WorldWideScience

Sample records for opioid excitatory amino

  1. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  2. Excitatory amino acid receptors and disease.

    Science.gov (United States)

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  3. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    Science.gov (United States)

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  4. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  5. Excitatory amino acid transmitters in epilepsy.

    Science.gov (United States)

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  6. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  7. Anatomical and pharmacological characterization of excitatory amino acid receptors

    International Nuclear Information System (INIS)

    Monaghan, D.T.

    1985-01-01

    The majority of the excitatory neurotransmission in the vertebrate Central Nervous System is thought to be mediated by acidic amino acid neurotransmitters. However, relatively little is known about the excitatory amino acid receptors and their distribution within the CNS. By analyzing radioligand binding to purified synaptic plasma membranes and to thin tissue sections processed for autoradiography, multiple distinct binding sites were found. These binding sites exhibited the pharmacological properties indicative of the excitatory amino acid receptors, which had been identified by electrophysiological techniques. Specifically, L-[ 3 H]-glutamate and D-[ 3 H]-amino-5-phosphonopentanoate appear to label N-methyl-D-aspartate receptors, L-[ 3 H]-glutamate and [ 3 H]-kainic acid appear to label kainic acid receptors, and L-[ 3 H]-glutamate and [ 3 H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionate appear to label quisqualate receptors. Together, these results confirm the three receptor scheme proposed for excitatory amino acid neurotransmission. These results also show that these transmitter-receptor systems are differentially distributed in the brain, and that the total distribution is consistent with that found by other markers for excitatory amino acid-using neurons

  8. A Role for Excitatory Amino Acids in Diabetic Eye Disease

    Directory of Open Access Journals (Sweden)

    Jose E. Pulido

    2007-01-01

    Full Text Available Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina.

  9. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ......The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations...

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  11. Excitatory amino acids in epilepsy and potential novel therapies.

    Science.gov (United States)

    Meldrum, B S

    1992-07-01

    Evidence that an abnormality of excitatory neurotransmission may contribute to the epileptic phenomena in various animal and human syndromes is reviewed. Altered glutamate transport or metabolism may be a contributory factor in some genetic syndromes and enhanced responsiveness to activation of NMDA receptors may be significant in various acquired forms of epilepsy. Decreasing glutamatergic neurotransmission provides a rational therapeutic approach to epilepsy. Potent anticonvulsant effects are seen with the acute administration of NMDA antagonists in a wide range of animal models. Some competitive antagonists acting at the NMDA/glutamate site show prolonged anticonvulsant activity following oral administration at doses free of motor side effects and appear suitable for clinical trial.

  12. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  13. The importance of the excitatory amino acid transporter 3 (EAAT3)

    DEFF Research Database (Denmark)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  14. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    Science.gov (United States)

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  15. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  16. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  17. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction.

    Science.gov (United States)

    Rao, Pss; Yallapu, Murali M; Sari, Youssef; Fisher, Paul B; Kumar, Santosh

    Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.

  18. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    International Nuclear Information System (INIS)

    Noble, E.P.; Ritchie, T.

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with [3H]inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of [3H]inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers

  19. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey

    International Nuclear Information System (INIS)

    Kisvarday, Z.F.; Cowey, A.; Smith, A.D.; Somogyi, P.

    1989-01-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread

  20. Neuromodulation by Mg2+ and polyamines of excitatory amino acid currents in rodent neurones in culture.

    Science.gov (United States)

    Kumamoto, E

    1996-12-01

    Excitatory amino-acid currents in rodent central neurones are mediated by the activation of glutamate receptors. Ionotropic types of the receptors are divided into alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors, and the former two are collectively called non-NMDA receptors. The NMDA receptor is modulated by a number of endogenous neuromodulators including Mg2+, polyamines, glycine and protons in extracellular solutions. Although it has been generally thought that each of the neuromodulators acts on a distinct site in the NMDA receptor, recent studies have revealed that these actions may be not necessarily independent of each other. The NMDA receptor response is not only inhibited but also potentiated by Mg2+, and the latter action is due to an interaction of a Mg2+ site with either glycine- or proton-binding site. In the presence of polyamines, a tonic inhibition by protons of the NMDA receptor response is relieved, resulting in a potentiation of the response. Alternatively, it has been recently revealed that there are some subtypes of non-NMDA receptors which are negatively modulated by polyamines in either extra- or intra cellular solutions. The difference in polyamine sensitivity among non-NMDA receptors is attributed to a distinction in their constituted subunits. The inhibition of non-NMDA receptor by intracellular polyamines results in inward rectification of the current-voltage relation which is not seen for polyamine-insensitive ones. This polyamine action is not mimicked by intracellular Mg2+.

  1. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey

    Energy Technology Data Exchange (ETDEWEB)

    Kisvarday, Z.F.; Cowey, A.; Smith, A.D.; Somogyi, P.

    1989-02-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread.

  2. Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control.

    Science.gov (United States)

    Somogyi, P; Minson, J B; Morilak, D; Llewellyn-Smith, I; McIlhinney, J R; Chalmers, J

    1989-09-04

    The source and possible role of excitatory amino acid projections to areas of the ventrolateral medulla (VLM) involved in cardiovascular control were studied. Following the injection of [3H]D-aspartate ([3H]D-Asp), a selective tracer for excitatory amino acid pathways, into vasopressor or vasodepressor areas of the VLM in rats, more than 90% of retrogradely labelled neurones were found in the nucleus of the solitary tract (NTS). Very few of the [3H]D-Asp-labelled cells were immunoreactive for tyrosine hydroxylase, none for phenylethanolamine-N-methyltransferase or gamma-aminobutyric acid. The density of labelled cells in the NTS was similar to that obtained with the non-selective tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and WGA-colloidal gold, but these tracers also labelled other cell groups in the medulla. Furthermore, the decrease in blood pressure, caused by pharmacological activation of neurones in the NTS of rats, or by electrical stimulation of the aortic depressor nerve in rabbits could be blocked by the selective N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate injected into the caudal vasodepressor area of the VLM. This area corresponds to the termination of [3H]D-Asp transporting NTS neurones. These results provide evidence that a population of NTS neurones projecting to the VLM use excitatory amino acids as transmitters. Among other possible functions, this pathway may mediate tonic and reflex control of blood pressure via NMDA receptors in the VLM.

  3. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Sløk, F A; Skjaerbaek, N

    1996-01-01

    The homologous series of acidic amino acids, ranging from aspartic acid (1) to 2-aminosuberic acid (5), and the corresponding series of 3-isoxazolol bioisosteres of these amino acids, ranging from (RS)-2-amino-2-(3-hydroxy-5-methylisoxazol-4-yl)acetic acid (AMAA, 6) to (RS)-2-amino-6-(3-hydroxy-5......-methylisoxazol-4-yl)hexanoic acid (10), were tested as ligands for metabotropic excitatory amino acid receptors (mGlu1 alpha, mGlu2, mGlu4a, and mGlu6). Whereas AMAA (6) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinoic acid (AMPA, 7) are potent and highly selective agonists at N......-methyl-D-aspartic acid (NMDA) and AMPA receptors, respectively, the higher homologue of AMPA (7), (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (homo-AMPA, 8), is inactive at ionotropic excitatory amino acid receptors. Homo-AMPA (8), which is a 3-isoxazolol bioisostere of 2-aminoadipic acid (3), was...

  4. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  5. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey.

    Science.gov (United States)

    Kisvarday, Z F; Cowey, A; Smith, A D; Somogyi, P

    1989-02-01

    The intrinsic excitatory amino acid pathways within the striate cortex of monkeys were studied by autoradiographic detection of retrogradely labeled somata following microinjections of D-3H-aspartate (D-3H-Asp) into different layers. The labeled amino acid was selectively accumulated by subpopulations of neurons and, to a small extent, by glial cells, the latter mainly in the supragranular layers. Immunocytochemical detection of neurons containing GABA showed that, apart from a few cells exclusively in layer I, GABAergic neurons do not accumulate D-3H-Asp. Several lines of evidence suggest that D-3H-Asp uptake occurred only at nerve terminals; thus, the pattern of perikaryal labeling allowed the delineation of interlaminar and lateral projections. Neurons in layer I probably project laterally, and layer I receives wide-ranging projections from layer IVB and layer V from cells up to 1300 microns laterally. Some neurons in layer II send a focused projection to lower layer VI. Some neurons in layers II/III project up to 1 mm laterally within their own layer, but relatively few neurons can be labeled in these projections. Similarly, in layers II/III few neurons can be retrogradely labeled from layers V and upper VI, and this projection is organized such that cells closer to the pia project deeper in layer V/VI. The connections of layer IVA could not be revealed separately because of the difficulty of confining injections to this thin sublamina. Neurons in layer IVB project up to 1300 microns within IVB itself. A small number of cells from IVB also project to layers III, IVC-alpha, V, and VI with much more restricted lateral spread. Neurons in upper IVC-alpha send axons to layer IVB with at least 600-800 microns lateral spread. Neurons in lower IVC-alpha/upper IVC-beta project to layer III with at least 300-500 microns lateral spread. The bottom 50-80 microns of layer IVC-beta contains neurons with a very focused projection, apparently exclusively to the layer III

  6. A new structural class of subtype-selective inhibitor of cloned excitatory amino acid transporter, EAAT2

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Hermit, M B; Nielsen, B

    2000-01-01

    We have studied the pharmacological effects of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and the enantiomers of (RS)-2-amino-3-(3-hydroxy-1,2, 5-thiadiazol-4-yl)propionic acid (TDPA) on cloned human excitatory amino acid transporter subtypes 1, 2 and 3 (EAAT1......-3) expressed in Cos-7 cells. Whereas AMPA and (R)-TDPA were both inactive as inhibitors of [3H]-(R)-aspartic acid uptake on all three EAAT subtypes, (S)-TDPA was shown to selectively inhibit uptake by EAAT2 with a potency equal to that of the endogenous ligand (S)-glutamic acid. (S)-TDPA thus represents a new...

  7. Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy

    DEFF Research Database (Denmark)

    Sarac, Sinan; Afzal, Shoaib; Broholm, Helle

    2009-01-01

    Intractable temporal lobe epilepsy (TLE) is an invalidating disease and many patients are resistant to medical treatment. Increased glutamate concentration has been found in epileptogenic foci and may induce local over-excitation and cytotoxicity; one of the proposed mechanisms involves reduced...... extra-cellular clearance of glutamate by excitatory amino acid transporters (EAAT-1 to EAAT-5). EAAT-1 and EAAT-2 are mainly expressed on astroglial cells for the reuptake of glutamate from the extra-cellular space. We have studied the expression of EAAT-1 and EAAT-2 in the hippocampus and temporal lobe...

  8. Role of Ca+2 and other second messengers in excitatory amino acid receptor mediated neurodegeneration: clinical perspectives

    DEFF Research Database (Denmark)

    Schousboe, A; Belhage, B; Frandsen, A

    1997-01-01

    Neurodegeneration associated with neurological disorders such as epilepsy, Huntington's Chorea, Alzheimer's disease, and olivoponto cerebellar atrophy or with energy failure such as ischemia, hypoxia, and hypoglycemia proceeds subsequent to overexposure of neurons to excitatory amino acids of which...... glutamate and aspartate may be quantitatively the most important. The toxic action of glutamate and aspartate is mediated through activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA subtypes. Antagonists for these receptors can act as neuroprotectants both in in vitro model...

  9. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  10. Up-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by ß-Klotho

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2015-12-01

    Full Text Available Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the brain, kidney, and several other tissues, is required for inhibition of 1,25(OH2D3 formation by FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The present study explored the effect of Klotho protein on the excitatory glutamate transporters EAAT1 (SLC1A3 and EAAT2 (SLC1A2, Na+ coupled carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected into Xenopus laevis oocytes and glutamate (2 mM-induced inward current (IGlu taken as measure of glutamate transport. Measurements were made without or with prior 24 h treatment with soluble ß-Klotho protein (30 ng/ml in the absence and presence of β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM. Results: IGlu was observed in EAAT1 and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in the regulation of neuronal excitation.

  11. Repeated injections of piracetam improve spatial learning and increase the stimulation of inositol phospholipid hydrolysis by excitatory amino acids in aged rats

    NARCIS (Netherlands)

    Canonico, P. L.; Aronica, E.; Aleppo, G.; Casabona, G.; Copani, A.; Favit, A.; Nicoletti, F.; Scapagnini, U.

    1991-01-01

    Repeated injections of piracetam (400 mg/kg, i.p. once a day for 15 days) to 16-month old rats led to an improved performance on an 8-arm radial maze, used as a test for spatial learning. This effect was accompanied by a greater ability of excitatory amino acids (ibotenate and glutamate) to

  12. Beta-Sulfonamido Functionalized Aspartate Analogs as Excitatory Amino Acid Transporter Inhibitors: Distinct Subtype-Selectivity Profiles Arising from Subtle Structural Differences

    DEFF Research Database (Denmark)

    Hansen, Jacob Christian; Bjørn-Yoshimoto, Walden Emil; Bisballe, Niels

    2016-01-01

    In this study inspired by previous work on 3-substituted Asp analogues, we designed and synthesized a total of 32 β-sulfonamide Asp analogues and characterized their pharmacological properties at the excitatory amino acid transporter subtypes EAAT1, EAAT2, and EAAT3. In addition to several potent...

  13. Biochemical characterization of an autoradiographic method for studying excitatory amino acid receptors using L-[3H]glutamate

    International Nuclear Information System (INIS)

    Cincotta, M.; Summers, R.J.; Beart, P.M.

