditioning aversion only at a high dose of 60 nmol, but not at low doses. At supraspinal level, only high dose of EN-9 (60 nmol, i.c.v.) inhibited gastrointestinal transit via NPFF receptors. Similarly, systemic administration of EN-9 also inhibited gastrointestinal transit at high doses (10 and 30 mg/kg, i.v.). Taken together, the multifunctional agonist of κ-opioid and NPFF receptors EN-9 produced a potent, non-tolerance forming antinociception with limited side effects. Copyright © 2016. Published by Elsevier Ltd.

  1. Improving recruitment to pharmacological trials for illicit opioid use: findings from a qualitative focus group study.

    Science.gov (United States)

    Neale, Joanne; Tompkins, Charlotte N E; McDonald, Rebecca; Strang, John

    2018-06-01

    To explore potential study participants' views on willingness to join clinical trials of pharmacological interventions for illicit opioid use to inform and improve future recruitment strategies. Qualitative focus group study [six groups: oral methadone (two groups); buprenorphine tablets (two groups); injectable opioid agonist treatment (one group); and former opioid agonist treatment (one group)]. Drug and alcohol services and a peer support recovery service (London, UK). Forty people with experience of opioid agonist treatment for heroin dependence (26 males, 14 females; aged 33-66 years). Data collection was facilitated by a topic guide that explored willingness to enrol in clinical pharmacological trials. Groups were audio-recorded and transcribed. Transcribed data were analysed inductively via Iterative Categorization. Participants' willingness to join pharmacological trials of medications for opioid dependence was affected by factors relating to study burden, study drug, study design, study population and study relationships. Participants worried that the trial drug might be worse than, or interfere with, their current treatment. They also misunderstood aspects of trial design despite the researchers' explanations. Recruitment of participants for clinical trials of pharmacological interventions for illicit opioid use could be improved if researchers became better at explaining clinical trials to potential participants, dispelling misconceptions about trials and increasing trust in the research process and research establishment. A checklist of issues to consider when designing pharmacological trials for illicit opioid use is proposed. © 2018 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  2. Nitrous oxide as an opioid agonist: some experimental and clinical applications

    International Nuclear Information System (INIS)

    Gillman, M.A.

    1984-01-01

    The interactions of nitrous oxide at analgesic concentrations with the endogenous opioid system is investigated, both in vitro and in vivo, with particular emphasis on the possibility that nitrous oxide is a possible tool both experimentally, diagnostically and therapeutically. In vitro findings show that nitrous oxide displaces ( 3 H) - naloxone from its binding sites in a definite and measurable manner, indicating a direct action of nitrous oxide at opioid receptors, in this case the mu site. An additional finding is that nitrous oxide unmasks a heretofore undiscovered super high affinity sites which may be an opioid auto-receptor. Naloxone was demonstrated to reverse acute alcoholic intoxication in some cases. The investigative as well as therapeutic role of nitrous oxide was investigated. It is concluded that nitrous oxide at analgesic concentrations (ie. low concentrations of nitrous oxide diluted with high concentrations of oxygen) is a safe and effective therapeutic agent

  3. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    Science.gov (United States)

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Buprenorphine – an attractive opioid with underutilized potential in treatment of chronic pain

    Directory of Open Access Journals (Sweden)

    Khanna IK

    2015-12-01

    Full Text Available Ish K Khanna, Sivaram PillarisettiNeuroPn Therapeutics, Alpharetta, GA, USAAbstract: Despite proven clinical utility, buprenorphine has not been used widely for the treatment of chronic pain. Questions about “ceiling effect” or bell-shaped curve observed for analgesia in preclinical studies and potential withdrawal issues on combining with marketed µ-agonists continue to hinder progress in expanding full potential of buprenorphine in the treatment of cancer and noncancer pain. Mounting evidence from clinical studies and conclusions drawn by a panel of experts strongly support superior safety and efficacy profile of buprenorphine vs marketed opioids. No ceiling on analgesic effect has been reported in clinical studies. The receptor pharmacology and pharmacokinetics profile of buprenorphine is complex but unique and contributes to its distinct safety and efficacy. The buprenorphine pharmacology also allows it to be combined with other µ-receptor opioids for additivity in efficacy. Transdermal delivery products of buprenorphine have been preferred choices for the management of pain but new delivery options are under investigation for the treatment of both opioid dependence and chronic pain.Keywords: buprenorphine, opioids, opioid dependence, partial agonist, hyperalgesia, neuropathic pain

  5. Opioid-induced preconditioning: recent advances and future perspectives.

    Science.gov (United States)

    Peart, Jason N; Gross, Eric R; Gross, Garrett J

    2005-01-01

    Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ

  6. The effect of benfotiamine on mu-opioid receptor mediated antinociception in experimental diabetes.

    Science.gov (United States)

    Nacitarhan, C; Minareci, E; Sadan, G

    2014-03-01

    Diabetic neuropathy is a prevalent, disabling disorder. Currently, the only treatments available to patients with diabetic neuropathy are glucose control and pain management. B vitamin present neuroprotective effects, which are suggested to be related to their analgesic action in various models of neuropathic pain. According to our literature knowledge there is no report about antinociceptive effects of thiamine as benfotiamine and opioids together in diabetic mice. The purpose of this study was to determine the effects of benfotiamine on the antinociception produced by mu-opioid receptor agonist fentanyl in diabetic mice. The effects of benfotiamine on antinociception produced by fentanyl in diabetic mice were studied in 4 groups. Antinociceptive effect was determined with tail flick, hot plate and formalin test. Our results showed that, mu-opioid agonist fentanyl in benfotiamine applied diabetic group caused more potent antinociceptive effect than in diabetic group without benfotiamine treatment. In brief benfotiamine supplement in diet did not bring out antinociceptive effect itself, but during development of STZ diabetes, benfotiamine replacement increased the antinociceptive effect of fentanyl in mice tail-flick test. This effect is probably due to the replacement of benfotiamine efficiency occurring in diabetes mellitus. Finally, we suppose that oral benfotiamine replacement therapy may be useful to ameliorate analgesic effect of mu-opioid agonists on neuropathic pain in diabetic case. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  7. Measurement of opioid peptides with combinations of reversed phase high performance liquid chromatography, radioimmunoassay, radioreceptorassay, and mass spectrometry

    International Nuclear Information System (INIS)

    Fridland, G.H.; Desiderio, D.M.

    1987-01-01

    As the first step, RP-HPLC gradient elution is performed of a Sep-Pak treated peptide-rich fraction from a tissue extract, and the eluent is monitored by a variety of post-HPLC detectors. In an effort to maximize the structural information that can be obtained from the analysis, UV provides the analog absorption trace; receptorassay analysis (RRA) data of all fractions that are collected are used to construct the profile of opioid-receptoractive peptides; radioimmunoassay (RIA) of selected HPLC fractions at retention times corresponding to the retention time of standards, or in some special cases of all 90-fractions, provides immunoreactivity information; and fast atom bombardment mass spectrometry (FAB-MS) in two modes - corroboration of the (M + H) + of the expected peptide, or MS/MS to monitor an amino acid sequence-determining fragment ion unique to that peptide in the selected ion monitoring (SIM) mode - provides structural information. As a demonstration of the level of quantification sensitivity that can be attained by these novel MS methods, FAB-MS-MS-SIM of solutions of synthetic leucine enkephalin was sensitive to the 70 femtomole level. This paper discusses RIA versus RRA data, and recent MS measurements of peptides in human tissues. 4 references, 1 figure

  8. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    Science.gov (United States)

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.

  9. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials

    DEFF Research Database (Denmark)

    Madsbad, Sten; Krarup, Thure; Deacon, Carolyn F

    2008-01-01

    -acting glucagon-like peptide-1 receptor agonists liraglutide and exenatide long-acting release reduce haemoglobin A1c by about 1.0-2.0% and have fewer gastrointestinal side-effects. The orally available dipeptidyl peptidase-4 inhibitors, that is sitagliptin and vildagliptin reduce haemoglobin A1c by 0...

  10. Tramadol versus methadone for the management of acute opioid withdrawal: an add-on study

    Directory of Open Access Journals (Sweden)

    M Salehi

    2006-07-01

    Full Text Available BACKGROUND: Opioid agonists such as methadone have been used widely in controlling opioid withdrawal symptoms. Tramadol, a partial opioid agonist, also has been prescribed to manage acute and chronic pain. We sought to compare the efficacy of tramadol and methadone in reducing the severity of opioid withdrawal symptoms. METHODS: In a double blind clinical trial 70 opioid dependent patients who used daily opium equal to 15 mg methadone randomly were assigned in two groups. In one group, methadone was started at 15 mg/day while in the other group 450 mg/day tramadol was prescribed. Both drugs were tapered in a week and placebo was prescribed in the 2nd week. The severity of withdrawal symptoms were assessed five times by short opioid withdrawal scale (SOWS. Data were analyzed by Repeated Measures Analysis of Variance, Mann-Whitney U, and Wilcoxon tests. RESULTS: There were statistically significant differences between two groups in the severity of anxiety (P = 0.015, irritability (P = 0.044, palpitation (P = 0.018, agitation (P = 0.037, and dysphoria (P = 0.044 that all were more common in methadone group. Comparison of side effects revealed statistically significant differences in sweating (P = 0.003 and drowsiness (P = 0.019 between two groups that were more frequent in methadone group. DISCUSSION: Tramadol was more efficacious in controlling opioid withdrawal symptoms with lower side effects. KEYWORDS: Methadone, tramadol, opioid withdrawal.

  11. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    Science.gov (United States)

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  12. Preparation of human Melanocortin-4 receptor agonist libraries: linear peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Qi, Lida; Gore, Vijay; Chu, Xin-Jie; Bartkovitz, David; Kurylko, Grazyna; Swistok, Joseph; Danho, Waleed; Chen, Li; Yagaloff, Keith

    2005-12-15

    Two libraries of hMC4R agonists, X-Y-DPhe(7)-Arg(8)-2-Nal(9)-Z-NH(2) and X-Y-DPhe(7)-Arg(8)-Trp(9)-Z-NH(2), totaling 185 peptides were prepared using Irori radiofrequency tagging technology and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His(6) surrogates and Z for Gly(10) surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent hMC4R agonists (EC(50) 1-15nM) and selective against hMC1R were discovered.

  13. Pavlovian conditioning of multiple opioid-like responses in mice

    OpenAIRE

    Bryant, Camron D.; Roberts, Kristofer W.; Culbertson, Christopher S.; Le, Alan; Evans, Christopher J.; Fanselow, Michael S.

    2009-01-01

    Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2 mg/kg, i.p.) in a novel context and subsequently g...

  14. Visual selective attention is impaired in children prenatally exposed to opioid agonist medication.

    Science.gov (United States)

    Konijnenberg, Carolien; Melinder, Annika

    2015-01-01

    To examine whether prenatal exposure to opioid agonist medication is associated with visual selective attention and general attention problems in early childhood. Twenty-two children (mean age = 52.17 months, SD = 1.81) prenatally exposed to methadone, 9 children (mean age = 52.41 months, SD = 1.42) prenatally exposed to buprenorphine and 25 nonexposed comparison children (mean age = 51.44 months, SD = 1.31) were tested. Visual selective attention was measured with a Tobii 1750 Eye Tracker using a spatial negative priming paradigm. Attention problems were measured using the Child Behavior Checklist. The comparison group demonstrated a larger spatial negative priming effect (mean = 23.50, SD = 45.50) than the exposed group [mean = -6.84, SD = 86.39, F(1,50) = 5.91, p = 0.019, η(2) = 0.11]. No difference in reported attention problems was found [F(1,51) = 1.63, p = 0.21, η(2) = 0.03]. Neonatal abstinence syndrome and prenatal exposure to marijuana were found to predict slower saccade latencies in the exposed group (b = 54.55, SE = 23.56, p = 0.03 and b = 88.86, SE = 32.07, p = 0.01, respectively). Although exposed children did not appear to have attention deficits in daily life, lower performance on the SNP task indicates subtle alteration in the attention system. © 2014 S. Karger AG, Basel.

  15. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Directory of Open Access Journals (Sweden)

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  16. Preference or fat? Revisiting opioid effects on food intake.

    Science.gov (United States)

    Taha, Sharif A

    2010-07-14

    It is well established that opioid signaling in the central nervous system constitutes a powerful stimulus for food intake. The role of opioids in determining food preference, however, is less well defined. Opioids have been proposed to promote intake of preferred foods, or, alternatively, to preferentially increase consumption of fat. In the present manuscript, I comprehensively review results from previous studies investigating this issue. Data from these studies suggests a mechanism for opioid action that may reconcile the previously proposed hypotheses: opioid effects on food intake do appear to be largely specific for fat consumption, but individual animals' sensitivity to this effect may be dependent on baseline food preferences. In addition, I highlight the possibility that the selectivity of endogenous opioid effects may importantly differ from that of exogenous agonists in the degree to which baseline preferences, rather than macronutrient intake, are altered. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. 2010 Elsevier Inc. All rights reserved.

  17. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Johannes Burtscher

    2017-08-01

    Full Text Available Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers, opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human

  18. Iatrogenic Opioid Withdrawal in Critically Ill Patients: A Review of Assessment Tools and Management.

    Science.gov (United States)

    Chiu, Ada W; Contreras, Sofia; Mehta, Sangeeta; Korman, Jennifer; Perreault, Marc M; Williamson, David R; Burry, Lisa D

    2017-12-01

    To (1) provide an overview of the epidemiology, clinical presentation, and risk factors of iatrogenic opioid withdrawal in critically ill patients and (2) conduct a literature review of assessment and management of iatrogenic opioid withdrawal in critically ill patients. We searched MEDLINE (1946-June 2017), EMBASE (1974-June 2017), and CINAHL (1982-June 2017) with the terms opioid withdrawal, opioid, opiate, critical care, critically ill, assessment tool, scale, taper, weaning, and management. Reference list of identified literature was searched for additional references as well as www.clinicaltrials.gov . We restricted articles to those in English and dealing with humans. We identified 2 validated pediatric critically ill opioid withdrawal assessment tools: (1) Withdrawal Assessment Tool-Version 1 (WAT-1) and (2) Sophia Observation Withdrawal Symptoms Scale (SOS). Neither tool differentiated between opioid and benzodiazepine withdrawal. WAT-1 was evaluated in critically ill adults but not found to be valid. No other adult tool was identified. For management, we identified 5 randomized controlled trials, 2 prospective studies, and 2 systematic reviews. Most studies were small and only 2 studies utilized a validated assessment tool. Enteral methadone, α-2 agonists, and protocolized weaning were studied. We identified 2 validated assessment tools for pediatric intensive care unit patients; no valid tool for adults. Management strategies tested in small trials included methadone, α-2 agonists, and protocolized sedation/weaning. We challenge researchers to create validated tools assessing specifically for opioid withdrawal in critically ill children and adults to direct management.

  19. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    Science.gov (United States)

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  20. New features of the delta opioid receptor: conformational properties of deltorphin I analogues.

    Science.gov (United States)

    Balboni, G; Marastoni, M; Picone, D; Salvadori, S; Tancredi, T; Temussi, P A; Tomatis, R

    1990-06-15

    Deltorphin I is an opioid peptide of sequence H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2, recently isolated from the skin of Phyllomedusa bicolor. Its enormous selectivity towards the delta opioid receptor and the similarity of the conformation of the N-terminal part of the sequence with that of dermorphin (H-Tyr-D-Ala-he-Gly-Tyr-Pro-Ser-NH2), a mu selective peptide, prompted the synthesis, biological evaluation and comparative conformational study of four analogs. A 1H-NMR study showed that the conformational preferences of the N-terminal sequences of all peptides are similar. The different selectivities towards opioid receptors have been interpreted in terms of charge effects in the interaction with the membrane and at the receptor site and of hydrophobicity of the C-terminal part, when structured in a folded conformation.

  1. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    Science.gov (United States)

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  2. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    Directory of Open Access Journals (Sweden)

    Elena Elizabeth Bagley

    2014-06-01

    Full Text Available Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1 currents in periaqueductal gray (PAG neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1

  3. Discovery and cardioprotective effects of the first non-Peptide agonists of the G protein-coupled prokineticin receptor-1.

    Directory of Open Access Journals (Sweden)

    Adeline Gasser

    Full Text Available Prokineticins are angiogenic hormones that activate two G protein-coupled receptors: PKR1 and PKR2. PKR1 has emerged as a critical mediator of cardiovascular homeostasis and cardioprotection. Identification of non-peptide PKR1 agonists that contribute to myocardial repair and collateral vessel growth hold promises for treatment of heart diseases. Through a combination of in silico studies, medicinal chemistry, and pharmacological profiling approaches, we designed, synthesized, and characterized the first PKR1 agonists, demonstrating their cardioprotective activity against myocardial infarction (MI in mice. Based on high throughput docking protocol, 250,000 compounds were computationally screened for putative PKR1 agonistic activity, using a homology model, and 10 virtual hits were pharmacologically evaluated. One hit internalizes PKR1, increases calcium release and activates ERK and Akt kinases. Among the 30 derivatives of the hit compound, the most potent derivative, IS20, was confirmed for its selectivity and specificity through genetic gain- and loss-of-function of PKR1. Importantly, IS20 prevented cardiac lesion formation and improved cardiac function after MI in mice, promoting proliferation of cardiac progenitor cells and neovasculogenesis. The preclinical investigation of the first PKR1 agonists provides a novel approach to promote cardiac neovasculogenesis after MI.

  4. Medicaid Coverage of Methadone Maintenance and the Use of Opioid Agonist Therapy Among Pregnant Women in Specialty Treatment.

    Science.gov (United States)

    Bachhuber, Marcus A; Mehta, Pooja K; Faherty, Laura J; Saloner, Brendan

    2017-12-01

    Opioid agonist therapy (OAT) is the standard of care for pregnant women with opioid use disorder (OUD). Medicaid coverage policies may strongly influence OAT use in this group. To examine the association between Medicaid coverage of methadone maintenance and planned use of OAT in the publicly funded treatment system. Retrospective cross-sectional analysis of treatment admissions in 30 states extracted from the Treatment Episode Data Set (2013 and 2014). Medicaid-insured pregnant women with OUD (n=3354 treatment admissions). The main outcome measure was planned use of OAT on admission. The main exposure was state Medicaid coverage of methadone maintenance. Using multivariable logistic regression models adjusting for sociodemographic, substance use, and treatment characteristics, we compared the probability of planned OAT use in states with Medicaid coverage of methadone maintenance versus states without coverage. A total of 71% of pregnant women admitted to OUD treatment were 18-29 years old, 85% were white non-Hispanic, and 56% used heroin. Overall, 74% of admissions occurred in the 18 states with Medicaid coverage of methadone maintenance and 53% of admissions involved planned use of OAT. Compared with states without Medicaid coverage of methadone maintenance, admissions in states with coverage were significantly more likely to involve planned OAT use (adjusted difference: 32.9 percentage points, 95% confidence interval, 19.2-46.7). Including methadone maintenance in the Medicaid benefit is essential to increasing OAT among pregnant women with OUD and should be considered a key policy strategy to enhance outcomes for mothers and newborns.

  5. Design of Glucagon-Like Peptide-1 Receptor Agonist for Diabetes Mellitus from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Tang

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a promising target for diabetes mellitus (DM therapy and reduces the occurrence of diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4. We tried to design small molecular drugs for GLP-1 receptor agonist from the world's largest traditional Chinese medicine (TCM Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-deglucosylchikusetsusaponin IV, for further molecular dynamics (MD simulation. GLP-1 was assigned as the control compound. Based on the results of root mean square deviation (RMSD, solvent accessible surface (SAS, mean square deviation (MSD, Gyrate, total energy, root mean square fluctuation (RMSF, matrices of smallest distance of residues, database of secondary structure assignment (DSSP, cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that could be GLP-1 receptor agonists.

  6. Prescription opioid abuse, pain and addiction: clinical issues and implications.

    Science.gov (United States)

    Ling, Walter; Mooney, Larissa; Hillhouse, Maureen

    2011-05-01

    Prescription opioid misuse in the USA has increased over threefold since 1990 to epidemic proportions, with substantial increases in prescription opioid use also reported in other countries, such as Australia and New Zealand. The broad availability of prescription pain medications, coupled with public misconceptions about their safety and addictive potential, have contributed to the recent surge in non-medical use of prescription opioids and corresponding increases in treatment admissions for problems related to opioid misuse. Given competing pressures faced by physicians to both diagnose and treat pain syndromes and identify individuals at risk for addictive disorders, the use of opioids in the treatment of pain poses a significant clinical challenge. This paper reviews the interaction between pain and opioid addiction with a focus on clinical management issues, including risk factors for opioid dependence in patients with chronic pain and the use of assessment tools to identify and monitor at-risk individuals. Treatment options for opioid dependence and pain are reviewed, including the use of the partial µ agonist buprenorphine in the management of concurrent pain and opioid addiction. Physicians should strive to find a reasonable balance between minimising potential adverse effects of opioid medications without diminishing legitimate access to opioids for analgesia. The article discusses the need to identify methods for minimising risks and negative consequences associated with opioid analgesics and poses research directions, including the development of abuse-deterrent opioid formulations, genetic risk factors for opioid dependence and opioid-induced hyperalgesia as a potential target for medication therapy. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  7. Pavlovian conditioning of multiple opioid-like responses in mice.

    Science.gov (United States)

    Bryant, Camron D; Roberts, Kristofer W; Culbertson, Christopher S; Le, Alan; Evans, Christopher J; Fanselow, Michael S

    2009-07-01

    Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2mg/kg, i.p.) in a novel context and subsequently given a vehicle injection. In separate experiments, locomotor activity, Straub tail, hot plate sensitivity, and conditioned place preference (CPP) were measured. Mice exhibited multiple conditional opioid-like responses including conditional hyperlocomotion, a conditional pattern of opioid-like locomotion, Straub tail, analgesia, and place preference. Modulating drug expectation via administration of fentanyl to "demonstrator" mice in the home cage did not affect the expression of conditioned place preference or the concomitant locomotor activity in "observer" mice. In summary, Pavlovian conditioning of an opioid in a novel context induced multiple conditional opioid-like behaviors and provides a model for studying the neurobiological mechanisms of the placebo response in mice.

  8. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  9. Buprenorphine implants in medical treatment of opioid addiction.

    Science.gov (United States)

    Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria

    2017-08-01

    Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.

  10. Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection.

    Science.gov (United States)

    Borlongan, Cesario V; Wang, Yun; Su, Tsung-Ping

    2004-09-01

    Hibernation is a potential protective strategy for the peripheral, as well as for the central nervous system. A protein factor termed hibernation induction trigger (HIT) was found to induce hibernation in summer-active ground squirrels. Purification of HIT yielded an 88-kD peptide that is enriched in winter hibernators. Partial sequence of the 88-kD protein indicates that it may be related to the inhibitor of metalloproteinase. Using opioid receptor antagonists to elucidate the mechanisms of HIT, it was found that HIT targeted the delta opioid receptors. Indeed, delta opioid (D-Ala 2, D-Leu 5) enkephalin (DADLE) was shown to induce hibernation. Specifically, HIT and DADLE were found to prolong survival of peripheral organs, such as the lung, the heart, liver, and kidney preserved en bloc or as a single preparation. In addition, DADLE has been recently demonstrated to promote survival of neurons in the central nervous system. Exposure to DADLE dose-dependently enhanced cell viability of cultured primary rat fetal dopaminergic cells. Subsequent transplantation of these DADLE-treated dopaminergic cells into the Parkinsonian rat brain resulted in a two-fold increase in surviving grafted cells. Interestingly, delivery of DADLE alone protected against dopaminergic depletion in a rodent model of Parkinson s disease. Similarly, DADLE blocked and reversed the dopaminergic terminal damage induced by methamphetamine (METH). Such neuroprotective effects of DADLE against METH neurotoxicity was accompanied by attenuation of mRNA expressions of a tumor necrosis factor p53 and an immediate early gene c-fos. In parallel to these beneficial effects of DADLE on the dopaminergic system, DADLE also ameliorated the neuronal damage induced by ischemia-reperfusion following a transient middle cerebral artery occlusion. In vitro replication of this ischemia cell death by serum-deprivation of PC12 cells revealed that DADLE exerted neuroprotection in a naltrexone-sensitive manner. These

  11. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [11C]-MeJDTic: a novel radioligand for κ-opioid receptor positron emission tomography imaging

    International Nuclear Information System (INIS)

    Poisnel, Geraldine; Oueslati, Farhana; Dhilly, Martine; Delamare, Jerome; Perrio, Cecile; Debruyne, Daniele; Barre, Louisa

    2008-01-01

    Introduction: Radiopharmaceuticals that can bind selectively the κ-opioid receptor may present opportunities for staging clinical brain disorders and evaluating the efficiency of new therapies related to stroke, neurodegenerative diseases or opiate addiction. The N-methylated derivative of JDTic (named MeJDTic), which has been recently described as a potent and selective antagonist of κ-opioid receptor in vitro, was labeled with carbon-11 and evaluated for in vivo imaging the κ-opioid receptor in mice. Methods: [ 11 C]-MeJDTic was prepared by methylation of JDTic with [ 11 C]-methyl triflate. The binding of [ 11 C]-MeJDTic to κ-opioid receptor was investigated ex vivo by biodistribution and competition studies using nonfasted male CD1 mice. Results: [ 11 C]-MeJDTic exhibited a high and rapid distribution in peripheral organs. The uptake was maximal in lung where the κ receptor is largely expressed. [ 11 C]-MeJDTic rapidly crossed the blood-brain barrier and accumulated in the brain regions of interest (hypothalamus). The parent ligand remained the major radioactive compound in brain during the experiment. Chase studies with U50,488 (a κ referring agonist), morphine (a μ agonist) and naltrindole (a δ antagonist) demonstrated that this uptake was the result of specific binding to the κ-opioid receptor. Conclusion: These findings suggested that [ 11 C]-MeJDTic appeared to be a promising selective 'lead' radioligand for κ-opioid receptor PET imaging

  13. Opioid withdrawal syndrome: emerging concepts and novel therapeutic targets.

    Science.gov (United States)

    Rehni, Ashish K; Jaggi, Amteshwar S; Singh, Nirmal

    2013-02-01

    Opioid withdrawal syndrome is a debilitating manifestation of opioid dependence and responds poorly to the available clinical therapies. Studies from various in vivo and in vitro animal models of opioid withdrawal syndrome have led to understanding of its pathobiology which includes complex interrelated pathways leading to adenylyl cyclase superactivation based central excitation. Advancements in the elucidation of opioid withdrawal syndrome mechanisms have revealed a number of key targets that have been hypothesized to modulate clinical status. The present review discusses the neurobiology of opioid withdrawal syndrome and its therapeutic target recptors like calcitonin gene related peptide receptors (CGRP), N-methyl-D-aspartate (NMDA) receptors, gamma aminobutyric acid receptors (GABA), G-proteingated inwardly rectifying potassium (GIRK) channels and calcium channels. The present review further details the potential role of second messengers like calcium (Ca2+) / calmodulin-dependent protein kinase (CaMKII), nitric oxide synthase, cytokines, arachidonic acid metabolites, corticotropin releasing factor, fos and src kinases in causing opioid withdrawal syndrome. The exploitation of these targets may provide effective therapeutic agents for the management of opioid dependence-induced abstinence syndrome.

  14. [Management of opioid maintenance treatments when analgesic treatments are required].

    Science.gov (United States)

    Laprevote, Vincent; Geoffroy, Pierre A; Rolland, Benjamin; Leheup, Benoît F; Di Patrizio, Paolo; Cottencin, Olivier; Schwan, Raymund

    2013-01-01

    Opioid maintenance treatments (OMT) reduce illicit opiate use and its associated risks. They are often prescribed on a long-term basis. Physiological changes induced by long-term OMT may cause hyperalgesia and cross-tolerance to opioid agonists, which suggests that the dosage of analgesic treatment should be modified in cases of acute pain, especially when an opioid-based analgesia is required. When treatment with analgesics is necessary, OMT must be maintained, except in exceptional cases. If a split-dosing schedule is temporarily employed during OMT, the daily dosage should not be increased for analgesic purposes. Analgesic treatment must be managed differently in case of treatment with buprenorphine or methadone. With buprenorphine, non-opioid analgesics should be introduced first, if possible. If this strategy is inefficient or contraindicated, a temporary or definitive switch to methadone should be considered. In the case of methadone-based OMT, opioid analgesics should be added directly and the dosage should be adapted according to the level of pain reported by the patient. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA

    Directory of Open Access Journals (Sweden)

    Lacalandra Giovanni M

    2010-06-01

    Full Text Available Abstract Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for

  16. Functional characteristics of the naked mole rat μ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Melanie Busch-Dienstfertig

    Full Text Available While humans and most animals respond to µ-opioid receptor (MOR agonists with analgesia and decreased aggression, in the naked mole rat (NMR opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1 can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids.

  17. The Prescription Opioid Addiction Treatment Study: What have we learned.

    Science.gov (United States)

    Weiss, Roger D; Rao, Vinod

    2017-04-01

    The multi-site Prescription Opioid Addiction Treatment Study (POATS), conducted by the National Drug Abuse Treatment Clinical Trials Network, was the largest clinical trial yet conducted with patients dependent upon prescription opioids (N=653). In addition to main trial results, the study yielded numerous secondary analyses, and included a 3.5-year follow-up study, the first of its kind with this population. This paper reviews key findings from POATS and its follow-up study. The paper summarizes the POATS design, main outcomes, predictors of outcome, subgroup analyses, the predictive power of early treatment response, and the long-term follow-up study. POATS examined combinations of buprenorphine-naloxone of varying duration and counseling of varying intensity. The primary outcome analysis showed no overall benefit to adding drug counseling to buprenorphine-naloxone and weekly medical management. Only 7% of patients achieved a successful outcome (abstinence or near-abstinence from opioids) during a 4-week taper and 8-week follow-up; by comparison, 49% of patients achieved success while subsequently stabilized on buprenorphine-naloxone. Long-term follow-up results were more encouraging, with higher abstinence rates than in the main trial. Patients receiving opioid agonist treatment at the time of follow-up were more likely to have better outcomes, though a sizeable number of patients succeeded without agonist treatment. Some patients initiated risky use patterns, including heroin use and drug injection. A limitation of the long-term follow-up study was the low follow-up rate. POATS was the first large-scale study of the treatment of prescription opioid dependence; its findings can influence both treatment guidelines and future studies. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    Science.gov (United States)

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  19. The novel δ opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions.

    Science.gov (United States)

    Saitoh, Akiyoshi; Sugiyama, Azusa; Nemoto, Toru; Fujii, Hideaki; Wada, Keiji; Oka, Jun-Ichiro; Nagase, Hiroshi; Yamada, Mitsuhiko

    2011-10-01

    We previously reported that the δ opioid receptor (DOP) agonists SNC80 and TAN-67 produce potent antidepressant-like and antinociceptive effects in rodents. However, SNC80 produced convulsive effects. Recently, we succeeded in synthesizing a novel DOP agonist called KNT-127. The present study examined the convulsive, antidepressant-like, and antinociceptive effects of KNT-127 in mice. In contrast to SNC80, KNT-127 produced no convulsions at doses of up to 100mg/kg. In mice subjected to the forced swim test, a screening model for antidepressants, KNT-127 (1mg/kg, s.c.) significantly decreased the duration of immobility and increased the duration of swimming without influencing spontaneous locomotor activity. These behavioral changes were similar to that observed for the tricyclic antidepressant imipramine (6mg/kg). The antidepressant-like effect of KNT-127 in mice was antagonized by pretreatment with naltrindole (NTI), a selective DOP antagonist, or naltriben, a putative DOP(2) subtype antagonist. In addition, KNT-127 (3mg/kg, s.c.) significantly reduced the number of acetic acid-induced abdominal constrictions and the duration of licking time, respectively, in mice subjected to a writhing test and a formalin test. These antinociceptive effects were antagonized by pretreatment with either NTI or 7-benzylidenenaltrexone, a putative DOP(1) subtype antagonist. We propose that KNT-127 should be considered as a candidate compound for the development of DOP-based antidepressants and/or analgesics that lack convulsive effects. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  20. [{sup 11}C]-MeJDTic: a novel radioligand for {kappa}-opioid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Poisnel, Geraldine; Oueslati, Farhana; Dhilly, Martine; Delamare, Jerome [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France); Perrio, Cecile [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: perrio@cyceron.fr; Debruyne, Daniele [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: debruyne@cyceron.fr; Barre, Louisa [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)

    2008-07-15

    Introduction: Radiopharmaceuticals that can bind selectively the {kappa}-opioid receptor may present opportunities for staging clinical brain disorders and evaluating the efficiency of new therapies related to stroke, neurodegenerative diseases or opiate addiction. The N-methylated derivative of JDTic (named MeJDTic), which has been recently described as a potent and selective antagonist of {kappa}-opioid receptor in vitro, was labeled with carbon-11 and evaluated for in vivo imaging the {kappa}-opioid receptor in mice. Methods: [{sup 11}C]-MeJDTic was prepared by methylation of JDTic with [{sup 11}C]-methyl triflate. The binding of [{sup 11}C]-MeJDTic to {kappa}-opioid receptor was investigated ex vivo by biodistribution and competition studies using nonfasted male CD1 mice. Results: [{sup 11}C]-MeJDTic exhibited a high and rapid distribution in peripheral organs. The uptake was maximal in lung where the {kappa} receptor is largely expressed. [{sup 11}C]-MeJDTic rapidly crossed the blood-brain barrier and accumulated in the brain regions of interest (hypothalamus). The parent ligand remained the major radioactive compound in brain during the experiment. Chase studies with U50,488 (a {kappa} referring agonist), morphine (a {mu} agonist) and naltrindole (a {delta} antagonist) demonstrated that this uptake was the result of specific binding to the {kappa}-opioid receptor. Conclusion: These findings suggested that [{sup 11}C]-MeJDTic appeared to be a promising selective 'lead' radioligand for {kappa}-opioid receptor PET imaging.

  1. Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo.

    Science.gov (United States)

    Huang, Xi-Ping; Che, Tao; Mangano, Thomas J; Le Rouzic, Valerie; Pan, Ying-Xian; Majumdar, Susruta; Cameron, Michael D; Baumann, Michael H; Pasternak, Gavril W; Roth, Bryan L

    2017-11-16

    W-18 (4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide) and W-15 (4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide) represent two emerging drugs of abuse chemically related to the potent opioid agonist fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylpropanamide). Here, we describe the comprehensive pharmacological profiles of W-18 and W-15, as examination of their structural features predicted that they might lack opioid activity. We found W-18 and W-15 to be without detectible activity at μ, δ, κ, and nociception opioid receptors in a variety of assays. We also tested W-18 and W-15 for activity as allosteric modulators at opioid receptors and found them devoid of significant positive or negative allosteric modulatory activity. Comprehensive profiling at essentially all the druggable GPCRs in the human genome using the PRESTO-Tango platform revealed no significant activity. Weak activity at the sigma receptors and the peripheral benzodiazepine receptor was found for W-18 (Ki = 271 nM). W-18 showed no activity in either the radiant heat tail-flick or the writhing assays and also did not induce classical opioid behaviors. W-18 is extensively metabolized, but its metabolites also lack opioid activity. Thus, although W-18 and W-15 have been suggested to be potent opioid agonists, our results reveal no significant activity at these or other known targets for psychoactive drugs.

  2. Opioid microinjection into raphe magnus modulates cardiorespiratory function in mice and rats.

    Science.gov (United States)

    Hellman, Kevin M; Mendelson, Scott J; Mendez-Duarte, Marco A; Russell, James L; Mason, Peggy

    2009-11-01

    The raphe magnus (RM) participates in opioid analgesia and contains pain-modulatory neurons with respiration-related discharge. Here, we asked whether RM contributes to respiratory depression, the most prevalent lethal effect of opioids. To investigate whether opioidergic transmission in RM produces respiratory depression, we microinjected a mu-opioid receptor agonist, DAMGO, or morphine into the RM of awake rodents. In mice, opioid microinjection produced sustained decreases in respiratory rate (170 to 120 breaths/min), as well as heart rate (520 to 400 beats/min). Respiratory sinus arrhythmia, indicative of enhanced parasympathetic activity, was prevalent in mice receiving DAMGO microinjection. We performed similar experiments in rats but observed no changes in breathing rate or heart rate. Both rats and mice experienced significantly more episodes of bradypnea, indicative of impaired respiratory drive, after opioid microinjection. During spontaneous arousals, rats showed less tachycardia after opioid microinjection than before microinjection, suggestive of an attenuated sympathetic tone. Thus, activation of opioidergic signaling within RM produces effects beyond analgesia, including the unwanted destabilization of cardiorespiratory function. These adverse effects on homeostasis consequent to opioid microinjection imply a role for RM in regulating the balance of sympathetic and parasympathetic tone.