    1989-01-01

    A method was developed for radiolabeling excitatory amino acid receptors of rat brain with L-[ 3 H]glutamate. Effective labeling of glutamate receptors in slide-mounted 10-microns sections was obtained using a low incubation volume (0.15 ml) and rapid washing: a procedure where high ligand concentrations were achieved with minimal waste. Saturation experiments using [ 3 H]glutamate revealed a single binding site of micromolar affinity. The Bmax was trebled in the presence of Ca2+ (2.5 mM) and Cl- (20 mM) with no change in the Kd. Binding was rapid, saturable, stereospecific, and sensitive to glutamate receptor agonists. The proportions of [ 3 H]glutamate binding sensitive to N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were 34, 54, and 51%, respectively. NMDA inhibited binding at a distinct subset of L-[ 3 H]glutamate sites, whereas AMPA and kainate competed for some common sites. Labeling of sections with L-[ 3 H]glutamate in the presence of the selective agonists allowed autoradiographic visualization of glutamate receptor subtypes in brain tissue

  14. Excitatory amino acid b-N-methylamino-L-alanine is a putative environmental neurotoxin

    Directory of Open Access Journals (Sweden)

    VLADIMIR NEDELJKOV

    2011-04-01

    Full Text Available The amino acid b-N-methylamino-L-alanine (L-BMAA has been associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex in three distinct western Pacific populations. The putative neurotoxin is produced by cyanobacteria, which live symbiotically in the roots of cycad trees. L-BMAA was thought to be a threat only to those few populations whose diet and medicines rely heavily on cycad seeds. However, the recent discovery that cyanobacteria from diverse terrestrial, freshwater, and saltwater ecosystems around the world produce the toxin requires a reassessment of whether it poses a larger health threat. Therefore, it is proposed that monitoring L-BMAA levels in cyanobacteria-contaminated water supplies might be prudent.

  15. Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Stensbøl, T B

    1997-01-01

    (subtypes 1alpha and 2), respectively, whereas (S)-4-methyleneglutamic acid showed high but rather non-selective affinity for the (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), kainic acid, NMDA and mGlu receptors (subtypes 1alpha and 2). Although none of the compounds were specific......The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments...... using rat brain ionotropic glutamate receptors, and in functional assays using cloned metabotropic glutamate (mGlu) receptors. As a notable result of these studies, (2S,4R)-4-methylglutamic acid and (2S,4S)-4-methylglutamic acid were shown to be selective for kainic acid receptors and mGlu receptors...

  16. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    International Nuclear Information System (INIS)

    Hao, J.X.; Xu, X.J.; Aldskogius, H.; Seiger, A.; Wiesenfeld-Hallin, Z.

    1991-01-01

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperature during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord

  17. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus.

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Xavier

    Full Text Available The dorsomedial hypothalamus (DMH and lateral/dorsolateral periaqueductal gray (PAG are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R- sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA. In the current study, we investigated whether excitatory amino acid (EAA receptors in the DMH-PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p. anesthetized rats, we observed that: (i nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L- PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.

  18. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    Science.gov (United States)

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  19. 4,4-Dimethyl- and diastereomeric 4-hydroxy-4-methyl-(2S)-glutamate analogues display distinct pharmacological profiles at ionotropic glutamate receptors and excitatory amino acid transporters

    DEFF Research Database (Denmark)

    Bunch, Lennart; Pickering, Darryl S; Gefflaut, Thierry

    2009-01-01

    this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures......Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether...

  20. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential...... (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics...

  1. Up-Regulation of Excitatory Amino Acid Transporters EAAT3 and EAAT4 by Lithium Sensitive Glycogen Synthase Kinase GSK3ß

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-12-01

    Full Text Available Background: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs decreases excitation and thus participates in the regulation of neuroexcitability. Kinases impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are sensitive to GSK3ß. Methods: cRNA encoding wild type EAAT3 (SLC1A1 or EAAT4 (SLC1A6 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to determine glutamate-induced current (IEAAT. Results: Appreciable IEAAT was observed in EAAT3 or EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent affinity of the carriers. Lithium (1 mM exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. Conclusions: Lithium-sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4.

  2. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  3. 3-pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing

    DEFF Research Database (Denmark)

    Zimmermann, D.; Janin, Y.L.; Brehm, L.

    1999-01-01

    the terminal carboxyl group has been replaced by various bioisosteric groups, such as phosphonic acid or 3-isoxazolol groups, have been shown to interact selectively with different subtypes of mGlu receptors. In this paper we report the synthesis of the 3-pyrazolone bioisosteres of a-AA, compounds (RS)-2-amino......-4-(1,2-dihydro-5-methyl-3-oxo-3H-pyrazol-4-yl)butyric acid (1) and (RS)-2-amino-4-(1,2-dihydro-1,5-dimethyl-3-oxo-3H-pyrazol-4-yl)butyric acid (2). At a number of steps in the reaction sequences used, the reactions took unexpected courses and provided products which could not be transformed......We have previously shown that the higher homologue of (S)-glutamic acid [(S)-Glu], (S)-a-aminoadipic acid [(S)-a-AA] is selectively recognized by the mGlu and mGlu subtypes of the family of metabotropic glutamic acid (mGlu) receptors. Furthermore, a number of analogues of (S)-a-AA, in which...

  4. Probing for improved potency and in vivo bioavailability of excitatory amino acid transporter subtype 1 inhibitors UCPH-101 and UCPH-102: Design, synthesis and pharmacological evaluation of substituted 7-biphenyl analogs

    DEFF Research Database (Denmark)

    Erichsen, Mette Norman; Hansen, J; Artacho Ruiz, Jose

    2014-01-01

    Uptake of the major excitatory neurotransmitter in the CNS, (S)-glutamate, is mediated by a family of excitatory amino acid transporters (EAAT). Previously we have explored the structure-activity relationship (SAR) of a series of EAAT1 selective inhibitors, leading to the development of the potent...... were designed, synthesized and characterized pharmacologically at EAAT1-3 in a [(3)H]-D-aspartate uptake assay. Most notably, the potent EAAT1 inhibition displayed of UCPH-101 and UCPH-102 was retained in analog 1d in which the napht-1-yl group in the 7-position of UCPH-102 has been replaced by an o...

  5. Excitatory amino acid receptor ligands: resolution, absolute stereochemistry, and enantiopharmacology of 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid

    DEFF Research Database (Denmark)

    Johansen, T N; Ebert, B; Bräuner-Osborne, Hans

    1998-01-01

    (RS)-2-Amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid (Bu-HIBO, 6) has previously been shown to be an agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors and an inhibitor of CaCl2-dependent [3H]-(S)-glutamic acid binding (J. Med. Chem. 1992, 35, 3512......-3519). To elucidate the pharmacological significance of this latter binding affinity, which is also shown by quisqualic acid (3) but not by AMPA, we have now resolved Bu-HIBO via diastereomeric salt formation using the diprotected Bu-HIBO derivative 11 and the enantiomers of 1-phenylethylamine (PEA). The absolute...... equipotent as inhibitors of CaCl2-dependent [3H]-(S)-glutamic acid binding, neither enantiomer showed significant affinity for the synaptosomal (S)-glutamic acid uptake system(s). AMPA receptor affinity (IC50 = 0.48 microM) and agonism (EC50 = 17 microM) were shown to reside exclusively in the S...

  6. Excitatory amino acid receptor blockade within the caudal pressor area and rostral ventrolateral medulla alters cardiovascular responses to nucleus raphe obscurus stimulation in rats

    Directory of Open Access Journals (Sweden)

    Silva N.F.

    2002-01-01

    Full Text Available Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO depend on the integrity of the rostral ventrolateral medulla (RVLM. Therefore, to test the participation of excitatory amino acid (EAA receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s, the EAA antagonist kynurenic acid (Kyn was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl of male Wistar rats (270-320 g, N = 39 and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01, bradycardia (deltaHR = -30 ± 7 bpm, P<0.01 and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7. Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6. Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7. These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

  7. Stereoselective chemoenzymatic synthesis of the four stereoisomers of l-2-(2-carboxycyclobutyl)glycine and pharmacological characterization at human excitatory amino acid transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Faure, Sophie; Jensen, Anders A.; Maurat, Vincent

    2006-01-01

    The four stereoisomers of l-2-(2-carboxycyclobutyl)glycine, l-CBG-I, l-CBG-II, l-CBG-III, and l-CBG-IV, were synthesized in good yield and high enantiomeric excess, from the corresponding cis and trans-2-oxalylcyclobutanecarboxylic acids 5 and 6 using the enzymes aspartate aminotransferase (AAT......) and branched chain aminotransferase (BCAT) from Escherichia coli. The four stereoisomeric compounds were evaluated as potential ligands for the human excitatory amino acid transporters, subtypes 1, 2, and 3 (EAAT1, EAAT2, and EAAT3) in the FLIPR membrane potential assay. While the one trans-stereoisomer, l...

  8. Relationship between structure, conformational flexibility, and biological activity of agonists and antagonists at the N-methyl-D-aspartic acid subtype of excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Brehm, L; Schaumburg, Kjeld

    1990-01-01

    The relationship between conformational flexibility and agonist or antagonist actions at the N-Methyl-D-aspartic acid (NMDA) subtype of central L-glutamic acid (GLU) receptors of a series of racemic piperidinedicarboxylic acids (PDAs) was studied. The conformational analyses were based on 1H NMR...... receptors. Each of the three cyclic acidic amino acids showing NMDA agonist activities was found to exist as an equilibrium mixture of two conformers in aqueous solution. In contrast, the NMDA antagonists cis-2,3-PDA and cis-2,4-PDA as well as the inactive compounds trans-2,5-PDA and cis-2,6-PDA were shown...

  9. Interactions between opioids and anabolic androgenic steroids: implications for the development of addictive behavior.

    Science.gov (United States)

    Nyberg, Fred; Hallberg, Mathias

    2012-01-01

    Over the past decades, research on doping agents, such as anabolic androgenic steroids (AAS), has revealed that these compounds are often used in combination with other drugs of abuse. It seems that misuse of AAS probably involves more than a desire to enhance appearance or sports performance and studies have revealed that steroids are commonly connected with alcohol, opioids, tobacco, and psychotropic drugs. We have observed that AAS may interact with the endogenous opioids, excitatory amino acids, and dopaminergic pathways involved in the brain reward system. Furthermore, our studies provide evidence that AAS may induce an imbalance in these signal systems leading to an increased sensitivity toward opioid narcotics and central stimulants. In fact, studies performed in various clinics have shown that individuals taking AAS are likely to get addicted to opioids like heroin. This chapter reviews current knowledge on interactions between AAS and endogenous as well as exogenous opioids based not only on research in our laboratory but also on research carried out by several other clinical and preclinical investigators. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Opioid intoxication

    Science.gov (United States)

    ... easily result in intoxication. The provider prescribes a sleep medicine (sedative) in addition to the opioid. The provider ... an opioid with certain other drugs, such as sleep medicines or alcohol Taking the opioid in ways not ...

  11. Internalisation of the mu-opioid receptor by endomorphin-1 and leu-enkephalin is dependant on aromatic amino acid residues.

    Science.gov (United States)

    Del Borgo, Mark P; Blanchfield, Joanne T; Toth, Istvan

    2008-04-15

    The opioid receptor system in the central nervous system controls a number of physiological processes, most notably pain. However, most opioids currently available have a variety of side-effects as well as exhibiting tolerance. Tolerance is most likely to be a complex phenomenon, however, the role of receptor internalisation is thought to play a crucial role. In this study, we examined the role of aromaticity in ligand-mediated receptor internalisation of the mu-opioid receptor (MOPR). These studies show that the amount of receptor internalisation may be dependant on the amphiphilicity of the ligand. Specifically, deletion of the C-terminus aromatic residues of endomorphin 1, particularly tryptophan reduces receptor-mediated internalisation whilst the addition of tryptophan within the enkephalin sequence increases receptor internalisation and decreases tolerance.

  12. Prescription Opioids

    Science.gov (United States)

    ... therapy in a primary care setting struggles with opioid addiction. 4,5,6 Once addicted, it can be ... of drug overdose deaths involving methadone and other opioid analgesics in West Virginia. Addiction 2009;104(9):1541-8. Dunn KM, Saunders ...

  13. Opioid Addiction

    Science.gov (United States)

    ... breathing rate nausea, vomiting constipation physical agitation poor decision making abandoning responsibilities slurred speech sleeping more or less than normal mood swings euphoria (feeling high) irritability depression lowered motivation anxiety attacks. Symptoms of opioid overdose An overdose ...

  14. Opioid Overdose

    Science.gov (United States)

    ... Updated: 03/10/2016 Medications to Treat OPIOID ADDICTION Methadone Naltrexone Buprenorphine Related SAMHSA Resources Behavioral Health ... Systems Integration Health Disparities Health Financing Health Information Technology HIV, AIDS, and Viral Hepatitis Homelessness and Housing ...

  15. Plasticity of cortical excitatory-inhibitory balance.

    Science.gov (United States)

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  16. Excitatory amino acid transmission in health and disease

    National Research Council Canada - National Science Library

    Balázs, R; Bridges, Richard J; Cotman, Carl W

    2006-01-01

    ... Structure of the Ionotropic Glutamate Receptors, 23 3 AMPA RECEPTORS, 36 Molecular Structure, Properties, and Regulation, 36 Distribution of AMPA Receptors, 41 AMPA Receptor Pharmacology, 46 Th...

  17. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  18. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  19. Healthy Adult Male Facial Skin Surface Lipid Pheromone p.o. to Treat Opioid Addiction

    Science.gov (United States)

    2018-03-20

    Opioid Addiction; Opioid Abuse, Continuous Use; Opioid Use; Opioid-Related Disorders; Paternal Pheromone Deficiency; Opioid Dependence; Opioid Abuse; Opioid-use Disorder; Opioid Intoxication; Opioid Abuse, Episodic

  20. Excitatory components of the mammalian locomotor CPG

    DEFF Research Database (Denmark)

    Kiehn, Ole; Quinlan, Katharina A.; Restrepo, Carlos Ernesto

    2008-01-01

    Locomotion in mammals is to a large degree controlled directly by intrinsic spinal networks, called central pattern generators (CPGs). The overall function of these networks is governed by interaction between inhibitory and excitatory neurons. In the present review, we will discuss recent finding...

  1. Opioid adjuvant strategy: improving opioid effectiveness.

    Science.gov (United States)

    Bihel, Frédéric

    2016-01-01

    Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-D-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.

  2. Neonatal opioid withdrawal syndrome.

    Science.gov (United States)

    Sutter, Mary Beth; Leeman, Lawrence; Hsi, Andrew

    2014-06-01

    Neonatal opioid withdrawal syndrome is common due to the current opioid addiction epidemic. Infants born to women covertly abusing prescription opioids may not be identified as at risk until withdrawal signs present. Buprenorphine is a newer treatment for maternal opioid addiction and appears to result in a milder withdrawal syndrome than methadone. Initial treatment is with nonpharmacological measures including decreasing stimuli, however pharmacological treatment is commonly required. Opioid monotherapy is preferred, with phenobarbital or clonidine uncommonly needed as adjunctive therapy. Rooming-in and breastfeeding may decease the severity of withdrawal. Limited evidence is available regarding long-term effects of perinatal opioid exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  4. Pain, opioids, and sleep: implications for restless legs syndrome treatment.

    Science.gov (United States)

    Trenkwalder, Claudia; Zieglgänsberger, Walter; Ahmedzai, Sam H; Högl, Birgit

    2017-03-01

    Opioid receptor agonists are known to relieve restless legs syndrome (RLS) symptoms, including both sensory and motor events, as well as improving sleep. The mechanisms of action of opioids in RLS are still a matter of speculation. The mechanisms by which endogenous opioids contribute to the pathophysiology of this polygenetic disorder, in which there are a number of variants, including developmental factors, remains unknown. A summary of the cellular mode of action of morphine and its (partial) antagonist naloxone via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the involvement of dendritic spine activation is described. By targeting pain and its consequences, opioids are the first-line treatment in many diseases and conditions with both acute and chronic pain and have thus been used in both acute and chronic pain conditions over the last 40 years. Addiction, dependence, and tolerability of opioids show a wide variability interindividually, as the response to opioids is influenced by a complex combination of genetic, molecular, and phenotypic factors. Although several trials have now addressed opioid treatment in RLS, hyperalgesia as a complication of long-term opioid treatment, or opioid-opioid interaction have not received much attention so far. Therapeutic opioids may act not only on opioid receptors but also via histamine or N-methyl-d-aspartate (NMDA) receptors. In patients with RLS, one of the few studies investigating opioid bindings found that possible brain regions involved in the severity of RLS symptoms are similar to those known to be involved in chronic pain, such as the medial pain system (medial thalamus, amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex, and orbitofrontal cortex). The results of this diprenorphine positron emission tomography study suggested that the more severe the RLS, the greater the release of endogenous opioids. Since 1993, when the first small controlled study was performed with

  5. Genetics Home Reference: opioid addiction

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Opioid addiction Opioid addiction Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Opioid addiction is a long-lasting (chronic) disease that can ...

  6. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  7. Differences between opioids

    DEFF Research Database (Denmark)

    Drewes, Asbjørn; Jensen, Rasmus D.; Nielsen, Lecia M.

    2013-01-01

    to morphine. Although this approach is recognized as cost-effective in most cases there is solid evidence that, on an individual patient basis, opioids are not all equal. Therefore it is important to have an armamentarium of strong analgesics in clinical practice to ensure a personalized approach in patients...... who do not respond to standard treatment. In this review we highlight differences between opioids in human studies from a pharmacological, experimental, clinical and health economics point of view. We provide evidence that individuals respond differently to opioids, and that general differences......Clinical studies comparing the response and side effects of various opioids have not been able to show robust differences between drugs. Hence, recommendations of the regulatory authorities have been driven by costs with a general tendency in many countries to restrict physician's use of opioids...

  8. Is this ?complicated? opioid withdrawal?

    OpenAIRE

    Parkar, S.R.; Seethalakshmi, R; Adarkar, S; Kharawala, S

    2006-01-01

    Seven patients with opioid dependence admitted in the de-addiction centre for detoxification developed convulsions and delirium during the withdrawal phase. After ruling out all other possible causes of these complications, opioid withdrawal seemed to emerge as the most likely explanation. The unpredictability of the course of opioid dependence and withdrawal needs to be considered when treating patients with opioid dependence.

  9. Medications Development for Opioid Abuse

    Science.gov (United States)

    Negus, S. Stevens; Banks, Matthew L.

    2013-01-01

    Here we describe methods for preclinical evaluation of candidate medications to treat opioid abuse and dependence. Our perspective is founded on the propositions that (1) drug self-administration procedures provide the most direct method for assessment of medication effects, (2) procedures that assess choice between opioid and nondrug reinforcers are especially useful, and (3) the states of opioid dependence and withdrawal profoundly influence both opioid reinforcement and the effects of candidate medications. Effects of opioid medications on opioid choice in nondependent and opioid-dependent subjects are reviewed. Various nonopioid medications have also been examined, but none yet have been identified that safely and reliably reduce opioid choice. Future research will focus on (1) strategies for increasing safety and/or effectiveness of opioid medications, and (2) continued development of nonopioids such as inhibitors of endocannabinoid catabolic enzymes or inhibitors of opioid-induced glial activation. PMID:23125072

  10. Hiperalgesia Inducida por Opioides

    OpenAIRE

    Jiménez Salazar, Andrés

    2013-01-01

    Los opioides producen analgesia a través de un efecto inhibitorio sobre el sistema nociceptivo principalmente. Hasta la fecha, los opioides siguen siendo los analgésicos más potentes para el manejo de dolor moderado a severo. La Asociación Internacional del Estudio del Dolor (IASP, en inglés) define hiperalgesia como "un aumento de la respuesta a un estímulo que normalmente es doloroso". En contraste, está bien establecido que la terapia crónica con opioides se asocia con el desarrollo de ...

  11. Are peripheral opioid antagonists the solution to opioid side effects?

    LENUS (Irish Health Repository)

    Bates, John J

    2012-02-03

    Opioid medication is the mainstay of therapy for severe acute and chronic pain. Unfortunately, the side effects of these medications can affect patient comfort and safety, thus limiting their proven therapeutic potential. Whereas the main analgesic effects of opioids are centrally mediated, many of the common side effects are mediated via peripheral receptors. Novel peripheral opioid antagonists have been recently introduced that can block the peripheral actions of opioids without affecting centrally mediated analgesia. We review the clinical and experimental evidence of their efficacy in ameliorating opioid side effects and consider what further information might be useful in defining their role. IMPLICATIONS: The major analgesic effects of opioid medication are mediated within the brain and spinal cord. Many of the side effects of opioids are caused by activation of receptors outside these areas. Recently developed peripherally restricted opioid antagonists have the ability to block many opioid side effects without affecting analgesia.

  12. Benzodiazepines and Opioid

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  13. Opioid Summaries by State

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  14. Opioid Overdose Crisis

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  15. Opioid Prescribing PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second public service announcement is based on the July 2017 CDC Vital Signs report. Higher opioid prescribing puts patients at risk for addiction and overdose. Learn what can be done about this serious problem.

  16. Are Prescription Opioids Driving the Opioid Crisis? Assumptions vs Facts.

    Science.gov (United States)

    Rose, Mark Edmund

    2018-04-01

    Sharp increases in opioid prescriptions, and associated increases in overdose deaths in the 2000s, evoked widespread calls to change perceptions of opioid analgesics. Medical literature discussions of opioid analgesics began emphasizing patient and public health hazards. Repetitive exposure to this information may influence physician assumptions. While highly consequential to patients with pain whose function and quality of life may benefit from opioid analgesics, current assumptions about prescription opioid analgesics, including their role in the ongoing opioid overdose epidemic, have not been scrutinized. Information was obtained by searching PubMed, governmental agency websites, and conference proceedings. Opioid analgesic prescribing and associated overdose deaths both peaked around 2011 and are in long-term decline; the sharp overdose increase recorded in 2014 was driven by illicit fentanyl and heroin. Nonmethadone prescription opioid analgesic deaths, in the absence of co-ingested benzodiazepines, alcohol, or other central nervous system/respiratory depressants, are infrequent. Within five years of initial prescription opioid misuse, 3.6% initiate heroin use. The United States consumes 80% of the world opioid supply, but opioid access is nonexistent for 80% and severely restricted for 4.1% of the global population. Many current assumptions about opioid analgesics are ill-founded. Illicit fentanyl and heroin, not opioid prescribing, now fuel the current opioid overdose epidemic. National discussion has often neglected the potentially devastating effects of uncontrolled chronic pain. Opioid analgesic prescribing and related overdoses are in decline, at great cost to patients with pain who have benefited or may benefit from, but cannot access, opioid analgesic therapy.

  17. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  18. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  19. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  20. Stress activates pronociceptive endogenous opioid signalling in DRG neurons during chronic colitis.

    Science.gov (United States)

    Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Jimenez-Vargas, Nestor N; Lopez-Lopez, Cintya; Jaramillo-Polanco, Josue; Okamoto, Takanobu; Nasser, Yasmin; Bunnett, Nigel W; Lomax, Alan E; Vanner, Stephen J

    2017-12-01

    Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca 2+ imaging techniques. Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca 2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein βϒ subunits. Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  2. Opioid system and human emotions.

    Science.gov (United States)

    Nummenmaa, Lauri; Tuominen, Lauri

    2017-04-10

    Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. © 2017 The British Pharmacological Society.

  3. Opioid Prescribing PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2017-07-06

    This 60 second public service announcement is based on the July 2017 CDC Vital Signs report. Higher opioid prescribing puts patients at risk for addiction and overdose. Learn what can be done about this serious problem.  Created: 7/6/2017 by Centers for Disease Control and Prevention (CDC).   Date Released: 7/6/2017.

  4. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  5. Opioid dependence - management in general practice.

    Science.gov (United States)

    Frei, Matthew

    2010-08-01

    Addiction to opioids, or opioid dependence, encompasses the biopsychosocial dysfunction seen in illicit heroin injectors, as well as aberrant behaviours in patients prescribed opioids for chronic nonmalignant pain. To outline the management of opioid dependence using opioid pharmacotherapy as part of a comprehensive chronic illness management strategy. The same principles and skills general practitioners employ in chronic illness management underpin the care of patients with opioid dependence. Opioid pharmacotherapy, with the substitution medications methadone and buprenorphine, is an effective management of opioid dependence. Training and regulatory requirements for prescribing opioid pharmacotherapies vary between jurisdictions, but this treatment should be within the scope of most Australian GPs.

  6. Opioid Abuse and Addiction - Multiple Languages

    Science.gov (United States)

    ... Spanish) PDF The basics - Opioids, part 1 - English MP3 The basics - Opioids, part 1 - español (Spanish) MP3 The basics - Opioids, part 1 - English MP4 The ... español (Spanish) PDF Pain - Opioids, part 2 - English MP3 Pain - Opioids, part 2 - español (Spanish) MP3 Pain - ...

  7. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  8. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  9. Chimeric opioid peptides: tools for identifying opioid receptor types.

    OpenAIRE

    Xie, G X; Miyajima, A; Yokota, T; Arai, K; Goldstein, A

    1990-01-01

    We synthesized several chimeric peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the kappa opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surf...

  10. CDC Vital Signs: Opioid Painkiller Prescribing

    Science.gov (United States)

    ... Mental Health Services Administration Medication-Assisted Treatment for Opioid Addiction: Facts for Families and Friends Opioid Overdose Prevention ... Abuse Drugs, Brains, and Behavior: The Science of Addiction Opioid and Pain Management CMEs/CEs Prescription Drugs U.S. ...

  11. Changing patterns in opioid addiction

    Science.gov (United States)

    Sproule, Beth; Brands, Bruna; Li, Selina; Catz-Biro, Laura

    2009-01-01

    ABSTRACT OBJECTIVE To evaluate the clinical observation that the number of individuals seeking opioid detoxification from oxycodone was increasing at the Centre for Addiction and Mental Health (CAMH) in Toronto, Ont; and to identify the characteristics of individuals seeking opioid detoxification at CAMH. DESIGN Retrospective analysis of patient health records. SETTING Medical Withdrawal Management Service at CAMH. PARTICIPANTS All patients admitted for opioid detoxification between January 2000 and December 2004. MAIN OUTCOME MEASURES Number of opioid detoxification admissions each year; type, dose, and source of opioids; comorbid problems and symptoms. RESULTS There were 571 opioid detoxification admissions during the 5-year study period. The number of admissions increased steadily over the 5 years; in particular, the number of admissions related to controlled-release oxycodone increased substantially (3.8%, 8.3%, 20.8%, 30.6%, and 55.4% of the total opioid admissions in 2000 to 2004, respectively; χ42= 105.5, P < .001). The rates of admissions involving heroin remained low and stable. Use of controlled-release oxycodone was associated with considerably higher doses than use of other prescription opioids was. Physician prescriptions were the source of the prescription opioids for a large percentage of patients, particularly for older patients. Prescription opioid users reported considerable comorbid substance use problems, pain, and psychiatric symptoms. CONCLUSION This study has demonstrated a significant rise in the number of individuals seeking treatment at CAMH for controlled-release oxycodone addiction. The substantial comorbid pain, psychiatric symptoms, and other psychoactive substance use problems in these patients, coupled with the finding that prescriptions were an important source of opioids, highlight the clinical complexities encountered in the treatment of these individuals. Further research examining these complexities and the many possible

  12. Functional characteristics of the naked mole rat μ-opioid receptor.

    Directory of Open Access Journals (Sweden)

    Melanie Busch-Dienstfertig

    Full Text Available While humans and most animals respond to µ-opioid receptor (MOR agonists with analgesia and decreased aggression, in the naked mole rat (NMR opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1 can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids.

  13. Interaction of excitatory amino acid agonists with cortical afterdischarges in developing rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Haugvicová, Renata; Kubová, Hana

    2002-01-01

    Roč. 43, Suppl. 5 (2002), s. 61-67 ISSN 0013-9580 R&D Projects: GA ČR GA309/00/1643; GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : epileptic seizures * cerebral cortex * electrical stimulation Subject RIV: FH - Neurology Impact factor: 3.530, year: 2002

  14. Cerebroprotective activity of U-50488H: Relationship to interactions with excitatory amino acids and calcium

    International Nuclear Information System (INIS)

    Camacho Ochoa, M.

    1987-01-01

    The mechanism underlying the anticonvulsant and cerebroprotective activity of U-50488H was evaluated using 45 Ca ++ uptake in rat Ficoll purified synaptosomes, ( 3 H)-2-deoxyglucose uptake in selected mouse brain regions, ( 3 H)kainic acid binding to mouse forebrain synaptic membranes and incidence of KA-induced lesions in the CA3 region of the mouse hippocampus. U-50488H causes reduction in K + -evoked 45 Ca ++ uptake. These effects are comparable to those of the calcium channel blockers verapamil and nifedipine and seem to be related to calcium dependent mechanisms. Changes in saturability, specificity and dissociation constant values of kainic acid receptor binding were demonstrated in the presence of U-50488H at concentrations similar to those used in 45 Ca ++ uptake studies and in the presence of calcium and chloride ions

  15. Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Kimelberg, H.K.; Pang, S.; Treble, D.H.