  3. PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects

    Directory of Open Access Journals (Sweden)

    Tsuda Yuko

    2010-12-01

    Full Text Available Abstract Background The clinical treatment of various types of pain relies upon the use of opioid analgesics. However most of them produce, in addition to the analgesic effect, several side effects such as the development of dependence and addiction as well as sedation, dysphoria, and constipation. One solution to these problems are chimeric compounds in which the opioid pharmacophore is hybridized with another type of compound to incease antinociceptive effects. Neurotensin-induced antinociception is not mediated through the opioid system. Therefore, hybridizing neurotensin with opioid elements may result in a potent synergistic antinociceptor. Results Using the known structure-activity relationships of neurotensin we have synthesized a new chimeric opioid-neurotensin compound PK20 which is characterized by a very strong antinociceptive potency. The observation that the opioid antagonist naltrexone did not completely reverse the antinociceptive effect, indicates the partial involvement of the nonopioid component in PK20 in the produced analgesia. Conclusions The opioid-neurotensin hybrid analogue PK20, in which opioid and neurotensin pharmacophores overlap partially, expresses high antinociceptive tail-flick effects after central as well as peripheral applications.

  4. ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl : An in vitro study

    NARCIS (Netherlands)

    Lesscher, HMB; Burbach, JPH; Van Ree, JM; Gerrits, MAFM

    2003-01-01

    Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of

  5. μ-opioid modulation of HIV-1 coreceptor expressionand HIV-1 replication

    International Nuclear Information System (INIS)

    Steele, Amber D.; Henderson, Earl E.; Rogers, Thomas J.

    2003-01-01

    A substantial proportion of HIV-1-infected individuals are intravenous drug users (IVDUs) who abuse opiates. Opioids induce a number of immunomodulatory effects that may directly influence HIV-1 disease progression. In the present report, we have investigated the effect of opioids on the expression of the major HIV-1 coreceptors CXCR4 and CCR5. For these studies we have focused on opiates which are ligands for the μ-opioid receptor. Our results show that DAMGO, a selective μ-opioid agonist, increases CXCR4 and CCR5 expression in both CD3 + lymphoblasts and CD14 + monocytes three- to fivefold. Furthermore, DAMGO-induced elevation of HIV-1 coreceptor expression translates into enhanced replication of both X4 and R5 viral strains of HIV-1. We have confirmed the role of the μ-opioid receptor based on the ability of a μ-opioid receptor-selective antagonist to block the effects of DAMGO. We have also found that morphine enhances CXCR4 and CCR5 expression and subsequently increases both X4 and R5 HIV-1 infection. We suggest that the capacity of μ-opioids to increase HIV-1 coreceptor expression and replication may promote viral binding, trafficking of HIV-1-infected cells, and enhanced disease progression

  6. Primary healthcare-based integrated care with opioid agonist treatment: First experience from Ukraine.

    Science.gov (United States)

    Morozova, Olga; Dvoriak, Sergey; Pykalo, Iryna; Altice, Frederick L

    2017-04-01

    Ukraine's HIV epidemic is concentrated among people who inject drugs (PWID), however, coverage with opioid agonist therapies (OATs) available mostly at specialty addiction clinics is extremely low. OAT integrated into primary healthcare clinics (PHCs) provides an opportunity for integrating comprehensive healthcare services and scaling up OAT. A pilot study of PHC-based integrated care for drug users conducted in two Ukrainian cities between 2014 and 2016 included three sub-studies: 1) cross-sectional treatment site preference assessment among current OAT patients (N=755); 2) observational cohort of 107 PWID who continued the standard of care versus transition of stabilized and newly enrolled PWID into PHC-based integrated care; and 3) pre/post analysis of attitudes toward PWID and HIV patients by PHC staff (N=26). Among 755 OAT patients, 53.5% preferred receiving OAT at PHCs, which was independently correlated with convenience, trust in physician, and treatment with methadone (vs. buprenorphine). In 107 PWID observed over 6 months, retention in treatment was high: 89% in PWID continuing OAT in specialty addiction treatment settings (standard of care) vs 94% in PWID transitioning to PHCs; and 80% among PWID newly initiating OAT in PHCs. Overall, satisfaction with treatment, subjective self-perception of well-being, and trust in physician significantly increased in patients prescribed OAT in PHCs. Among PHC staff, attitudes towards PWID and HIV patients significantly improved over time. OAT can be successfully integrated into primary care in low and middle-income countries and improves outcomes in both patients and clinicians while potentially scaling-up OAT for PWID. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    International Nuclear Information System (INIS)

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring 45 Ca 2+ uptake into lymphocytes, it was demonstrated that β-endorphin 1-31 (β-END 1-31) enhanced rat thymocyte Ca 2+ uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that β-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca 2+ uptake was not affected by β-END 1-31. β-END 1-31 did not affect basal Ca 2+ uptake by either cell type. Using [ 3 H]thymidine uptake as an index of lymphocyte proliferation, β-END 1-31 and several related opioid peptides reversed prostaglandin E 1 (PGE 1 ) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. β-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by β-END 1-31, suggesting that promotion of Ca 2+ influx was not a major mechanism involved

  8. Efficacy and Safety of GLP-1 Receptor Agonists for Type 2 Diabetes Mellitus Treatment: Systematic Review

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    2016-04-01

    Full Text Available Introduction: Glucagon-like peptide analogues are a new class of drugs used in the treatment of type 2 diabetes mellitus that mimic the endogenous hormone glucagon-like peptide 1. Glucagon-like peptide 1 regulates glucose levels by stimulating glucose-dependent insulin secretion, suppressing glucagon secretion, delayed gastric emptying and promoting satiety. The individualized treatment of type 2 diabetes mellitus, using various glucagon--like peptide receptor agonists, has recently been described and the interest related to these drugs continues to grow. Objectives: To review the efficacy and safety of glucagon-like peptide 1 agonists in patients with inadequately controlled type 2 diabetes mellitus on metformin alone, highlighting their added value in therapeutic use comparatively to second line oral therapies used in type 2 diabetes mellitus. Methods: Studies were obtained from electronic searches of The Cochrane Library and PubMed. Randomized controlled trials were selected if they were at least 8 weeks in duration; compared a glucagon-like peptide 1 analogue with an oral anti-diabetic agent in patients experiencing inadequate glycemic control with metformin monotherapy; and reported hemoglobin A1c data in non-pregnant adults with type 2 diabetes mellitus. Results: Of 72 potentially relevant articles identified, 23 were retrieved for detailed evaluation and 10 met the inclusion criteria. The majority of glucagon-like peptide 1 agonists showed equivalent or superior efficacy than most active comparators for reducing hemoglobin A1c, with a greater proportion of patients achieving hemoglobin A1c <7%. Glucagon-like peptide 1 agonists also showed extra-glycemic effects such as weight loss and the reduction of important cardiovascular parameters. Side effects included gastrointestinal complications, mainly nausea, vomiting and diarrhea. The incidence of hypoglycemia was less common for this class of agents. Conclusion: Glucagon-like peptide 1

  9. delta-Opioid-induced pharmacologic myocardial hibernation during cardiopulmonary resuscitation.

    Science.gov (United States)

    Fang, Xiangshao; Tang, Wanchun; Sun, Shijie; Weil, Max Harry

    2006-12-01

    Cardiac arrest and cardiopulmonary resuscitation is an event of global myocardial ischemia and reperfusion, which is associated with severe postresuscitation myocardial dysfunction and fatal outcome. Evidence has demonstrated that mammalian hibernation is triggered by cyclic variation of a delta-opiate-like compound in endogenous serum, during which the myocardial metabolism is dramatically reduced and the myocardium tolerates the stress of ischemia and reperfusion without overt ischemic and reperfusion injury. Previous investigations also proved that the delta-opioid agonist elicited the cardioprotection in a model of regional ischemic intact heart or myocyte. Accordingly, we were prompted to search for an alternative intervention of pharmacologically induced myocardial hibernation that would result in rapid reductions of myocardial metabolism and therefore minimize the myocardial ischemic and reperfusion injury during cardiac arrest and cardiopulmonary resuscitation. Prospective, controlled laboratory study. University-affiliated research laboratory. In the series of studies performed in the established rat and pig model of cardiac arrest and cardiopulmonary resuscitation, the delta-opioid receptor agonist, pentazocine, was administered during ventricular fibrillation. : The myocardial metabolism reflected by the concentration of lactate, or myocardial tissue PCO2 and PO2, is dramatically reduced during cardiac arrest and cardiopulmonary resuscitation. These are associated with less severe postresuscitation myocardial dysfunction and longer duration of postresuscitation survival. delta-Opioid-induced pharmacologic myocardial hibernation is an option to minimize the myocardial ischemia and reperfusion injury during cardiac arrest and cardiopulmonary resuscitation.

  10. Would glucagon-like peptide-1 receptor agonists have efficacy in binge eating disorder and bulimia nervosa? A review of the current literature.

    Science.gov (United States)

    McElroy, Susan L; Mori, Nicole; Guerdjikova, Anna I; Keck, Paul E

    2018-02-01

    Binge eating, eating an abnormally large amount of food in a discrete period of time with a sense of loss of control over eating, is a defining feature of the eating disorders binge eating disorder (BED) and bulimia nervosa (BN). Both BED and BN are important public health problems for which there are few medical treatments. However, almost all drugs with central nervous system-mediated weight loss properties studied thus far in randomized, placebo-controlled trials in persons with BED or BN have been efficacious for reducing binge eating behavior. Glucagon-like peptide-1 (GLP-1) receptor agonists, marketed for type 2 diabetes and chronic weight management, produce weight loss in a dose dependent manner and have favorable psychiatric adverse event profiles. We hypothesize that GLP-1 receptor agonists will safely reduce binge eating behavior in individuals with BED or BN, including those with co-occurring psychiatric disorders, and propose that randomized, placebo-controlled clinical trials of GLP-1 receptor agonists be conducted in persons with BED and those with BN. To support this hypothesis, we review studies of GLP-1 and GLP-1 receptor agonists in preclinical models of binge eating, studies of GLP-1 levels in individuals with BED or BN, and preliminary data of GLP-1 receptor agonists in humans with abnormal eating behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists.

    Science.gov (United States)

    Uccellatore, Annachiara; Genovese, Stefano; Dicembrini, Ilaria; Mannucci, Edoardo; Ceriello, Antonio

    2015-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administration and clinical profile. Members of this class approved for clinical use include exenatide twice-daily, exenatide once-weekly, liraglutide and lixisenatide once-daily. Recently, two new once-weekly GLP1-RAs have been approved: dulaglutide and albiglutide. This article summarizes properties of short- and long-acting GLP-1 analogs, and provides useful information to help choose the most appropriate compound for individual patients.

  12. The Role of Program Directors in Treatment Practices: The Case of Methadone Dose Patterns in U.S. Outpatient Opioid Agonist Treatment Programs.

    Science.gov (United States)

    Frimpong, Jemima A; Shiu-Yee, Karen; D'Aunno, Thomas

    2017-10-01

    To describe changes in characteristics of directors of outpatient opioid agonist treatment (OAT) programs, and to examine the association between directors' characteristics and low methadone dosage. Repeated cross-sectional surveys of OAT programs in the United States from 1995 to 2011. We used generalized linear regression models to examine associations between directors' characteristics and methadone dose, adjusting for program and patient factors. Data were collected through telephone surveys of program directors. The proportion of OAT programs with an African American director declined over time, from 29 percent in 1995 to 16 percent in 2011. The median percentage of patients in each program receiving role in explaining variations in methadone dosage across programs and patients. Further research should investigate the causal pathways through which directors' characteristics affect treatment practices. This may lead to new, multifaceted managerial interventions to improve patient outcomes. © Health Research and Educational Trust.

  13. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also...

  14. Selective kappa-opioid agonists: synthesis and structure-activity relationships of piperidines incorporating on oxo-containing acyl group.

    Science.gov (United States)

    Giardina, G; Clarke, G D; Dondio, G; Petrone, G; Sbacchi, M; Vecchietti, V

    1994-10-14

    This study describes the synthesis and the structure-activity relationships (SARs) of the (S)-(-)-enantiomers of a novel class of 2-(aminomethyl)piperidine derivatives, using kappa-opioid binding affinity and antinociceptive potency as the indices of biological activity. Compounds incorporating the 1-tetralon-6-ylacetyl residue (30 and 34-45) demonstrated an in vivo antinociceptive activity greater than predicted on the basis of their kappa-binding affinities. In particular, (2S)-2-[(dimethylamino)methyl]-1-[(5,6,7,8-tetrahydro-5-oxo-2- naphthyl)acetyl]piperidine (34) was found to have a potency similar to spiradoline in animal models of antinociception after subcutaneous administration, with ED50s of 0.47 and 0.73 mumol/kg in the mouse and in the rat abdominal constriction tests, respectively. Further in vivo studies in mice and/or rats revealed that compound 34, compared to other selective kappa-agonists, has a reduced propensity to cause a number of kappa-related side effects, including locomotor impairment/sedation and diuresis, at antinociceptive doses. For example, it has an ED50 of 26.5 mumol/kg sc in the rat rotarod model, exhibiting a ratio of locomotor impairment/sedation vs analgesia of 36. Possible reasons for this differential activity and its clinical consequence are discussed.

  15. Exercise induced asthma and endogenous opioids.

    Science.gov (United States)

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  16. Endogenous opiates and behavior: 2014.

    Science.gov (United States)

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  17. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment

    Directory of Open Access Journals (Sweden)

    Lovas Sandor

    2011-10-01

    Full Text Available Abstract Background Adiponectin, a fat tissue-derived adipokine, exhibits beneficial effects against insulin resistance, cardiovascular disease, inflammatory conditions, and cancer. Circulating adiponectin levels are decreased in obese individuals, and this feature correlates with increased risk of developing several metabolic, immunological and neoplastic diseases. Thus, pharmacological replacement of adiponectin might prove clinically beneficial, especially for the obese patient population. At present, adiponectin-based therapeutics are not available, partly due to yet unclear structure/function relationships of the cytokine and difficulties in converting the full size adiponectin protein into a viable drug. Results We aimed to generate adiponectin-based short peptide that can mimic adiponectin action and be suitable for preclinical and clinical development as a cancer therapeutic. Using a panel of 66 overlapping 10 amino acid-long peptides covering the entire adiponectin globular domain (residues 105-254, we identified the 149-166 region as the adiponectin active site. Three-dimensional modeling of the active site and functional screening of additional 330 peptide analogs covering this region resulted in the development of a lead peptidomimetic, ADP 355 (H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2. In several adiponectin receptor-positive cancer cell lines, ADP 355 restricted proliferation in a dose-dependent manner at 100 nM-10 μM concentrations (exceeding the effects of 50 ng/mL globular adiponectin. Furthermore, ADP 355 modulated several key signaling pathways (AMPK, Akt, STAT3, ERK1/2 in an adiponectin-like manner. siRNA knockdown experiments suggested that ADP 355 effects can be transmitted through both adiponectin receptors, with a greater contribution of AdipoR1. In vivo, intraperitoneal administration of 1 mg/kg/day ADP 355 for 28 days suppressed the growth of orthotopic human breast cancer xenografts by ~31%. The peptide

  18. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring {sup 45}Ca{sup 2+} uptake into lymphocytes, it was demonstrated that {beta}-endorphin 1-31 ({beta}-END 1-31) enhanced rat thymocyte Ca{sup 2+} uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that {beta}-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca{sup 2+} uptake was not affected by {beta}-END 1-31. {beta}-END 1-31 did not affect basal Ca{sup 2+} uptake by either cell type. Using ({sup 3}H)thymidine uptake as an index of lymphocyte proliferation, {beta}-END 1-31 and several related opioid peptides reversed prostaglandin E{sub 1} (PGE{sub 1}) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. {beta}-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by {beta}-END 1-31, suggesting that promotion of Ca{sup 2+} influx was not a major mechanism involved.

  19. Sleep-waking states and the endogenous opioid system

    NARCIS (Netherlands)

    O.E. Ukponmwan (Otas)

    1986-01-01

    textabstractIn the general introductory part of this thesis (Chapters and 2) a review of some pertinent literature related to sleep-waking states and opioid peptides is offered. A global view of the neurochemical mechanisms and theories of functions of sleep, as well as the physiological and

  20. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: A two-phase randomized controlled trial*

    Science.gov (United States)

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.

    2013-01-01

    Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (popioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929

  1. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: a two-phase randomized controlled trial.

    Science.gov (United States)

    Lofwall, Michelle R; Babalonis, Shanna; Nuzzo, Paul A; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L

    2013-11-01

    Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: (1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and (2) whether cessation of ER tramadol produces opioid withdrawal. Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Use of breakthrough withdrawal medication differed significantly (popioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    Full Text Available The analgesic effect of delta-opioid receptor (DOR ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p. over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t. administered morphine (10-20 µg, DAMGO (1-2 µg and U50,488H (25-50 µg were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg, deltorphin II (1.5-15 µg and SNC80 (10-20 µg administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR and kappa-opioid receptors (KOR, further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  3. The endogenous opioid system: a common substrate in drug addiction.

    Science.gov (United States)

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  4. Opioid antagonist naltrexone for the treatment of pathological gambling in Parkinson disease.

    Science.gov (United States)

    Bosco, Domenico; Plastino, Massimiliano; Colica, Carmela; Bosco, Francesca; Arianna, Spanò; Vecchio, Antonino; Galati, Francesco; Cristiano, Dario; Consoli, Arturo; Consoli, Domenico

    2012-01-01

    Pathological gambling (PG) is a potential complication related to the treatment of Parkinson disease (PD) with dopamine agonists (DA). The cause of this disorder is unknown, but altered dopamine neurotransmission may be involved. We evaluated the efficacy and tolerability of the opioid antagonist naltrexone in the treatment of PG in PD. Our cases included 3 patients with PD who developed PG after DA treatment. Pathological gambling did not improve after reduction or discontinuation of DA. These patients responded poorly to serotonin reuptake inhibitors, whereas treatment with opioid antagonist naltrexone resulted in the remission of PG. Naltrexone treatment was well tolerated. In one patient, higher dose of naltrexone resulted in hepatic abnormalities, which resolved after dosage reduction. The opioid antagonist naltrexone could be an effective option for the treatment of PG in PD.

  5. Pharmacogenomics-guided policy in opioid use disorder (OUD management: An ethnically-diverse case-based approach

    Directory of Open Access Journals (Sweden)

    Earl B. Ettienne

    2017-12-01

    Full Text Available Introduction: Opioid use disorder (OUD is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. Methods: We analyzed a patient who reported discomfort at daily buprenorphine dose of 24mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. Results: At the 24mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32mg for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Conclusion: Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management. Keywords: Opioid use disorder, Opioid agonist treatment, Buprenorphine, Pharmacogenomics, Policy

  6. NPYFa, A Chimeric Peptide of Met-Enkephalin, and NPFF Induces Tolerance-Free Analgesia.

    Science.gov (United States)

    Mudgal, Annu; Kumar, Krishan; Mollereau, Catherine; Pasha, Santosh

    2016-06-01

    Methionine-enkephalin-Arg-Phe is an endogenous amphiactive analgesic peptide. Neuropeptide FF, on the other hand, is reported for its role in opioid modulation and tolerance development. Based on these reports, in the present study we designed a chimeric peptide NPYFa (YGGFMKKKPQRFamide), having the Met-enkephalin (opioid) and PQRFamide sequence of neuropeptide FF, which can then target both the opioid and neuropeptide FF receptors. We hypothesized that the chimeric peptide so designed would have both analgesic properties and further aid in understanding of the role of neuropeptide FF in the development of opiate tolerance. Our studies indicated that NPYFa induced an early onset, potent, dose-dependent and prolonged antinociception. Additionally, antagonists (MOR, KOR, and DOR) pretreatment studies determined a KOR-mediated antinociception activity of the ligand. Further, in vitro binding studies using the Eu-GTP-γS binding assay on cell lines expressing opioid and NPFF receptors showed binding to both the opioid and neuropeptide FF receptors suggesting a multiple receptor binding character of NPYFa. Moreover, chronic (6 days) treatment with NPYFa exhibited an absence of tolerance development subsequent to its analgesia. The current study proposes NPYFa as a potent, long-acting antinociceptor lacking tolerance development as well as a probe to study opioid analgesia and the associated complex mechanisms of tolerance development. © 2016 John Wiley & Sons A/S.

  7. Methadone Management of Withdrawal Associated With Loperamide-related Opioid Use Disorder.

    Science.gov (United States)

    Leo, Raphael J; Ghazi, Muhammad A; Jaziri, Kelly S

    : Loperamide hydrochloride is an over-the-counter anti-diarrheal agent, acting via mu-opioid receptor agonist effects in the intestinal myenteric plexus. Although preclinical investigations suggested that abuse liability associated with loperamide use is low, there are increasing numbers of cases reported to the US Food and Drug Administration, of abuse, dependence, and withdrawal associated with loperamide use. A case of a patient with opioid use disorder, that is, in the form of protracted loperamide excess use, requiring management of withdrawal with methadone is presented. Management of withdrawal from abrupt loperamide discontinuation has not been discussed in the literature. Long-term treatment issues are also described.

  8. BmK-YA, an enkephalin-like peptide in scorpion venom.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available By screening extracts of venom from the Asian scorpion Buthus martensii Karsch (BmK for their abilities to activate opioid receptors, we have identified BmK-YA, an amidated peptide containing an enkephalin-like sequence. BmK-YA is encoded by a precursor that displays a signal sequence and contains four copies of BmK-YA sequences and four of His(4-BmK-YA, all flanked by single amino acid residues. BmK-YA and His(4-BmK-YA are amidated and thus fulfill the characteristics expected of bioactive peptides. BmK-YA can activate mammalian opioid receptors with selectivity for the δ subtype while His(4-BmK-YA is inactive at opioid receptors. The discovery of BmK-YA suggests that scorpion venom may represent a novel source of bioactive molecules targeting G protein-coupled receptors (GPCRs and reveal additional insights on the evolution of the opioid precursors.

  9. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    Science.gov (United States)

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-06-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.

  10. Update in Cardiovascular Safety of Glucagon Like Peptide-1 Receptor Agonists In Patients With Type 2 Diabetes. A Mixed Treatment Comparison Meta-Analysis of Randomised Controlled Trials.

    Science.gov (United States)

    Al Yami, Majed S; Alfayez, Osamah M; Alsheikh, Razan

    2018-03-29

    The aim of this mixed treatment comparison (MTC) meta-analysis was to determine glucagon like peptide-1 (GLP-1) receptor agonists' effects on cardiovascular (CV) outcomes in patients with type 2 diabetes (T2DM). A comprehensive, systematic review was conducted using EMBASE and Medline databases. All included trials were large CV outcome trials of GLP-1 agonists versus placebo in T2DM. The primary outcomes of this MTC meta-analysis were death from CV causes, non-fatal MI, and non-fatal stroke. Hospitalisation for heart failure (HF) was evaluated as a secondary endpoint. A total of four trials, including 33,457 patients, met eligibility criteria and were retained for the meta-analysis. Our pairwise meta-analysis results showed a 13% reduction in death from cardiovascular causes in patients who received GLP-1 agonists versus placebo (RR 0.87, 95% CI: 0.78-0.96). However, no statistically significant reduction was observed with GLP-1 agonists in terms of reducing non-fatal MI (RR 0.95, 95% CI: 0.86-1.04), non-fatal stroke events (RR 0.89, 95% CI: 0.76-1.03), and rates of HF hospitalisation (RR 0.94, 95% CI: 0.84-1.04). The network meta-analysis (NMA) showed no significant differences among all the interventions. Glucagon like peptide-1 therapy was associated with a significant reduction in cardiovascular (CV) death. However, GLP-1 agonists seem to have a safety profile comparable to placebo in terms of reducing non-fatal myocardial infarction (MI), non-fatal stroke events, and rates of HF hospitalisation. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  11. The Future of Opioid Agonist Therapies in Ukraine: A Qualitative Assessment of Multilevel Barriers and Ways Forward to Promote Retention in Treatment.

    Science.gov (United States)

    Bojko, Martha J; Mazhnaya, Alyona; Marcus, Ruthanne; Makarenko, Iuliia; Islam, Zahedul; Filippovych, Sergey; Dvoriak, Sergii; Altice, Frederick L

    2016-07-01

    Opioid agonist therapies (OAT) to treat opioid addiction in people who inject drugs (PWID) began in Ukraine in 2004. Scale-up of OAT, however, has been hampered by both low enrollment and high attrition. To better understand the factors influencing OAT retention among PWID in Ukraine, qualitative data from 199 PWIDs were collected during 25 focus groups conducted in five Ukrainian cities from February to April 2013. The experiences of PWID who were currently or previously on OAT or currently trying to access OAT were analyzed to identify entry and retention barriers encountered. Transcribed data were analyzed using a grounded theory approach. Individual beliefs about OAT, particularly misaligned treatment goals between clients and providers, influenced PWID's treatment seeking behaviors. Multiple programmatic and structural issues, including inconvenient hours and treatment site locations, complicated dosing regimens, inflexible medication dispensing guidelines, and mistreatment by clinic and medical staff also strongly influenced OAT retention. Findings suggest the need for both programmatic and policy-level structural changes such as revising legal regulations covering OAT dispensing, formalizing prescription dosing policies and making OAT more available through other sites, including primary care settings as a way to improve treatment retention. Quality improvement interventions that target treatment settings could also be deployed to overcome healthcare delivery barriers. Additional patient education and medical professional development around establishing realistic treatment goals as well as community awareness campaigns that address the myths and fears associated with OAT can be leveraged to overcome individual, family and community-level barriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of Tramadol (μ-opioid receptor agonist on orthodontic tooth movements in a rat model

    Directory of Open Access Journals (Sweden)

    E. Javadi

    2012-01-01

    Full Text Available Objective: Tramadol is a synthetic analgesic of opioids which has more flexible mechanisms of action than typical opioids. Since it has been reported in previous study that typical opioids like morphine can affect the bone homeostasis, it is worthwhile to examine the effects of tramadol on tooth movement. In this study we investigated effects of tramadol on orthodontic tooth movement in rats.Materials and Methods: 30 male wistar rats were selected and received orthodontic appliance. 3 groups were designed based on the substance that they received daily injections of during a 2-week orthodontic treatment. 1. Control group with no injection.2.Control group with normal saline injection.3. the tramadol group. After the two-week treatment period the amount of tooth movement were measured in all the groups. Also the histological analysis was performed assessing the root resorption, osteoclasts numbers and bone resorption.Results: The amount of tooth movement was not significantl in the tramadol group comparing to the other groups (P>0.05.The results of 3 histological parameters (amount of root resorption, osteoclastic numbers and bone resorption were statistically insignificant (P>0.05.Conclusion: Tramadol as an atypical opioid does not interfere with the process of bone remodeling and tooth movement in rat. Tramadol does not affect osteoclastic activity and bone resorption and it does not cause to change the resulted root resorption either.

  13. Behavioral architecture of opioid reward and aversion in C57BL/6 substrains

    Directory of Open Access Journals (Sweden)

    Stacey L Kirkpatrick

    2015-01-01

    Full Text Available Drug liking versus drug disliking is a subjective motivational measure in humans that assesses the addiction liability of drugs. Variation in this trait is hypothesized to influence vulnerability versus resilience toward substance abuse disorders and likely contains a genetic component. In rodents and humans, conditioned place preference (CPP / aversion (CPA is a Pavlovian conditioning paradigm whereby a learned preference for the drug-paired environment is used to infer drug liking whereas a learned avoidance or aversion is used to infer drug disliking. C57BL/6 inbred mouse substrains are nearly genetically identical, yet demonstrate robust differences in addiction-relevant behaviors, including locomotor sensitization to cocaine and consumption of ethanol. Here, we tested the hypothesis that B6 substrains would demonstrate differences in the rewarding properties of the mu opioid receptor agonist oxycodone (5 mg/kg, i.p. and the aversive properties of the opioid receptor antagonist naloxone (4 mg/kg, i.p.. Both substrains showed similar degrees of oxycodone-induced CPP; however, there was a three-fold enhancement of naloxone-induced CPA in agonist-naïve C57BL/6J relative to C57Bl/6NJ mice. Exploratory factor analysis of CPP and CPA identified unique factors that explain variance in behavioral expression of reward versus aversion. Conditioned Opioid-Like Behavior was a reward-based factor whereby drug-free locomotor variables resembling opioid treatment co-varied with the degree of CPP. Avoidance and Freezing was an aversion-based factor, whereby the increase in the number of freezing bouts co-varied with the degree of aversion. These results provide new insight into the behavioral architecture of the motivational properties of opioids. Future studies will use quantitative trait locus mapping in B6 substrains to identify novel genetic factors that contribute to the marked strain difference in NAL-CPA.

  14. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  15. Effects of morphine and naloxone on feline colonic transit

    International Nuclear Information System (INIS)

    Krevsky, B.; Libster, B.; Maurer, A.H.; Chase, B.J.; Fisher, R.S.

    1989-01-01

    The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine cecum and ascending colon transit was accelerated, while at a larger dose morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of the other opioid receptors is inferred

  16. Effects of morphine and naloxone on feline colonic transit

    Energy Technology Data Exchange (ETDEWEB)

    Krevsky, B.; Libster, B.; Maurer, A.H.; Chase, B.J.; Fisher, R.S.

    1989-01-01

    The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine cecum and ascending colon transit was accelerated, while at a larger dose morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of the other opioid receptors is inferred.

  17. Prescription opioid misuse in the United States and the United Kingdom: cautionary lessons.

    Science.gov (United States)

    Weisberg, Daniel F; Becker, William C; Fiellin, David A; Stannard, Cathy

    2014-11-01

    In the United States, opioid analgesics have increasingly been prescribed in the treatment of chronic pain, and this trend has accompanied increasing rates of misuse and overdose. Lawmakers have responded with myriad policies to curb the growing epidemic of opioid misuse, and a global alarm has been sounded among countries wishing to avoid this path. In the United Kingdom, a similar trend of increasing opioid consumption, albeit at lower levels, has been observed without an increase in reported misuse or drug-related deaths. The comparison between these two countries in opioid prescribing and opioid overdose mortality underscores important features of prescribing, culture, and health systems that may be permissive or protective in the development of a public health crisis. As access to opioid medications increases around the world, it becomes vitally important to understand the forces impacting opioid use and misuse. Trends in benzodiazepine and methadone use in the UK as well as structural elements of the National Health Service may serve to buffer opioid-related harms in the face of increasing prescriptions. In addition, the availability and price of heroin, as well as the ease of access to opioid agonist treatment in the UK may limit the growth of the illicit market for prescription opioids. The comparison between the US and the UK in opioid consumption and overdose rates should serve as a call to action for UK physicians and policymakers. Basic, proactive steps in the form of surveillance - of overdoses, marketing practices, prescribers, and patients - and education programs may help avert a public health crisis as opioid prescriptions increase. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Emerging therapies for patients with symptoms of opioid-induced bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Leppert W

    2015-04-01

    Full Text Available Wojciech Leppert Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland Abstract: Opioid-induced bowel dysfunction (OIBD comprises gastrointestinal (GI symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50% after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN in one tablet (a ratio of 2:1 provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying

  19. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl.

    Science.gov (United States)

    Goggin, Melissa M; Nguyen, An; Janis, Gregory C

    2017-06-01

    The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs. Approximately 10% of samples from a set of 500 presumptive heroin-positive urine specimens were found to contain furanyl fentanyl, with an average concentration of 33.8 ng/mL, and ranging from 0.26 to 390 ng/mL. Little to no furanyl norfentanyl was observed; therefore, the furanyl fentanyl specimens were further analyzed by untargeted high-resolution mass spectrometry to identify other metabolites. Multiple metabolites, including a dihydrodiol metabolite, 4-anilino-N-phenethyl-piperidine (4-ANPP) and a sulfate metabolite were identified. The aim of the presented study was to identify the major metabolite(s) of furanyl fentanyl and estimate their concentrations for the purpose of toxicological monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Opioid regulation of mu receptor internalisation: relevance to the development of tolerance and dependence.

    Science.gov (United States)

    Lopez-Gimenez, Juan F; Milligan, Graeme

    2010-11-01

    Internalisation of the mu opioid receptor from the surface of cells is generally achieved by receptor occupancy with agonist ligands of high efficacy. However, in many situations the potent analgesic morphine fails to promote internalisation effectively and whether there is a direct link between this and the propensity for the sustained use of morphine to result in both tolerance and dependence has been studied intensely. Although frequently described as a partial agonist, this characteristic appears insufficient to explain the poor capacity of morphine to promote internalisation of the mu opioid receptor. Experiments performed using both transfected cell systems and ex vivo/in vivo models have provided evidence that when morphine can promote internalisation of the mu receptor there is a decrease in the development of tolerance and dependence. Although aspects of this model are controversial, such observations suggest a number of approaches to further enhance the use of morphine as an analgesic.

  2. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  3. A brain-targeted ampakine compound protects against opioid-induced respiratory depression.

    Science.gov (United States)

    Dai, Wei; Xiao, Dian; Gao, Xiang; Zhou, Xin-Bo; Fang, Tong-Yu; Yong, Zheng; Su, Rui-Bin

    2017-08-15

    The use of opioid drugs for pain relief can induce life-threatening respiratory depression. Although naloxone effectively counteracts opioid-induced respiratory depression, it diminishes the efficacy of analgesia. Our studies indicate that ampakines, in particular, a brain-targeted compound XD-8-17C, are able to reverse respiratory depression without affecting analgesia at relatively low doses. Mice and rats were subcutaneously or intravenously injected with the opioid agonist TH-030418 to induce moderate or severe respiratory depression. XD-8-17C was intravenously administered before or after TH-030418. The effect of XD-8-17C on opioid-induced respiratory depression was evaluated in terms of the opioid-induced acute death rate, arterial blood gas analysis and pulmonary function tests. In addition, the hot-plate test was conducted to investigate whether XD-8-17C influenced opioid-induced analgesia. Pre-treatment with XD-8-17C significantly reduced opioid-induced acute death, and increased the median lethal dose of TH-030418 by 4.7-fold. Blood gas analysis and pulmonary function tests demonstrated that post-treatment with XD-8-17C alleviated respiratory depression, as indicated by restoration of arterial blood gas (pO 2 , sO 2 , cK + ) and lung function parameters (respiratory frequency, minute ventilation) to the normal range. The hot-plate test showed that XD-8-17C had no impact on the antinociceptive efficacy of morphine. The ability of XD-8-17C to reverse opioid-induced respiratory depression has the potential to increase the safety and convenience of opioid treatment. These findings contribute to the discovery of novel therapeutic agents that protect against opioid-induced respiratory depression without loss of analgesia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dexmedetomidine infusion to facilitate opioid detoxification and withdrawal in a patient with chronic opioid abuse

    Directory of Open Access Journals (Sweden)

    Surjya Prasad Upadhyay

    2011-01-01

    Full Text Available Many patients are admitted to the intensive care unit (ICU for acute intoxication, serious complication of overdose, or withdrawal symptoms of illicit drugs. An acute withdrawal of drugs with addiction potential is associated with a sympathetic overactivity leading to marked psychomimetic disturbances. Acute intoxication or withdrawal of such drugs is often associated with life-threatening complications which require ICU admission and necessitate prolonged sedative analgesic medications, weaning from which is often complicated by withdrawal and other psychomimetic symptoms. Dexmedetomidine, an alpha-2 (α2 agonist, has been used successfully to facilitate withdrawal and detoxification of various drugs and also to control delirium in ICU patients. Herein, we report a case of a chronic opioid abuse (heroin patient admitted with acute overdose complications leading to a prolonged ICU course requiring sedative-analgesic medication; the drug withdrawal-related symptoms further complicated the weaning process. Dexmedetomidine infusion was successfully used as a sedative-analgesic to control the withdrawal-related psychomimetic symptoms and to facilitate smooth detoxification and weaning from opioid and other sedatives.

  5. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  6. [Effects of chronic experimental stress and endogenous opioids on histophysiological parameters of the thyroid gland].

    Science.gov (United States)

    Krasnoperov, R A; Glumova, V A; Riashchikov, S N; Proshutina, N E

    1992-01-01

    In adult rabbits stress was modelled by electrostimulation of the hypothalamus ventromedial nucleus (15-hour-long session during 30 days) and medulla's raphe big nucleus which is one of the central places of the opioid peptides synthesis was irritated. It is revealed, that under stress thyroid gland responds by serum T3 increase in comparison with control animals with statistically significant variability of the T4 profile. Chronicity of the emotional agitation involves destructive changes in the thyroid parenchyma the hurting effect of the negative emotional factor is expressed less during opioid peptides complex activation. It is suggested that there are its own stress-limiting mechanisms in thyroid gland.

  7. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  8. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  9. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  10. Endogenous Opiates and Behavior: 2006

    Science.gov (United States)

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  11. Endogenous opiates and behavior: 2012.

    Science.gov (United States)

    Bodnar, Richard J

    2013-12-01

    This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Role of neurotensin and opioid receptors in the cardiorespiratory effects of [Ile⁹]PK20, a novel antinociceptive chimeric peptide.

    Science.gov (United States)

    Kaczyńska, Katarzyna; Szereda-Przestaszewska, Małgorzata; Kleczkowska, Patrycja; Lipkowski, Andrzej W

    2014-10-15

    Ile(9)PK20 is a novel hybrid of opioid-neurotensin peptides synthesized from the C-terminal hexapeptide of neurotensin and endomorphin-2 pharmacophore. This chimeric compound shows potent central and peripheral antinociceptive activity in experimental animals, however nothing is known about its influence on the respiratory and cardiovascular parameters. The present study was designed to determine the cardiorespiratory effects exerted by an intravenous injection (i.v.) of [Ile(9)]PK20. Share of the vagal afferentation and the contribution of NTS1 neurotensin and opioid receptors were tested. Intravenous injection of the hybrid at a dose of 100 μg/kg in the intact, anaesthetized rats provoked an increase in tidal volume preceded by a prompt short-lived decrease. Immediately after the end of injection brief acceleration of the respiratory rhythm appeared, and was ensued by the slowing down of breathing. Changes in respiration were concomitant with a bi-phasic response of the blood pressure: an immediate increase was followed by a sustained hypotension. Midcervical vagotomy eliminated the increase in tidal volume and respiratory rate responses. Antagonist of opioid receptors - naloxone hydrochloride eliminated only [Ile(9)]PK20-evoked decline in tidal volume response. Blockade of NTS1 receptors with an intravenous dose of SR 142,948, lessened the remaining cardiorespiratory effects. This study depicts that [Ile(9)]PK20 acting through neurotensin NTS1 receptors augments the tidal component of the breathing pattern and activates respiratory timing response through the vagal pathway. Blood pressure effects occur outside vagal afferentation and might result from activation of the central and peripheral vascular NTS1 receptors. In summary the respiratory effects of the hybrid appeared not to be profound, but they were accompanied with unfavourable prolonged hypotension. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The opioid receptors of the rat periaqueductal gray

    Energy Technology Data Exchange (ETDEWEB)

    Fedynyshyn, J.P.

    1989-01-01

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO, DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.

  14. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    Directory of Open Access Journals (Sweden)

    Laura eFont

    2013-07-01

    Full Text Available Significant evidence implicates the endogenous opioid system (opioid peptides and receptors in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference. Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc, which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine. The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: 1 implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and 2 the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.

  15. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  16. Novel kinin B1 receptor agonists with improved pharmacological profiles.

    Science.gov (United States)

    Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand

    2009-04-01

    There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.

  17. Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.

    Science.gov (United States)

    Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G

    1988-05-01

    A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.

  18. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    Science.gov (United States)

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  19. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain.

    Science.gov (United States)

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L; Porreca, Frank

    2015-05-06

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. Copyright © 2015 the authors 0270-6474/15/357264-08$15.00/0.

  20. Pain, opioids, and sleep: implications for restless legs syndrome treatment.

    Science.gov (United States)

    Trenkwalder, Claudia; Zieglgänsberger, Walter; Ahmedzai, Sam H; Högl, Birgit

    2017-03-01

    Opioid receptor agonists are known to relieve restless legs syndrome (RLS) symptoms, including both sensory and motor events, as well as improving sleep. The mechanisms of action of opioids in RLS are still a matter of speculation. The mechanisms by which endogenous opioids contribute to the pathophysiology of this polygenetic disorder, in which there are a number of variants, including developmental factors, remains unknown. A summary of the cellular mode of action of morphine and its (partial) antagonist naloxone via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the involvement of dendritic spine activation is described. By targeting pain and its consequences, opioids are the first-line treatment in many diseases and conditions with both acute and chronic pain and have thus been used in both acute and chronic pain conditions over the last 40 years. Addiction, dependence, and tolerability of opioids show a wide variability interindividually, as the response to opioids is influenced by a complex combination of genetic, molecular, and phenotypic factors. Although several trials have now addressed opioid treatment in RLS, hyperalgesia as a complication of long-term opioid treatment, or opioid-opioid interaction have not received much attention so far. Therapeutic opioids may act not only on opioid receptors but also via histamine or N-methyl-d-aspartate (NMDA) receptors. In patients with RLS, one of the few studies investigating opioid bindings found that possible brain regions involved in the severity of RLS symptoms are similar to those known to be involved in chronic pain, such as the medial pain system (medial thalamus, amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex, and orbitofrontal cortex). The results of this diprenorphine positron emission tomography study suggested that the more severe the RLS, the greater the release of endogenous opioids. Since 1993, when the first small controlled study was performed with

  1. The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase

    DEFF Research Database (Denmark)

    Holdfeldt, Andre; Skovbakke, Sarah Line; Winther, Malene

    2016-01-01

    Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists......2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular Ca2+ concentration and assembly of the superoxide-generating NADPH oxidase. This FPR2/Fpr2 agonist contains a headgroup consisting of a 2-aminooctanoic acid (Aoc) residue acylated......2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases....

  2. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: Glucagon-like peptide-1 (GLP-1 is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg for 12 weeks. Body weight, body mass index (BMI, food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various

  3. Baclofen for maintenance treatment of opioid dependence: A randomized double-blind placebo-controlled clinical trial [ISRCTN32121581

    Directory of Open Access Journals (Sweden)

    Ahmadi-Abhari Seyed Ali

    2003-11-01

    Full Text Available Abstract Background Results of preclinical studies suggest that the GABAB receptor agonist baclofen may be useful in treatment of opioid dependence. This study was aimed at assessing the possible efficacy of baclofen for maintenance treatment of opioid dependence. Methods A total of 40 opioid-dependent patients were detoxified and randomly assigned to receive baclofen (60 mg/day or placebo in a 12-week, double blind, parallel-group trial. Primary outcome measure was retention in treatment. Secondary outcome measures included opioids and alcohol use according to urinalysis and self-report ratings, intensity of opioid craving assessed with a visual analogue scale, opioid withdrawal symptoms as measured by the Short Opiate Withdrawal Scale and depression scores on the Hamilton inventory. Results Treatment retention was significantly higher in the baclofen group. Baclofen also showed a significant superiority over placebo in terms of opiate withdrawal syndrome and depressive symptoms. Non-significant, but generally favorable responses were seen in the baclofen group with other outcome measures including intensity of opioid craving and self-reported opioid and alcohol use. However, no significant difference was seen in the rates of opioid-positive urine tests. Additionally, the drug side effects of the two groups were not significantly different. Conclusion The results support further study of baclofen in the maintenance treatment of opioid dependence.

  4. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons.

    Science.gov (United States)

    Levitt, Erica S; Williams, John T

    2018-01-01

    Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met 5 ]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  6. Identification in the mu-opioid receptor of cysteine residues responsible for inactivation of ligand binding by thiol alkylating and reducing agents.

    Science.gov (United States)

    Gaibelet, G; Capeyrou, R; Dietrich, G; Emorine, L J

    1997-05-19

    Inactivation by thiol reducing and alkylating agents of ligand binding to the human mu-opioid receptor was examined. Dithiothreitol reduced the number of [3H]diprenorphine binding sites. Replacement by seryl residues of either C142 or C219 in extracellular loops 1 and 2 of the mu receptor resulted in a complete loss of opioid binding. A disulfide bound linking C142 to C219 may thus be essential to maintain a functional conformation of the receptor. We also demonstrated that inactivation of ligand binding upon alkylation by N-ethylmaleimide occurred at two sites. Alteration of the more sensitive (IC50 = 20 microM) did not modify antagonists binding but decreased agonist affinity almost 10-fold. Modification of the less reactive site (IC50 = 2 mM) decreased the number of both agonist and antagonist binding sites. The alkylation site of higher sensitivity to N-ethylmaleimide was shown by mutagenesis experiments to be constituted of both C81 and C332 in transmembrane domains 1 and 7 of the mu-opioid receptor.

  7. Impact of opioid therapy on gonadal hormones: focus on buprenorphine.

    Science.gov (United States)

    Varma, Anjali; Sapra, Mamta; Iranmanesh, Ali

    2018-02-17

    Objective The USA is in the midst of an opioid crisis. Understanding the impact of opioids and commonly used treatments for opioid dependence is essential for clinicians and researchers in order to educate and treat the nation's growing population with opioid use disorders. As a relatively new treatment for opioid dependence, buprenorphine is gaining popularity to the extent of becoming not only a preferred approach to the maintenance of opiate addiction, but also an option for chronic pain management. The purpose of this report is to review the available evidence on the endocrine effects of buprenorphine, particularly as it relates to the hypothalamic-pituitary-gonadal (HPG) axis, which is controversial and not fully defined. Method We conducted a Pubmed search (2000-2017) for human studies in the English language for articles that were available as full length regarding buprenorphine, endocrinopathy, hypogonadism, bone density, opioids. Case reports were also reviewed, although prospective studies and randomized controlled trials received more weight. Results Opioid induced hypogonadism is well established. Most studies report that buprenorphine being a partial agonist/antagonist may not be impacting the pituitary trophic hormones as much. There are reports of sexual dysfunction in subjects maintained on buprenorphine, some without hormonal correlation. Thus with the understanding that pertinent clinical studies are limited in number, varied in methodology, mostly cross sectional, predominantly in men and small number of participants, more research in this area is warranted. Conclusion Based on a comprehensive review of the available literature, we conclude that despite its increasing popularity, buprenorphine has not been adequately studied in respect to its long-term effects on the hypothalamic-pituitary-adrenal (HPA) axis. There is a great need for longitudinal systematic trials to define the potential buprenorphine-induced endocrine consequences.

  8. Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2008-04-01

    Endogenous opioids mediate some reward processes involving both natural (food, sweet taste) and artificial (morphine, heroin) rewards. In contrast, sexual behavior (which is also reinforcing) is generally inhibited by opioids. To establish the role of endogenous opioids for a newly described natural reinforcer, namely male sexual pheromones for female mice, we checked the effects of systemic injections of the general opioid antagonist naloxone (1-10 mg/kg) and the agonist fentanyl (0.1- 0.5 mg/kg) in a number of behavioral tests. Naloxone affected neither the innate preference for male-soiled bedding (vs. female-soiled bedding) in 2-choice tests nor the induction of place conditioning using male pheromones as rewarding stimuli, although it effectively blocked the preference for consuming a sucrose solution. In contrast, fentanyl inhibited the preference for male chemosignals without altering sucrose preference. These results suggest that, in macrosmatic animals such as rodents, opioidergic inhibition of sexual behavior might be due, at least partially, to an impaired processing of pheromonal cues and that the hedonic value of sweet-tasting solutions and sexual pheromones are under different opioid modulation.

  9. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    Science.gov (United States)

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Barriers to access to opioid medicines for patients with opioid dependence: a review of legislation and regulations in eleven central and eastern European countries.

    Science.gov (United States)

    Vranken, Marjolein J M; Mantel-Teeuwisse, Aukje K; Jünger, Saskia; Radbruch, Lukas; Scholten, Willem; Lisman, John A; Subataite, Marija; Schutjens, Marie-Hélène D B

    2017-06-01

    Barriers linked to drug control systems are considered to contribute to inequitable access to controlled medicines, leaving millions of people in pain and suffering. Most studies focus on access to opioids for the treatment of severe (cancer) pain. This study aims to identify specific access barriers for patients with opioid dependence in legislation and regulations of 11 central and eastern European countries. This study builds on a previous analysis of legislation and regulations as part of the EU 7th Framework Access To Opioid Medication in Europe (ATOME) project. An in-depth analysis was undertaken to determine specific barriers for patients with opioid dependence in need of opioid analgesics or opioid agonist therapy (OAT). For each country, the number and nature of specific potential barriers for these patients were assessed according to eight categories: prescribing; dispensing; manufacturing; usage; trade and distribution; affordability; penalties; and other. An additional keyword search was conducted to minimize the omission of barriers. Barriers in an additional category, language, were recorded qualitatively. Countries included Bulgaria, Cyprus, Estonia, Greece, Hungary, Latvia, Lithuania, Serbia, Slovakia, Slovenia and Turkey. Ten of the 11 countries (all except Estonia) showed specific potential barriers in their legislation and regulations. The total number of barriers varied from two (Slovenia) to 46 (Lithuania); the number of categories varied from one (Slovenia) to five (Lithuania). Most specific potential barriers were shown in the categories 'prescribing', 'usage' and 'other'. The total number in a single category varied from one to 18 (Lithuania, prescribing). Individual differences between countries in the same specific potential barrier were shown; for example, variation in minimum age criteria for admission to OAT ranging from 15 (Lithuania, in special cases) to 20 years (Greece). All countries had stigmatizing language in their legislation

  11. Individual variation in the motivational and neurobiological effects of an opioid cue.

    Science.gov (United States)

    Yager, Lindsay M; Pitchers, Kyle K; Flagel, Shelly B; Robinson, Terry E

    2015-03-13

    A discrete cue associated with intravenous injections of cocaine acquires greater control over motivated behavior in some rats ('sign-trackers', STs) than others ('goal-trackers', GTs). It is not known, however, if such variation generalizes to cues associated with other drugs. We asked, therefore, whether a discrete cue (a light) associated with the intravenous administration of an opioid drug (the short-acting mu receptor agonist, remifentanil) acquires incentive motivational properties differently in STs and GTs, as indicated by tests of Pavlovian conditioned approach and conditioned reinforcement. Consistent with studies using cocaine, STs approached a classically conditioned opioid cue more readily than GTs, and in a test of conditioned reinforcement worked more avidly to get it. Interestingly, STs and GTs did not differ in the acquisition of a conditioned orienting response. In addition, the performance of conditioned approach behavior, but not conditioned orientation, was attenuated by pretreatment with the dopamine receptor antagonist, flupenthixol, into the core of the nucleus accumbens. Lastly, food and opioid cues engaged similar amygdalo-striatal-thalamic circuitry to a much greater extent in STs than GTs, as indicated by Fos expression. Taken together, these data demonstrate that, similar to food and cocaine cues: (1) a discrete opioid cue attains greater incentive motivational value in STs than GTs; (2) the attribution of incentive motivational properties to an opioid cue is dopamine dependent; and (3) an opioid cue engages the so-called 'motive circuit' only if it is imbued with incentive salience.

  12. Implementation of methadone therapy for opioid use disorder in Russia - a modeled cost-effectiveness analysis.

    Science.gov (United States)

    Idrisov, Bulat; Murphy, Sean M; Morrill, Tyler; Saadoun, Mayada; Lunze, Karsten; Shepard, Donald

    2017-01-20

    Opioid agonist therapy using methadone, an effective treatment of opioid use disorders (OUD) for people who inject drugs (PWID), is recommended by the World Health Organization as essential to curtail the growing HIV epidemic. Yet, despite increasing prevalence of OUD and HIV, methadone therapy has not yet been implemented in Russia. The aim of this modeling study was to estimate the cost-effectiveness of methadone therapy for Russian adults with a diagnosed OUD. We modeled the projected program implementation costs and estimated disability-adjusted life years (DALYs) averted over a 10-year period, associated with the provision of methadone therapy for a hypothetical, unreplenished cohort of Russian adults with an OUD (n = 249,000), in comparison to the current therapies at existing addiction treatment facilities. Our model compared four distinct scenarios of treatment coverage in the cohort ranging from 3.1 to 55%. Providing methadone therapy to as few as 3.1% of adults with an OUD amounted to an estimated almost 50,000 DALYs averted over 10 years at a cost of just over USD 17 million. Further expanding service coverage to 55% resulted in an estimated almost 900,000 DALYs averted, at a cost of about USD 308 million. Our study indicated that implementing opioid agonist therapy with methadone to treat OUD at existing facilities in Russia is highly cost-effective.

  13. Pharmacotherapy for opioid dependence in jails and prisons: research review update and future directions

    Directory of Open Access Journals (Sweden)

    Sharma A

    2016-04-01

    Full Text Available Anjalee Sharma,1 Kevin E O'Grady,1,2 Sharon M Kelly,1 Jan Gryczynski,1 Shannon Gwin Mitchell,1 Robert P Schwartz1 1Friends Research Institute, Baltimore, 2Department of Psychology, University of Maryland, College Park, MD, USA Purpose: The World Health Organization recommends the initiation of opioid agonists prior to release from incarceration to prevent relapse or overdose. Many countries in the world employ these strategies. This paper considers the evidence to support these recommendations and the factors that have slowed their adoption in the US. Methods: We reviewed randomized controlled trials (RCTs and longitudinal/observational studies that examine participant outcomes associated with the initiation or continuation of opioid agonists (methadone, buprenorphine or antagonists (naltrexone during incarceration. Papers were identified through a literature search of PubMed with an examination of their references and were included if they reported outcomes for methadone, buprenorphine, or naltrexone continued during incarceration or initiated prior to release in a correctional institution. Results: Fourteen studies were identified, including eight RCTs and six observational studies. One RCT found that patients treated with methadone who were continued on versus tapered off methadone during brief incarceration were more likely to return to treatment upon release. A second RCT found that the group starting methadone treatment in prison versus a waiting list was less likely to report using heroin and sharing syringes during incarceration. A third RCT found no differences in postrelease heroin use or reincarceration between individuals initiating treatment with methadone versus those initiating treatment with buprenorphine during relatively brief incarcerations. Findings from four additional RCTs indicate that starting opioid agonist treatment during incarceration versus after release was associated with higher rates of entry into community

  14. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier

  15. Low efficacy of non-opioid drugs in opioid withdrawal symptoms.

    Science.gov (United States)

    Hermann, Derik; Klages, Eckard; Welzel, Helga; Mann, Karl; Croissant, Bernhard

    2005-06-01

    Opioid withdrawal, stress or cues associated with opioid consumption can induce opioid craving. If opioids are not available, opioid-dependent patients usually search for alternative drugs. Because several non-opioid drugs stimulate the endogenous opioidergic system, this concept may explain their frequent use by opioid-dependent patients. We hypothesized that non-opioid drugs alleviate opioid withdrawal symptoms and are therefore consumed by opioid addicts. We asked 89 opioid-dependent patients participating in an out-patient opioid maintenance program to estimate the potential of several non-opioid drugs in being able to alleviate opioid withdrawal. We applied a five-point Lickert scale (1 = very good reduction of opioid withdrawal; 5 = no reduction of opioid withdrawal). Patients could also indicate a worsening of opioid withdrawal. Values (mean +/- SD) were: for benzodiazepines, 3.2 +/- 1.1; tricyclic antidepressants, 3.6 +/- 1.1; cannabis, 3.6 +/- 1.0; alcohol, 4.1 +/- 1.1; cocaine, 4.2 +/- 1.1; amphetamine, 4.4 +/- 0.9; nicotine, 4.7 +/- 0.7; and caffeine, 4.9 +/- 0.5. A worsening of opioid withdrawal was reported by 62% of the patients for cocaine, 62% for amphetamine, 50% for caffeine, 37.5% for cannabis, 27% for nicotine, 26% for alcohol, 8% for tricyclic antidepressants and 3% for benzodiazepines. Our study shows a low efficacy of non-opioid drugs in alleviating opioid withdrawal symptoms. The data basis of this study was good and the sample was suitable to be asked for estimations of drug-drug interactions. Of the patients, 26 - 62% even reported a worsening of opioid withdrawal for cannabis, alcohol, cocaine and amphetamine. Only benzodiazepines and tricyclic antidepressants were reported to have a moderate positive effect on opioid withdrawal.

  16. Opioid binding site in EL-4 thymoma cell line

    International Nuclear Information System (INIS)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [ 3 H] bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10 6 cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [ 3 H] bremazocine with an IC 50 value = 0.57μM. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, [D-Pen 2 , D-Pen 5 ] enkephalin and β-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC 50 = 60μM, that was similar to naloxone. 32 references, 3 figures, 2 tables

  17. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    Directory of Open Access Journals (Sweden)

    Shanna L. Bowman

    2015-03-01

    Full Text Available How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP, a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR in trigeminal ganglion (TG neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.

  18. Opioid rotation with extended-release opioids: where should we begin?

    Directory of Open Access Journals (Sweden)

    Nalamachu S

    2011-12-01

    Full Text Available Srinivas NalamachuInternational Clinical Research Institute and Pain Management Institute, Overland Park, KS, USAAbstract: Opioid rotation is a common and necessary clinical practice in the management of chronic non-cancer pain to improve therapeutic efficacy with the lowest opioid dose. When dose escalations fail to achieve adequate analgesia or are associated with intolerable side effects, a trial of a new opioid should be considered. Much of the scientific rationale of opioid rotation is based on the wide interindividual variability in sensitivity to opioid analgesics and the novel patient response observed when introducing an opioid-tolerant patient to a new opioid. This article discusses patient indicators for opioid rotation, the conversion process between opioid medications, and additional practical considerations for increasing the effectiveness of opioid therapy during a trial of a new opioid. A Patient vignette that demonstrates a step-wise approach to opioid rotation is also presented.Keywords: extended-release opioids, chronic pain, opioid rotation

  19. Introduction to the College on Problems of Drug Dependence special issue: contemporary advances in opioid neuropharmacology.

    Science.gov (United States)

    Walsh, Sharon L; Unterwald, Ellen M; Izenwasser, Sari

    2010-05-01

    Opioid receptors are critical therapeutic targets for medications development relevant to the treatment of drug dependence and pain. With recent advances in molecular neurobiology, it has become evident that the functional activity of opioid receptors, as ligand-regulated protein complexes, is modulated by multifarious intracellular and extracellular events, that there is genetic variation in coding for receptors, and that the activity of endogenous opioid systems may underlie actions common to other addictive disorders. This supplemental issue of Drug and Alcohol Dependence, arising from an invited symposium at the 71st Annual Meeting of the College on Problems of Drug Dependence, provides a series of contemporary reviews focused on recent advances in opioid neuropharmacology. Each speaker provides herein an invited comprehensive review of the state of knowledge on a specific topic in opioid neuropharmacology. Evans and colleagues describe the multi-faceted control of the opioid G-protein coupled receptor as a dynamic "sensor" complex and identify novel targets for drug development. von Zastrow focuses on opioid receptor-mediated events regulated by endocytosis and membrane trafficking through the endocytic pathway and differential responses to opioid agonists. Blendy and colleague provide a review of human association studies on the functional relevance of the mu opioid receptor variant, A118G, and presents data from the A112G knock-in model, an analogous mouse variant to A118G. Finally, Maldonado and colleagues provide a broader systems review from genetic, pharmacologic and behavioral studies implicating the endogenous opioid systems as a substrate for the mediation of substance use disorders spanning pharmacological classes.

  20. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: Quantitative autoradiography, species differences and comparison with kappa receptors

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, N.A.; Hughes, J. (Addenbrookes Hospital Site, Cambridge (England))

    1989-05-01

    The opioid peptides, (3H)DAGO and (3H)DPDPE, bound to rat and guinea pig brain homogenates with a high, nanomolar affinity and to a high density of mu and delta receptors, respectively. (3H)DAGO binding to mu receptors was competitively inhibited by unlabelled opioids with the following rank order of potency: DAGO greater than morphine greater than DADLE greater than naloxone greater than etorphine much greater than U50488 much greater than DPDPE. In contrast, (3H)DPDPE binding to delta receptors was inhibited by compounds with the following rank order of potency: DPDPE greater than DADLE greater than etorphine greater than dynorphin(1-8) greater than naloxone much greater than U50488 much greater than DAGO. These profiles were consistent with specific labelling of the mu and delta opioid receptors, respectively. In vitro autoradiographic techniques coupled with computer-assisted image analyses revealed a discrete but differential anatomical localization of mu and delta receptors in the rat and guinea pig brain. In general, mu and delta receptor density in the rat exceeded that in the guinea pig brain and differed markedly from that of kappa receptors in these species. However, while mu receptors were distributed throughout the brain with hotspots in the fore-, mid- and hindbrain of the two rodents, the delta sites were relatively diffusely distributed, and were mainly concentrated in the forebrain with particularly high levels within the olfactory bulb (OB), n. accumbens and striatum. Notable regions of high density of mu receptors in the rat and guinea pig brain were the accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and s. nigra.

  1. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Hijazi

    2017-01-01

    Full Text Available Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  2. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  3. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  4. Short-acting glucagon-like peptide-1 receptor agonists as add-on to insulin therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Albèr, Anders; Brønden, Andreas; Knop, Filip K

    2017-01-01

    emptying in patients with type 1 diabetes, which could translate into effective lowering of postprandial glucose excursions; however, these observations regarding short-acting GLP-1RAs are all derived from small open-label trials and should thus be interpreted with caution. In the present paper we review......A large proportion of patients with type 1 diabetes do not reach their glycaemic target of glycated hemoglobin (HbA1c) type 1 diabetes are overweight and obese. Treatment of type 1 diabetes is based on insulin therapy......, which is associated with well-described and unfortunate adverse effects such as hypoglycaemia and increased body weight. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are the focus of increasing interest as a possible adjunctive treatment to insulin in type 1 diabetes because...

  5. Non-analgesic effects of opioids: opioids and the endocrine system.

    Science.gov (United States)

    Elliott, Jennifer A; Opper, Susan E; Agarwal, Sonali; Fibuch, Eugene E

    2012-01-01

    Opioids are among the oldest known and most widely used analgesics. The application of opioids has expanded over the last few decades, especially in the treatment of chronic non-malignant pain. This upsurge in opioid use has been accompanied by the increasingly recognized occurrence of opioid-associated endocrinopathy. This may arise after exposure to enteral, parenteral, or neuraxial opioids. Opioid-associated endocrinopathy consists primarily of hypothalamic-pituitary-gonadal axis or hypothalamic-pituitary-adrenal axis dysfunction and may manifest with symptoms of hypogonadism, adrenal dysfunction, and other hormonal disturbances. Additionally, opioid related endocrine dysfunction may be coupled with such disorders as osteoporosis and mood disturbances including depression. Undesirable changes in pain sensitivity such as opioid-induced hyperalgesia, and reduced potency of opioid analgesia may also be potential consequences of chronic opioid consumption. Few studies to date have been able to establish what degree of opioid exposure, in terms of dose or duration of therapy, may predispose patients to opioid-associated endocrinopathy. This article will review the currently available literature concerning opioid-associated endocrinopathy and will provide recommendations for the evaluation, monitoring, and management of opioid-associated endocrinopathy and its other accompanying undesired effects.

  6. Identification of Challenges to the Availability and Accessibility of Opioids in Twelve European Countries: Conclusions from Two ATOME Six-Country Workshops.

    Science.gov (United States)

    Linge-Dahl, Lisa; Vranken, Marjolein; Juenger, Saskia; North, Kate; Scholten, Willem; Payne, Sheila; Radbruch, Lukas

    2015-12-01

    Access to many controlled medicines is inadequate in a number of European countries. This leads to deficits in the treatment of moderate to severe pain as well as in opioid agonist therapy. The study objective was to elaborate the reasons for this inadequacy. The work plan of the Access to Opioid Medication in Europe (ATOME) project included two six-country workshops. These workshops comprised a national situational analysis, drafting tailor-made recommendations for improvement and developing action plans for their implementation. In total, 84 representatives of the national Ministries of Health, national controlled substances authorities, experts representing regulatory and law enforcement authorities, leading health care professionals, and patient representatives from 13 European countries participated in either one of the workshops. The delegates used breakout sessions to identify key common challenges. Content analysis was used for the evaluation of protocols and field notes. A number of challenges to opioid accessibility in the countries was identified in the domains of knowledge and educational, regulatory, legislative, as well as public awareness and training barriers that limit opioid prescription. In addition, short validity of prescriptions and bureaucratic practices resulting in overregulation impeded availability of some essential medicines. Stigmatization and criminalisation of people who use drugs remained the major impediment to increasing opioid agonist program coverage. The challenges identified during outcomes of the workshops were used as the basis for subsequent dissemination and implementation activities in the ATOME project, and in some countries the workshop proceedings already served as a stepping-stone for the first changes in regulations and legislation.

  7. Peptide and small molecules rescue the functional activity and agonist potency of dysfunctional human melanocortin-4 receptor polymorphisms.

    Science.gov (United States)

    Xiang, Zhimin; Pogozheva, Irina D; Sorenson, Nicholas B; Wilczynski, Andrzej M; Holder, Jerry Ryan; Litherland, Sally A; Millard, William J; Mosberg, Henry I; Haskell-Luevano, Carrie

    2007-07-17

    The melanocortin pathway, specifically the melanocortin-4 receptor and the cognate endogenous agonist and antagonist ligands, have been strongly implicated in the regulation of energy homeostasis and satiety. Genetic studies of morbidly obese human patients and normal weight control patients have resulted in the discovery of over 70 human melanocortin-4 receptor (MC4R) polymorphisms observed as both heterozygous and homozygous forms. A number of laboratories have been studying these hMC4R polymorphisms attempting to understand the molecular mechanism(s) that might explain the obese human phenotype. Herein, we have studied 13 polymorphic hMC4Rs that have been identified to possess statistically significant decreased endogenous agonist potency with synthetic peptides and small molecules attempting to identify ligands that can pharmacologically rescue the hMC4R polymorphic agonist response. The ligands examined in this study include NDP-MSH, MTII, Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9), Ac-Anc-DPhe-Arg-Trp-NH2 (amino-2-naphtylcarboxylic acid, Anc, JRH420-12), Ac-His-(pI)DPhe-Arg-Trp-NH2 (JRH322-18), chimeric AGRP-melanocortin based ligands (Tyr-c[Cys-His-DPhe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2, AMW3-130 and Ac-mini-(His-DPhe-Arg-Trp)-hAGRP-NH2, AMW3-106), and the small molecules JB25 and THIQ. The hMC4R polymorphisms included in this study are S58C, N97D, I102S, L106P, S127L, T150I, R165Q, R165W, L250Q, G252S, C271Y, Y287Stop, and I301T. These studies resulted in the NDP-MSH, MTII, AMW3-130, THIQ, and AMW3-106 ligands possessing nanomolar to subnanomolar agonist potency at the hMC4R polymorphisms examined in this study. Thus, these ligands could generically rescue the potency and stimulatory response of the abnormally functioning hMC4Rs studied and may provide tools to further clarify the molecular mechanism(s) involving these receptor modifications.

  8. Evidence that morphine and opioid peptides do not share a common pathway with adenosine in inhibiting acetylcholine release from isolated intestine.

    Science.gov (United States)

    Vizi, E S; Somogyi, G T; Magyar, K

    1981-12-01

    1 The release of acetylcholine from guinea-pig ileal isolated longitudinal muscle strip with intact Auerbach's plexus was measured by bioassay and by a radioisotope technique. 2 Normorphine (5 x 10(-7)M) and D-Met2, Pro5-enkephalinamide (D-Met, Pro-EA) reduced the release of acetylcholine. Theophylline, an adenosine antagonist, failed to prevent the inhibitory effect of normorphine or D-Met, Pro-EA. 3 Theophylline (1.7 x 10(-4)M) by itself enhanced the twitch responses to field stimulation (0.1 Hz) but did not prevent the inhibitory effect of normorphine and D-Met, Pro-EA. 4 From the results it can be concluded that morphine and opioid peptides do not share a common pathway with adenosine in inhibiting acetylcholine release from axon terminals of Auerbach's plexus.

  9. Unique interaction pattern for a functionally biased ghrelin receptor agonist

    DEFF Research Database (Denmark)

    Sivertsen, Bjørn Behrens; Lang, Manja; Frimurer, Thomas M.

    2011-01-01

    Based on the conformationally constrained D-Trp-Phe-D-Trp (wFw) core of the prototype inverse agonist [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers...... connecting the D-Trp-Phe-D-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH(2), where Isn is isonipecotic acid) ~80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained w......Fw-Isn-NH(2) was found to be a functionally biased agonist. Thus, wFw-Isn-NH(2) mediated potent and efficacious signaling through the Ga(q) and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Ga(12...

  10. The potent opioid agonist, (+)-cis-3-methylfentanyl binds pseudoirreversibly to the opioid receptor complex in vitro and in vivo: Evidence for a novel mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Band, L.; Xu, Heng; Bykov, V.; Rothman, R.B.; Kim, Chongho; Newman, A.; Jacobson, A.E.; Rice, K.C. (NIDDK, Bethesda, MD (USA)); Greig, N. (NIA, Bethesda, MD (USA))

    1990-01-01

    The present study demonstrates that pretreatment of rat brain membranes with (+)-cis-3-methylfentanyl ((+)-cis-MF), followed by extensive washing of the membranes, produces a wash-resistant decreasing in the binding of ({sup 3}H)-(D-ala{sup 2}, D-leu{sup 5})enkephalin to the d binding site of the opioid receptor complex ({delta}{sub cx} binding site). Intravenous administration of (+)-cis-MF (50 {mu}g/kg) to rats produced a pronounced catalepsy and also produced a wash-resistant masking of {delta}{sub cx} and {mu} binding sites in membranes prepared 120 min post-injection. Administration of 1 mg/kg i.v. of the opioid antagonist, 6-desoxy-6{beta}-fluoronaltrexone (cycloFOXY), 100 min after the injection of (+)-cis-MF (20 min prior to the preparation of membranes) completely reversed the catatonia and restored masked {delta}{sub cx} binding sites to control levels. This was not observed with (+)-cycloFOXY. The implications of these and other findings for the mechanism of action of (+)-cis-MF and models of the opioid receptors are discussed.

  11. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  12. Are Prescription Opioids Driving the Opioid Crisis? Assumptions vs Facts.

    Science.gov (United States)

    Rose, Mark Edmund

    2018-04-01

    Sharp increases in opioid prescriptions, and associated increases in overdose deaths in the 2000s, evoked widespread calls to change perceptions of opioid analgesics. Medical literature discussions of opioid analgesics began emphasizing patient and public health hazards. Repetitive exposure to this information may influence physician assumptions. While highly consequential to patients with pain whose function and quality of life may benefit from opioid analgesics, current assumptions about prescription opioid analgesics, including their role in the ongoing opioid overdose epidemic, have not been scrutinized. Information was obtained by searching PubMed, governmental agency websites, and conference proceedings. Opioid analgesic prescribing and associated overdose deaths both peaked around 2011 and are in long-term decline; the sharp overdose increase recorded in 2014 was driven by illicit fentanyl and heroin. Nonmethadone prescription opioid analgesic deaths, in the absence of co-ingested benzodiazepines, alcohol, or other central nervous system/respiratory depressants, are infrequent. Within five years of initial prescription opioid misuse, 3.6% initiate heroin use. The United States consumes 80% of the world opioid supply, but opioid access is nonexistent for 80% and severely restricted for 4.1% of the global population. Many current assumptions about opioid analgesics are ill-founded. Illicit fentanyl and heroin, not opioid prescribing, now fuel the current opioid overdose epidemic. National discussion has often neglected the potentially devastating effects of uncontrolled chronic pain. Opioid analgesic prescribing and related overdoses are in decline, at great cost to patients with pain who have benefited or may benefit from, but cannot access, opioid analgesic therapy.

  13. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    International Nuclear Information System (INIS)

    Zhu, X.Z.; Raffa, R.B.