    1989-01-01

    In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems

  16. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...

  17. Amino acid neurotransmitters and new approaches to anticonvulsant drug action.

    Science.gov (United States)

    Meldrum, B

    1984-01-01

    Amino acids provide the most universal and important inhibitory (gamma-aminobutyric acid (GABA), glycine) and excitatory (glutamate, aspartate, cysteic acid, cysteine sulphinic acid) neurotransmitters in the brain. An anticonvulsant action may be produced (1) by enhancing inhibitory (GABAergic) processes, and (2) by diminishing excitatory transmission. Possible pharmacological mechanisms for enhancing GABA-mediated inhibition include (1) GABA agonist action, (2) GABA prodrugs, (3) drugs facilitating GABA release from terminals, (4) inhibition of GABA-transaminase, (5) allosteric enhancement of the efficacy of GABA at the receptor complex, (6) direction action on the chloride ionophore, and (7) inhibition of GABA reuptake. Examples of these approaches include the use of irreversible GABA-transaminase inhibitors, such as gamma-vinyl GABA, and the development of anticonvulsant beta-carbolines that interact with the "benzodiazepine receptor." Pharmacological mechanisms for diminishing excitatory transmission include (1) enzyme inhibitors that decrease the maximal rate of synthesis of glutamate or aspartate, (2) drugs that decrease the synaptic release of glutamate or aspartate, and (3) drugs that block the post-synaptic action of excitatory amino acids. Compounds that selectively antagonise excitation due to dicarboxylic amino acids have recently been developed. Those that selectively block excitation produced by N-methyl-D-aspartate (and aspartate) have proved to be potent anticonvulsants in many animal models of epilepsy. This provides a novel approach to the design of anticonvulsant drugs.

  18. Mu Opioid Receptor Gene: New Point Mutations in Opioid Addicts

    Directory of Open Access Journals (Sweden)

    Amin Dinarvand

    2014-02-01

    Full Text Available Introduction: Association between single-nucleotide polymorphisms (SNPs in mu opioid receptor gene and drug addiction has been shown in various studies. Here, we have evaluated the existence of polymorphisms in exon 3 of this gene in Iranian population and investigated the possible association between these mutations and opioid addiction.  Methods: 79 opioid-dependent subjects (55 males, 24 females and 134 non-addict or control individuals (74 males, 60 females participated in the study. Genomic DNA was extracted from volunteers’ peripheral blood and exon 3 of the mu opioid receptor gene was amplified by polymerase chain reaction (PCR whose products were then sequenced.  Results: Three different heterozygote polymorphisms were observed in 3 male individuals: 759T>C and 877G>A mutations were found in 2 control volunteers and 1043G>C substitution was observed in an opioid-addicted subject. Association between genotype and opioid addiction for each mutation was not statistically significant.  Discussion: It seems that the sample size used in our study is not enough to confirm or reject any association between 759T>C, 877G>A and 1043G>C substitutions in exon 3 of the mu opioid receptor gene and opioid addiction susceptibility in Iranian population.

  19. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  20. Chimeric opioid peptides: Tools for identifying opioid receptor types

    International Nuclear Information System (INIS)

    Xie, G.; Miyajima, A.; Yokota, T.; Arai, K.; Goldstein, A.

    1990-01-01

    The authors synthesized several chimeric [125J-labelled] peptides in which the N-terminal nine residues of dynorphin-32, a peptide selective for the κ opioid receptor, were replaced by opioid peptides selective for other opioid receptor types. Each chimeric peptide retained the high affinity and type selectivity characteristic of its N-terminal sequence. The common C-terminal two-thirds of the chimeric peptides served as an epitope recognized by the same monoclonal antibody. When bound to receptors on a cell surface or membrane preparation, these peptides could still bind specifically to the monoclonal antibody. These chimeric peptides should be useful for isolating μ, δ, and κ opioid receptors and for identifying opioid receptors on transfected cells in expression cloning procedures. The general approach using chimeric peptides should be applicable to other peptide receptors

  1. Traveling wave front solutions in lateral-excitatory neuronal networks

    Directory of Open Access Journals (Sweden)

    Sittipong Ruktamatakul

    2008-05-01

    Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.

  2. Tourette syndrome and excitatory substances: is there a connection?

    Science.gov (United States)

    Zou, Li-Ping; Wang, Ying; Zhang, Li-Ping; Zhao, Jian-Bo; Lu, Jin-Fang; Liu, Qun; Wang, Hang-Yan

    2011-05-01

    The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS). We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent. Substances for detection included 197 excitatory substances prohibited by the International Olympic Committee and other substances with similar chemical structures or biological functions for urine samples. Forty-four patients who did not take any drugs in the past 2 weeks enrolled in the study. The positive rate in the experiment group was three cases, while it was negative in the control group. The level of 1-testosterone increased in one extremely severe TS patient who ate large amounts of puffed food and drank an average of 350 ml of cola per day. Cathine and other substances with similar chemical constitution or similar biological effects increased in one severe TS patient who ate bags of instant noodles daily, according to the high score of the Yale Global Tic Severity Scale. An increase in ephedrine type, testosterone, and stimulants may be related to the pathogenesis of TS. Unhealthy food possibly causes TS. The relationship between excitatory substances and TS needs to be explored with the goal of providing more information on diagnosing and treating TS.

  3. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  4. Effect of calcium on excitatory neuromuscular transmission in the crayfish

    Science.gov (United States)

    Bracho, H.; Orkand, R. K.

    1970-01-01

    1. The effects of varying the external Ca concentration from 1·8 to 30 mM/l. (⅛-2 times normal) have been studied at the in vitro crayfish excitatory neuromuscular junction. Electrophysiological techniques were used to record transmembrane junctional potentials from muscle fibres and extracellular junctional currents from the vicinity of nerve terminals. 2. The excitatory junctional potential amplitude was proportional to [Ca]0n, where n varied between 0·68 and 0·94 (mean 0·82) when [Ca]0 was varied from 1·8 to 15 mM/l. 3. The increase in junctional potential amplitude on raising [Ca]0 resulted primarily from an increase in the average number of quanta of excitatory transmitter released from the presynaptic nerve terminal by the nerve impulse. 4. The size of the quanta, synaptic delay, presynaptic potential and electrical properties of the muscle membrane were little affected by changes in calcium concentration in the range studied. PMID:5498460

  5. Macroeconomic conditions and opioid abuse.

    Science.gov (United States)

    Hollingsworth, Alex; Ruhm, Christopher J; Simon, Kosali

    2017-12-01

    We examine how deaths and emergency department (ED) visits related to use of opioid analgesics (opioids) and other drugs vary with macroeconomic conditions. As the county unemployment rate increases by one percentage point, the opioid death rate per 100,000 rises by 0.19 (3.6%) and the opioid overdose ED visit rate per 100,000 increases by 0.95 (7.0%). Macroeconomic shocks also increase the overall drug death rate, but this increase is driven by rising opioid deaths. Our findings hold when performing a state-level analysis, rather than county-level; are primarily driven by adverse events among whites; and are stable across time periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Opioids and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2015-01-01

    BACKGROUND: Opioids may alter immune function, thereby potentially affecting cancer recurrence. The authors investigated the association between postdiagnosis opioid use and breast cancer recurrence. METHODS: Patients with incident, early stage breast cancer who were diagnosed during 1996 through...... 2008 in Denmark were identified from the Danish Breast Cancer Cooperative Group Registry. Opioid prescriptions were ascertained from the Danish National Prescription Registry. Follow-up began on the date of primary surgery for breast cancer and continued until breast cancer recurrence, death......, emigration, 10 years, or July 31, 2013, whichever occurred first. Cox regression models were used to compute hazard ratios and 95% confidence intervals associating breast cancer recurrence with opioid prescription use overall and by opioid type and strength, immunosuppressive effect, chronic use (≥6 months...

  7. Medication-assisted therapy for opioid addiction

    OpenAIRE

    Tai, Betty; Saxon, Andrew J.; Ling, Walter

    2013-01-01

    The “Medication-Assisted Therapy for Opioid Addiction” session was chaired by Dr. Betty Tai and had three presenters. The presenters (and their topics) were: Dr. Andrew J. Saxon (Methadone and Buprenorphine for Treatment of Opioid Addiction and HIV Risk Reduction), Dr. Walter Ling (Opioid Antagonist Treatment for Opioid Addiction), and Dr. Betty Tai (Chronic Care Model for Substance Use Disorder).

  8. The role of opioid antagonist efficacy and constitutive opioid receptor activity in the opioid withdrawal syndrome in mice

    OpenAIRE

    Navani, Dipesh M.; Sirohi, Sunil; Madia, Priyanka A.; Yoburn, Byron C.

    2011-01-01

    On the basis of efficacy, opioid antagonists are classified as inverse opioid agonists (e.g. naltrexone) or neutral opioid antagonists (e.g. 6β-naltrexol). This study examined the interaction between naltrexone and 6β-naltrexol in the precipitated opioid withdrawal syndrome in morphine dependent mice. Furthermore, the possible contribution of constitutive opioid receptor activity to precipitated withdrawal was evaluated using increasing levels of morphine dependence. In the first experiment, ...

  9. Creating opioid dependence in the emergency department.

    Science.gov (United States)

    Upadhye, Suneel

    2018-01-01

    Clinical question What is the risk of creating opioid dependence from an ED opioid prescription? Article chosen Barnett ML, Olenski AR, Jena AB. Opioid-prescribing patterns of emergency physicians and risk of long-term use. N Engl J Med 2017;376:663-73, doi:10.1056/NEJMsa1610524. This study examined the risk of creating long-term opioid dependence from a prescription written in an opioid-naive patient in the ED.

  10. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  11. Newer approaches to opioid detoxification

    Directory of Open Access Journals (Sweden)

    Siddharth Sarkar

    2012-01-01

    Full Text Available Opioid use disorders present with distressing withdrawal symptoms at the time of detoxification. The pharmacological agents and methods currently in use for detoxification mainly include buprenorphine, methadone, and clonidine. Many other pharmacological agents have been tried for opioid detoxification. This review takes a look at the newer pharmacological options, both opioid agonists and non-agonist medications that have been utilized for detoxification. Peer reviewed articles were identified using PubMed and PsychInfo databases. The keywords included for the search were a combination of ′opioid′ and ′detoxification′ and their synonyms. All the articles published in the last 10 years were screened for. Relevant data was extracted from identified studies. Many newer pharmacological agents have been tried in detoxification of opioids. However, the quest for a safe, efficacious, cost-effective pharmacological option which requires minimal monitoring still continues. The role of non-pharmacological measures and alternative medicine needs further evaluation.

  12. Towards safer use of opioids.

    LENUS (Irish Health Repository)

    Carson, R W R

    2009-09-01

    The main aim of our work was to improve the safety of opioid use in our institution, an acute generalhospital with 620 beds. Initially, all reported opioid errors from 2001 - 2006 were audited. The findings directed a range of multidisciplinary staff educational inputs to improve opioid prescribing and administration practice, and encourage drug error reporting. 448 drug errors were reported, of which 54 (12%) involved opioids; of these, 43 (79%) involved codeine, morphine or oxycodone. 31 of the errors (57%) were associated with administration, followed by 12 (22%) with dispensing and 11 (20%) with prescribing. There were 2 reports of definite patient harm. A subsequent audit examined a 17-month period following the introduction of the above teaching: 17 errors were noted, of which 14 (83%) involved codeine, morphine or oxycodone. Again, drug administration was most error-prone, comprising 11 (65%) of reports. However, just 2 (12%) of the reported errors now involved prescribing, which was a reduction.

  13. Gene Variants Reduce Opioid Risks

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  14. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid

  15. Illicit Opioid Intoxication: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    A. Fareed

    2011-01-01

    Full Text Available Opioid intoxications and overdose are associated with high rates of morbidity and mortality. Opioid overdose may occur in the setting of intravenous or intranasal heroin use, illicit use of diverted opioid medications, intentional or accidental misuse of prescription pain medications, or iatrogenic overdose. In this review, we focused on the epidemiology of illict opioid use in the United States and on the mechanism of action of opioid drugs. We also described the signs and symptoms, and diagnoses of intoxication and overdose. Lastly, we updated the reader about the most recent recommendations for treatment and prevention of opioid intoxications and overdose.

  16. Targinact--opioid pain relief without constipation?

    Science.gov (United States)

    2010-12-01

    Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.

  17. Low efficacy of non-opioid drugs in opioid withdrawal symptoms.

    Science.gov (United States)

    Hermann, Derik; Klages, Eckard; Welzel, Helga; Mann, Karl; Croissant, Bernhard

    2005-06-01

    Opioid withdrawal, stress or cues associated with opioid consumption can induce opioid craving. If opioids are not available, opioid-dependent patients usually search for alternative drugs. Because several non-opioid drugs stimulate the endogenous opioidergic system, this concept may explain their frequent use by opioid-dependent patients. We hypothesized that non-opioid drugs alleviate opioid withdrawal symptoms and are therefore consumed by opioid addicts. We asked 89 opioid-dependent patients participating in an out-patient opioid maintenance program to estimate the potential of several non-opioid drugs in being able to alleviate opioid withdrawal. We applied a five-point Lickert scale (1 = very good reduction of opioid withdrawal; 5 = no reduction of opioid withdrawal). Patients could also indicate a worsening of opioid withdrawal. Values (mean +/- SD) were: for benzodiazepines, 3.2 +/- 1.1; tricyclic antidepressants, 3.6 +/- 1.1; cannabis, 3.6 +/- 1.0; alcohol, 4.1 +/- 1.1; cocaine, 4.2 +/- 1.1; amphetamine, 4.4 +/- 0.9; nicotine, 4.7 +/- 0.7; and caffeine, 4.9 +/- 0.5. A worsening of opioid withdrawal was reported by 62% of the patients for cocaine, 62% for amphetamine, 50% for caffeine, 37.5% for cannabis, 27% for nicotine, 26% for alcohol, 8% for tricyclic antidepressants and 3% for benzodiazepines. Our study shows a low efficacy of non-opioid drugs in alleviating opioid withdrawal symptoms. The data basis of this study was good and the sample was suitable to be asked for estimations of drug-drug interactions. Of the patients, 26 - 62% even reported a worsening of opioid withdrawal for cannabis, alcohol, cocaine and amphetamine. Only benzodiazepines and tricyclic antidepressants were reported to have a moderate positive effect on opioid withdrawal.