    1986-01-01

    FMRFamide (Phe-Met-Arg-Phe-NH 2 ) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both 3 [H]-dihydromorphine and 3 [H]-ethylketocyclazocine (IC 50 = 14 μM and 320 μM, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation

  14. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  15. The association between nicotine dependence and physical health among people receiving injectable diacetylmorphine or hydromorphone for the treatment of chronic opioid use disorder

    Directory of Open Access Journals (Sweden)

    Heather Palis

    2018-06-01

    Full Text Available Introduction: People with chronic opioid use disorder often present to treatment with individual and structural vulnerabilities and remain at risk of reporting adverse health outcomes. This risk is greatly compounded by tobacco smoking, which is highly prevalent among people with chronic opioid use disorder. Despite the known burden of tobacco smoking on health, the relationship between nicotine dependence and health has not been studied among those receiving injectable opioid agonist treatment. As such, the present study aims to explore the association between nicotine dependence and physical health among participants of the Study to Assess Longer-Term Opioid Medication Effectiveness (SALOME at baseline and six-months. Methods: SALOME was a double-blind phase III clinical trial testing the non-inferiority of injectable hydromorphone to injectable diacetylmorphine for chronic opioid use disorder. Participants reporting tobacco smoking were included in a linear regression analysis of physical health at baseline (before receiving treatment and at six-months. Results: At baseline, nicotine dependence score, lifetime history of emotional, physical, or sexual abuse and prior month safe injection site access were independently and significantly associated with physical health. At six-months nicotine dependence score was the only variable that maintained this significant and independent association with physical health. Conclusions: Findings indicate that after six-months, the injectable treatment effectively brought equity to patients' physical health status, yet the association with nicotine dependence remained. Findings could inform whether the provision of treatment for nicotine dependence should be made a priority in settings where injectable opioid agonist treatment is delivered to achieve improvements in overall physical health in this population.

  16. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  17. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    Science.gov (United States)

    2017-07-01

    i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered most frequently by active...slides. The slides were then processed for fluorescent in situ hybridization with RNAscope technology (ACD Biosystems) to detect Oprd1 mRNA, as...tissue as done in Bardoni et al., Neuron, 2014) and negative controls (no probe). Controls indicated that the technology and reagents work as expected

  18. Neuromedin and FN-38 Peptides for Treating Psychiatric Diseases

    Science.gov (United States)

    Methods and compositions for treating psychiatric diseases and disorders are disclosed. The methods provided generally involve the administration of an NMX peptide, an FNX peptide, or an NMX receptor agonist, or analogs or derivatives thereof, to a subject in order to treat psychiatric diseases and ...

  19. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine.

    Science.gov (United States)

    Bagley, Elena E; Chieng, Billy C H; Christie, MacDonald J; Connor, Mark

    2005-09-01

    The midbrain periaqueductal gray (PAG) is a major site of opioid analgesic action, and a significant site of cellular adaptations to chronic morphine treatment (CMT). We examined mu-opioid receptor (MOP) regulation of voltage-gated calcium channel currents (I(Ca)) and G-protein-activated K channel currents (GIRK) in PAG neurons from CMT mice. Mice were injected s.c. with 300 mg kg(-1) of morphine base in a slow release emulsion three times over 5 days, or with emulsion alone (vehicles). This protocol produced significant tolerance to the antinociceptive effects of morphine in a test of thermal nociception. Voltage clamp recordings were made of I(Ca) in acutely isolated PAG neurons and GIRK in PAG slices. The MOP agonist DAMGO (Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol enkephalin) inhibited I(Ca) in neurons from CMT mice (230 nM) with a similar potency to vehicle (150 nM), but with a reduced maximal effectiveness (37% inhibition in vehicle neurons, 27% in CMT neurons). Inhibition of I(Ca) by the GABA(B) agonist baclofen was not altered by CMT. Met-enkephalin-activated GIRK currents recorded in PAG slices were significantly smaller in neurons from CMT mice than vehicles, while GIRK currents activated by baclofen were unaltered. These data demonstrate that CMT-induced antinociceptive tolerance is accompanied by homologous reduction in the effectiveness of MOP agonists to inhibit I(Ca) and activate GIRK. Thus, a reduction in MOP number and/or functional coupling to G proteins accompanies the characteristic cellular adaptations to CMT previously described in PAG neurons.

  20. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    Science.gov (United States)

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. Contrasting cardiovascular properties of the µ-opioid agonists morphine and methadone in the rat.

    Science.gov (United States)

    Tung, Kenneth H; Angus, James A; Wright, Christine E

    2015-09-05

    Morphine and methadone share the property of μ-opioid receptor agonism yet have markedly different cardiovascular actions suggesting additional properties are at play. We investigated the i.v. dose-response relationships of the opioids on cardiovascular metameters in anaesthetised rats in the absence or presence of H1- and H2-receptor antagonism and the μ-opioid antagonist naloxone. In vitro tissue assays were employed to define more clearly cardiac and vascular mechanisms of action. Morphine (9, 30, 90mg/kg i.v.) decreased heart rate (HR) and mean arterial pressure (MAP) - responses that were blocked by naloxone pretreatment (10mg/kg i.v.). In contrast, methadone (3, 10, 30mg/kg i.v.) caused dramatic short-lived (1-3min) bradycardia, hypotension and lengthening of the QT interval before stabilising 5min after i.v. dosing. Only the steady-state responses of HR and MAP were blocked by naloxone. Mepyramine (10mg/kg i.v.) and cimetidine (100mg/kg i.v.) also blocked the naloxone-sensitive components. In isolated small mesenteric arteries precontracted by K(+) 62mM or endothelin-1, methadone (1-30μM) relaxed vessels while morphine (1-100μM) had no effect. Pretreatment with naloxone (10μM), indomethacin (30μM) or nitro-l-arginine (100μM) did not affect the relaxation to methadone. In rat isolated left atria, morphine and methadone inhibited inotropic responses at high concentrations (100μM). In rat papillary muscle and right atria, methadone was more than 30 times more potent at lengthening the refractory period and slowing the atrial rate than morphine. We conclude that methadone is a potent vasodilator agent, possibly through blocking L-type calcium channels. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Computer Modeling of Human Delta Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Tatyana Dzimbova

    2013-04-01

    Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.

  3. Mechanism of the Interaction of Cannabinoid System in Central Amygdale with Opioid System

    Directory of Open Access Journals (Sweden)

    S. Sarahroodi

    2008-01-01

    Full Text Available Background and objectivesCannabinoids which are active compounds of marijuana show some pharmacological effects similar to the opioids. There are also functional interactions between both cannabinoid and opioid systems. In this study we investigated the role of cannabinoid receptors in central amygdala and its interaction with opioid system.MethodsIn the present study, we investigated the effects of intraperitoneal injection of opioid drugs on response-induced by intra-amygdala (intra-Amyg microinjection of cannabinoid agents in rats, using elevated plus-maze test of anxiety. ResultsIntraperitoneal injection of morphine (3, 6 and 9 mg/kg increased %OAT and %OAE, but not locomotor activity, showing an anxiolytic response. However, some doses of the opioid receptor antagonist, naloxone reduced %OAT and locomotor activity as well. Intra-Amyg administration of CB1 cannabinoid receptor agonist, ACPA (at the dose of 1.25 and 5 ng/rat increased %OAT and %OAE but not locomotor activity, thus showing an anxiolytic response, which was increased by morphine (6 mg/kg, i.p. without any interaction. Naloxone also reduced ACPA effects. Intra-Amyg administration of CB1 cannabinoid receptor antagonist, AM251 (2.5, 25 and 100 ng/rat did not alter %OAT and %OAE but higher doses of drug (25 and 100 ng/rat reduced locomotor activity. However, the drug in combination of morphine anxiolytic response and with naloxone decreased anxiety.ConclusionThe results may indicate an anxiolytic for CB1 cannabinoid. Our results also showed that opioid system may have interaction with cannabinoid receptor in the amygdale. Keywords: Cannabinoids, Morphine; Naloxone, Anxiety, Elevated Plus-Maze

  4. The Combination Very Low-Dose Naltrexone–Clonidine in the Management of Opioid Withdrawal

    Science.gov (United States)

    Mannelli, Paolo; Peindl, Kathleen; Wu, Li-Tzy; Patkar, Ashwin A.; Gorelick, David A.

    2013-01-01

    Background The management of withdrawal absorbs substantial clinical efforts in opioid dependence (OD). The real challenge lies in improving current pharmacotherapies. Although widely used, clonidine causes problematic adverse effects and does not alleviate important symptoms of opioid withdrawal, alone or in combination with the opioid antagonist naltrexone. Very low-dose naltrexone (VLNTX) has been shown to attenuate withdrawal intensity and noradrenaline release following opioid agonist taper, suggesting a combination with clonidine may result in improved safety and efficacy. Objectives We investigated the effects of a VLNTX–clonidine combination in a secondary analysis of data from a double-blind, randomized opioid detoxification trial. Methods Withdrawal symptoms and treatment completion were compared following VLNTX (.125 or .25 mg/day) and clonidine (.1–.2 mg q6h) in 127 individuals with OD undergoing 6-day methadone inpatient taper at a community program. Results VLNTX was more effective than placebo or clonidine in reducing symptoms and signs of withdrawal. The use of VLNTX in combination with clonidine was associated with attenuated subjective withdrawal compared with each medication alone, favoring detoxification completion in comparison with clonidine or naltrexone placebo. VLNTX/clonidine was effective in reducing symptoms that are both undertreated and well controlled with clonidine treatment and was not associated with significant adverse events compared with other treatments. Conclusions and Scientific Significance Preliminary results elucidate neurobiological mechanisms of OD and support the utility of controlled studies on a novel VLNTX + low-dose clonidine combination for the management of opioid withdrawal. PMID:22233189

  5. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    International Nuclear Information System (INIS)

    Ott, S.; Costa, T.; Herz, A.

    1988-01-01

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa

  6. Concomitant use of opioid medications with triptans or serotonergic antidepressants in US office-based physician visits.

    Science.gov (United States)

    Molina, Kyle C; Fairman, Kathleen A; Sclar, David A

    2018-01-01

    Opioids are not recommended for routine treatment of migraine because their benefits are outweighed by risks of medication overuse headache and abuse/dependence. A March 2016 US Food and Drug Administration (FDA) safety communication warned of the risk of serotonin syndrome from using opioids concomitantly with 5-hydroxytryptamine receptor agonists (triptans) or serotonergic antidepressants: selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Epidemiological information about co-prescribing of these medications is limited. The objective of this study was to estimate the nationwide prevalence of co-prescribing of an opioid with a serotonergic antidepressant and/or triptan in US office-based physician visits made by 1) all patients and 2) patients diagnosed with migraine. National Ambulatory Medical Care Survey (NAMCS) data were obtained for 2013 and 2014. Physician office visits that included the new or continued prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI were identified. Co-prescribed opioids were stratified by agent to determine the proportion of co-prescriptions with opioids posing a higher risk of serotonergic agonism (meperidine, tapentadol, and tramadol). Of an annualized mean 903.6 million office-based physician visits in 2013-2014, 17.7 million (2.0% of all US visits) resulted in the prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI. Opioid-SSRI/SNRI was co-prescribed in 16,044,721 visits, while opioid-triptan was co-prescribed in 1,622,827 visits. One-fifth of opioid co-prescribing was attributable to higher-risk opioids, predominantly tramadol (18.6% of opioid-SSRI/SNRI, 21.8% of opioid-triptan). Of 7,672,193 visits for patients diagnosed with migraine, 16.3% included opioid prescribing and 2.0% included co-prescribed opioid-triptan. During a period approximately 2 years prior to an FDA warning about the risk of serotonin syndrome from opioid-SSRI/SNRI or

  7. Are peripheral opioid antagonists the solution to opioid side effects?

    LENUS (Irish Health Repository)

    Bates, John J

    2012-02-03

    Opioid medication is the mainstay of therapy for severe acute and chronic pain. Unfortunately, the side effects of these medications can affect patient comfort and safety, thus limiting their proven therapeutic potential. Whereas the main analgesic effects of opioids are centrally mediated, many of the common side effects are mediated via peripheral receptors. Novel peripheral opioid antagonists have been recently introduced that can block the peripheral actions of opioids without affecting centrally mediated analgesia. We review the clinical and experimental evidence of their efficacy in ameliorating opioid side effects and consider what further information might be useful in defining their role. IMPLICATIONS: The major analgesic effects of opioid medication are mediated within the brain and spinal cord. Many of the side effects of opioids are caused by activation of receptors outside these areas. Recently developed peripherally restricted opioid antagonists have the ability to block many opioid side effects without affecting analgesia.

  8. Opioid Addiction and Abuse in Primary Care Practice: A Comparison of Methadone and Buprenorphine as Treatment Options

    Science.gov (United States)

    Bonhomme, Jean; Shim, Ruth S.; Gooden, Richard; Tyus, Dawn; Rust, George

    2014-01-01

    Opioid abuse and addiction have increased in frequency in the United States over the past 20 years. In 2009, an estimated 5.3 million persons used opioid medications nonmedically within the past month, 200 000 used heroin, and approximately 9.6% of African Americans used an illicit drug. Racial and ethnic minorities experience disparities in availability and access to mental health care, including substance use disorders. Primary care practitioners are often called upon to differentiate between appropriate, medically indicated opioid use in pain management vs inappropriate abuse or addiction. Racial and ethnic minority populations tend to favor primary care treatment settings over specialty mental health settings. Recent therapeutic advances allow patients requiring specialized treatment for opioid abuse and addiction to be managed in primary care settings. The Drug Addiction Treatment Act of 2000 enables qualified physicians with readily available short-term training to treat opioid-dependent patients with buprenorphine in an office-based setting, potentially making primary care physicians active partners in the diagnosis and treatment of opioid use disorders. Methadone and buprenorphine are effective opioid replacement agents for maintenance and/or detoxification of opioid-addicted individuals. However, restrictive federal regulations and stigmatization of opioid addiction and treatment have limited the availability of methadone. The opioid partial agonist-antagonist buprenorphine/naloxone combination has proven an effective alternative. This article reviews the literature on differences between buprenorphine and methadone regarding availability, efficacy, safety, side-effects, and dosing, identifying resources for enhancing the effectiveness of medication-assisted recovery through coordination with behavioral/psychological counseling, embedded in the context of recovery-oriented systems of care. PMID:23092049

  9. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    Science.gov (United States)

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  10. Acetylcholine serves as a derepressor in Loperamide-induced Opioid-Induced Bowel Dysfunction (OIBD) in zebrafish.

    Science.gov (United States)

    Shi, Yanyan; Zhang, Yu; Zhao, Fangying; Ruan, Hua; Huang, Honghui; Luo, Lingfei; Li, Li

    2014-07-07

    The mechanisms underlying gut development, especially peristalsis, are widely studied topics. However, the causes of gut peristalsis-related diseases, especially Opioid-Induced Bowel Dysfunction (OIBD) disorder, have not been well defined. Therefore, our study used zebrafish, a popular model for studying both gut development and peristalsis, and DCFH-DA, a dye that clearly labels the live fish gut lumen, to characterize the formation process of gut lumen as well as the gut movement style in vivo. By applying Loperamide Hydrochloride (LH), the μ-opioid receptor-specific agonist, we established an OIBD-like zebrafish model. Our study found that acetylcholine (ACh) was a key transmitter that derepressed the phenotype induced by LH. Overall, the study showed that the antagonistic role of ACh in the LH-mediated opioid pathway was evolutionarily conserved; moreover, the OIBD-like zebrafish model will be helpful in the future dissection of the molecular pathways involved in gut lumen development and pathology.

  11. Behavioral and electrographic effects of opioids on kindled seizures in rats.

    Science.gov (United States)

    Caldecott-Hazard, S; Shavit, Y; Ackermann, R F; Engel, J; Frederickson, R C; Liebeskind, J C

    1982-11-18

    Our laboratory previously suggested that opioid peptides are released by an amygdaloid kindled seizure and may affect the elicitation of a subsequent seizure. The present study examined the effects of morphine, naloxone, enkephalin analogues, and conditions of morphine tolerance and withdrawal on the severity and duration of a series of amygdaloid kindled seizures. The results suggest two distinct opiate/opioid actions on seizures. The first is an anticonvulsant effect on the behavioral manifestations of seizures. This effect is seen following a high dose (50 mg/kg) of morphine or a low dose (6 mg/kg) of enkephalin analogue (LY146104), and is reversed by naloxone. The second is a naloxone-reversible prolonging effect of the high dose of morphine on the electrographic components of the seizures. Receptor affinities of these various opiate/opioid drugs suggest that these two actions are mediated by different receptors which appear not to include high affinity mu receptors.

  12. Structural and pharmacological characteristics of chimeric peptides derived from peptide E and beta-endorphin reveal the crucial role of the C-terminal YGGFL and YKKGE motifs in their analgesic properties.

    Science.gov (United States)

    Condamine, Eric; Courchay, Karine; Rego, Jean-Claude Do; Leprince, Jérôme; Mayer, Catherine; Davoust, Daniel; Costentin, Jean; Vaudry, Hubert

    2010-05-01

    Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  14. Trends in Opioid Use Disorder Diagnoses and Medication Treatment Among Veterans With Posttraumatic Stress Disorder.

    Science.gov (United States)

    Shiner, Brian; Leonard Westgate, Christine; Bernardy, Nancy C; Schnurr, Paula P; Watts, Bradley V

    2017-01-01

    in use of naltrexone across years. Opioid use disorder is an uncommon but increasing comorbidity among patients with PTSD. Patients entering VA treatment for PTSD have their opioid use disorder treated with opioid agonist treatments in large and increasing numbers. There is a need for research both on the epidemiology of opioid use disorder among patients with PTSD and on screening for opioid use disorder.

  15. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2018-05-01

    Full Text Available In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.

  16. Plasma levels of cortisol and opioid peptide beta-endorphin during spontaneous vaginal delivery

    Directory of Open Access Journals (Sweden)

    Arsenijević Ljubica

    2006-01-01

    Full Text Available INTRODUCTION Labor pain is very frequent in clinical practice, but the underlying mechanisms as well as numerous neuroendocrine responses activated by such pain have not been fully explained yet. OBJECTIVE The objective of the study was to determine the influence of labor pain on plasma levels of cortisol and opioid peptide ß-endorphin. METHOD Cortisol and ß-endorphin levels were measured in blood plasma of: health, non-pregnant women (group 1, n=8, health pregnant women (group 2, n=8 and in parturitions, through fourth ages (group 3, n=8, Plasma level of cortisol was measured by radioimmunoassay, and ß-endorphin by enzyme immunoassay. Data were expressed as mean ± standard error of mean and were analyzed by Student's t test and Mann Whitney test. RESULTS Plasma level of cortisol in group 2 was significantly increased compared to the group 1. During labor progression, plasma level of cortisol was rising till the third labor age. Plasma level of cortisol in fourth labor age was not significantly different from the ag.e one and group 1. Plasma level of ß-endorphin was (n.g/L: in group 1:64±20, group 2:70±22, group 3:the first labor age: 75±15, the second labor age: 193±54, the third labor age: 346+97 and the fourth labor age: 114±31. CONCLUSION These results indicate that both ß-endorphin and cortisol are involved in regulation and modulation of labor pain and stress.

  17. Stress-evoked opioid release inhibits pain in major depressive disorder.

    Science.gov (United States)

    Frew, Ashley K; Drummond, Peter D

    2008-10-15

    To determine whether stress-evoked release of endogenous opioids might account for hypoalgesia in major depressive disorder (MDD), the mu-opioid antagonist naltrexone (50mg) or placebo was administered double-blind to 24 participants with MDD and to 31 non-depressed controls. Eighty minutes later participants completed a painful foot cold pressor test and, after a 5-min interval, began a 25-min arithmetic task interspersed with painful electric shocks. Ten minutes later participants completed a second cold pressor test. Negative affect was greater in participants with MDD than in non-depressed controls throughout the experiment, and increased significantly in both groups during mental arithmetic. Before the math task, naltrexone unmasked direct linear relationships between severity of depression, negative affect while resting quietly, and cold-induced pain in participants with MDD. In contrast, facilitatory effects of naltrexone on cold- and shock-induced pain were greatest in controls with the lowest depression scores. Naltrexone strengthened the relationship between negative affect and shock-induced pain during the math task, particularly in the depressed group, and heightened anxiety in both groups toward the end of the task. Thus, mu-opioid activity apparently masked a positive association between negative affect and pain in the most distressed participants. These findings suggest that psychological distress inhibits pain via stress-evoked release of opioid peptides in severe cases of MDD. In addition, tonic endogenous opioid neurotransmission could inhibit depressive symptoms and pain in people with low depression scores.

  18. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    Science.gov (United States)

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  19. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  20. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-01-01

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen 2,5 ]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G i/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the G q/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  1. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies

    Directory of Open Access Journals (Sweden)

    Katia eBefort

    2015-02-01

    Full Text Available The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins and dynorphins. The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids, enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.

  2. A double blind, within subject comparison of spontaneous opioid withdrawal from buprenorphine versus morphine.

    Science.gov (United States)

    Tompkins, D Andrew; Smith, Michael T; Mintzer, Miriam Z; Campbell, Claudia M; Strain, Eric C

    2014-02-01

    Preliminary evidence suggests that there is minimal withdrawal after the cessation of chronically administered buprenorphine and that opioid withdrawal symptoms are delayed compared with those of other opioids. The present study compared the time course and magnitude of buprenorphine withdrawal with a prototypical μ-opioid agonist, morphine. Healthy, out-of-treatment opioid-dependent residential volunteers (N = 7) were stabilized on either buprenorphine (32 mg/day i.m.) or morphine (120 mg/day i.m.) administered in four divided doses for 9 days. They then underwent an 18-day period of spontaneous withdrawal, during which four double-blind i.m. placebo injections were administered daily. Stabilization and spontaneous withdrawal were assessed for the second opioid using the same time course. Opioid withdrawal measures were collected eight times daily. Morphine withdrawal symptoms were significantly (P withdrawal as measured by mean peak ratings of Clinical Opiate Withdrawal Scale (COWS), Subjective Opiate Withdrawal Scale (SOWS), all subscales of the Profile of Mood States (POMS), sick and pain (0-100) Visual Analog Scales, systolic and diastolic blood pressure, heart rate, respiratory rate, and pupil dilation. Peak ratings on COWS and SOWS occurred on day 2 of morphine withdrawal and were significantly greater than on day 2 of buprenorphine withdrawal. Subjective reports of morphine withdrawal resolved on average by day 7. There was minimal evidence of buprenorphine withdrawal on any measure. In conclusion, spontaneous withdrawal from high-dose buprenorphine appears subjectively and objectively milder compared with that of morphine for at least 18 days after drug cessation.

  3. Opioid intoxication

    Science.gov (United States)

    ... easily result in intoxication. The provider prescribes a sleep medicine (sedative) in addition to the opioid. The provider ... an opioid with certain other drugs, such as sleep medicines or alcohol Taking the opioid in ways not ...

  4. Evaluating preferences for profiles of glucagon-like peptide-1 receptor agonists among injection-naive type 2 diabetes patients in Japan

    Directory of Open Access Journals (Sweden)

    Gelhorn HL

    2016-07-01

    Full Text Available Heather L Gelhorn,1 Elizabeth D Bacci,2 Jiat Ling Poon,1 Kristina S Boye,3 Shuichi Suzuki,4 Steven M Babineaux3 1Outcomes Research, Evidera, Bethesda, MD, 2Evidera, Seattle, WA, 3Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, IN, USA; 4Medicines Development Unit Japan, Eli Lilly Japan, Kobe, Japan Objective: The objective of this study was to use a discrete choice experiment (DCE to estimate patients’ preferences for the treatment features, safety, and efficacy of two specific glucagon-like peptide-1 receptor agonists, dulaglutide and liraglutide, among patients with type 2 diabetes mellitus (T2DM in Japan.Methods: In Japan, patients with self-reported T2DM and naive to treatment with self-injectable medications were administered a DCE through an in-person interview. The DCE examined the following six attributes of T2DM treatment, each described by two levels: “dosing frequency”, “hemoglobin A1c change”, “weight change”, “type of delivery system”, “frequency of nausea”, and “frequency of hypoglycemia”. Part-worth utilities were estimated using logit models and were used to calculate the relative importance (RI of each attribute. A chi-square test was used to determine the differences in preferences for the dulaglutide versus liraglutide profiles.Results: The final evaluable sample consisted of 182 participants (mean age: 58.9 [standard deviation =10.0] years; 64.3% male; mean body mass index: 26.1 [standard deviation =5.0] kg/m2. The RI values for the attributes in rank order were dosing frequency (44.1%, type of delivery system (26.3%, frequency of nausea (15.1%, frequency of hypoglycemia (7.4%, weight change (6.2%, and hemoglobin A1c change (1.0%. Significantly more participants preferred the dulaglutide profile (94.5% compared to the liraglutide profile (5.5%; P<0.0001.Conclusion: This study elicited the preferences of Japanese T2DM patients for attributes and levels

  5. Involvement of opioid and other systems in ethanol abstinence audiogenic seizures in the rat?

    Science.gov (United States)

    Kotlińska, J; Langwiński, R

    1985-01-01

    The action of opiate receptor agonists: (D-Ala2)-methionine enkephalinamide (D-MEA), morphine, heroin, etorphine, and antagonists: naloxone and diprenorphine on audiogenic seizures was tested during ethanol abstinence. The action of diazepam and clonidine was also tested Morphine (5 and 20 mg/kg), but not heroin and etorphine, given intraperitoneally inhibited the seizures, similarly as intraventricularly administered D-MEA did. However, morphine given by this route was ineffective. Diazepam and clonidine inhibited audiogenic seizures: the action of clonidine was counteracted by yohimbine, but not by prazosin. The results may be considered as supporting the hypothesis on the participation of opioid system in ethanol abstinence. However, the participation of gabergic and noradrenergic systems cannot be ruled out: these systems may possibly interact with the opioid system in evoking the symptoms of ethanol abstinence.

  6. [3H]naloxone as an opioid receptor label: Analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues

    International Nuclear Information System (INIS)

    Schnittler, M.; Repke, H.; Liebmann, C.; Schrader, U.; Schulze, H.P.; Neubert, K.

    1990-01-01

    The nonselective antagonist [ 3 H]naloxone was used to identify opioid receptors in rat brain membranes. The multiple naloxone binding sites were related to different opioid receptors by means of selective opiod ligands as well as various β-casomorphin analogues. Analysis of binding site heterogeneity was performed using several computer curve fitting methods. The results indicate that structurally modified casomorphin peptides are able to discriminate between μ 1 and μ 2 binding sites. The affinities to the μ sites obtained with [ 3 H]naloxone as label are in a good agreement with those from experiments with the μ selective radioligand [ 3 H]DAGO. The μ 1 site affinities of these casomorphin derivatives are well correlated with their antinociceptive potencies. This finding suggests the mediation of the analgesic activity via the high-affinity μ 1 subtype. (author)

  7. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  8. Using behavioral economics to predict opioid use during prescription opioid dependence treatment.

    Science.gov (United States)

    Worley, Matthew J; Shoptaw, Steven J; Bickel, Warren K; Ling, Walter

    2015-03-01

    Research grounded in behavioral economics has previously linked addictive behavior to disrupted decision-making and reward-processing, but these principles have not been examined in prescription opioid addiction, which is currently a major public health problem. This study examined whether pre-treatment drug reinforcement value predicted opioid use during outpatient treatment of prescription opioid addiction. Secondary analyses examined participants with prescription opioid dependence who received 12 weeks of buprenorphine-naloxone and counseling in a multi-site clinical trial (N=353). Baseline measures assessed opioid source and indices of drug reinforcement value, including the total amount and proportion of income spent on drugs. Weekly urine drug screens measured opioid use. Obtaining opioids from doctors was associated with lower pre-treatment drug spending, while obtaining opioids from dealers/patients was associated with greater spending. Controlling for demographics, opioid use history, and opioid source frequency, patients who spent a greater total amount (OR=1.30, peconomic resources to drugs, reflects propensity for continued opioid use during treatment among individuals with prescription opioid addiction. Future studies should examine disrupted decision-making and reward-processing in prescription opioid users more directly and test whether reinforcer pathology can be remediated in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    Science.gov (United States)

    Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.

    2015-01-01

    SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029

  10. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  11. MDR1 P-glycoprotein transports endogenous opioid peptides

    NARCIS (Netherlands)

    Oude Elferink, R. P.; Zadina, J.

    2001-01-01

    MDR1 P-glycoprotein is generally regarded as an efflux pump for amphipathic toxic compounds. The question remains, however, whether certain endogenous compounds are also substrates for this transporter. Certain peptides have been shown to interact with MDR1 Pgp as well and we have therefore

  12. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Winther, Malene; Gabl, Michael

    2016-01-01

    /differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (f...... to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau...

  13. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Traditional Chinese and Indian medicine in the treatment of opioid-dependence: a review

    Directory of Open Access Journals (Sweden)

    Fatemeh Doosti

    2013-05-01

    Full Text Available Objective: In this study, the current literatures on the use of herbs and herbal preparations of Traditional Chinese and Indian Medicine for the treatment of opioid addiction were reviewed. Methods: Search was done in databases such as Pub Med, Science Direct, Scopus, Springer Link, and Google Scholar. Results: Among 18 retrieved studies, 3 studies were about asafetida extract, an approved preparation for ameliorating drug abstinence in China. Chinese preparations including Composite Dong Yuan Gao, Qingjunyin and TJ-97 (a water extract of dai-bofu-to as well as Indian ones, Mentate and Shilajit, were reported to have positive effects against opioid withdrawal, dependence, and tolerance. Moreover, Levo-tetrahydropalmatine and L-Stepholidine, in addition to extracts of Caulis Sinomenii and Sinomenium acutum showed similar effects. Banxia Houpu Decoction, Fu-Yuan pellet, Jinniu capsules, Qingjunyin, Tai-Kang-Ning capsule, and Xuan Xia Qudu Jiaonang (WeiniCom from Chinese preparations, showed anti-addiction effects in randomized, double-blind and, in some studies, multicenter clinical trials. Conclusion: Traditional herbal preparations of China and India have anti-addiction effects with less adverse effects than alpha2-adrenergic or opioid agonists.

  15. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  16. Tachykinin NK₁ receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation.

    Science.gov (United States)

    Tumati, Suneeta; Largent-Milnes, Tally M; Keresztes, Attila I; Yamamoto, Takashi; Vanderah, Todd W; Roeske, William R; Hruby, Victor J; Varga, Eva V

    2012-06-05

    Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors. In the present work we investigated the role of glial Tachykinin NK₁ receptors in morphine withdrawal-mediated spinal microglia and astrocyte activation. Our data indicate that intrathecal co-administration (6 days, twice daily) of a selective Tachykinin NK₁ receptor antagonist (N-acetyl-L-tryptophan 3,5-bis(trifluoromethyl)benzylester (L-732,138; 20 μg/injection)) attenuates spinal microglia and astrocyte marker and pro-inflammatory mediator immunoreactivity as well as hyperalgesia in withdrawn rats. Furthermore, covalent linkage of the opioid agonist with a Tachykinin NK₁ antagonist pharmacophore yielded a bivalent compound that did not augment spinal microglia or astrocyte marker or pro-inflammatory mediator immunoreactivity and did not cause paradoxical pain sensitization upon drug withdrawal. Thus, bivalent opioid/Tachykinin NK₁ receptor antagonists may provide a novel paradigm for long-term pain management.

  17. Stress-opioid interactions: a comparison of morphine and methadone.

    Science.gov (United States)

    Taracha, Ewa; Mierzejewski, Paweł; Lehner, Małgorzata; Chrapusta, Stanisław J; Kała, Maria; Lechowicz, Wojciech; Hamed, Adam; Skórzewska, Anna; Kostowski, Wojciech; Płaźnik, Adam

    2009-01-01

    The utility of methadone and morphine for analgesia and of methadone for substitution therapy for heroin addiction is a consequence of these drugs acting as opioid receptor agonists.We compared the cataleptogenic and antinociceptive effects of single subcutaneous doses of methadone hydrochloride (1-4 mg/kg) and morphine sulfate (2.5-10 mg/kg) using catalepsy and hot-plate tests, and examined the effects of the highest doses of the drugs on Fos protein expression in selected brain regions in male Sprague-Dawley rats. Methadone had greater cataleptogenic and analgesic potency than morphine. Fos immunohistochemistry revealed substantial effects on the Fos response of both the stress induced by the experimental procedures and of the drug exposure itself. There were three response patterns identified: 1) drug exposure, but not stress, significantly elevated Fos-positive cell counts in the caudate-putamen; 2) stress alone and stress combined with drug exposure similarly elevated Fos-positive cell counts in the nucleus accumbens and cingulate cortex; and 3) methadone and morphine (to a lesser extent) counteracted the stimulatory effect of nonpharmacological stressors on Fos protein expression in the somatosensory cortex barrel field, and Fos-positive cell counts in this region correlated negatively with both the duration of catalepsy and the latency time in the hot-plate test. The overlap between brain regions reacting to nonpharmacological stressors and those responding to exogenous opioids suggests that stress contributes to opioid-induced neuronal activation.

  18. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  19. Development of second generation peptides modulating cellular adiponectin receptor responses

    Science.gov (United States)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  20. The role of the opioid system in binge eating disorder.

    Science.gov (United States)

    Giuliano, Chiara; Cottone, Pietro

    2015-12-01

    Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic, mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli, which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems that regulates the anticipatory incentive processes preceding binge eating hedonic episodes.

  1. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior.

    Directory of Open Access Journals (Sweden)

    Michael R Bruchas

    2009-12-01

    Full Text Available Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF were triggered by CRF(1-R activation of the dynorphin/kappa opioid receptor (KOR system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM. The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI, and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF(1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF(2-R agonist urocortin III did not affect open arm time, and mice lacking CRF(2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF(2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF(1-R activation may mediate anxiety and CRF(2-R may encode aversion. Using a phosphoselective antibody (KORp to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA of wildtype, but not in mice pretreated with the selective CRF(1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was

  2. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  3. Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro*

    Science.gov (United States)

    Swedberg, Joakim E.; Schroeder, Christina I.; Mitchell, Justin M.; Fairlie, David P.; Edmonds, David J.; Griffith, David A.; Ruggeri, Roger B.; Derksen, David R.; Loria, Paula M.; Price, David A.; Liras, Spiros; Craik, David J.

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22–27) directing the binding of Phe22 into a hydrophobic pocket on the GLP-1R. PMID:27226591

  4. Morphine reduces the threshold of helium preconditioning against myocardial infarction: the role of opioid receptors in rabbits

    Science.gov (United States)

    Pagel, Paul S.; Krolikowski, John G.; Amour, Julien; Warltier, David C.; Weihrauch, Dorothee

    2015-01-01

    Objectives Brief, repetitive administration of helium before prolonged coronary artery occlusion and reperfusion protects myocardium against infarction. Opioid receptors mediate the cardioprotective effects of ischemic pre- and postconditioning, but whether these receptors also play a role in helium preconditioning is unknown. We tested the hypotheses that opioid receptors mediate helium preconditioning and that morphine (a μ1-opioid receptor agonist with δ1-opioid agonist properties) lowers the threshold of cardioprotection produced by helium in vivo. Design Randomized, prospective study. Setting University research laboratory. Participants Male New Zealand white rabbits. Interventions Rabbits (n=56) were instrumented for measurement of systemic hemodynamics and subjected to a 30 min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion. In separate experimental groups, rabbits (n=6 or 7 per group) received 0.9% saline (control), one or three cycles of 70% helium-30% oxygen administered for 5 min interspersed with 5 min of an air-oxygen mixture, morphine (0.1 mg/kg, i.v.), or the nonselective opioid antagonist naloxone (6 mg/kg, i.v.) before LAD occlusion. Other groups of rabbits received three cycles of helium or one cycle of helium plus morphine (0.1 mg/kg) in the absence or presence of naloxone (6 mg/kg) before ischemia and reperfusion. Statistical analysis of data was performed with analysis of variance for repeated measures followed by Bonferroni’s modification of Student’s t test. Measurements and Main Results Myocardial infarct size was determined using triphenyltetrazolium chloride staining and presented as a percentage of the left ventricular area at risk. Helium reduced myocardial infarct size in an exposure-related manner [36±6 (P>0.05) and 25±4% (P<0.05 versus control) for one and three cycles of helium, respectively; data are mean±SD] compared with control (44±7%). Morphine and naloxone alone did not affect infarct

  5. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum.

    Science.gov (United States)

    Johnson, Matthew W; MacLean, Katherine A; Reissig, Chad J; Prisinzano, Thomas E; Griffiths, Roland R

    2011-05-01

    Salvinorin A is a potent, selective nonnitrogenous kappa opioid agonist and the known psychoactive constituent of Salvia divinorum, a member of the mint family that has been used for centuries by Mazatec shamans of Mexico for divination and spiritual healing. S. divinorum has over the last several years gained increased popularity as a recreational drug. This is a double-blind, placebo controlled study of salvinorin A in 4 psychologically and physically healthy hallucinogen-using adults. Across sessions, participants inhaled 16 ascending doses of salvinorin A and 4 intermixed placebo doses under comfortable and supportive conditions. Doses ranged from 0.375 μg/kg to 21 μg/kg. Subject-rated drug strength was assessed every 2 min for 60 min after inhalation. Orderly time- and dose-related effects were observed. Drug strength ratings peaked at 2 min (first time point) and definite subjective effects were no longer present at approximately 20 min after inhalation. Dose-related increases were observed on questionnaire measures of mystical-type experience (Mysticism Scale) and subjective effects associated with classic serotonergic (5-HT2(A)) hallucinogens (Hallucinogen Rating Scale). Salvinorin A did not significantly increase heart rate or blood pressure. Participant narratives indicated intense experiences characterized by disruptions in vestibular and interoceptive signals (e.g., change in spatial orientation, pressure on the body) and unusual and sometimes recurring themes across sessions such as revisiting childhood memories, cartoon-like imagery, and contact with entities. Under these prepared and supportive conditions, salvinorin A occasioned a unique profile of subjective effects having similarities to classic hallucinogens, including mystical-type effects. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  8. Characterizing the Use of Telepsychiatry for Patients with Opioid Use Disorder and Cooccurring Mental Health Disorders in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Brittanie LaBelle

    2018-01-01

    Full Text Available Rural patients with opioid use disorder (OUD face a variety of barriers when accessing opioid agonist therapy (OAT and psychiatric services, due to the limited supply of physicians and the vast geographic area. The telemedicine allows for contact between patients and their physician—regardless of physical distance. Objective. We characterize the usage of telemedicine to deliver psychiatric services to patients with OUD in Ontario, as well as traits of treatment-seeking patients with opioid dependence and concurrent psychiatric disorders. Methodology. A retrospective cohort study was conducted using an administrative database for patients who received psychiatric services via telemedicine between 2008 and 2014 and who also had OUD. Results. We identified 9,077 patients with concurrent opioid use and other mental health disorders who had received psychiatric services via telemedicine from 2008 to 2014; 7,109 (78.3% patients lived in Southern Ontario and 1,968 (21.7% in Northern Ontario. Telemedicine was used more frequently to provide mental health services to patients residing in Northern Ontario than Southern Ontario. Conclusion. Telemedicine is increasingly being utilized throughout Ontario for delivering mental health treatment. There is an opportunity to increase access to psychiatric services for patients with opioid dependence and concurrent psychiatric disorders through the use of the telemedicine.

  9. High-Dose Opioid Prescribing and Opioid-Related Hospitalization: A Population-Based Study.

    Directory of Open Access Journals (Sweden)

    Kimberly Fernandes

    Full Text Available To examine the impact of national clinical practice guidelines and provincial drug policy interventions on prevalence of high-dose opioid prescribing and rates of hospitalization for opioid toxicity.Interventional time-series analysis.Ontario, Canada, from 2003 to 2014.Ontario Drug Benefit (ODB beneficiaries aged 15 to 64 years from 2003 to 2014.Publication of Canadian clinical practice guidelines for use of opioids in chronic non-cancer pain (May 2010 and implementation of Ontario's Narcotics Safety and Awareness Act (NSAA; November 2011.Three outcomes were explored: the rate of opioid use among ODB beneficiaries, the prevalence of opioid prescriptions exceeding 200 mg and 400 mg morphine equivalents per day, and rates of opioid-related emergency department visits and hospital admissions.Over the 12 year study period, the rate of opioid use declined 15.2%, from 2764 to 2342 users per 10,000 ODB eligible persons. The rate of opioid use was significantly impacted by the Canadian clinical practice guidelines (p-value = .03 which led to a decline in use, but no impact was observed by the enactment of the NSAA (p-value = .43. Among opioid users, the prevalence of high-dose prescribing doubled (from 4.2% to 8.7% over the study period. By 2014, 40.9% of recipients of long-acting opioids exceeded daily doses of 200 mg morphine or equivalent, including 55.8% of long-acting oxycodone users and 76.3% of transdermal fentanyl users. Moreover, in the last period, 18.7% of long-acting opioid users exceeded daily doses of 400 mg morphine or equivalent. Rates of opioid-related emergency department visits and hospital admissions increased 55.0% over the study period from 9.0 to 14.0 per 10,000 ODB beneficiaries from 2003 to 2013. This rate was not significantly impacted by the Canadian clinical practice guidelines (p-value = .68 or enactment of the NSAA (p-value = .59.Although the Canadian clinical practice guidelines for use of opioids in chronic non

  10. Opioid tapering in patients with prescription opioid use disorder : A retrospective study

    NARCIS (Netherlands)

    Zhou, Kehua; Jia, Peng; Bhargava, Swati; Zhang, Yong; Reza, Taslima; Peng, Yuan Bo; Wang, Gary G.

    2017-01-01

    Background and aims: Opioid use disorder (OUD) refers to a maladaptive pattern of opioid use leading to clinically significant impairment or distress. OUD causes, and vice versa, misuses and abuse of opioid medications. Clinicians face daily challenges to treat patients with prescription opioid use

  11. Lack of effect of the glucagon-like peptide-1 receptor agonist liraglutide on psoriasis in glucose-tolerant patients – a randomized placebo-controlled trial

    DEFF Research Database (Denmark)

    Faurschou, A; Gyldenløve, M; Rohde, U

    2015-01-01

    BACKGROUND: It has been proposed that glucagon-like peptide-1 receptor (GLP-1R) agonists used for the treatment of patients with type 2 diabetes might also improve their psoriasis. OBJECTIVE: To assess the efficacy and safety of the GLP-1R agonist liraglutide in glucose-tolerant patients with pla...... end points were improvement in PASI and dermatology life quality index (DLQI). Secondary end points included changes in weight and high sensitive C-reactive protein (hsCRP) levels, as well as adverse events. RESULTS: After 8 weeks of treatment, no significant change in PASI was found.......2 (liraglutide); P = 0.992). Liraglutide treatment resulted in a bodyweight loss of 4.7 ± 2.5 kg compared with 1.6 ± 2.7 kg in the placebo group (P = 0.014) accompanied by decreased cholesterol levels. No serious adverse events occurred during the 8-week observation period. The most common complaint...... was transient nausea, which occurred in 45% of the liraglutide-treated patients but in none from the placebo group. CONCLUSION: Liraglutide treatment for 8 weeks did not significantly change PASI, DLQI, or hsCRP in a small group of glucose-tolerant obese patients with plaque psoriasis compared with placebo...

  12. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  13. Past-year Prescription Drug Monitoring Program Opioid Prescriptions and Self-reported Opioid Use in an Emergency Department Population With Opioid Use Disorder.

    Science.gov (United States)

    Hawk, Kathryn; D'Onofrio, Gail; Fiellin, David A; Chawarski, Marek C; O'Connor, Patrick G; Owens, Patricia H; Pantalon, Michael V; Bernstein, Steven L

    2017-11-22

    Despite increasing reliance on prescription drug monitoring programs (PDMPs) as a response to the opioid epidemic, the relationship between aberrant drug-related behaviors captured by the PDMP and opioid use disorder is incompletely understood. How PDMP data should guide emergency department (ED) assessment has not been studied. The objective was to evaluate a relationship between PDMP opioid prescription records and self-reported nonmedical opioid use of prescription opioids in a cohort of opioid-dependent ED patients enrolled in a treatment trial. PDMP opioid prescription records during 1 year prior to study enrollment on 329 adults meeting Diagnostic and Statistical Manual IV criteria for opioid dependence entering a randomized clinical trial in a large, urban ED were cross-tabulated with data on 30-day nonmedical prescription opioid use self-report. The association among these two types of data was assessed by the Goodman and Kruskal's gamma; a logistic regression was used to explore characteristics of participants who had PDMP record of opioid prescriptions. During 1 year prior to study enrollment, 118 of 329 (36%) patients had at least one opioid prescription (range = 1-51) in our states' PDMP. Patients who reported ≥15 of 30 days of nonmedical prescription opioid use were more likely to have at least four PDMP opioid prescriptions (20/38; 53%) than patients reporting 1 to 14 days (14/38, 37%) or zero days of nonmedical prescription opioid use (4/38, 11%; p = 0.002). Female sex and having health insurance were significantly more represented in the PDMP (p Medicine.

  14. Opioid withdrawal, craving, and use during and after outpatient buprenorphine stabilization and taper: a discrete survival and growth mixture model.

    Science.gov (United States)

    Northrup, Thomas F; Stotts, Angela L; Green, Charles; Potter, Jennifer S; Marino, Elise N; Walker, Robrina; Weiss, Roger D; Trivedi, Madhukar

    2015-02-01

    Most patients relapse to opioids within one month of opioid agonist detoxification, making the antecedents and parallel processes of first use critical for investigation. Craving and withdrawal are often studied in relationship to opioid outcomes, and a novel analytic strategy applied to these two phenomena may indicate targeted intervention strategies. Specifically, this secondary data analysis of the Prescription Opioid Addiction Treatment Study used a discrete-time mixture analysis with time-to-first opioid use (survival) simultaneously predicted by craving and withdrawal growth trajectories. This analysis characterized heterogeneity among prescription opioid-dependent individuals (N=653) into latent classes (i.e., latent class analysis [LCA]) during and after buprenorphine/naloxone stabilization and taper. A 4-latent class solution was selected for overall model fit and clinical parsimony. In order of shortest to longest time-to-first use, the 4 classes were characterized as 1) high craving and withdrawal, 2) intermediate craving and withdrawal, 3) high initial craving with low craving and withdrawal trajectories and 4) a low initial craving with low craving and withdrawal trajectories. Odds ratio calculations showed statistically significant differences in time-to-first use across classes. Generally, participants with lower baseline levels and greater decreases in craving and withdrawal during stabilization combined with slower craving and withdrawal rebound during buprenorphine taper remained opioid-free longer. This exploratory work expanded on the importance of monitoring craving and withdrawal during buprenorphine induction, stabilization, and taper. Future research may allow individually tailored and timely interventions to be developed to extend time-to-first opioid use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Design of a new peptidomimetic agonist for the melanocortin receptors based on the solution structure of the peptide ligand, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2).

    Science.gov (United States)

    Fotsch, Christopher; Smith, Duncan M; Adams, Jeffrey A; Cheetham, Janet; Croghan, Michael; Doherty, Elizabeth M; Hale, Clarence; Jarosinski, Mark A; Kelly, Michael G; Norman, Mark H; Tamayo, Nuria A; Xi, Ning; Baumgartner, James W

    2003-07-21

    The solution structure of a potent melanocortin receptor agonist, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2) (1) was calculated using distance restraints determined from 1H NMR spectroscopy. Eight of the lowest energy conformations from this study were used to identify non-peptide cores that mimic the spatial arrangement of the critical tripeptide region, DPhe-Arg-Trp, found in 1. From these studies, compound 2a, containing the cis-cyclohexyl core, was identified as a functional agonist of the melanocortin-4 receptor (MC4R) with an IC(50) and EC(50) below 10 nM. Compound 2a also showed 36- and 7-fold selectivity over MC3R and MC1R, respectively, in the binding assays. Subtle changes in cyclohexane stereochemistry and removal of functional groups led to analogues with lower affinity for the MC receptors.

  16. β-lipotropin is the major opioid-like peptide of human pituitary and rat pars distalis: lack of significant β-endorphin

    International Nuclear Information System (INIS)

    Liotta, A.S.; Suda, T.; Krieger, D.T.

    1978-01-01

    β-Lipotropin is the predominant opioid peptide of the human pituitary and rat pars distalis and is present in concentrations essentially equimolar with corticotropin. When freshly obtained nonfrozen rat anterior pituitaries were homogenized with 0.2 M HCl, approximately 98% of the immunoreactivity detected utilizing an antiserum that crossreacts equally with β-lipotropin and β-endorphin coeluted with 125 I-labeled human β-lipotropin upon molecular sieve chromatography. The remainder of the activity eluted with synthetic human β-endorphin. Similar results were obtained for human pituitary. HCl homogenization of thawed tissue or homogenization of fresh tissue with acetic acid yielded substantially greater concentrations of β-endorphin and decreased concentrations of β-lipotropin. In human subjects, acute anterior pituitary stimulation using either insulin-induced hypoglycemia or vasopressin administration was associated with increased plasma β-lipotropin and corticotropin levels. At the time of peak concentrations, no significant levels of β-endorphin were detectable. These data indicate the lack of significant amounts of β-endorphin in human pituitary. Additionally, there appears to be no specific intrapituitary conversion of β-lipotropin to β-endorphin

  17. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  18. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  19. Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog

    International Nuclear Information System (INIS)

    Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Erchegyi, Judit; Rivier, Jean E.

    2010-01-01

    Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator. Two novel somatostatin analogs, 406-040-15 and its DOTA-coupled counterpart 406-051-20, with and without cold Indium labeling, were tested for their somatostatin receptor subtypes 1-5 (sst 1 -sst 5 ) binding affinity using receptor autoradiography. Moreover, they were tested functionally for their ability to affect sst 2 and sst 3 internalization in vitro in HEK293 cells stably expressing the human sst 2 or sst 3 receptor, using an immunofluorescence microscopy-based internalization assay. All three compounds were characterized as pan-somatostatin analogs having a high affinity for all five sst. In the sst 2 internalization assay, all three compounds showed an identical behavior, namely, a weak agonistic effect complemented by a weak antagonistic effect, compatible with the behavior of a partial agonist. Conversely, in the sst 3 internalization assay, 406-040-15 was a full antagonist whereas its DOTA-coupled counterpart, 406-051-20, with and without Indium labeling, switched to a full agonist. Adding the DOTA chelator to the somatostatin analog 406-040-15 triggers a switch at sst 3 receptor from an antagonist to an agonist. This indicates that potential radioligands for tumor targeting should always be tested functionally before further development, in particular if a chelator is added. (orig.)

  20. Co-morbid pain and opioid addiction: long term effect of opioid maintenance on acute pain.

    Science.gov (United States)

    Wachholtz, Amy; Gonzalez, Gerardo

    2014-12-01

    Medication assisted treatment for opioid dependence alters the pain experience. This study will evaluate changes pain sensitivity and tolerance with opioid treatments; and duration of this effect after treatment cessation. 120 Individuals with chronic pain were recruited in 4 groups (N = 30): 1-methadone for opioid addiction; 2-buprenorphine for opioid addiction; 3-history of opioid maintenance treatment for opioid addiction but with prolonged abstinence (M = 121 weeks; SD = 23.3); and 4-opioid naïve controls. Participants completed a psychological assessment and a cold water task including, time to first pain (sensitivity) and time to stopping the pain task (tolerance). Data analysis used survival analyses. A Kaplan-Meier-Cox survival analysis showed group differences for both pain sensitivity (log rank = 15.50; p opioid maintenance resulted in differing pain sensitivity compared to opioid naïve (p's opioid maintenance compared to active methadone patients (p opioid naïve control group participants (p's opioid abstinence increased (R = .37; p opioid maintenance, there appears to be long-term differences in pain sensitivity that do not resolve with discontinuation of opioid maintenance. Although pain sensitivity does not change, pain tolerance does improve after opioid maintenance cessation. Implications for treating co-morbid opioid addiction and pain (acute and chronic) are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Recent Advances in GLP-1 Receptor Agonists for Use in Diabetes Mellitus.

    Science.gov (United States)

    McBrayer, Dominic N; Tal-Gan, Yftah

    2017-09-01

    Preclinical Research Mimetics of Glucagon-like peptide 1 (GLP-1) represent a useful alternative or complementary treatment choice to insulin in the treatment of diabetes mellitus. The lack of hypoglycemia as a side effect when GLP-1 receptor agonists are used along with the tendency of these therapeutic agents to prevent or even reduce weight gain makes them valuable targets in therapy development. However, native GLP-1 and many of its early analogues have very short half-lives, requiring repeated treatment to maintain therapeutic levels. As all current treatments are injected subcutaneously, a large focus has been made on trying to extend the half-lives of GLP-1 analogues while retaining bioactivity. Most success in this regard has been achieved with the use of peptide-protein fusions, which are not as well suited for oral administration. However, recent work focused on the development of non-fusion peptides with increased half-lives that may be more appropriate for oral administration. This minireview discusses the structural characteristics of past and present analogues as well as the recent work conducted toward developing novel GLP-1 receptor agonists. Drug Dev Res 78 : 292-299, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Distance traveled and frequency of interstate opioid dispensing in opioid shoppers and nonshoppers.

    Science.gov (United States)

    Cepeda, M Soledad; Fife, Daniel; Yuan, Yingli; Mastrogiovanni, Greg

    2013-10-01

    Little is known about how far opioid shoppers travel or how often they cross state lines to fill their opioid prescriptions. This retrospective cohort study evaluated these measures for opioid shoppers and nonshoppers using a large U.S. prescription database. Patients with ≥3 opioid dispensings were followed for 18 months. A subject was considered a shopper when he or she filled overlapping opioid prescriptions written by >1 prescriber at ≥3 pharmacies. A heavy shopper had ≥5 shopping episodes. Outcomes assessed were distance traveled among pharmacies and number of states visited to fill opioid prescriptions. A total of 10,910,451 subjects were included; .7% developed any shopping behavior and their prescriptions accounted for 8.6% of all opioid dispensings. Shoppers and heavy shoppers were younger than the nonshoppers. Shoppers traveled a median of 83.8 miles, heavy shoppers 199.5 miles, and nonshoppers 0 miles. Almost 20% of shoppers or heavy shoppers, but only 4% of nonshoppers, visited >1 state. Shoppers traveled greater distances and more often crossed state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. Sharing of data among prescription-monitoring programs will likely strengthen those programs and may decrease shopping behavior. This study shows that opioid shoppers travel greater distances and more often cross state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. The findings support the need for data sharing among prescription-monitoring programs to deter opioid shopping behavior. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Safety, efficacy, and molecular mechanism of claudin-1-specific peptides to enhance blood-nerve-barrier permeability.

    Science.gov (United States)

    Sauer, Reine-Solange; Krug, Susanne M; Hackel, Dagmar; Staat, Christian; Konasin, Natalia; Yang, Shaobing; Niedermirtl, Benedikt; Bosten, Judith; Günther, Ramona; Dabrowski, Sebastian; Doppler, Kathrin; Sommer, Claudia; Blasig, Ingolf E; Brack, Alexander; Rittner, Heike L

    2014-07-10

    The blood-nerve barrier consists of the perineurium and endoneurial vessels. The perineurial barrier is composed of a basal membrane and a layer of perineurial cells sealed by tight junction proteins preventing e.g. application of analgesics for selective regional pain control. One of the barrier-sealing proteins in the blood-nerve barrier is claudin-1. Therefore, the claudin-1-peptidomimetics (C1C2), derived from the first extracellular loop (ECL1) on claudin-1 was developed. In this study, we further evaluated the expression of tight junction proteins in the perineurium in Wistar rats and characterized the specificity, in vivo applicability, mechanism of action as well as the biocompatibility of C1C2. In the perineurium, claudin-19, tricellulin and ZO-1, but no claudin-2, 3, 8 and -11 were expressed. C1C2 specifically bound to the ECL1 of claudin-1 and fluorescent 5,6-carboxytetramethylrhodamine-C1C2 was rapidly internalized. Opening the perineurium with C1C2 reduced the mRNA and protein expression of claudin-1 and increased small and macromolecule permeability into the peripheral nerve. Application of C1C2 facilitated regional analgesia using μ-opioid receptor agonists like DAMGO or morphine without motor impairment in naïve rats as well as rats with hind paw inflammation. In contrast the control peptide C2C2 derived from ECL1 on claudin-2 did neither open the barrier nor facilitated opioid-mediated regional analgesia. C1C2 delivery was well tolerated and caused no morphological and functional nerve damage. C1C2 effects could be reversed by interference with the wnt-signal-transduction pathway, specifically the homeobox transcription factor cdx2, using a glycogen-synthase-kinase-3 inhibitor. In summary, we describe the composition of and a pathway to open the perineurial barrier employing a peptide to deliver hydrophilic substances to the peripheral nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    Science.gov (United States)

    Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr

    2015-01-01

    HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid

  5. Opioid peptides and gastrointestinal symptoms in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Cristiane P. Lázaro

    2016-01-01

    Full Text Available Autism spectrum disorders (ASDs are characterized by deficits in the individual’s ability to socialize, communicate, and use the imagination, in addition to stereotyped behaviors. These disorders have a heterogenous phenotype, both in relation to symptoms and regarding severity. Organic problems related to the gastrointestinal tract are often associated with ASD, including dysbiosis, inflammatory bowel disease, exocrine pancreatic insufficiency, celiac disease, indigestion, malabsorption, food intolerance, and food allergies, leading to vitamin deficiencies and malnutrition. In an attempt to explain the pathophysiology involved in autism, a theory founded on opioid excess has been the focus of various investigations, since it partially explains the symptomatology of the disorder. Another hypothesis has been put forward whereby the probable triggers of ASDs would be related to the presence of bacteria in the bowel, oxidative stress, and intestinal permeability. The present update reviews these hypotheses.

  6. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction.

    Science.gov (United States)

    Teklezgi, Belin G; Pamreddy, Annapurna; Baijnath, Sooraj; Kruger, Hendrik G; Naicker, Tricia; Gopal, Nirmala D; Govender, Thavendran

    2018-02-14

    Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward. © 2018 Society for the Study of Addiction.

  8. Glucagon-like peptide 1 receptor agonists: a new approach to type 2 ...

    African Journals Online (AJOL)

    Hypoglycaemia and weight gain that are associated with many antidiabetic medications may interfere with the implementation and long-term application of treatment strategies. Glucose homeostasis is dependent on a complex interplay of multiple hormones and gastrointestinal peptides, including glucagon-like peptide 1 ...

  9. Nonopioid substance use disorders and opioid dose predict therapeutic opioid addiction.

    Science.gov (United States)

    Huffman, Kelly L; Shella, Elizabeth R; Sweis, Giries; Griffith, Sandra D; Scheman, Judith; Covington, Edward C

    2015-02-01

    Limited research examines the risk of therapeutic opioid addiction (TOA) in patients with chronic noncancer pain. This study examined TOA among 199 patients undergoing long-term opioid therapy at the time of admission to a pain rehabilitation program. It was hypothesized that nonopioid substance use disorders and opioid dosage would predict TOA. Daily mean opioid dose was 132.85 mg ± 175.39. Patients with nonopioid substance use disorders had 28 times the odds (odds ratio [OR] = 28.58; 95% confidence interval [CI] = 10.86, 75.27) of having TOA. Each 50-mg increase in opioid dose nearly doubled the odds of TOA (OR = 1.73; 95% CI = 1.29, 2.32). A 100-mg increase was associated with a 3-fold increase in odds (OR = 3.00; 95% CI = 1.67, 5.41). Receiver operating characteristic analysis revealed that opioid dose was a moderately accurate predictor (area under the curve = .75; 95% CI = .68, .82) of TOA. The sensitivity (.70) and specificity (.68) of opioid dose in predicting TOA was maximized at 76.10 mg; in addition, 46.00 mg yielded 80% sensitivity in identifying TOA. These results underscore the importance of obtaining a substance use history prior to prescribing and suggest a low screening threshold for TOA in patients who use opioids in the absence of improvement in pain or functional impairment. This article examines TOA in patients with chronic noncancer pain undergoing long-term opioid therapy. Results suggest that patients should be screened for nonopioid substance use disorders prior to prescribing. In the absence of improvement in pain or function, there is a low threshold (∼50 mg daily opioid dose) for addiction screening. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Analgesic Effects of Diluted Bee Venom Acupuncture Mediated by δ-Opioid and α2-Adrenergic Receptors in Osteoarthritic Rats.

    Science.gov (United States)

    Huh, Jeong-Eun; Seo, Byung-Kwan; Lee, Jung-Woo; Kim, Chanyoung; Park, Yeon-Cheol; Lee, Jae-Dong; Baek, Yong-Hyeon

    2017-06-23

    Context • Pain from osteoarthritis is associated with peripheral nociception and central pain processing. Given the unmet need for innovative, effective, and well-tolerated therapies, many patients, after looking for more satisfactory alternatives, decide to use complementary and alternative modalities. The analgesic mechanism of subcutaneous injections of diluted bee venom into an acupoint is thought to be part of an anti-inflammatory effect and the central modulation of pain processing. Objectives • Using the rat model of collagenase-induced osteoarthritis (CIOA), the study intended to investigate the analgesic effects of bee venom acupuncture (BVA) as they are related to the acupuncture points and dosage used and to determine whether the analgesic mechanisms of BVA for pain were mediated by opioid or adrenergic receptors. Design • Male Sprague-Dawley rats were randomly assigned to one of 19 groups, with n = 10 for each group. Setting • The study was conducted at the East-West Bone and Joint Research Institute at Kyung Hee University (Seoul, South Korea). Intervention • All rats were intra-articularly injected with collagenase solution in the left knee, followed by a booster injection performed 4 d after the first injection. For the groups receiving BVA treatments, the treatment was administered into the ST-36 acupoint, except for 1 group that received the treatment into a nonacupoint. Three BVA intervention groups received no pretreatment with agonists or antagonists; 1 of them received a dose of 1 mg/kg of bee venom into acupoint ST-36, 1 received a dose of 2 mg/kg into acupoint ST-36, and 1 received a dose of 1 mg/kg into a nonacupoint location. For the intervention groups receiving pretreatments, the opioid-receptor or adrenergic-receptor agonists or antagonists were injected 20 min before the 1-mg/kg BVA treatments. Outcome Measures • Changes in the rats' pain thresholds were assessed by evaluation of pain-related behavior, using a tail flick

  11. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  12. Neonatal opioid withdrawal syndrome.

    Science.gov (United States)

    Sutter, Mary Beth; Leeman, Lawrence; Hsi, Andrew

    2014-06-01

    Neonatal opioid withdrawal syndrome is common due to the current opioid addiction epidemic. Infants born to women covertly abusing prescription opioids may not be identified as at risk until withdrawal signs present. Buprenorphine is a newer treatment for maternal opioid addiction and appears to result in a milder withdrawal syndrome than methadone. Initial treatment is with nonpharmacological measures including decreasing stimuli, however pharmacological treatment is commonly required. Opioid monotherapy is preferred, with phenobarbital or clonidine uncommonly needed as adjunctive therapy. Rooming-in and breastfeeding may decease the severity of withdrawal. Limited evidence is available regarding long-term effects of perinatal opioid exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. γ-Preprotachykinin-(72-92)-peptide amide: An endogenous preprotachykinin I gene-derived peptide that preferentially binds to neurokinin-2 receptors

    International Nuclear Information System (INIS)

    Dam, T.V.; Takeda, Y.; Krause, J.E.; Escher, E.; Quirion, R.

    1990-01-01

    The presence of N-terminally extended forms of neurokinin A has recently been reported in the mammalian brain. Among them, gamma-preprotachykinin-(72-92)-peptide amide [gamma-PPT-(72-92)-NH2], a peptide derived by posttranslational processing of gamma-preprotachykinin, is most prominent. We report here that this peptide most likely acts on neurokinin-2 receptor sites since neurokinin A (a putative neurokinin-2 agonist) and gamma-PPT-(72-92)-NH2 are potent competitors of 125I-labeled gamma-PPT-(72-92)-NH2 binding whereas selective neurokinin-1 and -3 agonists are not. Moreover, the distribution of 125I-labeled gamma-PPT-(72-92)-NH2 and 125I-labeled neurokinin A binding sites are very similar in rat brain. On the other hand, 125I-labeled Bolton-Hunter-substance P (a neurokinin-1 ligand) and 125I-labeled Bolton-Hunter-eledoisin (a neurokinin-3 ligand) binding sites are differentially located in this tissue. Thus, it appears that gamma-PPT-(72-92)-NH2 binds to neurokinin-2 receptors and should be considered as a putative endogenous ligand for this receptor class

  14. Physician Introduction to Opioids for Pain Among Patients with Opioid Dependence and Depressive Symptoms

    Science.gov (United States)

    Tsui, Judith I.; Herman, Debra S.; Kettavong, Malyna; Alford, Daniel; Anderson, Bradley J.; Stein, Michael D.

    2011-01-01

    This study determined the frequency of reporting being introduced to opioids by a physician among opioid dependent patients. Cross-sectional analyses were performed using baseline data from a cohort of opioid addicts seeking treatment with buprenorphine. The primary outcome was response to the question: “Who introduced you to opiates?” Covariates included sociodemographics, depression, pain, current and prior substance use. Of 140 participants, 29% reported that they had been introduced to opioids by a physician. Of those who were introduced to opioids by a physician, all indicated that they had initially used opioids for pain, versus only 11% of those who did not report being introduced to opioids by a physician (p<0.01). There was no difference in current pain (78% vs. 85%, p=0.29), however participants who were introduced to opioids by a physician were more likely to have chronic pain (63% vs. 43%, p=0.04). A substantial proportion of individuals with opioid dependence seeking treatment may have been introduced to opioids by a physician. PMID:20727704

  15. Medications Development for Opioid Abuse

    Science.gov (United States)

    Negus, S. Stevens; Banks, Matthew L.

    2013-01-01

    Here we describe methods for preclinical evaluation of candidate medications to treat opioid abuse and dependence. Our perspective is founded on the propositions that (1) drug self-administration procedures provide the most direct method for assessment of medication effects, (2) procedures that assess choice between opioid and nondrug reinforcers are especially useful, and (3) the states of opioid dependence and withdrawal profoundly influence both opioid reinforcement and the effects of candidate medications. Effects of opioid medications on opioid choice in nondependent and opioid-dependent subjects are reviewed. Various nonopioid medications have also been examined, but none yet have been identified that safely and reliably reduce opioid choice. Future research will focus on (1) strategies for increasing safety and/or effectiveness of opioid medications, and (2) continued development of nonopioids such as inhibitors of endocannabinoid catabolic enzymes or inhibitors of opioid-induced glial activation. PMID:23125072

  16. Interaction of trimebutine and Jo-1196 (fedotozine) with opioid receptors in the canine ileum

    Energy Technology Data Exchange (ETDEWEB)

    Allescher, H.D.; Ahmad, S.; Classen, M.; Daniel, E.E. (Technical Univ., Munich, (West Germany))

    1991-05-01

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg) and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.

  17. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Knop, Filip K; Holst, Jens J

    2009-01-01

    Lixisenatide, under development by sanofi-aventis, is a novel human glucagon-like peptide-1 receptor (GLP-1R) agonist for the treatment of type 2 diabetes mellitus (T2DM; non-insulin dependent diabetes). The structure of lixisenatide, based on exendin-4(1-39) modified C-terminally with six Lys...... of the anticipated effects of lixisenatide on glycemic measures and weight; favorable results would place lixisenatide for consideration among other GLP-1R agonists in the treatment armamentarium for T2DM....

  18. Opioid tapering in patients with prescription opioid use disorder: A retrospective study.

    Science.gov (United States)

    Zhou, Kehua; Jia, Peng; Bhargava, Swati; Zhang, Yong; Reza, Taslima; Peng, Yuan Bo; Wang, Gary G

    2017-10-01

    Opioid use disorder (OUD) refers to a maladaptive pattern of opioid use leading to clinically significant impairment or distress. OUD causes, and vice versa, misuses and abuse of opioid medications. Clinicians face daily challenges to treat patients with prescription opioid use disorder. An evidence-based management for people who are already addicted to opioids has been identified as the national priority in the US; however, options are limited in clinical practices. In this study, we aimed to explore the success rate and important adjuvant medications in the medication assisted treatment with temporary use of methadone for opioid discontinuation in patients with prescription OUD. This is a retrospective chart review performed at a private physician office for physical medicine and rehabilitation. We reviewed all medical records dated between December 1st, 2011 and August 30th, 2016. The initial evaluation of the included patients (N=140) was completed between December 1st, 2011 and December 31st, 2014. They all have concumittant prescription OUD and chronic non-cancer pain. The patients (87 female and 53 male) were 46.7±12.7 years old, and had a history of opioid use of 7.7±6.1 years. All patients received the comprehensive opioid taper treatments (including interventional pain management techniques, psychotherapy, acupuncture, physical modalities and exercises, and adjuvant medications) on top of the medication assisted treatment using methadone (transient use). Opioid tapering was considered successful when no opioid medication was used in the last patient visit. The 140 patients had pain of 9.6±8.4 years with 8/10 intensity before treatment which decreased after treatment in all comparisons (pOUD. For patients with OUD, indefinite opioid maintenance treatment may not be necessary. Considering the ethical values of autonomy, nonmaleficence, and beneficence, clinicians should provide patients with OUD the option of opioid tapering. Copyright © 2017

  19. Patients with Obesity Caused by Melanocortin-4 Receptor Mutations Can Be Treated with a Glucagon-like Peptide-1 Receptor Agonist

    DEFF Research Database (Denmark)

    Iepsen, Eva W; Zhang, Jinyi; Thomsen, Henrik S

    2018-01-01

    Pathogenic mutations in the appetite-regulating melanocortin-4 receptor (MC4R) represent the most common cause of monogenic obesity with limited treatment options. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) cause weight loss by reducing appetite. We assessed the effect of the GLP-1 RA...... liraglutide 3.0 mg for 16 weeks in 14 obese individuals with pathogenic MC4R mutations (BMI 37.5 ± 6.8) and 28 matched control participants without MC4R mutation (BMI 36.8 ± 4.8). Liraglutide decreased body weight by 6.8 kg ± 1.8 kg in individuals with pathogenic MC4R mutations and by 6.1 kg ± 1.2 kg...... in control participants. Total body fat, waist circumference, and fasting and postprandial glucose concentrations similarly decreased in both groups. Thus, liraglutide induced an equal, clinically significant weight loss of 6% in both groups, indicating that the appetite-reducing effect of liraglutide...

  20. Dipeptidyl peptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) agonists

    DEFF Research Database (Denmark)

    Madsbad, Sten

    2012-01-01

    Incretin-based therapies, which include the GLP-1 receptor agonists and DPP-4 inhibitors, use the antidiabetic properties of potentiating the GLP-1 receptor signalling via the regulation of insulin and glucagon secretion, inhibition of gastric emptying and suppression of appetite. Most physicians...... will start antidiabetic treatment with metformin, but adding a GLP-1 receptor agonist as the second drug seems to be optimal since more patients will reach an HbA1c below 7% than with a DPP-4 inhibitor or another oral antidiabetic agents and with minimal risk of hypoglycaemia. The GLP-1 receptor agonists...

  1. MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile.

    Science.gov (United States)

    Liu, Xin; Zhao, Long; Wang, Yuan; Zhou, Jingjing; Wang, Dan; Zhang, Yixin; Zhang, Xianghui; Wang, Zhaojuan; Yang, Dongxu; Mou, Lingyun; Wang, Rui

    2017-10-18

    Opioid peptides are neuromodulators that bind to opioid receptors and reduce pain sensitivity. Endomorphins are among the most active endogenous opioid peptides, and they have good affinity and selectivity toward the μ opioid receptor. However, their clinical usage is hindered by their inability to cross the blood-brain barrier and their poor in vivo activity after peripheral injection. In order to overcome these defects, we have designed and synthesized a series of novel endomorphin analogs with multiple site modifications. Radioligand binding, cAMP accumulation, and β-arrestin-2 recruitment assays were employed to determine the activity of synthesized endomorphin analogs toward opioid receptors. The blood-brain barrier permeability and antinociceptive effect of these analogs were determined in several rodent models of acute and persistent pain. In addition, the side effects of the analogs were examined. The radioligand binding assay and functional activity examination indicated that the MEL-N16 series of compounds were more active agonists against μ opioid receptor than were the parent peptides. Notably, the analogs displayed biased downstream signaling toward G-protein pathways over β-arrestin-2 recruitment. The analogs showed highly potent antinociceptive effects in the tested nociceptive models. In comparison with endomorphins, the synthesized analogs were better able to penetrate the blood-brain barrier and exerted their pain regulatory activity in the central nervous system after peripheral injection. These analogs also have lower tendency to cause side effects than morphine does at similar or equal antinociceptive doses. The MEL-N16 compounds have highly potent and efficacious analgesic effects in various pain models with a favorable side effect profile.