  18. Vasopressin facilitates excitatory transmission in slices of the rat dorso-lateral septum.

    Science.gov (United States)

    Van den Hooff, P; Urban, I J

    1990-01-01

    The effect of vasopressin on neurons of the rat dorso-lateral septum (DLS) was studied in brain slices with intracellular microelectrodes. Two out of 13 neurons showed a small depolarization, spontaneous activity, and increased input resistances following a 15 min exposure to 10(-6) to 10(-8) M vasopressin (VP). These membrane effects disappeared completely within 3-5 min after the application. The remaining DLS neurons treated with these vasopressin concentrations showed an increase in glutamate-mediated excitatory postsynaptic potentials (EPSPs), evoked by stimulation of the fimbria fibers. As little as 10(-12) MVP increased these EPSPs markedly in nearly 80% of the cells studied. This increase in most of the cells disappeared within 15 min after the application period, whereas the increase in EPSPs induced by 10(-10) M VP outlasted the peptide application period for more than 30 min. Neither the blockade of GABA-ergic synaptic inhibition nor the pre-treatment of the neurons with d(CH2)5-Tyr(Me)-arginine vasopressin or 2-amino-5-phosphonovaleric acid (2-APV), antagonists for the V1 type of vasopressin receptor and NMDA receptors, respectively, interfered with the EPSPs potentiating effect of the peptide. It is concluded that a type of vasopressin receptor other then the V1 type is involved in the long-lasting potentiation of the primarily non-NMDA receptor mediated transmission in DLS neurons.

  19. 42 CFR 8.11 - Opioid treatment program certification.

    Science.gov (United States)

    2010-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The provisions...

  20. Co-morbid pain and opioid addiction: long term effect of opioid maintenance on acute pain.

    Science.gov (United States)

    Wachholtz, Amy; Gonzalez, Gerardo

    2014-12-01

    Medication assisted treatment for opioid dependence alters the pain experience. This study will evaluate changes pain sensitivity and tolerance with opioid treatments; and duration of this effect after treatment cessation. 120 Individuals with chronic pain were recruited in 4 groups (N = 30): 1-methadone for opioid addiction; 2-buprenorphine for opioid addiction; 3-history of opioid maintenance treatment for opioid addiction but with prolonged abstinence (M = 121 weeks; SD = 23.3); and 4-opioid naïve controls. Participants completed a psychological assessment and a cold water task including, time to first pain (sensitivity) and time to stopping the pain task (tolerance). Data analysis used survival analyses. A Kaplan-Meier-Cox survival analysis showed group differences for both pain sensitivity (log rank = 15.50; p opioid maintenance resulted in differing pain sensitivity compared to opioid naïve (p's opioid maintenance compared to active methadone patients (p opioid naïve control group participants (p's opioid abstinence increased (R = .37; p opioid maintenance, there appears to be long-term differences in pain sensitivity that do not resolve with discontinuation of opioid maintenance. Although pain sensitivity does not change, pain tolerance does improve after opioid maintenance cessation. Implications for treating co-morbid opioid addiction and pain (acute and chronic) are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Opioid tapering in patients with prescription opioid use disorder : A retrospective study

    NARCIS (Netherlands)

    Zhou, Kehua; Jia, Peng; Bhargava, Swati; Zhang, Yong; Reza, Taslima; Peng, Yuan Bo; Wang, Gary G.

    2017-01-01

    Background and aims: Opioid use disorder (OUD) refers to a maladaptive pattern of opioid use leading to clinically significant impairment or distress. OUD causes, and vice versa, misuses and abuse of opioid medications. Clinicians face daily challenges to treat patients with prescription opioid use

  2. Optimal properties of analog perceptrons with excitatory weights.

    Directory of Open Access Journals (Sweden)

    Claudia Clopath

    Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

  3. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Science.gov (United States)

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  4. Help, Resources and Information: National Opioids Crisis

    Science.gov (United States)

    ... Search Search Help, Resources and Information National Opioids Crisis Search Search Need Help? Call the National Helpline ... HHS 5-POINT STRATEGY TO COMBAT THE OPIOIDS CRISIS BETTER ADDICTION PREVENTION, TREATMENT, AND RECOVERY SERVICES BETTER ...

  5. Role and psychological dependenci arrangement of opioid by type of reseptor opioid

    OpenAIRE

    Arif Nurrochmad, Arif Nurrochmad

    2015-01-01

    Opioid receptor can be classified as p., 8, and K-opioid receptor that widely expressed in the CNS. The development of selective receptor agonist and cloning of each receptor have contributed greatly to our increasing knowledge of the neuropharmacological profile of each opioid receptor type. This review focuses on the functional interaction among these opioid receptor types that contribute to opioid dependence especially in psychological dependence. Several lines of evidence provide argument...

  6. Synthesis of [3]DIPPA: a potent irreversible antagonist selective for the κ opioid receptor

    International Nuclear Information System (INIS)

    Chang, Anchih; Portoghese, P.S.

    1995-01-01

    2-(3,4-Dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophe nyl)-2-(1-pyrrolidinyl)ethyl]acetamide (1,DIPPA) has been previously reported to be an opioid receptor affinity label that produces selective and long-lasting κ opioid receptor antagonism in mice. High specific activity [ 3 H]DIPPA (39.7 Ci/mmol) was prepared by bromination and catalytic tritiation of the amino precursor of DIPPA followed by conversion to the isothiocyanate with thiophosgene. (Author)

  7. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  8. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  9. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  10. Dependence and addiction during chronic opioid therapy.

    Science.gov (United States)

    Juurlink, David N; Dhalla, Irfan A

    2012-12-01

    The use of opioids for chronic noncancer pain has increased dramatically over the past 25 years in North America and has been accompanied by a major increase in opioid addiction and overdose deaths. The increase in opioid prescribing is multifactorial and partly reflects concerns about the effectiveness and safety of alternative medications, particularly the nonsteroidal anti-inflammatory drugs. However, much of the rise in opioid prescribing reflects the assertion, widely communicated to physicians in the 1990s, that the risks of dependence and addiction during chronic opioid therapy were low, predictable, and could be minimized by the use of controlled-release opioid formulations. In this narrative review, we offer a critical appraisal of the publications most frequently cited as evidence that the risk of addiction during chronic opioid therapy is low. We conclude that very few well-designed studies support the notion that opioid addiction is rare during chronic opioid therapy and that none can be readily generalized to present-day practice. Despite serious methodological limitations, these studies have been repeatedly mischaracterized as showing that the risk of addiction during chronic opioid therapy is rare. These studies are countered by a larger, more rigorous and contemporary body of evidence demonstrating that dependence and addiction are relatively common consequences of chronic opioid therapy, occurring in up to one-third of patients in some series.

  11. [The endogenous opioid system and drug addiction].

    Science.gov (United States)

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  12. Opioid-free anaesthesia in three dogs

    Directory of Open Access Journals (Sweden)

    Donna M. White

    2017-05-01

    Full Text Available Opioid-free anaesthesia (OFA is a relatively new and growing field in human medicine. There are multiple motivations behind this emerging practice with the recognition of several serious potential opioid-related adverse effects including opioid induced hyperalgesia, opioid tolerance and immunomodulatory effects of opioids. Opioids have long been the mainstay of veterinary anaesthesia and pain management practice. The feasibility of OFA in veterinary patients is presented here. A case series of three dogs that underwent OFA for canine ovariohysterectomy is reported. The authors conclude OFA is possible in veterinary medicine; however the move away from the familiar effects of opioids perioperatively is challenging. Gaining experience with these types of protocols for standard procedures in healthy animals, such as neutering, will provide the anaesthetist with the building blocks for more invasive surgeries.

  13. Non-analgesic effects of opioids: opioids and the endocrine system.

    Science.gov (United States)

    Elliott, Jennifer A; Opper, Susan E; Agarwal, Sonali; Fibuch, Eugene E

    2012-01-01

    Opioids are among the oldest known and most widely used analgesics. The application of opioids has expanded over the last few decades, especially in the treatment of chronic non-malignant pain. This upsurge in opioid use has been accompanied by the increasingly recognized occurrence of opioid-associated endocrinopathy. This may arise after exposure to enteral, parenteral, or neuraxial opioids. Opioid-associated endocrinopathy consists primarily of hypothalamic-pituitary-gonadal axis or hypothalamic-pituitary-adrenal axis dysfunction and may manifest with symptoms of hypogonadism, adrenal dysfunction, and other hormonal disturbances. Additionally, opioid related endocrine dysfunction may be coupled with such disorders as osteoporosis and mood disturbances including depression. Undesirable changes in pain sensitivity such as opioid-induced hyperalgesia, and reduced potency of opioid analgesia may also be potential consequences of chronic opioid consumption. Few studies to date have been able to establish what degree of opioid exposure, in terms of dose or duration of therapy, may predispose patients to opioid-associated endocrinopathy. This article will review the currently available literature concerning opioid-associated endocrinopathy and will provide recommendations for the evaluation, monitoring, and management of opioid-associated endocrinopathy and its other accompanying undesired effects.

  14. Opioid rotation with extended-release opioids: where should we begin?

    Directory of Open Access Journals (Sweden)

    Nalamachu S

    2011-12-01

    Full Text Available Srinivas NalamachuInternational Clinical Research Institute and Pain Management Institute, Overland Park, KS, USAAbstract: Opioid rotation is a common and necessary clinical practice in the management of chronic non-cancer pain to improve therapeutic efficacy with the lowest opioid dose. When dose escalations fail to achieve adequate analgesia or are associated with intolerable side effects, a trial of a new opioid should be considered. Much of the scientific rationale of opioid rotation is based on the wide interindividual variability in sensitivity to opioid analgesics and the novel patient response observed when introducing an opioid-tolerant patient to a new opioid. This article discusses patient indicators for opioid rotation, the conversion process between opioid medications, and additional practical considerations for increasing the effectiveness of opioid therapy during a trial of a new opioid. A Patient vignette that demonstrates a step-wise approach to opioid rotation is also presented.Keywords: extended-release opioids, chronic pain, opioid rotation

  15. Opioid use in palliative care

    African Journals Online (AJOL)

    Repro

    care. The confident and safe use of opioids in palliative care is an essential skill required by all. d o c t o r s . ... patient for ongoing clinical review. Start the elderly and frail .... (24 hour subcutaneous infusion ... (nursing or medical), pain special-.

  16. Feeding Releases Endogenous Opioids in Humans.

    Science.gov (United States)

    Tuulari, Jetro J; Tuominen, Lauri; de Boer, Femke E; Hirvonen, Jussi; Helin, Semi; Nuutila, Pirjo; Nummenmaa, Lauri

    2017-08-23

    The endogenous opioid system supports a multitude of functions related to appetitive behavior in humans and animals, and it has been proposed to govern hedonic aspects of feeding thus contributing to the development of obesity. Here we used positron emission tomography to investigate whether feeding results in hedonia-dependent endogenous opioid release in humans. Ten healthy males were recruited for the study. They were scanned with the μ-opioid-specific ligand [ 11 C]carfentanil three times, as follows: after a palatable meal, a nonpalatable meal, and after an overnight fast. Subjective mood, satiety, and circulating hormone levels were measured. Feeding induced significant endogenous opioid release throughout the brain. This response was more pronounced following a nonpalatable meal versus a palatable meal, and independent of the subjective hedonic responses to feeding. We conclude that feeding consistently triggers cerebral opioid release even in the absence of subjective pleasure associated with feeding, suggesting that metabolic and homeostatic rather than exclusively hedonic responses play a role in the feeding-triggered cerebral opioid release. SIGNIFICANCE STATEMENT The endogenous opioid system supports both hedonic and homeostatic functions. It has been proposed that overeating and concomitant opioid release could downregulate opioid receptors and promote the development of obesity. However, it remains unresolved whether feeding leads to endogenous opioid release in humans. We used in vivo positron emission tomography to test whether feeding triggers cerebral opioid release and whether this response is associated with pleasurable sensations. We scanned volunteers using the μ-opioid receptor-specific radioligand [ 11 C]carfentanil three times, as follows: after an overnight fast, after consuming a palatable meal, and after consuming a nonpalatable meal. Feeding led to significant endogenous opioid release, and this occurred also in the absence of feeding

  17. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Science.gov (United States)

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  18. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  19. Biotinylated human. beta. -endorphins as probes for the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hochhaus, G.; Gibson, B.W.; Sadee, W.

    1988-01-05

    The reaction of human ..beta..-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH/sup +/), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human ..beta..-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Try-1. Three HPLC fractions were isolated for receptor binding studies monobiotinylation of Lys-9, Lys-19, and a mixture of Lys-24, Lys-28, and Lys-29 derivatives. IC/sub 50/ values for binding to ..mu.. and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human ..beta..-endorphin. Association with avidin decreased opioid receptor affinities for the C/sub 6/ spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to ..mu.. and delta sites for derivatives biotinylated at the ..cap alpha..-helical part of the molecule (Lys-19, -24, -28, and -29). Biotinylated human ..beta..-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human ..beta..-endorphin to cross-link the ..mu.. and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.

  20. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  1. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials.

    Science.gov (United States)

    Lee, Mei-Yi; Lin, Yi-Ruu; Tu, Yi-Shu; Tseng, Yufeng Jane; Chan, Ming-Huan; Chen, Hwei-Hsien

    2017-02-28

    Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.