  2. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    Science.gov (United States)

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  3. Impact of Chronic Pain on Treatment Prognosis for Patients with Opioid Use Disorder: A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Brittany B. Dennis

    2015-01-01

    Full Text Available Background While a number of pharmacological interventions exist for the treatment of opioid use disorder, evidence evaluating the effect of pain on substance use behavior, attrition rate, and physical or mental health among these therapies has not been well established. We aim to evaluate these effects using evidence gathered from a systematic review of studies evaluating chronic non-cancer pain (CNCP in patients with opioid use disorder. Methods We searched the Medline, EMBASE, PubMed, PsycINFO, Web of Science, Cochrane Database of Systematic Reviews, ProQuest Dissertations and theses Database, Cochrane Central Register of Controlled Trials, World Health Organization International Clinical Trials Registry Platform Search Portal, and National Institutes for Health Clinical Trials Registry databases to identify articles evaluating the impact of pain on addiction treatment outcomes for patients maintained on opioid agonist therapy. Results Upon screening 3,540 articles, 14 studies with a combined sample of 3,128 patients fulfilled the review inclusion criteria. Results from the meta-analysis suggest that pain has no effect on illicit opioid consumption [pooled odds ratio (pOR: 0.70, 95%CI 0.41–1.17; I 2 = 0.0] but a protective effect for reducing illicit non-opioid substance use (pOR: 0.57, 95%CI 0.41–0.79; I 2 = 0.0. Studies evaluating illicit opioid consumption using other measures demonstrate pain to increase the risk for opioid abuse. Pain is significantly associated with the presence of psychiatric disorders (pOR: 2.18; 95%CI 1.6, 2.9; I 2 = 0.0%. Conclusion CNCP may increase risk for continued opioid abuse and poor psychiatric functioning. Qualitative synthesis of the findings suggests that major methodological differences in the design and measurement of pain and treatment response outcomes are likely impacting the effect estimates.

  4. Craving and subsequent opioid use among opioid dependent patients who initiate treatment with buprenorphine

    Science.gov (United States)

    Tsui, Judith I.; Anderson, Bradley J.; Strong, David R.; Stein, Michael D.

    2016-01-01

    Background Few studies have directly assessed associations between craving and subsequent opioid use among treated patients. Our objective was to prospectively evaluate the relative utility of two craving questionnaires to predict opioid use among opioid dependent patients in treatment. Method Opioid dependent patients (n=147) initiating buprenorphine treatment were assessed for three months. Craving was measured using: 1) the Desires for Drug Questionnaire (DDQ) and 2) the Penn Alcohol-Craving Scale adapted for opioid craving (PCS) for this study. Multi-level logistic regression models estimated the effects of craving on the likelihood of opioid use after adjusting for gender, age, ethnicity, education, opioid of choice, frequency of use, pain and depression. In these analyses craving assessed at time t was entered as a time-varying predictor of opioid use at time t+1. Results In adjusted regression models, a 1-point increase in PCS scores (on a 7-point scale) was associated with a significant increase in the odds of opioid use at the subsequent assessment (OR = 1.27, 95% CI 1.08; 1.49, p .05) or DDQ control (OR = 0.97, 95%CI 0.85; 1.11, p > .05) scores. Conclusion Self-reported craving for opioids was associated with subsequent lapse to opioid use among a cohort of patients treated with buprenorphine. PMID:24521036

  5. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice.

    Science.gov (United States)

    Jouihan, Hani; Will, Sarah; Guionaud, Silvia; Boland, Michelle L; Oldham, Stephanie; Ravn, Peter; Celeste, Anthony; Trevaskis, James L

    2017-11-01

    Nonalcoholic steatohepatitis (NASH) is an unmet need associated with metabolic syndrome. There are no approved therapies for NASH; however, glucagon-like peptide-1 receptor (GLP-1R) and farnesoid-X receptor (FXR) agonists are promising drug targets. We investigated the therapeutic effects of co-administration of a GLP-1R agonist, IP118, with FXR agonist obeticholic acid (OCA) in mice. OCA and IP118 alone and in combination were sub-chronically administered to Lep ob /Lep ob mice with diet-induced NASH or diet-induced obese (DIO) mice. Metabolic (body weight and glucose) and liver (biochemical and histological) endpoints were assessed. NASH severity in Lep ob /Lep ob mice was graded using a customized integrated scoring system. OCA reduced liver weight and lipid in NASH mice (both by -17%) but had no effect on plasma ALT or AST levels. In contrast, IP118 significantly reduced liver weight (-21%), liver lipid (-15%), ALT (-29%), and AST (-27%). The combination of OCA + IP118 further reduced liver weight (-29%), liver lipid (-22%), ALT (-39%), and AST (-36%). Combination therapy was superior to monotherapies in reducing hepatic steatosis, inflammation, and fibrosis. Hepatic improvements with IP118 and OCA + IP118 were associated with reduced body weight (-4.3% and -3.5% respectively) and improved glycemic control in OCA + IP118-treated mice. In DIO mice, OCA + IP118 co-administration reduced body weight (-25.3%) to a greater degree than IP118 alone (-12.5%) and further improved glucose tolerance and reduced hepatic lipid. Our data suggest a complementary or synergistic therapeutic effect of GLP-1R and FXR agonism in mouse models of metabolic disease and NASH. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Design of ET(B) receptor agonists: NMR spectroscopic and conformational studies of ET7-21[Leu7, Aib11, Cys(Acm)15].

    Science.gov (United States)

    Hewage, Chandralal M; Jiang, Lu; Parkinson, John A; Ramage, Robert; Sadler, Ian H

    2002-03-01

    In a previous report we have shown that the endothelin-B receptor-selective linear endothelin peptide, ET-1[Cys (Acm)1,15, Ala3, Leu7, Aib11], folds into an alpha-helical conformation in a methanol-d3/water co-solvent [Hewage et al. (1998) FEBS Lett., 425, 234-238]. To study the requirements for the structure-activity relationships, truncated analogues of this peptide were subjected to further studies. Here we report the solution conformation of ET7-21[Leu7, Aib11, Cys(Acm)15], in a methanol-d3/water co-solvent at pH 3.6, by NMR spectroscopic and molecular modelling studies. Further truncation of this short peptide results in it displaying poor agonist activity. The modelled structure shows that the peptide folds into an alpha-helical conformation between residues Lys9-His16, whereas the C-terminus prefers no fixed conformation. This truncated linear endothelin analogue is pivotal for designing endothelin-B receptor agonists.

  7. GLP-1 agonists for type 2 diabetes

    DEFF Research Database (Denmark)

    Jespersen, Maria J; Knop, Filip K; Christensen, Mikkel

    2013-01-01

    and legal documents in the form of assessment reports from the European Medicines Agency and the United States Food and Drug Administration. EXPERT OPINION: GLP-1-based therapy combines several unique mechanisms of action and have the potential to gain widespread use in the fight against diabetes......Within recent years, glucagon-like peptide 1 receptor agonists (GLP-1-RA) have emerged as a new treatment option for type 2 diabetes. The GLP-1-RA are administered subcutaneously and differ substantially in pharmacokinetic profiles. AREAS COVERED: This review describes the pharmacokinetics...

  8. Differences between opioids

    DEFF Research Database (Denmark)

    Drewes, Asbjørn; Jensen, Rasmus D.; Nielsen, Lecia M.

    2013-01-01

    to morphine. Although this approach is recognized as cost-effective in most cases there is solid evidence that, on an individual patient basis, opioids are not all equal. Therefore it is important to have an armamentarium of strong analgesics in clinical practice to ensure a personalized approach in patients...... who do not respond to standard treatment. In this review we highlight differences between opioids in human studies from a pharmacological, experimental, clinical and health economics point of view. We provide evidence that individuals respond differently to opioids, and that general differences......Clinical studies comparing the response and side effects of various opioids have not been able to show robust differences between drugs. Hence, recommendations of the regulatory authorities have been driven by costs with a general tendency in many countries to restrict physician's use of opioids...

  9. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism.

    Science.gov (United States)

    Hansen, Morten S S; Tencerova, Michaela; Frølich, Jacob; Kassem, Moustapha; Frost, Morten

    2018-01-01

    The relationship between gut and skeleton is increasingly recognized as part of the integrated physiology of the whole organism. The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestine in response to nutrient intake and exhibit several physiological functions including regulation of islet hormone secretion and glucose levels. A number of GLP-1 receptor agonists (GLP-1RAs) are currently used in treatment of type 2 diabetes and obesity. However, GIP and GLP-1 cognate receptors are widely expressed suggesting that incretin hormones mediate effects beyond control of glucose homeostasis, and reports on associations between incretin hormones and bone metabolism have emerged. The aim of this MiniReview was to provide an overview of current knowledge regarding the in vivo and in vitro effects of GIP and GLP-1 on bone metabolism. We identified a total of 30 pre-clinical and clinical investigations of the effects of GIP, GLP-1 and GLP-1RAs on bone turnover markers, bone mineral density (BMD), bone microarchitecture and fracture risk. Studies conducted in cell cultures and rodents demonstrated that GIP and GLP-1 play a role in regulating skeletal homeostasis, with pre-clinical data suggesting that GIP inhibits bone resorption whereas GLP-1 may promote bone formation and enhance bone material properties. These effects are not corroborated by clinical studies. While there is evidence of effects of GIP and GLP-1 on bone metabolism in pre-clinical investigations, clinical trials are needed to clarify whether similar effects are present and clinically relevant in humans. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Prescription Opioids

    Science.gov (United States)

    ... therapy in a primary care setting struggles with opioid addiction. 4,5,6 Once addicted, it can be ... of drug overdose deaths involving methadone and other opioid analgesics in West Virginia. Addiction 2009;104(9):1541-8. Dunn KM, Saunders ...

  11. Comparison of efficacy between buprenorphine and tramadol in the detoxification of opioid (heroin)-dependent subjects.

    Science.gov (United States)

    Chawla, Jatinder Mohan; Pal, Hemraj; Lal, Rakesh; Jain, Raka; Schooler, Nina; Balhara, Yatan Pal Singh

    2013-01-01

    Tramadol is a synthetic opiate and a centrally acting weak m-opioid receptor agonist. The potential advantages of tramadol include ease of administration, low abuse potential, and being nonscheduled. This study compared tramadol and buprenorphine for controlling withdrawal symptoms in patients with opioid dependence syndrome. Consenting male subjects between 20 and 45 years of age who fulfilled the ICD-10-DCR criteria for opiate dependence syndrome were randomly assigned in a double-blind, double-dummy placebo-controlled trial for detoxification. Those with multiple drug dependence, abnormal cardiac, renal and hepatic functions, psychosis, or organic mental illness were excluded. Assessments included Subjective Opiate Withdrawal Scale (SOWS), Objective Opiate Withdrawal Scale (OOWS), Visual Analog Scale (VAS), and Side Effect Check List. Subjects were evaluated daily and study duration was 10 days. Sixty two subjects were enrolled. The mean SOWS and OOWS and VAS were significantly lower in the buprenorphine group on second and third day of detoxification as compared to the tramadol group. Although the retention rate was higher for buprenorphine group throughout the study, when compared with tramadol the difference was not significant on any day. Three subjects in the tramadol group had seizures. Tramadol was found to have limited detoxification efficacy in moderate to severe opioid withdrawal and substantial risk of seizures as compared to buprenorphine. Further studies are warranted to examine its efficacy in mild opioid withdrawal symptoms and its potential use in outpatient settings where its administration advantages may be valuable.

  12. Blocking opioid receptors alters short-term feed intake and oro-sensorial preferences in weaned calves.

    Science.gov (United States)

    Montoro, C; Ipharraguerre, I R; Bach, A

    2012-05-01

    Opioid peptides may participate in the control of feed intake through mechanisms involving pleasure reward linked to consumption of palatable feed. The objective of this study was to determine whether blocking opioid receptors might void oro-sensorial preferences of calves, and affect circulating glucose, insulin, and anorexigenic hormones in fasted and fed calves. Two experiments involved 32 Holstein calves [body weight (BW)=86.5±1.73 kg, age=72±0.6 d]. In experiment 1, all calves received an ad libitum choice of the same feed either unflavored or flavored with a sweetener (Luctarom SFS-R, Lucta, Montornès del Vallès, Spain). Feed consumption was recorded every 2 h from 0800 to 1400 h for 3 consecutive days to verify the establishment of an oro-sensorial preference for sweet feed (SF). The SF was preferred over the control feed (CF) at all recorded times. In experiment 2, calves were subjected to a 2 × 2 factorial design to study the interaction between opioid activity and metabolic state. Half of the calves were fasted for 14 h (FAS), whereas the other half remained well fed (FED). Within each of these groups, at feeding time (0800 h), half of the calves received an i.v. injection of naloxone (NAL, an opioid receptor antagonist; 1 mg/kg of BW) and the other half was injected with saline solution (SAL; 0.9% NaCl). Therefore, treatments were FED-NAL, FED-SAL, FAS-NAL, and FAS-SAL. Blood samples were taken at -10, 20, 180, and 240 min relative to NAL or SAL injections. As expected, cumulative consumption of starter feed was greater in FAS than in FED calves. Total feed consumption 2 h after feeding was lower in NAL than in SAL calves. Calves in the FAS group did not discern between CF and SF during the first 4 h after feed offer. Preference for SF was greater in SAL than in NAL calves. Calves in the FED-SAL treatment preferred SF at 2 and 6 h after feed offer and tended to prefer SF at 4 h after feeding. However, FED-NAL calves did not discern between SF and CF

  13. Opioid dependence - management in general practice.

    Science.gov (United States)

    Frei, Matthew

    2010-08-01

    Addiction to opioids, or opioid dependence, encompasses the biopsychosocial dysfunction seen in illicit heroin injectors, as well as aberrant behaviours in patients prescribed opioids for chronic nonmalignant pain. To outline the management of opioid dependence using opioid pharmacotherapy as part of a comprehensive chronic illness management strategy. The same principles and skills general practitioners employ in chronic illness management underpin the care of patients with opioid dependence. Opioid pharmacotherapy, with the substitution medications methadone and buprenorphine, is an effective management of opioid dependence. Training and regulatory requirements for prescribing opioid pharmacotherapies vary between jurisdictions, but this treatment should be within the scope of most Australian GPs.

  14. Withdrawal from Buprenorphine/Naloxone and Maintenance with a Natural Dopaminergic Agonist: A Cautionary Note.

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Femino, John; Waite, Roger L; Benya, Lisa; Giordano, John; Borsten, Joan; Downs, William B; Braverman, Eric R; Loehmann, Raquel; Dushaj, Kristina; Han, David; Simpatico, Thomas; Hauser, Mary; Barh, Debmalya; McLaughlin, Thomas

    2013-04-23

    While numerous studies support the efficacy of methadone and buprenorphine for the stabilization and maintenance of opioid dependence, clinically significant opioid withdrawal symptoms occur upon tapering and cessation of dosage. We present a case study of a 35 year old Caucasian female (Krissie) who was prescribed increasing dosages of prescription opioids after carpel tunnel surgery secondary to chronic pain from reflex sympathetic dystrophy and fibromyalgia. Over the next 5 years, daily dosage requirements increased to over 80 mg of Methadone and 300 ug/hr Fentanyl transdermal patches, along with combinations of 12-14 1600 mcg Actig lollipop and oral 100 mg Morphine and 30 mg oxycodone 1-2 tabs q4-6hr PRN for breakthrough pain. Total monthly prescription costs including supplemental benzodiazepines, hypnotics and stimulants exceeded $50,000. The patient was subsequently transferred to Suboxone® in 2008, and the dosage was gradually tapered until her admission for inpatient detoxification with KB220Z a natural dopaminergic agonist. We carefully documented her withdrawal symptoms when she precipitously stopped taking buprenorphine/naloxone and during follow-up while taking KB220Z daily. We also genotyped the patient using a reward gene panel including (9 genes 18 alleles): DRD 2,3,4; MOA-A; COMT; DAT1; 5HTTLLR; OPRM1; and GABRA3. At 432 days post Suboxone® withdrawal the patient is being maintained on KB220Z, has been urine tested and is opioid free. Genotyping data revealed a moderate genetic risk for addiction showing a hypodopaminergic trait. This preliminary case data suggest that the daily use of KB220Z could provide a cost effective alternative substitution adjunctive modality for Suboxone®. We encourage double-blind randomized -placebo controlled studies to test the proposition that KB220Z may act as a putative natural opioid substitution maintenance adjunct.

  15. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  16. Modulation of melanocortin- induced changes in spinal nociception by µ-opioid receptor agonist and antagonist in neuropathic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Starowitcz, K.; Przewlocki, R.; Przewlocka, B.

    2002-01-01

    Co-localization of opioid and melanocortin receptor expression, especially at the spinal cord level in the dorsal horn and in the gray matter surrounding the central canal led to the suggestion that melanocortins might play a role in nociceptive processes. In the present studies, we aimed to

  17. 2012 David W. Robertson Award for Excellence in Medicinal Chemistry: Neoclerodanes as Atypical Opioid Receptor Ligands⊥

    Science.gov (United States)

    Prisinzano, Thomas E.

    2013-01-01

    The neoclerodane diterpene salvinorin A is the major active component of the hallucinogenic mint plant Salvia divinorum Epling & Játiva (Lamiaceae). Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of opioid receptors, the site of action of morphine and related analogues, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because (1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and (2) its effects are not mediated through the previously investigated targets of psychotomimetics. This perspective outlines our research program, illustrating a new direction to the development of tools to further elucidate the biological mechanisms of drug tolerance and dependence. The information gained from these efforts is expected to facilitate the design of novel agents to treat pain, drug abuse, and other CNS disorders. PMID:23548164

  18. The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours.

    Science.gov (United States)

    Kelly, Eamonn; Mundell, Stuart J; Sava, Anna; Roth, Adelheid L; Felici, Antonio; Maltby, Kay; Nathan, Pradeep J; Bullmore, Edward T; Henderson, Graeme

    2015-01-01

    The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene. To determine whether the novel opioid antagonist, GSK1521498, is an orthosteric or allosteric antagonist at the μ opioid receptor (MOPr) and whether it has neutral antagonist or inverse agonist properties. A combination of radioligand binding assays and [(35)S]GTPγS binding assays was employed. GSK1521498 completely displaced [(3)H]naloxone binding to MOPr and did not alter the rate of [(3)H]naloxone dissociation from MOPr observations compatible with it binding to the orthosteric site on MOPr. GSK1521498 exhibited inverse agonism when MOPr was overexpressed but not when the level of MOPr expression was low. In parallel studies under conditions of high receptor expression density, naloxone, naltrexone, 6-β-naltrexol and nalmefene exhibited partial agonism, not inverse agonism as has been reported previously for naloxone and naltrexone. In brain tissue from mice receiving a prolonged morphine pre-treatment, GSK1521498 exhibited slight inverse agonism. Differences between GSK1521498 and naltrexone in their effects on compulsive reward seeking are arguably linked to the more selective and complete MOPr antagonism of GSK1521498 versus the partial MOPr agonism of naltrexone. GSK1521498 is also pharmacologically differentiated by its inverse agonist efficacy at high levels of MOPr expression, but this may be less likely to contribute to behavioural differentiation at patho-physiological levels of expression.

  19. An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat

    Science.gov (United States)

    Pratt, Wayne E.; Choi, Eugene; Guy, Elizabeth G.

    2012-01-01

    The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-hr intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N = 6–9) were tested following bilateral inhibition of the STN with the GABAA receptor agonist muscimol (at 0–5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-hr feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-hr PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-hr DRL-20 sec reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes. PMID:22391117

  20. /sup 3/H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((/sup 3/H)CTOP), a potent and highly selective peptide for mu opioid receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, K.N.; Knapp, R.J.; Lui, G.K.; Gulya, K.; Kazmierski, W.; Wan, Y.P.; Pelton, J.T.; Hruby, V.J.; Yamamura, H.I.

    1989-01-01

    The cyclic, conformationally restricted octapeptide (3H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((3H)CTOP) was synthesized and its binding to mu opioid receptors was characterized in rat brain membrane preparations. Association rates (k+1) of 1.25 x 10(8) M-1 min-1 and 2.49 x 10(8) M-1 min-1 at 25 and 37 degrees C, respectively, were obtained, whereas dissociation rates (k-1) at the same temperatures were 1.93 x 10(-2) min-1 and 1.03 x 10(-1) min-1 at 25 and 37 degrees C, respectively. Saturation isotherms of (3H)CTOP binding to rat brain membranes gave apparent Kd values of 0.16 and 0.41 nM at 25 and 37 degrees C, respectively. Maximal number of binding sites in rat brain membranes were found to be 94 and 81 fmol/mg of protein at 25 and 37 degrees C, respectively. (3H)CTOP binding over a concentration range of 0.1 to 10 nM was best fit by a one site model consistent with binding to a single site. The general effect of different metal ions and guanyl-5'-yl-imidodiphosphate on (3H)CTOP binding was to reduce its affinity. High concentrations (100 mM) of sodium also produced a reduction of the apparent mu receptor density. Utilizing the delta opioid receptor specific peptide (3H)-(D-Pen2,D-Pen5)enkephalin, CTOP appeared to be about 2000-fold more specific for mu vs. delta opioid receptor than naloxone. Specific (3H)CTOP binding was inhibited by a large number of opioid or opiate ligands.

  1. Non-analgesic effects of opioids: management of opioid-induced constipation by peripheral opioid receptor antagonists: prevention or withdrawal?

    Science.gov (United States)

    Holzer, Peter

    2012-01-01

    The therapeutic action of opioid analgesics is compromised by peripheral adverse effects among which opioid-induced constipation (OIC) is the most disabling, with a prevalence reported to vary between 15 and 90 %. Although OIC is usually treated with laxatives, there is insufficient clinical evidence that laxatives are efficacious in this indication. In contrast, there is ample evidence from double- blind, randomized and placebo-controlled trials that peripheral opioid receptor antagonists (PORAs) counteract OIC. This specific treatment modality is currently based on subcutaneous methylnaltrexone for the interruption of OIC in patients with advanced illness, and a fixed combination of oral prolonged-release naloxone with prolonged-release oxycodone for the prevention of OIC in the treatment of non-cancer and cancer pain. Both drugs counteract OIC while the analgesic effect of opioids remains unabated. The clinical studies show that more than 50 % of the patients with constipation under opioid therapy may benefit from the use of PORAs, while PORA-resistant patients are likely to suffer from non-opioid-induced constipation, the prevalence of which increases with age. While the addition of naloxone to oxycodone seems to act by preventing OIC, the intermittent dosing of methylnaltrexone every other day seems to stimulate defaecation by provoking an intestinal withdrawal response. The availability of PORAs provides a novel opportunity to specifically control OIC and other peripheral adverse effects of opioid analgesics (e.g., urinary retention and pruritus). The continuous dosing of a PORA has the advantage of few adverse effects, while intermittent dosing of a PORA can be associated with abdominal cramp-like pain.

  2. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    Science.gov (United States)

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  3. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism.

    Directory of Open Access Journals (Sweden)

    Laura Milan-Lobo

    Full Text Available Delta (DOR and mu opioid receptors (MOR can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.

  4. ( sup 3 H)(D-PEN sup 2 , D-PEN sup 5 ) enkephalin binding to delta opioid receptors on intact neuroblastoma-glioma (NG 108-15) hybrid cells

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.J.; Yamamura, H.I. (Univ. of Arizona College of Medicine, Tucson (USA))

    1990-01-01

    ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin binding to intact NG 108-15 cells has been measured under physiological conditions of temperature and medium. The dissociation constant, receptor density, and Hill slope values measured under these conditions are consistent with values obtained by others using membranes prepared from these cells. Kinetic analysis of the radioligand binding to these cells show biphasic association and monophasic dissociation processes suggesting the presence of different receptor affinity states for the agonist. The data show that the binding affinity of ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin under physiological conditions is not substantially different to that measured in 50 mM Tris buffer using cell membrane fractions. Unlike DPDPE, the {mu} opioid agonists morphine, normorphine, PL-17, and DAMGO, have much lower affinity for the {delta} receptor measured under these conditions than is observed by studies using 50 mM Tris buffer. The results described here suggest that this assay may serve as a useful model of {delta} opioid receptor binding in vivo.

  5. Dgroup: DG01000 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available pioid receptor agonist ... DG01563 ... mu-Opioid receptor agonist Analgesic ... DG01984 ... Opioid analgesics Other ... DG01718 ... Drugs... for addictive disorder ... DG01717 ... Drugs for opioid dependence Cyp su

  6. Dgroup: DG00999 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available agonist ... DG01563 ... mu-Opioid receptor agonist Analgesic ... DG01984 ... Opioid analgesics Other ... DG01718 ... Drugs fo...r addictive disorder ... DG01717 ... Drugs for opioid dependence Cyp substrate ... DG0163

  7. Changing patterns in opioid addiction

    Science.gov (United States)

    Sproule, Beth; Brands, Bruna; Li, Selina; Catz-Biro, Laura

    2009-01-01

    ABSTRACT OBJECTIVE To evaluate the clinical observation that the number of individuals seeking opioid detoxification from oxycodone was increasing at the Centre for Addiction and Mental Health (CAMH) in Toronto, Ont; and to identify the characteristics of individuals seeking opioid detoxification at CAMH. DESIGN Retrospective analysis of patient health records. SETTING Medical Withdrawal Management Service at CAMH. PARTICIPANTS All patients admitted for opioid detoxification between January 2000 and December 2004. MAIN OUTCOME MEASURES Number of opioid detoxification admissions each year; type, dose, and source of opioids; comorbid problems and symptoms. RESULTS There were 571 opioid detoxification admissions during the 5-year study period. The number of admissions increased steadily over the 5 years; in particular, the number of admissions related to controlled-release oxycodone increased substantially (3.8%, 8.3%, 20.8%, 30.6%, and 55.4% of the total opioid admissions in 2000 to 2004, respectively; χ42= 105.5, P < .001). The rates of admissions involving heroin remained low and stable. Use of controlled-release oxycodone was associated with considerably higher doses than use of other prescription opioids was. Physician prescriptions were the source of the prescription opioids for a large percentage of patients, particularly for older patients. Prescription opioid users reported considerable comorbid substance use problems, pain, and psychiatric symptoms. CONCLUSION This study has demonstrated a significant rise in the number of individuals seeking treatment at CAMH for controlled-release oxycodone addiction. The substantial comorbid pain, psychiatric symptoms, and other psychoactive substance use problems in these patients, coupled with the finding that prescriptions were an important source of opioids, highlight the clinical complexities encountered in the treatment of these individuals. Further research examining these complexities and the many possible

  8. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Kurt F. Hauser

    2018-01-01

    Full Text Available The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  9. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System.

    Science.gov (United States)

    Hauser, Kurt F; Knapp, Pamela E

    2017-01-01

    The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  10. Dgroup: DG00793 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available anil citrate (USP) ... Neuropsychiatric agent ... DG02030 ... Anesthetics ... DG02027 ... General anesthetics ... DG02026 ... Opioid anesthetics... ... DG02027 ... General anesthetics ... DG02026 ... Opioid anesthetics ... DG01564 ... Opioid receptor a...gonist ... DG01563 ... mu-Opioid receptor agonist Analgesic ... DG01984 ... Opioid analgesics ATC code: N01AH03 General anesthetics OPRM1 [HSA:4988] [KO:K04215] ...

  11. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anna Ljungdahl

    Full Text Available L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors

  12. Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential.

    Science.gov (United States)

    Marinelli, M; Barrot, M; Simon, H; Oberlander, C; Dekeyne, A; Le Moal, M; Piazza, P V

    1998-10-01

    Opioid peptides, through mu and delta receptors, play an important part in reward. In contrast, the role of kappa receptors is more controversial. We examined the possible positive reinforcing effects of a selective kappa agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the mu agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 microg/inj) and heroin (30 microg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 microg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that kappa receptors, similarly to mu ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for kappa receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.

  13. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    Science.gov (United States)

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. PARTIAL AGONISTS, FULL AGONISTS, ANTAGONISTS - DILEMMAS OF DEFINITION

    NARCIS (Netherlands)

    HOYER, D; BODDEKE, HWGM

    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or

  15. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    He L

    2017-11-01

    Full Text Available Liang He,1,* Siliang Zhang,2,* Xiaowen Zhang,3 Rui Liu,2 Haixia Guan,2 Hao Zhang1 1Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 2Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 3Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People’s Republic of China *These authors contributed equally to this work Purpose: This study was aimed to investigate the expressions of the insulin receptor (IR, insulin-like growth factor receptor (IGF-1R, and glucagon-like peptide-1 receptor (GLP-1R in normal thyroid tissue, papillary thyroid cancer (PTC tissues, and PTC cells, and to examine the possible role of insulin analogs and GLP-1R agonists in cell proliferation and energy metabolism in PTC cells.Methods: The expressions of IR, IGF-1R, and GLP-1R in PTC tissues and PTC cell lines were detected by immunohistochemistry and western blotting, respectively. Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Levels of members of the phosphoinositol-3 kinase/AKT serine/threonine kinase (Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk signaling pathways were measured by western blotting. Energy metabolism of PTC cell lines was analyzed using a Seahorse Extracellular Flux analyzer.Results: Three receptors could be detected in both PTC tissues and PTC cell lines. Expressions of IGF-1R and GLP-1R were more obvious in PTC than in normal thyroid cells. Neither insulin, four insulin analogs, and two GLP-1R agonists showed significant effects on the proliferation of PTC cells, nor did they influence the levels of Akt/p-Akt and Erk/p-Erk. None of these antidiabetic agents could change the mitochondrial

  16. Panicolytic-like effect of tramadol is mediated by opioid receptors in the dorsal periaqueductal grey.

    Science.gov (United States)

    Fiaes, Gislaine Cardoso de Souza; Roncon, Camila Marroni; Sestile, Caio Cesar; Maraschin, Jhonatan Christian; Souza, Rodolfo Luis Silva; Porcu, Mauro; Audi, Elisabeth Aparecida

    2017-05-30

    Tramadol is a synthetic opioid prescribed for the treatment of moderate to severe pain, acting as agonist of μ-opioid receptors and serotonin (5-HT) and noradrenaline (NE) reuptake inhibitor. This study evaluated the effects of tramadol in rats submitted to the elevated T-maze (ETM), an animal model that evaluates behavioural parameters such as anxiety and panic. Male Wistar rats were intraperitoneally (i.p.) treated acutely with tramadol (16 and 32mg/kg) and were submitted to the ETM. Tramadol (32mg/kg) promoted a panicolytic-like effect. Considering that dorsal periaqueductal grey (dPAG) is the main brain structure related to the pathophysiology of panic disorder (PD), this study also evaluated the participation of 5-HT and opioid receptors located in the dPAG in the panicolytic-like effect of tramadol. Seven days after stereotaxic surgery for implantation of a cannula in the dPAG, the animals were submitted to the test. To assess the involvement of 5-HT 1A receptors on the effect of tramadol, we combined the 5-HT 1A receptor antagonist, WAY100635 (0.37nmol), microinjected intra-dPAG, 10min prior to the administration of tramadol (32mg/kg, i.p.). WAY100635 did not block the panicolytic-like effect of tramadol. We also associated the non-selective opioid receptor antagonist, naloxone, systemically (1mg/kg, i.p.) or intra-dPAG (0.5nmol) administered 10min prior to tramadol (32mg/kg, i.p.). Naloxone blocked the panicolytic-like effect of tramadol in both routes of administrations, showing that tramadol modulates acute panic defensive behaviours through its interaction with opioid receptors located in the dPAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Opioid Abuse and Addiction - Multiple Languages

    Science.gov (United States)

    ... Spanish) PDF The basics - Opioids, part 1 - English MP3 The basics - Opioids, part 1 - español (Spanish) MP3 The basics - Opioids, part 1 - English MP4 The ... español (Spanish) PDF Pain - Opioids, part 2 - English MP3 Pain - Opioids, part 2 - español (Spanish) MP3 Pain - ...

  18. The cytoplasmic domain close to the transmembrane region of the glucagon-like peptide-1 receptor contains sequence elements that regulate agonist-dependent internalisation.

    Science.gov (United States)

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-07-01

    In order to gain better insight into the molecular events involved in the signal transduction generated through glucagon-like peptide-1 (GLP-1) receptors, we tested the effect of deletions and point mutations within the cytoplasmic tail of this receptor with a view to establishing relationships between signal transduction desensitisation and receptor internalisation. Wild-type and truncated (deletion of the last 27 amino acids (GLPR 435R) and deletion of 44 amino acids (GLPR 418R)) GLP-1 receptors bound the agonist with similar affinity. Deletion of the last 27 amino acids decreased the internalisation rate by 78%, while deletion of 44 amino acids containing all the phosphorylation sites hitherto described in this receptor decreased the internalisation rate by only 47%. Binding of the ligand to both receptors stimulated adenylyl cyclase. In contrast, deletion of the region containing amino acids 419 to 435 (GLPR 419delta435) increased the internalisation rate by 268%, and the replacement of EVQ(408-410) by alanine (GLPR A(408-410)) increased this process to 296%. In both receptors, the efficacy in stimulating adenylate cyclase was decreased. All the receptors studied were internalised by coated pits, except for the receptor with a deletion of the last 44 amino acids, which also had a faster resensitisation rate. Our findings indicate that the neighbouring trans-membrane domain of the carboxyl-terminal tail of the GLP-1 receptor contains sequence elements that regulate agonist-dependent internalisation and transmembrane signalling.

  19. Is this ?complicated? opioid withdrawal?

    OpenAIRE

    Parkar, S.R.; Seethalakshmi, R; Adarkar, S; Kharawala, S

    2006-01-01

    Seven patients with opioid dependence admitted in the de-addiction centre for detoxification developed convulsions and delirium during the withdrawal phase. After ruling out all other possible causes of these complications, opioid withdrawal seemed to emerge as the most likely explanation. The unpredictability of the course of opioid dependence and withdrawal needs to be considered when treating patients with opioid dependence.

  20. Tolerance to the Diuretic Effects of Cannabinoids and Cross-Tolerance to a κ-Opioid Agonist in THC-Treated Mice.

    Science.gov (United States)

    Chopda, Girish R; Parge, Viraj; Thakur, Ganesh A; Gatley, S John; Makriyannis, Alexandros; Paronis, Carol A

    2016-08-01

    Daily treatment with cannabinoids results in tolerance to many, but not all, of their behavioral and physiologic effects. The present studies investigated the effects of 7-day exposure to 10 mg/kg daily of Δ(9)-tetrahydrocannabinol (THC) on the diuretic and antinociceptive effects of THC and the synthetic cannabinoid AM4054. Comparison studies determined diuretic responses to the κ-opioid agonist U50,488 and furosemide. After determination of control dose-response functions, mice received 10 mg/kg daily of THC for 7 days, and dose-response functions were re-determined 24 hours, 7 days, or 14 days later. THC and AM4054 had biphasic diuretic effects under control conditions with maximum effects of 30 and 35 ml/kg of urine, respectively. In contrast, antinociceptive effects of both drugs increased monotonically with dose to >90% of maximal possible effect. Treatment with THC produced 9- and 7-fold rightward shifts of the diuresis and antinociception dose-response curves for THC and, respectively, 7- and 3-fold rightward shifts in the AM4054 dose-response functions. U50,488 and furosemide increased urine output to >35 ml/kg under control conditions. The effects of U50,488 were attenuated after 7-day treatment with THC, whereas the effects of furosemide were unaltered. Diuretic effects of THC and AM4054 recovered to near-baseline levels within 14 days after stopping daily THC injections, whereas tolerance to the antinociceptive effects persisted longer than 14 days. The tolerance induced by 7-day treatment with THC was accompanied by a 55% decrease in the Bmax value for cannabinoid receptors (CB1). These data indicate that repeated exposure to THC produces similar rightward shifts in the ascending and descending limbs of cannabinoid diuresis dose-effect curves and to antinociceptive effects while resulting in a flattening of the U50,488 diuresis dose-effect function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway

    Directory of Open Access Journals (Sweden)

    Yaguang Zhou

    2017-12-01

    Full Text Available Background/Aims: In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH. However, the roles that pulmonary arterial smooth muscle cell (PASMC proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms. Methods: Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP and the right ventricular pressure (RVP were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8 assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot. Results: Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor. Conclusion: Our data provide evidence for the first time that κ-opioid receptor

  2. Glucagon-Like Peptide-1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus: A Position Statement of the Korean Diabetes Association.