  2. Stereochemical Basis for a Unified Structure Activity Theory of Aromatic and Heterocyclic Rings in Selected Opioids and Opioid Peptides

    Directory of Open Access Journals (Sweden)

    Joel S. Goldberg

    2010-02-01

    Full Text Available This paper presents a novel unified theory of the structure activity relationship of opioids and opioid peptides. It is hypothesized that a virtual or known heterocyclic ring exists in all opioids which have activity in humans, and this ring occupies relative to the aromatic ring of the drug, approximately the same plane in space as the piperidine ring of morphine. Since the rings of morphine are rigid, and the aromatic and piperidine rings are critical structural components for morphine’s analgesic properties, the rigid morphine molecule allows for approximations of the aromatic and heterocyclic relationships in subsequent drug models where bond rotations are common. This hypothesis and five propositions are supported by stereochemistry and experimental observations. Proposition #1 The structure of morphine provides a template. Proposition #2 Steric hindrance of some centric portion of the piperidine ring explains antagonist properties of naloxone, naltrexone and alvimopam. Proposition #3 Methadone has an active conformation which contains a virtual heterocyclic ring which explains its analgesic activity and racemic properties. Proposition #4 The piperidine ring of fentanyl can assume the morphine position under conditions of nitrogen inversion. Proposition #5 The first 3 amino acid sequences of beta endorphin (l-try-gly-gly and the active opioid dipeptide, l-tyr-pro, (as a result of a peptide turn and zwitterion bonding form a virtual piperazine-like ring which is similar in size, shape and location to the heterocyclic rings of morphine, meperidine, and methadone. Potential flaws in this theory are discussed. This theory could be important for future analgesic drug design.

  3. Using behavioral economics to predict opioid use during prescription opioid dependence treatment.

    Science.gov (United States)

    Worley, Matthew J; Shoptaw, Steven J; Bickel, Warren K; Ling, Walter

    2015-03-01

    Research grounded in behavioral economics has previously linked addictive behavior to disrupted decision-making and reward-processing, but these principles have not been examined in prescription opioid addiction, which is currently a major public health problem. This study examined whether pre-treatment drug reinforcement value predicted opioid use during outpatient treatment of prescription opioid addiction. Secondary analyses examined participants with prescription opioid dependence who received 12 weeks of buprenorphine-naloxone and counseling in a multi-site clinical trial (N=353). Baseline measures assessed opioid source and indices of drug reinforcement value, including the total amount and proportion of income spent on drugs. Weekly urine drug screens measured opioid use. Obtaining opioids from doctors was associated with lower pre-treatment drug spending, while obtaining opioids from dealers/patients was associated with greater spending. Controlling for demographics, opioid use history, and opioid source frequency, patients who spent a greater total amount (OR=1.30, peconomic resources to drugs, reflects propensity for continued opioid use during treatment among individuals with prescription opioid addiction. Future studies should examine disrupted decision-making and reward-processing in prescription opioid users more directly and test whether reinforcer pathology can be remediated in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Criticality predicts maximum irregularity in recurrent networks of excitatory nodes.

    Directory of Open Access Journals (Sweden)

    Yahya Karimipanah

    Full Text Available A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at a critical regime, which is defined as a transition point between two phases of short lasting and chaotic activity. However, despite the fact that criticality brings about certain functional advantages for information processing, its supporting evidence is still far from conclusive, as it has been mostly based on power law scaling of size and durations of cascades of activity. Moreover, to what degree such hypothesis could explain some fundamental features of neural activity is still largely unknown. One of the most prevalent features of cortical activity in vivo is known to be spike irregularity of spike trains, which is measured in terms of the coefficient of variation (CV larger than one. Here, using a minimal computational model of excitatory nodes, we show that irregular spiking (CV > 1 naturally emerges in a recurrent network operating at criticality. More importantly, we show that even at the presence of other sources of spike irregularity, being at criticality maximizes the mean coefficient of variation of neurons, thereby maximizing their spike irregularity. Furthermore, we also show that such a maximized irregularity results in maximum correlation between neuronal firing rates and their corresponding spike irregularity (measured in terms of CV. On the one hand, using a model in the universality class of directed percolation, we propose new hallmarks of criticality at single-unit level, which could be applicable to any network of excitable nodes. On the other hand, given the controversy of the neural criticality hypothesis, we discuss the limitation of this approach to neural systems and to what degree they support the criticality hypothesis in real neural networks. Finally

  5. Reasons for opioid use among patients with dependence on prescription opioids: the role of chronic pain.

    Science.gov (United States)

    Weiss, Roger D; Potter, Jennifer Sharpe; Griffin, Margaret L; McHugh, R Kathryn; Haller, Deborah; Jacobs, Petra; Gardin, John; Fischer, Dan; Rosen, Kristen D

    2014-08-01

    The number of individuals seeking treatment for prescription opioid dependence has increased dramatically, fostering a need for research on this population. The aim of this study was to examine reasons for prescription opioid use among 653 participants with and without chronic pain, enrolled in the Prescription Opioid Addiction Treatment Study, a randomized controlled trial of treatment for prescription opioid dependence. Participants identified initial and current reasons for opioid use. Participants with chronic pain were more likely to report pain as their primary initial reason for use; avoiding withdrawal was rated as the most important reason for current use in both groups. Participants with chronic pain rated using opioids to cope with physical pain as more important, and using opioids in response to social interactions and craving as less important, than those without chronic pain. Results highlight the importance of physical pain as a reason for opioid use among patients with chronic pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain

    NARCIS (Netherlands)

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J.A.

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here

  7. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Science.gov (United States)

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  8. Peripherally applied opioids for postoperative pain

    DEFF Research Database (Denmark)

    Nielsen, B N; Henneberg, S W; Schmiegelow, K

    2015-01-01

    BACKGROUND: Opioids applied peripherally at the site of surgery may produce postoperative analgesia with few side effects. We performed this systematic review to evaluate the analgesic effect of peripherally applied opioids for acute postoperative pain. METHODS: We searched PubMed (1966 to June...... 2013), Embase (1980 to June 2013), and the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 6). Randomized controlled trials investigating the postoperative analgesic effect of peripherally applied opioids vs. systemic opioids or placebo, measured by pain intensity...... difference -5 mm, 95% CI: -7 to -3) for peripherally applied opioids vs. placebo and statistically significant increased time to first analgesic (mean difference 153 min, 95% CI: 41-265). When preoperative inflammation was reported (five studies), peripherally applied opioids significantly improved...

  9. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  10. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  11. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  12. Opioid Therapy for Chronic Nonmalignant Pain

    Directory of Open Access Journals (Sweden)

    Russell K Portenoy

    1996-01-01

    Full Text Available Long term administration of an opioid drug for chronic nonmalignant pain continues to be controversial, but is no longer uniformly rejected by pain specialists. This is true despite concerns that the regulatory agencies that oversee physician prescribing of opioid drugs continue to stigmatize the practice. The changing clinical perspective has been driven, in part, by widespread acknowledgement of the remarkably favourable outcomes achieved during opioid treatment of cancer pain. These outcomes contrast starkly with popular teaching about chronic opioid therapy and affirm the potential for prolonged efficacy, tolerable side effects, enhanced function associated with improved comfort and minimal risk of aberrant drug-related behaviours consistent with addiction. A large anecdotal experience in populations with nonmalignant pain suggests that these patients are more heterogeneous and that opioid therapy will greatly benefit some and will contribute to negative outcomes for others. The few controlled clinical trials that have been performed support the safety and efficacy of opioid therapy, but have been too limited to ensure generalization to the clinical setting. A critical review of the medical literature pertaining to chronic pain, opioid pharmacology and addiction medicine can clarify misconceptions about opioid therapy and provide a foundation for patient selection and drug administration. The available data support the view that opioids are no panacea for chronic pain, but should be considered in carefully selected patients using clinically derived guidelines that stress a structured approach and ongoing monitoring of efficacy, adverse effects, functional outcomes and the occurrence of aberrant drug-related behaviours.

  13. America's Opioid Epidemic: Supply and Demand Considerations.

    Science.gov (United States)

    Clark, David J; Schumacher, Mark A

    2017-11-01

    America is in the midst of an opioid epidemic characterized by aggressive prescribing practices, highly prevalent opioid misuse, and rising rates of prescription and illicit opioid overdose-related deaths. Medical and lay public sentiment have become more cautious with respect to prescription opioid use in the past few years, but a comprehensive strategy to reduce our reliance on prescription opioids is lacking. Addressing this epidemic through reductions in unnecessary access to these drugs while implementing measures to reduce demand will be important components of any comprehensive solution. Key supply-side measures include avoiding overprescribing, reducing diversion, and discouraging misuse through changes in drug formulations. Important demand-side measures center around educating patients and clinicians regarding the pitfalls of opioid overuse and methods to avoid unnecessary exposure to these drugs. Anesthesiologists, by virtue of their expertise in the use of these drugs and their position in guiding opioid use around the time of surgery, have important roles to play in reducing patient exposure to opioids and providing education about appropriate use. Aside from the many immediate steps that can be taken, clinical and basic research directed at understanding the interaction between pain and opioid misuse is critical to identifying the optimal use of these powerful pain relievers in clinical practice.

  14. Psychiatric disorders in opioid dependants.

    Science.gov (United States)

    Ahmadi, Jamshid; Toobaee, Shahin; Kharras, Mohammad; Radmehr, Mohammad

    2003-09-01

    Psychiatric disorders are common among substance dependants. The objectives of this study were to assess the rate of neurotic disorders among opioid addicts, and reassess the rate of those neurotic disorders two weeks after complete detoxification of the patients. Data were gathered from 500 (496 men and 4 women) opioid dependants, using DSM-IV criteria. The Middlesex Hospital Questionnaire (MHQ) was used to measure free-floating anxiety, depression, phobia, obsession, hysteria and somatization. Four hundred and ninety-six (99.2%) of the subjects were men of whom the majority (65.2%) were married, 26.4% single and the others were divorced or separated. Three hundred and thirty-four (66.8%) were in age range of 20 to 39 years. Of the subjects 154 (30.8) were self-employed, 116 (23.2%) were factory workers, 100 (20%) unemployed, 64 (12.8%) employees and 32 (6.4%) retailers. The majority, 322 (64.4%), reported elementary and high school as their level of education and only 20 (4%) were illiterate. The means for neurotic disorders (using the MHQ) before and two weeks after detoxification were 10.12 and 9.98 for anxiety, 7.54 and 7.41 for phobia, 10.10 and 9.76 for depression, 11.11 and 11.05 for obsession, 8.47 and 8.49 for hysteria and 9.82 and 9.46 for somatization, respectively. The mean difference was significant only for depression. Present findings indicated that the rate of neurotic disorders in opioid dependants is high and (except for depression) was not significantly different before detoxification and two weeks after detoxification. Opium was found to be the most prevalent form of opioid used. Also it can be concluded that during the last years some demographic characteristics of Iranian opioid addicts in this sample have changed. Cultural attitudes toward substance use quite likely affect the pattern of substance use. These findings can be considered when planning preventive and therapeutic programs.

  15. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  16. Craving and subsequent opioid use among opioid dependent patients who initiate treatment with buprenorphine

    Science.gov (United States)

    Tsui, Judith I.; Anderson, Bradley J.; Strong, David R.; Stein, Michael D.

    2016-01-01

    Background Few studies have directly assessed associations between craving and subsequent opioid use among treated patients. Our objective was to prospectively evaluate the relative utility of two craving questionnaires to predict opioid use among opioid dependent patients in treatment. Method Opioid dependent patients (n=147) initiating buprenorphine treatment were assessed for three months. Craving was measured using: 1) the Desires for Drug Questionnaire (DDQ) and 2) the Penn Alcohol-Craving Scale adapted for opioid craving (PCS) for this study. Multi-level logistic regression models estimated the effects of craving on the likelihood of opioid use after adjusting for gender, age, ethnicity, education, opioid of choice, frequency of use, pain and depression. In these analyses craving assessed at time t was entered as a time-varying predictor of opioid use at time t+1. Results In adjusted regression models, a 1-point increase in PCS scores (on a 7-point scale) was associated with a significant increase in the odds of opioid use at the subsequent assessment (OR = 1.27, 95% CI 1.08; 1.49, p .05) or DDQ control (OR = 0.97, 95%CI 0.85; 1.11, p > .05) scores. Conclusion Self-reported craving for opioids was associated with subsequent lapse to opioid use among a cohort of patients treated with buprenorphine. PMID:24521036

  17. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    Science.gov (United States)

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  18. The opioid overdose epidemic: opportunities for pharmacists

    Directory of Open Access Journals (Sweden)

    Wu LT

    2017-07-01

    Full Text Available Li-Tzy Wu,1–4 Udi E Ghitza,5 Anne L Burns,6 Paolo Mannelli,1 1Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, 3Duke Clinical Research Institute, Duke University School of Medicine, 4Center for Child and Family Policy, Sanford School of Public Policy, Duke University, Durham, NC, 5Center for Clinical Trials Network, National Institute on Drug Abuse, Bethesda, MD, 6American Pharmacists Association, Washington, DC, USA The USA is experiencing an opioid overdose epidemic. It has been driven largely by prescription opioids and intensified by a surge of illicit opioids (e.g., heroin and fentanyl.1,2 Drug-involved overdose, mainly opioids (e.g., prescription opioids and heroin, is a leading cause of accidental death in the USA. The opioid overdose epidemic has been escalating consistently for over a decade.2 Every day, an estimated 91 Americans die from opioid-related overdose.3 Opioid overdose appears to have disproportionally affected men, adults aged 25–64 years, and non-Hispanic whites.2

  19. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  20. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    Science.gov (United States)

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-09-08

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.

  1. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  2. Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Differentiating granule cells develop survival requirements in culture which can be met by treatment with high K+ or N-methyl-D-aspartate (NMDA) and, according to our recent findings, also with low concentrations of kainic acid (KA, 50 microM). We have now attempted to elucidate the mechanism(s) ...

  3. Protection against amphetamine-induced neurotoxicity toward striatal dopamine neurons in rodents by LY274614, an excitatory amino acid antagonist.

    Science.gov (United States)

    Fuller, R W; Hemrick-Luecke, S K; Ornstein, P L

    1992-10-01

    LY274614, 3SR,4aRS,6SR,8aRS-6-[phosphonomethyl]decahydr oisoquinoline-3- carboxylic acid, has been described as a potent antagonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Here its ability to antagonize the prolonged depletion of dopamine in the striatum by amphetamine in iprindole-treated rats is reported. A single 18.4 mg/kg (i.p.) dose of (+/-)-amphetamine hemisulfate, given to rats pretreated with iprindole, resulted in persistent depletion of dopamine in the striatum 1 week later. This prolonged depletion of dopamine in the striatum was antagonized by dizocilpine (MK-801, a non-competitive antagonist of NMDA receptors) or by LY274614 (a competitive antagonist of NMDA receptors). The protective effect of LY274614 was dose-dependent, being maximum at 10-40 mgkg (i.p.). A 10 mg/kg dose of LY274614 was effective in antagonizing the depletion of dopamine in the striatum, when given as long as 8 hr prior to amphetamine but not when given 24 hr prior to amphetamine. Depletion of dopamine in the striatum was also antagonized when LY274614 was given after the injection of amphetamine; LY274614 protected when given up to 4 hr after but not when given 8 or 24 hr after amphetamine. The prolonged depletion of dopamine in the striatum in mice, given multiple injections of methamphetamine, was also antagonized dose-dependently and completely by LY274614. The data strengthen the evidence that the neurotoxic effect of amphetamine and related compounds toward nigrostriatal dopamine neurons involves NMDA receptors and that LY274614 is an NMDA receptor antagonist with long-lasting in vivo effects in rats.

  4. Effects of neonatal. gamma. -ray irradiation on rat hippocampus: Pt. 2; Development of excitatory amino acid binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Dessi, F; Represa, A; Ben-Ari, Y [Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)

    1991-01-01

    In the rat, neonatal irradiation produces a destruction of denate granule cells and prevents the development of the mossy fibre-CA3 pyramidal cell synapse. The developmental increase of high affinity kainate binding sites in the stratum lucidum was reduced on the irradiated side as compared with the control side. This suggests that a proportion of high affinity kainate binding sites is associated with mossy fibres. In contrast, the development profile of N-methyl-D-aspartate binding sites, which are associated with associational and commissural synapses in CA3, was not affected by irradiation. The role that afferent fibres may play in the development of pyramidal cells is discussed in connection with the modulatory effects of glutamate receptors on the development of neurons. (author).

  5. Chronic Opioid Use After Surgery: Implications for Perioperative Management in the Face of the Opioid Epidemic.

    Science.gov (United States)

    Hah, Jennifer M; Bateman, Brian T; Ratliff, John; Curtin, Catherine; Sun, Eric

    2017-11-01

    Physicians, policymakers, and researchers are increasingly focused on finding ways to decrease opioid use and overdose in the United States both of which have sharply increased over the past decade. While many efforts are focused on the management of chronic pain, the use of opioids in surgical patients presents a particularly challenging problem requiring clinicians to balance 2 competing interests: managing acute pain in the immediate postoperative period and minimizing the risks of persistent opioid use after the surgery. Finding ways to minimize this risk is particularly salient in light of a growing literature suggesting that postsurgical patients are at increased risk for chronic opioid use. The perioperative care team, including surgeons and anesthesiologists, is poised to develop clinical- and systems-based interventions aimed at providing pain relief in the immediate postoperative period while also reducing the risks of opioid use longer term. In this paper, we discuss the consequences of chronic opioid use after surgery and present an analysis of the extent to which surgery has been associated with chronic opioid use. We follow with a discussion of the risk factors that are associated with chronic opioid use after surgery and proceed with an analysis of the extent to which opioid-sparing perioperative interventions (eg, nerve blockade) have been shown to reduce the risk of chronic opioid use after surgery. We then conclude with a discussion of future research directions.

  6. Physician Introduction to Opioids for Pain Among Patients with Opioid Dependence and Depressive Symptoms

    Science.gov (United States)

    Tsui, Judith I.; Herman, Debra S.; Kettavong, Malyna; Alford, Daniel; Anderson, Bradley J.; Stein, Michael D.

    2011-01-01

    This study determined the frequency of reporting being introduced to opioids by a physician among opioid dependent patients. Cross-sectional analyses were performed using baseline data from a cohort of opioid addicts seeking treatment with buprenorphine. The primary outcome was response to the question: “Who introduced you to opiates?” Covariates included sociodemographics, depression, pain, current and prior substance use. Of 140 participants, 29% reported that they had been introduced to opioids by a physician. Of those who were introduced to opioids by a physician, all indicated that they had initially used opioids for pain, versus only 11% of those who did not report being introduced to opioids by a physician (p<0.01). There was no difference in current pain (78% vs. 85%, p=0.29), however participants who were introduced to opioids by a physician were more likely to have chronic pain (63% vs. 43%, p=0.04). A substantial proportion of individuals with opioid dependence seeking treatment may have been introduced to opioids by a physician. PMID:20727704

  7. Distance traveled and frequency of interstate opioid dispensing in opioid shoppers and nonshoppers.

    Science.gov (United States)

    Cepeda, M Soledad; Fife, Daniel; Yuan, Yingli; Mastrogiovanni, Greg

    2013-10-01

    Little is known about how far opioid shoppers travel or how often they cross state lines to fill their opioid prescriptions. This retrospective cohort study evaluated these measures for opioid shoppers and nonshoppers using a large U.S. prescription database. Patients with ≥3 opioid dispensings were followed for 18 months. A subject was considered a shopper when he or she filled overlapping opioid prescriptions written by >1 prescriber at ≥3 pharmacies. A heavy shopper had ≥5 shopping episodes. Outcomes assessed were distance traveled among pharmacies and number of states visited to fill opioid prescriptions. A total of 10,910,451 subjects were included; .7% developed any shopping behavior and their prescriptions accounted for 8.6% of all opioid dispensings. Shoppers and heavy shoppers were younger than the nonshoppers. Shoppers traveled a median of 83.8 miles, heavy shoppers 199.5 miles, and nonshoppers 0 miles. Almost 20% of shoppers or heavy shoppers, but only 4% of nonshoppers, visited >1 state. Shoppers traveled greater distances and more often crossed state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. Sharing of data among prescription-monitoring programs will likely strengthen those programs and may decrease shopping behavior. This study shows that opioid shoppers travel greater distances and more often cross state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. The findings support the need for data sharing among prescription-monitoring programs to deter opioid shopping behavior. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  9. High-Dose Opioid Prescribing and Opioid-Related Hospitalization: A Population-Based Study.

    Directory of Open Access Journals (Sweden)

    Kimberly Fernandes

    Full Text Available To examine the impact of national clinical practice guidelines and provincial drug policy interventions on prevalence of high-dose opioid prescribing and rates of hospitalization for opioid toxicity.Interventional time-series analysis.Ontario, Canada, from 2003 to 2014.Ontario Drug Benefit (ODB beneficiaries aged 15 to 64 years from 2003 to 2014.Publication of Canadian clinical practice guidelines for use of opioids in chronic non-cancer pain (May 2010 and implementation of Ontario's Narcotics Safety and Awareness Act (NSAA; November 2011.Three outcomes were explored: the rate of opioid use among ODB beneficiaries, the prevalence of opioid prescriptions exceeding 200 mg and 400 mg morphine equivalents per day, and rates of opioid-related emergency department visits and hospital admissions.Over the 12 year study period, the rate of opioid use declined 15.2%, from 2764 to 2342 users per 10,000 ODB eligible persons. The rate of opioid use was significantly impacted by the Canadian clinical practice guidelines (p-value = .03 which led to a decline in use, but no impact was observed by the enactment of the NSAA (p-value = .43. Among opioid users, the prevalence of high-dose prescribing doubled (from 4.2% to 8.7% over the study period. By 2014, 40.9% of recipients of long-acting opioids exceeded daily doses of 200 mg morphine or equivalent, including 55.8% of long-acting oxycodone users and 76.3% of transdermal fentanyl users. Moreover, in the last period, 18.7% of long-acting opioid users exceeded daily doses of 400 mg morphine or equivalent. Rates of opioid-related emergency department visits and hospital admissions increased 55.0% over the study period from 9.0 to 14.0 per 10,000 ODB beneficiaries from 2003 to 2013. This rate was not significantly impacted by the Canadian clinical practice guidelines (p-value = .68 or enactment of the NSAA (p-value = .59.Although the Canadian clinical practice guidelines for use of opioids in chronic non

  10. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    International Nuclear Information System (INIS)

    Ni Yun; Wu Liang; Wu Dan; Zhu Shiqun

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales. (interdisciplinary physics and related areas of science and technology)

  11. Long-term course of opioid addiction.

    Science.gov (United States)

    Hser, Yih-Ing; Evans, Elizabeth; Grella, Christine; Ling, Walter; Anglin, Douglas

    2015-01-01

    Opioid addiction is associated with excess mortality, morbidities, and other adverse conditions. Guided by a life-course framework, we review the literature on the long-term course of opioid addiction in terms of use trajectories, transitions, and turning points, as well as other factors that facilitate recovery from addiction. Most long-term follow-up studies are based on heroin addicts recruited from treatment settings (mostly methadone maintenance treatment), many of whom are referred by the criminal justice system. Cumulative evidence indicates that opioid addiction is a chronic disorder with frequent relapses. Longer treatment retention is associated with a greater likelihood of abstinence, whereas incarceration is negatively related to subsequent abstinence. Over the long term, the mortality rate of opioid addicts (overdose being the most common cause) is about 6 to 20 times greater than that of the general population; among those who remain alive, the prevalence of stable abstinence from opioid use is low (less than 30% after 10-30 years of observation), and many continue to use alcohol and other drugs after ceasing to use opioids. Histories of sexual or physical abuse and comorbid mental disorders are associated with the persistence of opioid use, whereas family and social support, as well as employment, facilitates recovery. Maintaining opioid abstinence for at least five years substantially increases the likelihood of future stable abstinence. Recent advances in pharmacological treatment options (buprenorphine and naltrexone) include depot formulations offering longer duration of medication; their impact on the long-term course of opioid addiction remains to be assessed.

  12. Dextromethorphan differentially affects opioid antinociception in rats

    Science.gov (United States)

    Chen, Shiou-Lan; Huang, Eagle Yi-Kung; Chow, Lok-Hi; Tao, Pao-Luh

    2005-01-01

    Opioid drugs such as morphine and meperidine are widely used in clinical pain management, although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate (NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may have some therapeutic benefits when coadministered with morphine. In the present study, we investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated the possible pharmacokinetic mechanisms involved. The antinociceptive effects of the μ-opioid receptor agonists morphine (5 mg kg−1, s.c.), meperidine (25 mg kg−1, s.c.) and codeine (25 mg kg−1, s.c.), and the κ-opioid agonists nalbuphine (8 mg kg−1, s.c.) and U-50,488H (20 mg kg−1, s.c.) were studied using the tail-flick test in male Sprague–Dawley rats. Coadministration of DM (20 mg kg−1, i.p.) with these opioids was also performed and investigated. The pharmacokinetic effects of DM on morphine and codeine were examined, and the free concentration of morphine or codeine in serum was determined by HPLC. It was found that DM potentiated the antinociceptive effects of some μ-opioid agonists but not codeine or κ-opioid agonists in rats. DM potentiated morphine's antinociceptive effect, and acutely increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect of codeine and decreased the serum concentration of its active metabolite (morphine). The pharmacokinetic interactions between DM and opioids may partially explain the differential effects of DM on the antinociception caused by opioids. PMID:15655510

  13. Hiperalgesia asociada al tratamiento con opioides

    OpenAIRE

    A. Gil Martín; M. Moreno García; J. Sánchez-Rubio Ferrández; T. Molina García

    2014-01-01

    La hiperalgesia inducida por opioides es una reacción paradójica caracterizada por una percepción intensificada de dolor relacionada con el uso de estos medicamentos en ausencia de progresión de la enfermedad o de síndrome de retirada. A diferencia de los casos de tolerancia, definida como pérdida de potencia analgésica durante el uso prolongado de opioides, no se produce mejoría con el escalado de dosis. La hiperalgesia inducida por opioides se ha manifestado en pacientes con dosis de manten...

  14. Neuraxial opioid-induced pruritus: a review.

    LENUS (Irish Health Repository)

    Szarvas, Szilvia

    2012-02-03

    When intrathecal and epidural opioids are administered, pruritus occurs as an unwanted and troublesome side effect. The reported incidence varies between 30% and 100%. The exact mechanisms of neuraxial opioid-induced pruritus remain unclear. Postulated mechanisms include the presence of an "itch center" in the central nervous system, medullary dorsal horn activation, and antagonism of inhibitory transmitters. The treatment of intrathecal opioid-induced pruritus remains a challenge. Many pharmacological therapies, including antihistamines, 5-HT(3)-receptor antagonists, opiate-antagonists, propofol, nonsteroid antiinflammatory drugs, and droperidol, have been studied. In this review, we will summarize pathophysiological and pharmacological advances that will improve understanding and ultimately the management of this troublesome problem.

  15. Opioid tapering in patients with prescription opioid use disorder: A retrospective study.

    Science.gov (United States)

    Zhou, Kehua; Jia, Peng; Bhargava, Swati; Zhang, Yong; Reza, Taslima; Peng, Yuan Bo; Wang, Gary G

    2017-10-01

    Opioid use disorder (OUD) refers to a maladaptive pattern of opioid use leading to clinically significant impairment or distress. OUD causes, and vice versa, misuses and abuse of opioid medications. Clinicians face daily challenges to treat patients with prescription opioid use disorder. An evidence-based management for people who are already addicted to opioids has been identified as the national priority in the US; however, options are limited in clinical practices. In this study, we aimed to explore the success rate and important adjuvant medications in the medication assisted treatment with temporary use of methadone for opioid discontinuation in patients with prescription OUD. This is a retrospective chart review performed at a private physician office for physical medicine and rehabilitation. We reviewed all medical records dated between December 1st, 2011 and August 30th, 2016. The initial evaluation of the included patients (N=140) was completed between December 1st, 2011 and December 31st, 2014. They all have concumittant prescription OUD and chronic non-cancer pain. The patients (87 female and 53 male) were 46.7±12.7 years old, and had a history of opioid use of 7.7±6.1 years. All patients received the comprehensive opioid taper treatments (including interventional pain management techniques, psychotherapy, acupuncture, physical modalities and exercises, and adjuvant medications) on top of the medication assisted treatment using methadone (transient use). Opioid tapering was considered successful when no opioid medication was used in the last patient visit. The 140 patients had pain of 9.6±8.4 years with 8/10 intensity before treatment which decreased after treatment in all comparisons (pOUD. For patients with OUD, indefinite opioid maintenance treatment may not be necessary. Considering the ethical values of autonomy, nonmaleficence, and beneficence, clinicians should provide patients with OUD the option of opioid tapering. Copyright © 2017

  16. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  17. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  18. Opioids, pain, the brain, and hyperkatifeia: a framework for the rational use of opioids for pain.