    Science.gov (United States)

    Kim, Hyun Jin; Park, Seok O; Ko, Seung Hyun; Rhee, Sang Youl; Hur, Kyu Yeon; Kim, Nan Hee; Moon, Min Kyong; Lee, Byung Wan; Kim, Jin Hwa; Choi, Kyung Mook

    2017-12-01

    The glucagon-like peptide-1 receptor agonists (GLP-1RAs) were recommended as a monotherapy or combination therapy with oral hypoglycemic agents or basal insulin in the position statement of the Korean Diabetes Association 2017 for pharmacological therapy. Many randomized clinical trials and systematic reviews report that GLP-1RAs have considerable glucose-lowering effect and lead to weight reduction and low risk of hypoglycemia when used as a monotherapy or combination therapy. The cardiovascular safety of GLP-1RAs has been assessed in several randomized clinical trials and systematic reviews. The results of cardiovascular outcome trials of long-acting GLP-1RAs (liraglutide, semaglutide) demonstrated cardiovascular benefits in subjects with type 2 diabetes mellitus and a high risk of cardiovascular disease. The GLP-1RA may be a choice of therapy when weight control and avoidance of hypoglycemia are important, and patients with high risk of cardiovascular disease might also favor choosing GLP-1RA. Copyright © 2017 Korean Diabetes Association.

  3. Glucagon-Like Peptide-1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus: A Position Statement of the Korean Diabetes Association

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2017-12-01

    Full Text Available The glucagon-like peptide-1 receptor agonists (GLP-1RAs were recommended as a monotherapy or combination therapy with oral hypoglycemic agents or basal insulin in the position statement of the Korean Diabetes Association 2017 for pharmacological therapy. Many randomized clinical trials and systematic reviews report that GLP-1RAs have considerable glucose-lowering effect and lead to weight reduction and low risk of hypoglycemia when used as a monotherapy or combination therapy. The cardiovascular safety of GLP-1RAs has been assessed in several randomized clinical trials and systematic reviews. The results of cardiovascular outcome trials of long-acting GLP-1RAs (liraglutide, semaglutide demonstrated cardiovascular benefits in subjects with type 2 diabetes mellitus and a high risk of cardiovascular disease. The GLP-1RA may be a choice of therapy when weight control and avoidance of hypoglycemia are important, and patients with high risk of cardiovascular disease might also favor choosing GLP-1RA.

  4. Gabapentin, opioids, and the risk of opioid-related death: A population-based nested case-control study.

    Directory of Open Access Journals (Sweden)

    Tara Gomes

    2017-10-01

    Full Text Available Prescription opioid use is highly associated with risk of opioid-related death, with 1 of every 550 chronic opioid users dying within approximately 2.5 years of their first opioid prescription. Although gabapentin is widely perceived as safe, drug-induced respiratory depression has been described when gabapentin is used alone or in combination with other medications. Because gabapentin and opioids are both commonly prescribed for pain, the likelihood of co-prescription is high. However, no published studies have examined whether concomitant gabapentin therapy is associated with an increased risk of accidental opioid-related death in patients receiving opioids. The objective of this study was to investigate whether co-prescription of opioids and gabapentin is associated with an increased risk of accidental opioid-related mortality.We conducted a population-based nested case-control study among opioid users who were residents of Ontario, Canada, between August 1, 1997, and December 31, 2013, using administrative databases. Cases, defined as opioid users who died of an opioid-related cause, were matched with up to 4 controls who also used opioids on age, sex, year of index date, history of chronic kidney disease, and a disease risk index. After matching, we included 1,256 cases and 4,619 controls. The primary exposure was concomitant gabapentin use in the 120 days preceding the index date. A secondary analysis characterized gabapentin dose as low (<900 mg daily, moderate (900 to 1,799 mg daily, or high (≥1,800 mg daily. A sensitivity analysis examined the effect of concomitant nonsteroidal anti-inflammatory drug (NSAID use in the preceding 120 days. Overall, 12.3% of cases (155 of 1,256 and 6.8% of controls (313 of 4,619 were prescribed gabapentin in the prior 120 days. After multivariable adjustment, co-prescription of opioids and gabapentin was associated with a significantly increased odds of opioid-related death (odds ratio [OR] 1.99, 95% CI

  5. Reasons for opioid use among patients with dependence on prescription opioids: the role of chronic pain.

    Science.gov (United States)

    Weiss, Roger D; Potter, Jennifer Sharpe; Griffin, Margaret L; McHugh, R Kathryn; Haller, Deborah; Jacobs, Petra; Gardin, John; Fischer, Dan; Rosen, Kristen D

    2014-08-01

    The number of individuals seeking treatment for prescription opioid dependence has increased dramatically, fostering a need for research on this population. The aim of this study was to examine reasons for prescription opioid use among 653 participants with and without chronic pain, enrolled in the Prescription Opioid Addiction Treatment Study, a randomized controlled trial of treatment for prescription opioid dependence. Participants identified initial and current reasons for opioid use. Participants with chronic pain were more likely to report pain as their primary initial reason for use; avoiding withdrawal was rated as the most important reason for current use in both groups. Participants with chronic pain rated using opioids to cope with physical pain as more important, and using opioids in response to social interactions and craving as less important, than those without chronic pain. Results highlight the importance of physical pain as a reason for opioid use among patients with chronic pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Who Benefits from Chronic Opioid Therapy? Rethinking the Question of Opioid Misuse Risk

    Directory of Open Access Journals (Sweden)

    Elizabeth Huber

    2016-05-01

    Full Text Available Beginning in the late 1990s, a movement began within the pain management field focused upon the underutilization of opioids, thought to be a potentially safe and effective class of pain medication. Concern for addiction and misuse were present at the start of this shift within pain medicine, and an emphasis was placed on developing reliable and valid methods and measures of identifying those at risk for opioid misuse. Since that time, the evidence for the safety and effectiveness of chronic opioid therapy (COT has not been established. Rather, the harmful, dose-dependent deleterious effects have become clearer, including addiction, increased risk of injuries, respiratory depression, opioid induced hyperalgesia, and death. Still, many individuals on low doses of opioids for long periods of time appear to have good pain control and retain social and occupational functioning. Therefore, we propose that the question, “Who is at risk of opioid misuse?” should evolve to, “Who may benefit from COT?” in light of the current evidence.

  7. Genetics Home Reference: opioid addiction

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Opioid addiction Opioid addiction Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Opioid addiction is a long-lasting (chronic) disease that can ...

  8. The opioid manager: a point-of-care tool to facilitate the use of the Canadian Opioid Guideline.

    Science.gov (United States)

    Furlan, Andrea D; Reardon, Rhoda; Salach, Lena

    2012-01-01

    The Opioid Manager is designed to be used as a point-of-care tool for providers prescribing opioids for chronic noncancer pain. It condenses the key elements from the Canadian Opioid Guideline and can be used as a chart insert. The Opioid Manager has been validated and is available for download from the Guideline's Web site http://nationalpaincentre.mcmaster.ca/opioidmanager/. The Opioid Manager is divided into the following four parts: A) before you write the first script, B) initiation trial, C) maintenance and monitoring, and D) when is it time to decrease the dose or stop the opioid completely? The Opioid Manager has been downloaded by 1,432 users: 47 percent family physicians, 18 percent pharmacists, 13 percent other physicians, and 22 percent miscellaneous. To show how to use the Opioid Manager, the authors created a 10-minute video that is available on the Internet. The Opioid Manager is being translated to French, Spanish, Portuguese, and Farsi.

  9. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome.

    Science.gov (United States)

    Lamos, Elizabeth Mary; Malek, Rana; Davis, Stephen N

    2017-04-01

    Polycystic ovarian syndrome (PCOS) affects many women of child-bearing age and is characterized by hyperandrogenism, ovulatory and metabolic dysfunction. A primary treatment goal is weight reduction. The weight loss effects of glucagon-like peptide-1 receptor agonists (GLP-1RA), previously demonstrated in diabetic and obese non-diabetic patients, offer a unique opportunity to expand the medical options available to PCOS patients. Areas covered: Available clinical trials of glucagon-like peptide-1 receptor agonist therapy in PCOS were reviewed. Literature was searched from PubMed using appropriate search terms up to November 2016. Expert commentary: The available studies of GLP-1 RA therapy in the treatment of excess body weight in women with PCOS demonstrate that exenatide and liraglutide are effective in weight reduction either as monotherapy or in combination with metformin. A few studies showed that androgens may be modestly decreased and menstrual frequency may be increased. Eating behavior may be improved with liraglutide therapy. Glucose parameters are generally improved. GLP-1RAs were well-tolerated, with nausea being the most significant adverse side effect. Barriers to utilization may be the short duration studies, lack of familiarity of the medication, the route of administration (injection) and the variable outcomes on ovulation and hyperandrogenism.

  10. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD statement on pancreatic safety.

  11. Chronic Opioid Use After Surgery: Implications for Perioperative Management in the Face of the Opioid Epidemic.

    Science.gov (United States)

    Hah, Jennifer M; Bateman, Brian T; Ratliff, John; Curtin, Catherine; Sun, Eric

    2017-11-01

    Physicians, policymakers, and researchers are increasingly focused on finding ways to decrease opioid use and overdose in the United States both of which have sharply increased over the past decade. While many efforts are focused on the management of chronic pain, the use of opioids in surgical patients presents a particularly challenging problem requiring clinicians to balance 2 competing interests: managing acute pain in the immediate postoperative period and minimizing the risks of persistent opioid use after the surgery. Finding ways to minimize this risk is particularly salient in light of a growing literature suggesting that postsurgical patients are at increased risk for chronic opioid use. The perioperative care team, including surgeons and anesthesiologists, is poised to develop clinical- and systems-based interventions aimed at providing pain relief in the immediate postoperative period while also reducing the risks of opioid use longer term. In this paper, we discuss the consequences of chronic opioid use after surgery and present an analysis of the extent to which surgery has been associated with chronic opioid use. We follow with a discussion of the risk factors that are associated with chronic opioid use after surgery and proceed with an analysis of the extent to which opioid-sparing perioperative interventions (eg, nerve blockade) have been shown to reduce the risk of chronic opioid use after surgery. We then conclude with a discussion of future research directions.

  12. Autism and urinary exogenous neuropeptides: development of an on-line SPE-HPLC-tandem mass spectrometry method to test the opioid excess theory.

    Science.gov (United States)

    Dettmer, K; Hanna, D; Whetstone, P; Hansen, R; Hammock, B D

    2007-08-01

    Autism is a complex neurodevelopmental disorder with unknown etiology. One hypothesis regarding etiology in autism is the "opioid peptide excess" theory that postulates that excessive amounts of exogenous opioid-like peptides derived from dietary proteins are detectable in urine and that these compounds may be pathophysiologically important in autism. A selective LC-MS/MS method was developed to analyze gliadinomorphin, beta-casomorphin, deltorphin 1, and deltorphin 2 in urine. The method is based on on-line SPE extraction of the neuropeptides from urine, column switching, and subsequent HPLC analysis. A limit of detection of 0.25 ng/mL was achieved for all analytes. Analyte recovery rates from urine ranged between 78% and 94%, with relative standard deviations of 0.2-6.8%. The method was used to screen 69 urine samples from children with and without autism spectrum disorders for the occurrence of neuropeptides. The target neuropeptides were not detected above the detection limit in either sample set.

  13. Characteristics of opioid-users whose death was related to opioid-toxicity: a population-based study in Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Parvaz Madadi

    Full Text Available The impact of the prescription opioid public health crisis has been illustrated by the dramatic increase in opioid-related deaths in North America. We aimed to identify patterns and characteristics amongst opioid-users whose cause of death was related to opioid toxicity.This was a population-based study of Ontarians between the years 2006 and 2008. All drug-related deaths which occurred during this time frame were reviewed at the Office of the Chief Coroner of Ontario, and opioid-related deaths were identified. Medical, toxicology, pathology, and police reports were comprehensively reviewed. Narratives, semi-quantitative, and quantitative variables were extracted, tabulated, and analyzed.Out of 2330 drug-related deaths in Ontario, 58% were attributed either in whole or in part, to opioids (n = 1359. Oxycodone was involved in approximately one-third of all opioid-related deaths. At least 7% of the entire cohort used opioids that were prescribed for friends and/or family, 19% inappropriately self-administered opioids (injection, inhalation, chewed patch, 3% were recently released from jail, and 5% had been switched from one opioid to another near the time of death. Accidental deaths were significantly associated with personal history of substance abuse, enrollment in methadone maintenance programs, cirrhosis, hepatitis, and cocaine use. Suicides were significantly associated with mental illness, previous suicide attempts, chronic pain, and a history of cancer.These results identify novel, susceptible groups of opioid-users whose cause of death was related to opioids in Ontario and provide the first evidence to assist in quantifying the contribution of opioid misuse and diversion amongst opioid-related mortality in Canada. Multifaceted prevention strategies need to be developed based on subpopulations of opioid users.

  14. Endogenous Opioid Peptides and Epilepsy: Quieting the Seizing Brain?

    Science.gov (United States)

    1988-08-01

    circuitry and highly sen- upon EEG findings could be tor, acid systems, remains sitive to epileptogenesis (see Refs misleading. to be l iated. The...Langwinski, R. (1986) Drug Alchoho! Depend. 18. 361-367: " Meldrum . B. S. et a. (1979) Brain Res. 170, 333-348; ’Sajorek, J. G. and Lomax, P. (1982... Acids . Peptides and Trophic Factors Engel, J., Jr, eds), pp. 263-274, Raven the outcome of which depends (Ferrendelli. J., Collins, R. and Johnson

  15. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.

    Science.gov (United States)

    Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie

    2005-04-21

    The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.

  16. Illicit Opioid Intoxication: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    A. Fareed

    2011-01-01

    Full Text Available Opioid intoxications and overdose are associated with high rates of morbidity and mortality. Opioid overdose may occur in the setting of intravenous or intranasal heroin use, illicit use of diverted opioid medications, intentional or accidental misuse of prescription pain medications, or iatrogenic overdose. In this review, we focused on the epidemiology of illict opioid use in the United States and on the mechanism of action of opioid drugs. We also described the signs and symptoms, and diagnoses of intoxication and overdose. Lastly, we updated the reader about the most recent recommendations for treatment and prevention of opioid intoxications and overdose.

  17. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Cardenas-Aguayo

    Full Text Available The level of brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD, Parkinson's disease (PD, depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5 corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18 primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706 of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2O(2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  18. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    Science.gov (United States)

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: a perspective from different continents.

    Science.gov (United States)

    Häuser, Winfried; Schug, Stephan; Furlan, Andrea D

    2017-05-01

    A marked rise in opioid prescriptions for patients with chronic noncancer pain (CNCP) with a parallel increase in opioid abuse/misuse, and resulting deaths was noted in the Unites states in the past decade (opioid epidemic). In response, the US Center of Diseases Control (CDC) developed a guideline for prescribing of opioids for patients with CNCP. To assess (1) if there is an opioid epidemic in Australia, Canada, and Germany (2) to compare Australian, Canadian, German, and Center of Diseases Control guidelines recommendations for long-term opioid therapy for CNCP. National evidence-based guidelines and PubMed were searched for recommendations for opioid prescriptions for CNCP. There are signs of an opioid epidemic in Australia and Canada, but not in Germany. Guidelines in all 4 countries provide similar recommendations: opioids are not the first-line therapy for patients with CNCP; regular clinical assessments of benefits and harms are necessary; excessive doses should be avoided (recommended morphine equivalent daily doses range from 50 to 200 mg/d); stopping rules should be followed. All guidelines do not recommend the use of opioids in chronic pain conditions without an established nociceptive or neuropathic cause such as fibromyalgia and primary headache. Implementation of opioid prescribing guidelines should ensure that physicians prescribe opioids only for appropriate indications in limited doses for selected patients and advice patients on their safe use. These measures could contribute to reduce prescription opioid misuse/abuse and deaths.

  20. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

    Science.gov (United States)

    Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L

    2012-03-01

    Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.

  1. Feeding Releases Endogenous Opioids in Humans.

    Science.gov (United States)

    Tuulari, Jetro J; Tuominen, Lauri; de Boer, Femke E; Hirvonen, Jussi; Helin, Semi; Nuutila, Pirjo; Nummenmaa, Lauri

    2017-08-23

    The endogenous opioid system supports a multitude of functions related to appetitive behavior in humans and animals, and it has been proposed to govern hedonic aspects of feeding thus contributing to the development of obesity. Here we used positron emission tomography to investigate whether feeding results in hedonia-dependent endogenous opioid release in humans. Ten healthy males were recruited for the study. They were scanned with the μ-opioid-specific ligand [ 11 C]carfentanil three times, as follows: after a palatable meal, a nonpalatable meal, and after an overnight fast. Subjective mood, satiety, and circulating hormone levels were measured. Feeding induced significant endogenous opioid release throughout the brain. This response was more pronounced following a nonpalatable meal versus a palatable meal, and independent of the subjective hedonic responses to feeding. We conclude that feeding consistently triggers cerebral opioid release even in the absence of subjective pleasure associated with feeding, suggesting that metabolic and homeostatic rather than exclusively hedonic responses play a role in the feeding-triggered cerebral opioid release. SIGNIFICANCE STATEMENT The endogenous opioid system supports both hedonic and homeostatic functions. It has been proposed that overeating and concomitant opioid release could downregulate opioid receptors and promote the development of obesity. However, it remains unresolved whether feeding leads to endogenous opioid release in humans. We used in vivo positron emission tomography to test whether feeding triggers cerebral opioid release and whether this response is associated with pleasurable sensations. We scanned volunteers using the μ-opioid receptor-specific radioligand [ 11 C]carfentanil three times, as follows: after an overnight fast, after consuming a palatable meal, and after consuming a nonpalatable meal. Feeding led to significant endogenous opioid release, and this occurred also in the absence of feeding

  2. Dopamine D1 receptor agonist treatment attenuates extinction of morphine conditioned place preference while increasing dendritic complexity in the nucleus accumbens core.

    Science.gov (United States)

    Kobrin, Kendra L; Arena, Danielle T; Heinrichs, Stephen C; Nguyen, Olivia H; Kaplan, Gary B

    2017-03-30

    The dopamine D1 receptor (D1R) has a role in opioid reward and conditioned place preference (CPP), but its role in CPP extinction is undetermined. We examined the effect of D1R agonist SKF81297 on the extinction of opioid CPP and associated dendritic morphology in the nucleus accumbens (NAc), a region involved with reward integration and its extinction. During the acquisition of morphine CPP, mice received morphine and saline on alternate days; injections were given immediately before each of eight daily conditioning sessions. Mice subsequently underwent six days of extinction training designed to diminish the previously learned association. Mice were treated with either 0.5mg/kg SKF81297, 0.8mg/kg SKF81297, or saline immediately after each extinction session. There was a dose-dependent effect, with the highest dose of SKF81297 attenuating extinction, as mice treated with this dose had significantly higher CPP scores than controls. Analysis of medium spiny neuron morphology revealed that in the NAc core, but not in the shell, dendritic arbors were significantly more complex in the morphine conditioned, SKF81297-treated mice compared to controls. In separate experiments using mice conditioned with only saline, SKF81297 administration after extinction sessions had no effect on CPP and produced differing effects on dendritic morphology. At the doses used in our experiments, SKF81297 appears to maintain previously learned opioid conditioned behavior, even in the face of new information. The D1R agonist's differential, rather than unidirectional, effects on dendritic morphology in the NAc core suggests that it may be involved in encoding reward information depending on previously learned behavior. Published by Elsevier B.V.

  3. Stereochemical studies of the monocyclic agouti-related protein (103-122) Arg-Phe-Phe residues: conversion of a melanocortin-4 receptor antagonist into an agonist and results in the discovery of a potent and selective melanocortin-1 agonist.

    Science.gov (United States)

    Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-12-30

    The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.

  4. Opioid-free anaesthesia in three dogs

    Directory of Open Access Journals (Sweden)

    Donna M. White

    2017-05-01

    Full Text Available Opioid-free anaesthesia (OFA is a relatively new and growing field in human medicine. There are multiple motivations behind this emerging practice with the recognition of several serious potential opioid-related adverse effects including opioid induced hyperalgesia, opioid tolerance and immunomodulatory effects of opioids. Opioids have long been the mainstay of veterinary anaesthesia and pain management practice. The feasibility of OFA in veterinary patients is presented here. A case series of three dogs that underwent OFA for canine ovariohysterectomy is reported. The authors conclude OFA is possible in veterinary medicine; however the move away from the familiar effects of opioids perioperatively is challenging. Gaining experience with these types of protocols for standard procedures in healthy animals, such as neutering, will provide the anaesthetist with the building blocks for more invasive surgeries.

  5. Preparation and biodistribution in mice of ( sup 11 C)carfentanil; A radiopharmaceutical for studying brain. mu. -opioid receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Hideo; Tsutsumi, Daisuke; Iida, Yasuhiko; Yokoyama, Akira (Kyoto Univ. (Japan). Faculty of Pharmaceutical Science); Magata, Yasuhiro; Konishi, Junji

    1992-02-01

    A potent {mu}-opioid agonist, ({sup 11}C)carfentanil, was prepared by the methylation of carfentanil carboxylic acid with ({sup 11}C)methyl iodide in order to study brain {mu}-opioid receptors by positron emission tomography. Synthesis (including purification) was completed within 25 min and the radiochemical yield was approximately 40%. The radiochemical purity of the product was more than 99% and its specific activity was 3.7-7.4 GBq/{mu}mol. Biodistribution studies performed in mice after intravenous injection showed a high brain uptake and rapid blood clearance, so a high brain/blood ratio of 1.5-1.8 was found from 5 to 30 min. Regional cerebral distribution studies in the mouse showed a significantly higher uptake of ({sup 11}C)carfentanil by the thalamus and striatum than by the cerebellum, with the radioactivity in the striatum disappearing more rapidly than that in the thalamus. Treatment with naloxone significantly reduced the uptake of ({sup 11}C)carfentanil by the thalamus and striatum. These results indicate that ({sup 11}C)carfentanil binds specifically to brain {mu}-opioid receptors. (author).

  6. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine.

    Science.gov (United States)

    Liu, Zheng; Guo, Jun

    2017-11-27

    NKT cells are CD1d-restricted, glycolipid antigen-reactive, immunoregulatory T lymphocytes that can serve as a bridge between the innate and adaptive immunities. NKT cells have a wide range of therapeutic application in autoimmunity, transplant biology, infectious disease, cancer, and vaccinology. Rather than triggering "danger signal" and eliciting an innate immune response, αGalCer-based NKT-cell agonist act via a unique mechanism, recruiting NKT cells which play a T helper-like role even without peptide as Th epitope. Importantly, the non-polymorphism of CD1d render glycolipid a universal helper epitope, offering the potential to simplify the vaccine construct capable of eliciting consistent immune response in different individuals. This review details recent advances in the design of synthetic vaccines using NKT-cell agonist as adjuvant, highlighting the role of organic synthesis and conjugation technique to enhance the immunological actives and to simplify the vaccine constructs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Macroeconomic conditions and opioid abuse.

    Science.gov (United States)

    Hollingsworth, Alex; Ruhm, Christopher J; Simon, Kosali

    2017-12-01

    We examine how deaths and emergency department (ED) visits related to use of opioid analgesics (opioids) and other drugs vary with macroeconomic conditions. As the county unemployment rate increases by one percentage point, the opioid death rate per 100,000 rises by 0.19 (3.6%) and the opioid overdose ED visit rate per 100,000 increases by 0.95 (7.0%). Macroeconomic shocks also increase the overall drug death rate, but this increase is driven by rising opioid deaths. Our findings hold when performing a state-level analysis, rather than county-level; are primarily driven by adverse events among whites; and are stable across time periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Targinact--opioid pain relief without constipation?

    Science.gov (United States)

    2010-12-01

    Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.

  9. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    Science.gov (United States)

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Yang, Peiran; Read, Cai; Kuc, Rhoda E; Buonincontri, Guido; Southwood, Mark; Torella, Rubben; Upton, Paul D; Crosby, Alexi; Sawiak, Stephen J; Carpenter, T Adrian; Glen, Robert C; Morrell, Nicholas W; Maguire, Janet J; Davenport, Anthony P

    2017-03-21

    monocrotaline-exposed rats. These results show that ELA is an endogenous agonist of the human apelin receptor, exhibits a cardiovascular profile comparable to apelin, and is downregulated in human disease and rodent PAH models, and exogenous peptide can reduce the severity of cardiopulmonary remodeling and function in PAH in rats. This study provides additional proof of principle that an apelin receptor agonist may be of therapeutic use in PAH in humans. © 2017 The Authors.

  11. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  12. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke

    DEFF Research Database (Denmark)

    Joseph, Jason P; Mecca, Adam P; Regenhardt, Robert W

    2014-01-01

    Evidence indicates that angiotensin II type 2 receptors (AT2R) exert cerebroprotective actions during stroke. A selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exert beneficial effects in models of cardiac and renal disease, as well as hemorrhagic stroke. Here, we hypothe...

  13. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone.

    Science.gov (United States)

    Huang, Y; Brodda-Jansen, G; Lundeberg, T; Yu, L C

    2000-08-04

    The present study investigated the role of calcitonin gene-related peptide (CGRP) on nociception in nucleus raphe magnus (NRM) and the interaction between CGRP and opioid peptides in NRM of rats. CGRP-like immunoreactivity was found at a concentration of 6.0+/-0. 77 pmol/g in NRM tissue of ten samples of rats, suggesting that it may contribute to physiological responses orchestrated by the NRM. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation increased significantly after intra-NRM administration of 0.5 or 1 nmol of CGRP in rats, but not 0.25 nmol. The anti-nociceptive effect induced by CGRP was antagonized by following intra-NRM injection of 1 nmol of the CGRP receptor antagonist CGRP8-37. Furthermore, the CGRP-induced anti-nociceptive effect was attenuated by following intra-NRM administration of 6 nmol of naloxone. The results indicate that CGRP and its receptors play an important role in anti-nociception, and there is a possible interaction between CGRP and opioid peptides in NRM of rats.

  14. Relapse to opioid use in opioid-dependent individuals released from compulsory drug detention centres compared with those from voluntary methadone treatment centres in Malaysia: a two-arm, prospective observational study.

    Science.gov (United States)

    Wegman, Martin P; Altice, Frederick L; Kaur, Sangeeth; Rajandaran, Vanesa; Osornprasop, Sutayut; Wilson, David; Wilson, David P; Kamarulzaman, Adeeba

    2017-02-01

    Detention of people who use drugs into compulsory drug detention centres (CDDCs) is common throughout East and Southeast Asia. Evidence-based pharmacological therapies for treating substance use disorders, such as opioid agonist treatments with methadone, are generally unavailable in these settings. We used a unique opportunity where CDDCs coexisted with voluntary drug treatment centres (VTCs) providing methadone in Malaysia to compare the timing and occurrence of opioid relapse (measured using urine drug testing) in individuals transitioning from CDDCs versus methadone maintenance in VTCs. We did a parallel, two-arm, prospective observational study of opioid-dependent individuals aged 18 years and older who were treated in Malaysia in the Klang Valley in two settings: CDDCs and VTCs. We used sequential sampling to recruit individuals. Assessed individuals in CDDCs were required to participate in services such as counselling sessions and manual labour. Assessed individuals in VTCs could voluntarily access many of the components available in CDDCs, in addition to methadone therapy. We undertook urinary drug tests and behavioural interviews to assess individuals at baseline and at 1, 3, 6, 9, and 12 months post-release. The primary outcome was time to opioid relapse post-release in the community confirmed by urinary drug testing in individuals who had undergone baseline interviewing and at least one urine drug test (our analytic sample). Relapse rates between the groups were compared using time-to-event methods. This study is registered at ClinicalTrials.gov (NCT02698098). Between July 17, 2012, and August 21, 2014, we screened 168 CDDC attendees and 113 VTC inpatients; of these, 89 from CDDCs and 95 from VTCs were included in our analytic sample. The baseline characteristics of the two groups were similar. In unadjusted analyses, CDDC participants had significantly more rapid relapse to opioid use post-release compared with VTC participants (median time to relapse

  15. A kinetic analysis of kappa-opioid agonist binding using the selective radioligand (/sup 3/H)U69593

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Hunter, J.C.; Hill, R.G.; Hughes, J.

    1989-07-01

    The interaction of the nonselective opioid ligand (3H)bremazocine and of the kappa-opioid (3H)U69593 with the kappa-receptor was investigated in guinea-pig cortical membranes. Each radioligand bound to a single population of high-affinity sites, although (3H)U69593 apparently recognised only 70% of those sites labelled by (3H)bremazocine. Naloxone and the kappa-selective ligands U69593 and PD117302 exhibited full inhibition of the binding of both radioligands. Kinetic analysis demonstrated biphasic rates of association and dissociation for both (3H)bremazocine and (3H)U69593. Detailed analysis of the binding of (3H)U69593 revealed that the fast rate of association was dependent on radioligand concentration, in contrast to the slow rate, which was independent of ligand concentration. Guanylyl-5'-imidodiphosphate (GppNHp) inhibited binding of (3H)U69593; saturation analysis demonstrated that the inhibitory effects of GppNHp resulted in a decrease in affinity without any significant change in binding capacity. GppNHp attenuated the formation of the slow component of (3H)U69593 binding, while accelerating the fast component. The data are consistent with the formation of a high-affinity complex between the kappa-receptor and a guanine nucleotide binding protein. Guanine nucleotides promote the dissociation of this ternary complex and the stabilisation of a lower-affinity state of the receptor.

  16. Stigma associated with medication treatment for young adults with opioid use disorder: a case series.

    Science.gov (United States)

    Hadland, Scott E; Park, Tae Woo; Bagley, Sarah M

    2018-05-07

    Opioid-related overdose deaths have risen sharply among young adults. Despite this increase, access to evidence-based medication for opioid agonist treatment (OAT) for youth remains low. Among older adults, barriers to OAT include the paucity of buprenorphine-waivered prescribers and low rates of prescribing among waivered physicians. We have increasingly found in our clinical practice significant stigma related to using OAT to treat addiction for young adults. In this series, we describe three cases of young adults who faced significant stigma related to their treatment. The first case is a young male with a history of significant trauma and a severe opioid use disorder. He started buprenorphine and has found a job, stayed abstinent, and began a healthy relationship. At each step in his recovery, he has faced resistance to taking medication from other treatment providers, directors of sober houses, and his parents. The second case is a young woman who presented to a substance use treatment program after a relapse. She was unable to restart buprenorphine despite our calling to ask that it be restarted. Ultimately, she left against medical advice and was stabilized as an outpatient on buprenorphine. The final case is a young woman who stopped buprenorphine after being told she was "not sober" while attending 12-step group but restarted after conversations with her clinical team. In each case, the patient has continued their medication treatment and are stable. Opioid-related deaths continue to rise among all age groups, including young adults. Stigma related to medication treatment can be a substantial barrier for many young adult patients but there are concrete steps that providers and communities can take to address this stigma.

  17. Risk factors for opioid overdose and awareness of overdose risk among veterans prescribed chronic opioids for addiction or pain.

    Science.gov (United States)

    Wilder, Christine M; Miller, Shannon C; Tiffany, Elizabeth; Winhusen, Theresa; Winstanley, Erin L; Stein, Michael D

    2016-01-01

    Rising overdose fatalities among U.S. veterans suggest veterans taking prescription opioids may be at risk for overdose. However, it is unclear whether veterans prescribed chronic opioids are aware of this risk. The objective of this study was to identify risk factors and determine awareness of risk for opioid overdose in veterans treated with opioids for chronic pain, using veterans treated with methadone or buprenorphine for opioid use disorder as a high-risk comparator group. In the current study, 90 veterans on chronic opioid medication, for either opioid use disorder or pain management, completed a questionnaire assessing risk factors, knowledge, and self-estimate of risk for overdose. Nearly all veterans in both groups had multiple overdose risk factors, although individuals in the pain management group had on average a significantly lower total number of risk factors than did individuals in the opioid use disorder group (5.9 versus 8.5, p opioid overdose risk factors (12.1 versus 13.5, p opioid overdose risk factors. Our results suggest that veterans in both groups underestimated their risk for opioid overdose. Expansion of overdose education to include individuals on chronic opioids for pain management and a shift in educational approaches to overdose prevention may be indicated.

  18. Opioids and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2015-01-01

    BACKGROUND: Opioids may alter immune function, thereby potentially affecting cancer recurrence. The authors investigated the association between postdiagnosis opioid use and breast cancer recurrence. METHODS: Patients with incident, early stage breast cancer who were diagnosed during 1996 through...... 2008 in Denmark were identified from the Danish Breast Cancer Cooperative Group Registry. Opioid prescriptions were ascertained from the Danish National Prescription Registry. Follow-up began on the date of primary surgery for breast cancer and continued until breast cancer recurrence, death......, emigration, 10 years, or July 31, 2013, whichever occurred first. Cox regression models were used to compute hazard ratios and 95% confidence intervals associating breast cancer recurrence with opioid prescription use overall and by opioid type and strength, immunosuppressive effect, chronic use (≥6 months...

  19. Women who abuse prescription opioids: findings from the Addiction Severity Index-Multimedia Version Connect prescription opioid database.

    Science.gov (United States)

    Green, Traci C; Grimes Serrano, Jill M; Licari, Andrea; Budman, Simon H; Butler, Stephen F

    2009-07-01

    Evidence suggests gender differences in abuse of prescription opioids. This study aimed to describe characteristics of women who abuse prescription opioids in a treatment-seeking sample and to contrast gender differences among prescription opioid abusers. Data collected November 2005 to April 2008 derived from the Addiction Severity Index Multimedia Version Connect (ASI-MV Connect) database. Bivariate and multivariable logistic regression examined correlates of prescription opioid abuse stratified by gender. 29,906 assessments from 220 treatment centers were included, of which 12.8% (N=3821) reported past month prescription opioid abuse. Women were more likely than men to report use of any prescription opioid (29.8% females vs. 21.1% males, phistory of drug overdose. Men-specific correlates were age screen and identify those at highest risk of prescription opioid abuse. Prevention and intervention efforts with a gender-specific approach are warranted.

  20. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats.

    Science.gov (United States)

    Wen, D; Sun, D; Zang, G; Hao, L; Liu, X; Yu, F; Ma, C; Cong, B

    2014-09-26

    Cholecystokinin octapeptide (CCK-8), a brain-gut peptide, plays an important role in several opioid addictive behaviors. We previously reported that CCK-8 attenuated the expression and reinstatement of morphine-induced conditioned place preference. The possible effects of CCK-8 on the negative affective components of drug abstinence are not clear. There are no studies evaluating the effect of CCK-8 on emotional symptoms, such as anxiety, in morphine-withdrawal animals. We investigated the effects of CCK-8 on the anxiety-like behavior in morphine-withdrawal rats using an elevated plus-maze. Morphine withdrawal elicited time-dependent anxiety-like behaviors with peak effects on day 10 (5 days after induction of morphine dependence). Treatment with CCK-8 (0.1 and 1 μg, i.c.v.) blocked this anxiety in a dose-dependent fashion. A CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.) blocked the effect of CCK-8. Mu-opioid receptor antagonism with CTAP (10 μg, i.c.v.) decreased the 'anxiolytic' effect. CCK-8 inhibited anxiety-like behaviors in morphine-withdrawal rats by up-regulating endogenous opioids via the CCK1 receptor in rats. This study clearly identifies a distinct function of CCK-8 and a potential medication target of central CCK1 receptors for drugs aimed at ameliorating drug addiction. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Presence or Absence of QTc Prolongation in Buprenorphine-Naloxone Among Youth With Opioid Dependence.

    Science.gov (United States)

    Poole, Sabrina A; Pecoraro, Anna; Subramaniam, Geetha; Woody, George; Vetter, Victoria L

    2016-01-01

    The aim of the study was to evaluate buprenorphine-naloxone effects on the QTc in youth with opioid dependence. Buprenorphine is a partial agonist that is an effective treatment for opioid dependence. Compared with methadone, it has a lower risk of QTc prolongation in adults, but is less studied in the youth. It may also reduce the risk of torsades de pointes (TdP)--an uncommon variant of polymorphic ventricular tachycardia--that can result in syncope, ventricular fibrillation, and sudden death. Secondary analysis of the electrocardiogram data from 95 individuals who participated in a multisite trial for youth with opioid dependence. The participants were randomized to a 2-week (DETOX) or a 12-week course of buprenorphine-naloxone (BUP). At baseline, 12-lead electrocardiograms were done at weeks 4 and 12, and QTc intervals were hand-measured and calculated using Bazett formula. Increases above 60 milliseconds were considered clinically significant, and readings above 450 milliseconds (in men) and 470 milliseconds (in women) indicated a prolonged QTc. Mean QTc intervals were higher for BUP than for DETOX participants at baseline, week 4, and week 12 (P = 0.045), and women had longer mean QTc intervals than men (P DETOX patients. Minimal changes in the QTc were seen at 4 and 12 weeks in a few patients in both groups. There was no evidence that buprenorphine-naloxone alone increased the QTc to a level that increased the risk for TdP.

  2. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    Directory of Open Access Journals (Sweden)

    Moffett J

    2012-09-01

    Full Text Available John Moffett,1 Linley M Fray,1 Nicole J Kubat21Life Science Department, 2Independent Consultant, Regenesis Biomedical Inc, Scottsdale, AZ, USABackground: Pulsed radiofrequency energy (PRFE fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways.Methods and Results: Using cultured human dermal fibroblasts (HDF and human epidermal keratinocytes (HEK, we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types.Conclusion: These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting.Keywords: peripheral analgesia, endogenous opioids, endothelin-1, endothelin receptor A, endothelin receptor B, pulsed radiofrequency energy field, cyclooxygenase

  3. Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis?

    Directory of Open Access Journals (Sweden)

    Susanne Grässel

    2018-01-01

    Full Text Available Joint tissues like synovium, articular cartilage, meniscus and subchondral bone, are targets for neuropeptides. Resident cells of these tissues express receptors for various neuroendocrine-derived peptides including proopiomelanocortin (POMC-derived peptides, i.e., α-melanocyte-stimulating hormone (α-MSH, adrenocorticotropin (ACTH and β-endorphin (β-ED, and sympathetic neuropeptides like vasoactive intestinal peptide (VIP and neuropeptide y (NPY. Melanocortins attained particular attention due to their immunomodulatory and anti-inflammatory effects in several tissues and organs. In particular, α-MSH, ACTH and specific melanocortin-receptor (MCR agonists appear to have promising anti-inflammatory actions demonstrated in animal models of experimentally induced arthritis and osteoarthritis (OA. Sympathetic neuropeptides have obtained increasing attention as they have crucial trophic effects that are critical for joint tissue and bone homeostasis. VIP and NPY are implicated in direct and indirect activation of several anabolic signaling pathways in bone and synovial cells. Additionally, pituitary adenylate cyclase-activating polypeptide (PACAP proved to be chondroprotective and, thus, might be a novel target in OA. Taken together, it appears more and more likely that the anabolic effects of these neuroendocrine peptides or their respective receptor agonists/antagonists may be exploited for the treatment of patients with inflammatory and degenerative joint diseases in the future.

  4. Dgroup: DG00792 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available hydrochloride (USP) ... Neuropsychiatric agent ... DG02030 ... Anesthetics ... DG02027 ... General anesthetics ... DG02026 ... Opioid anesthetics... ... DG02027 ... General anesthetics ... DG02026 ... Opioid anesthetics ... DG01564 ... Opioid receptor ...agonist ... DG01563 ... mu-Opioid receptor agonist ATC code: N01AH02 General anesthetics OPRM1 [HSA:4988] [KO:K04215] Enzyme: CYP3A [HSA:1576 1577 1551] ...

  5. Medication-assisted therapy for opioid addiction

    OpenAIRE

    Tai, Betty; Saxon, Andrew J.; Ling, Walter

    2013-01-01

    The “Medication-Assisted Therapy for Opioid Addiction” session was chaired by Dr. Betty Tai and had three presenters. The presenters (and their topics) were: Dr. Andrew J. Saxon (Methadone and Buprenorphine for Treatment of Opioid Addiction and HIV Risk Reduction), Dr. Walter Ling (Opioid Antagonist Treatment for Opioid Addiction), and Dr. Betty Tai (Chronic Care Model for Substance Use Disorder).

  6. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives.

    Science.gov (United States)

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.

  7. Peripherally applied opioids for postoperative pain

    DEFF Research Database (Denmark)

    Nielsen, B N; Henneberg, S W; Schmiegelow, K

    2015-01-01

    BACKGROUND: Opioids applied peripherally at the site of surgery may produce postoperative analgesia with few side effects. We performed this systematic review to evaluate the analgesic effect of peripherally applied opioids for acute postoperative pain. METHODS: We searched PubMed (1966 to June...... 2013), Embase (1980 to June 2013), and the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 6). Randomized controlled trials investigating the postoperative analgesic effect of peripherally applied opioids vs. systemic opioids or placebo, measured by pain intensity...... difference -5 mm, 95% CI: -7 to -3) for peripherally applied opioids vs. placebo and statistically significant increased time to first analgesic (mean difference 153 min, 95% CI: 41-265). When preoperative inflammation was reported (five studies), peripherally applied opioids significantly improved...

  8. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Science.gov (United States)

    Thompson, Aiysha; Stephens, Jeffrey W; Bain, Stephen C; Kanamarlapudi, Venkateswarlu

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  9. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Directory of Open Access Journals (Sweden)

    Aiysha Thompson

    Full Text Available The glucagon-like peptide receptor (GLP-1R, which is a G-protein coupled receptor (GPCR, signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39 and JANT-4 and the orthosteric binding site mutation (V36A in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  10. Structure-activity relationship of cyclic peptide penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2) at the human melanocortin-1 and -4 receptors: His(6) substitution.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-04-07

    A series of MT-II related cyclic peptides, based on potent but non-selective hMC4R agonist (Penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2)) was prepared in which His(6) residue was systematically substituted. Two of the most interesting peptides identified in this study are Penta-c[Asp-5-ClAtc-DPhe-Arg-Trp-Lys]-NH(2) and Penta-c[Asp-5-ClAtc-DPhe-Cit-Trp-Lys]-NH(2) which are potent hMC4R agonists and are either inactive or weak partial agonists (not tested for their antagonist activities) in hMC1R, hMC3R and hMC5R agonist assays.

  11. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives

    Directory of Open Access Journals (Sweden)

    Gurgle HE

    2016-06-01

    Full Text Available Holly E Gurgle, Karen White, Carrie McAdam-Marx Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA Abstract: Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium–glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium–glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient. Keywords: type 2 diabetes mellitus, GLP-1 receptor agonist, SGLT2 inhibitor, A1c, weight loss, adverse effect

  12. A phase III, randomized, multi-center, double blind, placebo controlled study of safety and efficacy of lofexidine for relief of symptoms in individuals undergoing inpatient opioid withdrawal.

    Science.gov (United States)

    Gorodetzky, Charles W; Walsh, Sharon L; Martin, Peter R; Saxon, Andrew J; Gullo, Kristen L; Biswas, Kousick

    2017-07-01

    Lofexidine is an alpha-2-adrenergic receptor agonist approved in the United Kingdom (UK) for the treatment of opioid withdrawal symptoms. Lofexidine has demonstrated better efficacy than placebo for reducing opioid withdrawal symptoms in patients undergoing opioid withdrawal with less reported hypotension than clonidine. Designed as an FDA registration trial, this 8-day, randomized, double-blind, placebo-controlled, parallel-group study in 264 patients dependent on short-acting opioids evaluated the efficacy of lofexidine hydrochloride in reducing withdrawal symptoms in patients undergoing opioid withdrawal. The primary efficacy measures were SOWS-Gossop on Day 3 and time-to-dropout. Secondary endpoints included the proportion of participants who were completers; area under the 5-day SOWS-Gossop - time curve (i.e., AUC 1-5 ), and daily mean SOWS-Gossop, OOWS-Handelsman, MCGI (subject and rater), and VAS-E scores. Participants received lofexidine HCl 3.2mg daily in four divided doses or matching placebo on Days 1-5, followed by 2days of placebo. Lofexidine significantly decreased mean Day 3 SOWS scores compared to placebo, 6.32 versus 8.67, respectively, p=0.0212. Fewer lofexidine patients were early terminators compared to placebo (59 versus 80, respectively); and non-completers in the lofexidine group remained in the study longer than those assigned to placebo (p=0.0034). Secondary endpoints consistently favored lofexidine. Lofexidine was well tolerated in this trial. Lofexidine significantly decreased SOWS scores compared to placebo and demonstrated better retention rates in participants undergoing opioid withdrawal. Lofexidine potentially offers a useful non-opioid alternative to treat opioid withdrawal symptoms. Copyright © 2017. Published by Elsevier B.V.

  13. A pepducin derived from the third intracellular loop of FPR2 is a partial agonist for direct activation of this receptor in neutrophils but a full agonist for cross-talk triggered reactivation of FPR2.

    Directory of Open Access Journals (Sweden)

    Michael Gabl

    Full Text Available We recently described a novel receptor cross-talk mechanism in neutrophils, unique in that the signals generated by the PAF receptor (PAFR and the ATP receptor (P2Y2R transfer formyl peptide receptor 1 (FPR1 from a desensitized (non-signaling state back to an actively signaling state (Forsman H et al., PLoS One, 8:e60169, 2013; Önnheim K, et al., Exp Cell Res, 323∶209, 2014. In addition to the G-protein coupled FPR1, neutrophils also express the closely related receptor FPR2. In this study we used an FPR2 specific pepducin, proposed to work as an allosteric modulator at the cytosolic signaling interface, to determine whether the cross-talk pathway is utilized also by FPR2. The pepducin used contains a fatty acid linked to a peptide sequence derived from the third intracellular loop of FPR2, and it activates as well as desensensitizes this receptor. We now show that neutrophils desensitized with the FPR2-specific pepducin display increased cellular responses to stimulation with PAF or ATP. The secondary PAF/ATP induced response was sensitive to FPR2-specific inhibitors, disclosing a receptor cross-talk mechanism underlying FPR2 reactivation. The pepducin induced an activity in naïve cells similar to that of a conventional FPR2 agonist, but with lower potency (partial efficacy, meaning that the pepducin is a partial agonist. The PAF- or ATP-induced reactivation was, however, much more pronounced when neutrophils had been desensitized to the pepducin as compared to cells desensitized to conventional agonists. The pepducin should thus in this respect be classified as a full agonist. In summary, we demonstrate that desensitized FPR2 can be transferred back to an actively signaling state by receptor cross-talk signals generated through PAFR and P2Y2R, and the difference in agonist potency with respect to pepducin-induced direct receptor activation and cross-talk reactivation of FPR2 puts the concept of functional selectivity in focus.

  14. Developmental Potential for Endomorphin Opioidmimetic Drugs

    Directory of Open Access Journals (Sweden)

    Yoshio Okada

    2012-01-01

    Full Text Available Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM-1 and endomorphin(EM-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr1 with 2′,6′-dimethyl-L-tyrosine (Dmt to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt1]EM-1 and [Dmt1]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt1]EM-1 (47 and [N-allyl-Dmt1]EM-2 (48 exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier.

  15. 42 CFR 8.11 - Opioid treatment program certification.

    Science.gov (United States)

    2010-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The provisions...

  16. Dependence and addiction during chronic opioid therapy.

    Science.gov (United States)

    Juurlink, David N; Dhalla, Irfan A

    2012-12-01

    The use of opioids for chronic noncancer pain has increased dramatically over the past 25 years in North America and has been accompanied by a major increase in opioid addiction and overdose deaths. The increase in opioid prescribing is multifactorial and partly reflects concerns about the effectiveness and safety of alternative medications, particularly the nonsteroidal anti-inflammatory drugs. However, much of the rise in opioid prescribing reflects the assertion, widely communicated to physicians in the 1990s, that the risks of dependence and addiction during chronic opioid therapy were low, predictable, and could be minimized by the use of controlled-release opioid formulations. In this narrative review, we offer a critical appraisal of the publications most frequently cited as evidence that the risk of addiction during chronic opioid therapy is low. We conclude that very few well-designed studies support the notion that opioid addiction is rare during chronic opioid therapy and that none can be readily generalized to present-day practice. Despite serious methodological limitations, these studies have been repeatedly mischaracterized as showing that the risk of addiction during chronic opioid therapy is rare. These studies are countered by a larger, more rigorous and contemporary body of evidence demonstrating that dependence and addiction are relatively common consequences of chronic opioid therapy, occurring in up to one-third of patients in some series.

  17. Opioids, pain, the brain, and hyperkatifeia: a framework for the rational use of opioids for pain.

    Science.gov (United States)

    Shurman, Joseph; Koob, George F; Gutstein, Howard B

    2010-07-01

    Opioids have relieved more human suffering than any other medication, but their use is still fraught with significant concerns of misuse, abuse, and addiction. This theoretical article explores the hypothesis that opioid misuse in the context of pain management produces a hypersensitivity to emotional distress, termed hyperkatifeia. In the misuse of opioids, neural substrates that mediate positive emotional states (brain reward systems) are compromised, and substrates mediating negative emotional states (brain stress systems) are enhanced. A reflection and early marker of such a nonhomeostatic state may be the development of opioid-induced hyperkatifeia, defined as the increased intensity of the constellation of negative emotional/motivational symptoms and signs observed during withdrawal from drugs of abuse (derived from the Greek "katifeia" for dejection or negative emotional state) and is most likely to occur in subjects in whom the opioid produces a break with homeostasis and less likely to occur when the opioid is restoring homeostasis, such as in effective pain treatment. When the opioid appropriately relieves pain, opponent processes are not engaged. However, if the opioid is administered in excess of need because of overdose, pharmacokinetic variables, or treating an individual without pain, then the body will react to that perturbation by engaging opponent processes in the domains of both pain (hyperalgesia) and negative emotional states (hyperkatifeia). Repeated engagement of opponent processes without time for the brain's emotional systems to reestablish homeostasis will further drive changes in emotional processes that may produce opioid abuse or addiction, particularly in individuals with genetic or environmental vulnerability.

  18. Comparison of craving for opioid in opioid-dependent individuals and people under methadone maintenance treatment

    Directory of Open Access Journals (Sweden)

    Azita Chehri

    2014-02-01

    Full Text Available Background: Methadone Maintenance Therapy (MMT is the most important treatment for opioid -dependency recurrence. The aim of this study was to compare the craving level in opioid-dependent individuals and people under methadone maintenance therapy. Methods: In this case – control study, 120 men with opioid dependency were selected through cluster sampling method. They were divided into two groups, 60 people in opioid-dependent group and 60 people in MMT group. Both groups were matched for age, sex, marital status, education, duration of opioid dependency and method of consumption. Then, they completed INCAS Substance Abuse Profile (ISAP, opiate withdrawal symptoms checklist, self–report of craving, Desire for Drug Questionnaire (DDQ, Obsessive Compulsive Drug Use Scale (OCDUS and visual cue-induced craving questionnaire. Data were analyzed by SPSS 15 using t-test and ANOVA. Results: Mean craving for drug significantly was lower in MMT group comparing opioid-dependent group (P<0.01. Conclusion: Methadone Maintenance Therapy decreased the craving for drugs and substances This can have an important role in relapse prevention.

  19. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    Science.gov (United States)

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  20. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients.

    Science.gov (United States)

    Lafarga, Tomas; Hayes, Maria

    2014-10-01

    Bioactive peptides are sequences of between 2-30 amino acids in length that impart a positive health effect to the consumer when ingested. They have been identified from a range of foods, including milk and muscle sources including beef, chicken, pork and marine muscles. The myriad of peptides identified from these sources have known antihypertensive, opioid, antioxidant, antithrombotic and other bioactivities. Indeed, bioactive peptides could play a role in the prevention of diseases associated with the development of metabolic syndrome and mental health diseases. The aim of this work is to present an overview of the bioactive peptides identified in muscle proteins and by-products generated during the processing of meat. The paper looks at the isolation, enrichment and characterisation strategies that have been employed to date to generate bioactive peptides and the potential future applications of these peptides in functional foods for the prevention of heart and mental health problems and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Creating opioid dependence in the emergency department.

    Science.gov (United States)

    Upadhye, Suneel

    2018-01-01

    Clinical question What is the risk of creating opioid dependence from an ED opioid prescription? Article chosen Barnett ML, Olenski AR, Jena AB. Opioid-prescribing patterns of emergency physicians and risk of long-term use. N Engl J Med 2017;376:663-73, doi:10.1056/NEJMsa1610524. This study examined the risk of creating long-term opioid dependence from a prescription written in an opioid-naive patient in the ED.

  2. Sensory Neuropeptides and Endogenous Opioids Expression in Human Dental Pulp with Asymptomatic Inflammation: In Vivo Study

    Directory of Open Access Journals (Sweden)

    Daniel Chavarria-Bolaños

    2015-01-01

    Full Text Available Purpose. This study quantified the expression of substance P (SP, calcitonin gene-related peptide (CGRP, β-endorphins (β-End, and methionine-enkephalin (Met-Enk in human dental pulp following orthodontic intrusion. Methods. Eight patients were selected according to preestablished inclusion criteria. From each patient, two premolars (indicated for extraction due to orthodontic reasons were randomly assigned to two different groups: the asymptomatic inflammation group (EXPg, which would undergo controlled intrusive force for seven days, and the control group (CTRg, which was used to determine the basal levels of each substance. Once extracted, dental pulp tissue was prepared to determine the expression levels of both neuropeptides and endogenous opioids by radioimmunoassay (RIA. Results. All samples from the CTRg exhibited basal levels of both neuropeptides and endogenous opioids. By day seven, all patients were asymptomatic, even when all orthodontic-intrusive devices were still active. In the EXPg, the SP and CGRP exhibited statistically significant different levels. Although none of the endogenous opioids showed statistically significant differences, they all expressed increasing trends in the EXPg. Conclusions. SP and CGRP were identified in dental pulp after seven days of controlled orthodontic intrusion movement, even in the absence of pain.

  3. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  4. CDC Vital Signs: Opioid Painkiller Prescribing

    Science.gov (United States)

    ... Mental Health Services Administration Medication-Assisted Treatment for Opioid Addiction: Facts for Families and Friends Opioid Overdose Prevention ... Abuse Drugs, Brains, and Behavior: The Science of Addiction Opioid and Pain Management CMEs/CEs Prescription Drugs U.S. ...

  5. Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain.

    Science.gov (United States)

    Torres-Sanchez, Sonia; Borges, Gisela Da Silva; Mico, Juan A; Berrocoso, Esther

    2018-06-01

    Tapentadol is an analgesic that acts as an agonist of µ opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively). In STZ rats, the spontaneous activity of LC neurons (0.9 ± 0.1 Hz) was lower than in naïve animals (1.5 ± 0.1 Hz), and tapentadol's inhibitory effect was also weaker. Alpha2-adrenoceptors blockade by RX821002 (100 μg/kg i.v.) in STZ animals significantly increased the spontaneous activity (from 0.8 ± 0.1 to 1.4 ± 0.2 Hz) and it dampened the inhibition of LC neurons produced by tapentadol. However, opioid receptors blockade following naloxone pre-treatment (5 mg/kg i.v.) did not alter the spontaneous firing rate (0.9 ± 0.2 vs 0.9 ± 0.2 Hz) or the inhibitory effect of tapentadol on LC neurons in STZ animals. Thus, diabetic polyneuropathy appears to exert neuroplastic changes in LC neurotransmission, enhancing the sensitivity of alpha2-adrenoceptors and dampening opioid receptors expression. Tapentadol's activity seems to be predominantly mediated through its noradrenergic effects rather than its influence on opioid receptors in the STZ model of diabetic polyneuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Liraglutide Versus Lixisenatide: Long-Term Cost-Effectiveness of GLP-1 Receptor Agonist Therapy for the Treatment of Type 2 Diabetes in Spain

    OpenAIRE

    Mezquita-Raya, Pedro; Ram?rez de Arellano, Antonio; Kragh, Nana; Vega-Hernandez, Gabriela; P?hlmann, Johannes; Valentine, William J.; Hunt, Barnaby

    2017-01-01

    Introduction Glucagon-like peptide-1 (GLP-1) receptor agonists are used successfully in the treatment of patients with type 2 diabetes as they are associated with low hypoglycemia rates, weight loss and improved glycemic control. This study compared, in the Spanish setting, the cost-effectiveness of liraglutide 1.8?mg versus lixisenatide 20??g, both GLP-1 receptor agonists, for patients with type 2 diabetes who had not achieved glycemic control targets on metformin monotherapy. Methods The IM...

  7. Bioactive peptides: production, health effects and application as natural supplements for functional foods production

    Directory of Open Access Journals (Sweden)

    S. Mirdamadi

    2017-05-01

    Full Text Available Bioactive peptides, are inactive components within the structure of the protein and when they are released by enzymatic hydrolysis, show different physiological functions. Recently, the identification and characterization of bioactive peptides derived from plant and animal sources and different microorganisms is highly regarded. They are produced during enzymatic hydrolysis by gastrointestinal enzymes or enzymes extracted from microorganisms and plants or by proteolytic starter cultures during fermentation process and exhibit different activities including: opioid, mineral binding, immunomodulatory, antioxidant, antimicrobial, anti-inflammatory, chlosterol lowering and so on. Take advantage of bioactive peptides as components of health is related to bio stability assurance, bioavailability and safety of them. The use of computer-based techniques and the use of various databases completed in laboratory studies,  have provided the possibility of studying the mechanisms of action of different peptides.

  8. Pharmacogenomics-guided policy in opioid use disorder (OUD) management: An ethnically-diverse case-based approach.

    Science.gov (United States)

    Ettienne, Earl B; Chapman, Edwin; Maneno, Mary; Ofoegbu, Adaku; Wilson, Bradford; Settles-Reaves, Beverlyn; Clarke, Melissa; Dunston, Georgia; Rosenblatt, Kevin

    2017-12-01

    Opioid use disorder (OUD) is characterized by a problematic pattern of opioid use leading to clinically-significant impairment or distress. Opioid agonist treatment is an integral component of OUD management, and buprenorphine is often utilized in OUD management due to strong clinical evidence for efficacy. However, interindividual genetic differences in buprenorphine metabolism may result in variable treatment response, leaving some patients undertreated and at increased risk for relapse. Clinical pharmacogenomics studies the effect that inherited genetic variations have on drug response. Our objective is to demonstrate the impact of pharmacogenetic testing on OUD management outcomes. We analyzed a patient who reported discomfort at daily buprenorphine dose of 24 mg, which was a mandated daily maximum by the pharmacy benefits manager. Regular urine screenings were conducted to detect the presence of unauthorized substances, and pharmacogenetic testing was used to determine the appropriate dose of buprenorphine for OUD management. At the 24 mg buprenorphine daily dose, the patient had multiple relapses with unauthorized substances. Pharmacogenetic testing revealed that the patient exhibited a cytochrome P450 3A4 ultrarapid metabolizer phenotype, which necessitated a higher than recommended daily dose of buprenorphine (32 mg) for adequate OUD management. The patient exhibited a reduction in the number of relapses on the pharmacogenetic-based dose recommendation compared to standard dosing. Pharmacogenomic testing as clinical decision support helped to individualize OUD management. Collaboration by key stakeholders is essential to establishing pharmacogenetic testing as standard of care in OUD management.

  9. The Presence or Absence of QTc Prolongation in Buprenorphine-Naloxone Among Youth with Opioid Dependence

    Science.gov (United States)

    Poole, Sabrina A.; Pecoraro, Anna; Subramaniam, Geetha; Woody, George; Vetter, Victoria L

    2015-01-01

    Objective To evaluate buprenorphine-naloxone effects on the QTc in youth with opioid dependence. Buprenorphine is a partial agonist that is an effective treatment for opioid dependence. Compared to methadone it has a lower risk of QTc prolongation in adults but is less well studied in youth. It may also reduce the risk for torsades de pointes (TdP) an uncommon variant of polymorphic ventricular tachycardia, that can result in syncope, ventricular fibrillation, and sudden death. Methods Secondary analysis of ECG data from 95 subjects who participated in a multi-site trial for youth with opioid dependence. Subjects were randomized to a 2-week (DETOX), or a 12-week course of buprenorphine-naloxone (BUP). 12-lead ECGs were done at baseline, weeks 4 and 12, and QTc intervals were hand measured and calculated using Bazett's formula. Increases > 60 milliseconds (ms) were considered clinically significant, and readings > 450 ms (males) and 470 ms (females) indicated a prolonged QTc. Results Mean QTc intervals were higher for BUP than DETOX participants at baseline, week 4, and week 12 (p = 0.045), and females had longer mean QTc intervals than males (p DETOX patients. Minimal changes in the QTc were seen at 4 and 12-weeks in a few patients in both groups. There was no evidence that buprenorphine-naloxone alone increased the QTc to a level that increased the risk for TdP. PMID:26690291

  10. Glucagon-Like Peptide-1 Receptor Agonist Use and Renal Impairment: A Retrospective Analysis of an Electronic Health Records Database in the U.S. Population.

    Science.gov (United States)

    Boye, Kristina S; Botros, Fady T; Haupt, Axel; Woodward, Brad; Lage, Maureen J

    2018-04-01

    The study characterizes the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in patients with type 2 diabetes (T2D) with and without renal impairment and examines the effects of such use on the clinical outcomes of estimated glomerular filtration rate (eGFR) and glycated hemoglobin (A1c). Data from the Practice Fusion electronic health records database from 1 January 2012 through 30 April 2015 were used. Adults with T2D who received serum creatinine laboratory tests and initiated therapy with a GLP-1 RA (N = 3225) or other glucose-lowering agent (GLA) (N = 37,074) were included in the analysis. The GLP-1 RA cohort was matched to cohorts initiating therapy any other GLA, and multivariable analyses examined the association between GLP-1 RA use and changes in eGFR or A1c at 1 year after therapy initiation. In this study, only 5.7% of patients with an eGFR of Eli Lilly and Company.

  11. Hiperalgesia Inducida por Opioides

    OpenAIRE

    Jiménez Salazar, Andrés

    2013-01-01

    Los opioides producen analgesia a través de un efecto inhibitorio sobre el sistema nociceptivo principalmente. Hasta la fecha, los opioides siguen siendo los analgésicos más potentes para el manejo de dolor moderado a severo. La Asociación Internacional del Estudio del Dolor (IASP, en inglés) define hiperalgesia como "un aumento de la respuesta a un estímulo que normalmente es doloroso". En contraste, está bien establecido que la terapia crónica con opioides se asocia con el desarrollo de ...

  12. Cardiovascular safety and benefits of GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Dalsgaard, Niels B; Brønden, Andreas; Lauritsen, Tina Vilsbøll

    2017-01-01

    INTRODUCTION: Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) constitute a class of drugs for the treatment of type 2 diabetes, and currently, six different GLP-1RAs are approved. Besides improving glycemic control, the GLP-1RAs have other beneficial effects such as weight loss...... and a low risk of hypoglycemia. Treatment with the GLP-1RA lixisenatide has been shown to be safe in patients with type 2 diabetes and recent acute coronary syndrome. Furthermore, liraglutide and semaglutide have been shown to reduce cardiovascular (CV) disease (CVD) risk in type 2 diabetes patients...

  13. Extensive changes in the expression of the opioid genes between humans and chimpanzees.

    Science.gov (United States)

    Cruz-Gordillo, Peter; Fedrigo, Olivier; Wray, Gregory A; Babbitt, Courtney C

    2010-01-01

    The various means by which the body perceives, transmits, and resolves the experiences of pain and nociception are mediated by a host of molecules, including neuropeptides within the opioid gene signaling pathway. The peptide ligands and receptors encoded by this group of genes have been linked to behavioral disorders as well as a number of psychiatric affective disorders. Our aim was to explore the recent evolutionary history of these two gene families by taking a comparative genomics approach, specifically through a comparison between humans and chimpanzees. Our analyses indicate differential expression of these genes between the two species, more than expected based on genome-wide comparisons, indicating that differential expression is pervasive among the opioid genes. Of the 8 family members, three genes showed significant expression differences (PENK, PNOC, and OPRL1), with two others marginally significant (OPRM1 and OPRD1). Accelerated substitution rates along human and chimpanzee lineages within the putative regulatory regions of OPRM1, POMC, and PDYN between the human and chimpanzee branches are consistent with positive selection. Collectively, these results suggest that there may have been a selective advantage to modulating the expression of the opioid genes in humans compared with our closest living relatives. Information about the cognitive roles mediated by these genes in humans may help to elucidate the trait consequences of these putatively adaptive expression changes. Copyright © 2010 S. Karger AG, Basel.

  14. Activation of Relaxin Family Receptor 1 from different mammalian species by relaxin peptide and small molecule agonist ML290

    Directory of Open Access Journals (Sweden)

    Zaohua eHuang

    2015-08-01

    Full Text Available Relaxin peptide (RLN, which signals through the relaxin family peptide 1 (RXFP1 GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the 7-transmembrane domain (7TM. Two splice variants of rabbit RXFP1 derived through alternative splicing of the forth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit relaxins. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled relaxin to rabbit RXFP1 was detected, suggesting that in this species RXFP1 might be non-functional. We used chimeric rabbit-human and guinea pig-human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing.

  15. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  16. The µ-opioid system promotes visual attention to faces and eyes.

    Science.gov (United States)

    Chelnokova, Olga; Laeng, Bruno; Løseth, Guro; Eikemo, Marie; Willoch, Frode; Leknes, Siri

    2016-12-01

    Paying attention to others' faces and eyes is a cornerstone of human social behavior. The µ-opioid receptor (MOR) system, central to social reward-processing in rodents and primates, has been proposed to mediate the capacity for affiliative reward in humans. We assessed the role of the human MOR system in visual exploration of faces and eyes of conspecifics. Thirty healthy males received a novel, bidirectional battery of psychopharmacological treatment (an MOR agonist, a non-selective opioid antagonist, or placebo, on three separate days). Eye-movements were recorded while participants viewed facial photographs. We predicted that the MOR system would promote visual exploration of faces, and hypothesized that MOR agonism would increase, whereas antagonism decrease overt attention to the information-rich eye region. The expected linear effect of MOR manipulation on visual attention to the stimuli was observed, such that MOR agonism increased while antagonism decreased visual exploration of faces and overt attention to the eyes. The observed effects suggest that the human MOR system promotes overt visual attention to socially significant cues, in line with theories linking reward value to gaze control and target selection. Enhanced attention to others' faces and eyes represents a putative behavioral mechanism through which the human MOR system promotes social interest. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Urolinin: The First Linear Peptidic Urotensin-II Receptor Agonist.

    Science.gov (United States)

    Bandholtz, Sebastian; Erdmann, Sarah; von Hacht, Jan Lennart; Exner, Samantha; Krause, Gerd; Kleinau, Gunnar; Grötzinger, Carsten

    2016-11-23

    This study investigated the role of individual U-II amino acid positions and side chain characteristics important for U-IIR activation. A complete permutation library of 209 U-II variants was studied in an activity screen that contained single substitution variants of each position with one of the other 19 proteinogenic amino acids. Receptor activation was measured using a cell-based high-throughput fluorescence calcium mobilization assay. We generated the first complete U-II substitution map for U-II receptor activation, resulting in a detailed view into the structural features required for receptor activation, accompanied by complementary information from receptor modeling and ligand docking studies. On the basis of the systematic SAR study of U-II, we created 33 further short and linear U-II variants from eight to three amino acids in length, including d- and other non-natural amino acids. We identified the first high-potency linear U-II analogues. Urolinin, a linear U-II agonist (nWWK-Tyr(3-NO 2 )-Abu), shows low nanomolar potency as well as improved metabolic stability.

  18. Opioid Therapy for Chronic Nonmalignant Pain

    Directory of Open Access Journals (Sweden)

    Russell K Portenoy

    1996-01-01

    Full Text Available Long term administration of an opioid drug for chronic nonmalignant pain continues to be controversial, but is no longer uniformly rejected by pain specialists. This is true despite concerns that the regulatory agencies that oversee physician prescribing of opioid drugs continue to stigmatize the practice. The changing clinical perspective has been driven, in part, by widespread acknowledgement of the remarkably favourable outcomes achieved during opioid treatment of cancer pain. These outcomes contrast starkly with popular teaching about chronic opioid therapy and affirm the potential for prolonged efficacy, tolerable side effects, enhanced function associated with improved comfort and minimal risk of aberrant drug-related behaviours consistent with addiction. A large anecdotal experience in populations with nonmalignant pain suggests that these patients are more heterogeneous and that opioid therapy will greatly benefit some and will contribute to negative outcomes for others. The few controlled clinical trials that have been performed support the safety and efficacy of opioid therapy, but have been too limited to ensure generalization to the clinical setting. A critical review of the medical literature pertaining to chronic pain, opioid pharmacology and addiction medicine can clarify misconceptions about opioid therapy and provide a foundation for patient selection and drug administration. The available data support the view that opioids are no panacea for chronic pain, but should be considered in carefully selected patients using clinically derived guidelines that stress a structured approach and ongoing monitoring of efficacy, adverse effects, functional outcomes and the occurrence of aberrant drug-related behaviours.

  19. Long-term course of opioid addiction.

    Science.gov (United States)

    Hser, Yih-Ing; Evans, Elizabeth; Grella, Christine; Ling, Walter; Anglin, Douglas

    2015-01-01

    Opioid addiction is associated with excess mortality, morbidities, and other adverse conditions. Guided by a life-course framework, we review the literature on the long-term course of opioid addiction in terms of use trajectories, transitions, and turning points, as well as other factors that facilitate recovery from addiction. Most long-term follow-up studies are based on heroin addicts recruited from treatment settings (mostly methadone maintenance treatment), many of whom are referred by the criminal justice system. Cumulative evidence indicates that opioid addiction is a chronic disorder with frequent relapses. Longer treatment retention is associated with a greater likelihood of abstinence, whereas incarceration is negatively related to subsequent abstinence. Over the long term, the mortality rate of opioid addicts (overdose being the most common cause) is about 6 to 20 times greater than that of the general population; among those who remain alive, the prevalence of stable abstinence from opioid use is low (less than 30% after 10-30 years of observation), and many continue to use alcohol and other drugs after ceasing to use opioids. Histories of sexual or physical abuse and comorbid mental disorders are associated with the persistence of opioid use, whereas family and social support, as well as employment, facilitates recovery. Maintaining opioid abstinence for at least five years substantially increases the likelihood of future stable abstinence. Recent advances in pharmacological treatment options (buprenorphine and naltrexone) include depot formulations offering longer duration of medication; their impact on the long-term course of opioid addiction remains to be assessed.

  20. The prescription opioid epidemic: an overview for anesthesiologists.

    Science.gov (United States)

    Alam, Asim; Juurlink, David N

    2016-01-01

    The objectives for preparing this article were to review the historical context and epidemiology surrounding the North American prescription opioid crisis, to summarize the evidence regarding the benefits and harms of long-term opioid therapy for non-cancer pain, and to outline ways in which anesthesiologists may help ameliorate the problem. We searched PubMed, Google Scholar, and EMBASE™ for relevant articles using various search terms, including pain, opioid epidemic, history of opioid use, perioperative care, and addiction. Related citations were further explored and searched depending on the specific subtopic of interest. In the 1980s and early 1990s, opioids were infrequently used for the treatment of chronic pain. Thereafter, however, physicians were gradually inculcated with the message that long-term opioid therapy was a safe and effective treatment option for patients with chronic non-cancer pain. Pharmaceutical companies supported this growing movement and employed aggressive and sometimes misleading marketing strategies for new opioid formulations. As a result, the practice of prescribing opioids flourished in the late 1990s. The surge in prescribing opioids was accompanied by a marked increase in opioid-related morbidity and mortality. This change in practice transpired despite the absence of randomized trials showing clinically significant benefit from the long-term use of opioids. Subsequently, however, a large and growing body of evidence has emerged quantifying the harms associated with long-term opioid therapy. Anesthesiologists widely prescribe opioids for acute and chronic pain; yet, as a group, they may be largely unaware of the current state of this growing epidemic and what role they can play to rectify this problem. Anesthesiologists are well positioned to take a leadership role in the management of postoperative discharge opioid therapy in an effort to curb the overutilization of opioids. Furthermore, anesthesiologists who regularly