    Science.gov (United States)

    Shurman, Joseph; Koob, George F; Gutstein, Howard B

    2010-07-01

    Opioids have relieved more human suffering than any other medication, but their use is still fraught with significant concerns of misuse, abuse, and addiction. This theoretical article explores the hypothesis that opioid misuse in the context of pain management produces a hypersensitivity to emotional distress, termed hyperkatifeia. In the misuse of opioids, neural substrates that mediate positive emotional states (brain reward systems) are compromised, and substrates mediating negative emotional states (brain stress systems) are enhanced. A reflection and early marker of such a nonhomeostatic state may be the development of opioid-induced hyperkatifeia, defined as the increased intensity of the constellation of negative emotional/motivational symptoms and signs observed during withdrawal from drugs of abuse (derived from the Greek "katifeia" for dejection or negative emotional state) and is most likely to occur in subjects in whom the opioid produces a break with homeostasis and less likely to occur when the opioid is restoring homeostasis, such as in effective pain treatment. When the opioid appropriately relieves pain, opponent processes are not engaged. However, if the opioid is administered in excess of need because of overdose, pharmacokinetic variables, or treating an individual without pain, then the body will react to that perturbation by engaging opponent processes in the domains of both pain (hyperalgesia) and negative emotional states (hyperkatifeia). Repeated engagement of opponent processes without time for the brain's emotional systems to reestablish homeostasis will further drive changes in emotional processes that may produce opioid abuse or addiction, particularly in individuals with genetic or environmental vulnerability.

  19. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  20. Opioid Overdose Reversal with Naloxone (Narcan, Evzio)

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  1. Teens Mix Prescription Opioids with Other Substances

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  2. Endogenous opioids encode relative taste preference.

    Science.gov (United States)

    Taha, Sharif A; Norsted, Ebba; Lee, Lillian S; Lang, Penelope D; Lee, Brian S; Woolley, Joshua D; Fields, Howard L

    2006-08-01

    Endogenous opioid signaling contributes to the neural control of food intake. Opioid signaling is thought to regulate palatability, the reward value of a food item as determined by orosensory cues such as taste and texture. The reward value of a food reflects not only these sensory properties but also the relative value of competing food choices. In the present experiment, we used a consummatory contrast paradigm to manipulate the relative value of a sucrose solution for two groups of rats. Systemic injection of the nonspecific opioid antagonist naltrexone suppressed sucrose intake; for both groups, however, this suppression was selective, occurring only for the relatively more valuable sucrose solution. Our results indicate that endogenous opioid signaling contributes to the encoding of relative reward value.

  3. Medicare Part D Opioid Drug Mapping Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Part D opioid prescribing mapping tool is an interactive tool that shows geographic comparisons, at the state, county, and ZIP code levels, of...

  4. Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons

    NARCIS (Netherlands)

    Caillé, S.; Guillem, K.; Cador, M.; Manzoni, O.; Georges, F.

    2009-01-01

    Active response to either natural or pharmacological reward causes synaptic modifications to excitatory synapses on dopamine (DA) neurons of the ventral tegmental area (VTA). Here, we examine these modifications using nicotine, the main addictive component of tobacco, which is a potent regulator of

  5. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  6. Drugs acting on amino acid neurotransmitters.

    Science.gov (United States)

    Meldrum, B S

    1986-01-01

    The most potent agents currently available for suppressing myoclonic activity in animals and humans act to enhance GABA-mediated inhibition and/or to diminish amino acid-induced excitation. Postsynaptic GABA-mediated inhibition plays an important role at the cortical level, diminishing the effect of augmented afferent activity and preventing pathologically enhanced output. Enhancement of GABAergic inhibition, principally at the cortical level but also at lower levels, by clonazepam and by valproate appears to be a predominant element in their antimyoclonic action. Studies in various animal models, including photically induced myoclonus in the baboon, P papio, indicate the value of other approaches to enhancing GABA-mediated inhibition. Among such approaches meriting evaluation in humans are inhibition of GABA-transaminase activity by gamma-vinyl GABA and action at some of the benzodiazepine receptors to enhance the action of GABA, as by the novel anticonvulsant beta-carbolines. Excitatory transmission mediated by dicarboxylic amino acids appears to play a role in myoclonus, especially at the spinal level, but also in the brainstem, cerebellum, basal ganglia, and cortex. Among various novel agents that act at the postsynaptic receptor site to antagonize such excitation, those specifically blocking excitation induced by aspartate and/or NMDA prevent myoclonic activity in a wide range of animal models. Further research is required before such agents can be evaluated in humans.

  7. Chemo-enzymatic synthesis of (2S,4R)-2-amino-4-(3-(2,2-diphenylethylamino)-3-oxopropyl)pentanedioic acid

    DEFF Research Database (Denmark)

    Sagot, Emanuelle; Jensen, Anders A.; Pickering, Darryl S

    2008-01-01

    In the mammalian central nervous system (CNS), the action of sodium dependent excitatory amino acid transporters (EAATs) is responsible for termination of glutamatergic neurotransmission by reuptake of ( S) -glutamate (Glu) from the synaptic cleft. Five EAAT subtypes have been identified, of which...

  8. Opioid withdrawal signs and symptoms in children: frequency and determinants.

    Science.gov (United States)

    Fisher, Deborah; Grap, Mary Jo; Younger, Janet B; Ameringer, Suzanne; Elswick, R K

    2013-01-01

    The purpose of this study was to, in a pediatric population, describe the frequency of opioid withdrawal signs and symptoms and to identify factors associated with these opioid withdrawal signs and symptoms. Opioids are used routinely in the pediatric intensive care population for analgesia, sedation, blunting of physiologic responses to stress, and safety. In children, physical dependence may occur in as little as 2-3 days of continuous opioid therapy. Once the child no longer needs the opioid, the medications are reduced over time. A prospective, descriptive study was conducted. The sample of 26 was drawn from all patients, ages 2 weeks to 21 years admitted to the Children's Hospital of Richmond pediatric intensive care unit (PICU) and who have received continuous infusion or scheduled opioids for at least 5 days. Data collected included: opioid withdrawal score (WAT-1), opioid taper rate (total dose of opioid per day in morphine equivalents per kilogram [MEK]), pretaper peak MEK, pretaper cumulative MEK, number of days of opioid exposure prior to taper, and age. Out of 26 enrolled participants, only 9 (45%) had opioid withdrawal on any given day. In addition, there was limited variability in WAT-1 scores. The most common symptoms notes were diarrhea, vomit, sweat, and fever. For optimal opioid withdrawal assessments, clinicians should use a validated instrument such as the WAT-1 to measure for signs and symptoms of opioid withdrawal. Further research is indicated to examine risk factors for opioid withdrawal in children. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. State Emergency Department Opioid Guidelines: Current Status.

    Science.gov (United States)

    Broida, Robert I; Gronowski, Tanner; Kalnow, Andrew F; Little, Andrew G; Lloyd, Christopher M

    2017-04-01

    The purpose of this study was to evaluate and categorize current state-sponsored opioid guidelines for the practice of emergency medicine (EM). We conducted a comprehensive search of EM-specific opioid prescribing guidelines and/or policies in each state to determine current state involvement in EM opioid prescribing, as well as to evaluate some of the specifics of each guideline or policy. The search was conducted using an online query and a follow-up email request to each state chapter of ACEP. We found that 17 states had emergency department-specific guidelines. We further organized the guidelines into four categories: limiting prescriptions for opioids with 67 total recommendations; preventing/diverting abuse with 56 total recommendations; addiction-related guidelines with 29 total recommendations; and a community resources section with 24 total recommendations. Our results showed that current state guidelines focus on providers limiting opioid pain prescriptions and vetting patients for possible abuse/diversion. This study highlights the 17 states that have addressed opioid prescribing guidelines and categorizes their efforts to date. It is hoped that this study will provide the basis for similar efforts in other states.

  10. PSYCHIATRIC COMORBIDITY IN PATIENTS WITH OPIOID DEPENDENCE

    Directory of Open Access Journals (Sweden)

    Shihab Kattukulathil

    2018-02-01

    Full Text Available BACKGROUND Opioid dependence is a major public health problem in Kerala. Presence of psychiatric disorder among opioid dependent patients worsens the scenario. To date no attempts have been made to analyse the magnitude and pattern of comorbid psychiatric disorders in the state. MATERIALS AND METHODS We assessed 30 patients with ICD-10 diagnosis of opioid dependence syndrome for the presence of comorbid psychiatric disorders using structured clinical interview for DSM IV Axis 1 disorder (SCID-1. Patients with opioid withdrawal state, delirium and acute medical emergencies were excluded. RESULTS 56.7% of our subjects had a comorbid psychiatric disorder. Major depressive disorder was the most common one (n=7, 23.3%. Prevalence of other disorders were generalised anxiety disorder (n=6, 20%, bipolar affective disorder (n=3, 10% and schizophrenia (n=1, 3.3%. CONCLUSION Comorbid Psychiatric disorders are highly prevalent in opioid dependence. There is a need for further large sample studies in the areas of comorbidities and in the integrated strategies for the identification and management of both opioid dependence and comorbid psychiatric disorders.

  11. Drug interactions: volatile anesthetics and opioids.

    Science.gov (United States)

    Glass, P S; Gan, T J; Howell, S; Ginsberg, B

    1997-09-01

    Multiple drugs are used to provide anesthesia. Volatile anesthetics are commonly combined with opioids. Several studies have demonstrated that small doses of opioid (i.e., within the analgesic range) result in a marked reduction in minimum alveolar concentration (MAC) of the volatile anesthetic that will prevent purposeful movement in 50% of patients at skin incision). Further increases in opioid dose provide only a further small reduction in MAC. Thus, a ceiling effect of the opioid is observed at a MAC value of the volatile anesthetic equal to its MAC awake. Recovery from anesthesia when an opioid is combined with a volatile anesthetic is dependent on the rate of decrease of both drugs to their respective concentrations that are associated with adequate spontaneous ventilation and awakening. Through an understanding of the pharmacodynamic interaction of volatile anesthetics with opioids and the pharmacokinetic processes responsible for the recovery from drug effect, optimal dosing schemes can thus be developed. A review of these pharmacodynamic and pharmacokinetic principles that will allow clinicians to administer drugs to provide a more optimal anesthetic is provided.

  12. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making.

    Directory of Open Access Journals (Sweden)

    Ritwik K Niyogi

    Full Text Available Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the

  13. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  14. Do personality traits predict individual differences in excitatory and inhibitory learning?

    Directory of Open Access Journals (Sweden)

    Zhimin eHe

    2013-05-01

    Full Text Available Conditioned inhibition (CI is demonstrated in classical conditioning when a stimulus is used to signal the omission of an otherwise expected outcome. This basic learning ability is involved in a wide range of normal behaviour - and thus its disruption could produce a correspondingly wide range of behavioural deficits. The present study employed a computer-based task to measure conditioned excitation and inhibition in the same discrimination procedure. Conditioned inhibition by summation test was clearly demonstrated. Additionally summary measures of excitatory and inhibitory learning (difference scores were calculated in order to explore how performance related to individual differences in a large sample of normal participants (n=176 following exclusion of those not meeting the basic learning criterion. The individual difference measures selected derive from two biologically-based personality theories, Gray’s reinforcement sensitivity theory (1982 and Eysenck’s psychoticism, extraversion and neuroticism theory (1991. Following the behavioural tasks, participants completed the behavioural inhibition system/behavioural activation system scales (BIS/BAS and the Eysenck personality questionnaire revised short scale (EPQ-RS. Analyses of the relationship between scores on each of the scales and summary measures of excitatory and inhibitory learning suggested that those with higher BAS (specifically the drive sub-scale and higher EPQ-RS neuroticism showed reduced levels of excitatory conditioning. Inhibitory conditioning was similarly attenuated in those with higher EPQ-RS neuroticism, as well as in those with higher BIS scores. Thus the findings are consistent with higher levels of neuroticism being accompanied by generally impaired associative learning, both inhibitory and excitatory. There was also evidence for some dissociation in the effects of behavioural activation and behavioural inhibition on excitatory and inhibitory learning respectively.

  15. The opioid manager: a point-of-care tool to facilitate the use of the Canadian Opioid Guideline.

    Science.gov (United States)

    Furlan, Andrea D; Reardon, Rhoda; Salach, Lena

    2012-01-01

    The Opioid Manager is designed to be used as a point-of-care tool for providers prescribing opioids for chronic noncancer pain. It condenses the key elements from the Canadian Opioid Guideline and can be used as a chart insert. The Opioid Manager has been validated and is available for download from the Guideline's Web site http://nationalpaincentre.mcmaster.ca/opioidmanager/. The Opioid Manager is divided into the following four parts: A) before you write the first script, B) initiation trial, C) maintenance and monitoring, and D) when is it time to decrease the dose or stop the opioid completely? The Opioid Manager has been downloaded by 1,432 users: 47 percent family physicians, 18 percent pharmacists, 13 percent other physicians, and 22 percent miscellaneous. To show how to use the Opioid Manager, the authors created a 10-minute video that is available on the Internet. The Opioid Manager is being translated to French, Spanish, Portuguese, and Farsi.

  16. Non-analgesic effects of opioids: management of opioid-induced constipation by peripheral opioid receptor antagonists: prevention or withdrawal?

    Science.gov (United States)

    Holzer, Peter

    2012-01-01

    The therapeutic action of opioid analgesics is compromised by peripheral adverse effects among which opioid-induced constipation (OIC) is the most disabling, with a prevalence reported to vary between 15 and 90 %. Although OIC is usually treated with laxatives, there is insufficient clinical evidence that laxatives are efficacious in this indication. In contrast, there is ample evidence from double- blind, randomized and placebo-controlled trials that peripheral opioid receptor antagonists (PORAs) counteract OIC. This specific treatment modality is currently based on subcutaneous methylnaltrexone for the interruption of OIC in patients with advanced illness, and a fixed combination of oral prolonged-release naloxone with prolonged-release oxycodone for the prevention of OIC in the treatment of non-cancer and cancer pain. Both drugs counteract OIC while the analgesic effect of opioids remains unabated. The clinical studies show that more than 50 % of the patients with constipation under opioid therapy may benefit from the use of PORAs, while PORA-resistant patients are likely to suffer from non-opioid-induced constipation, the prevalence of which increases with age. While the addition of naloxone to oxycodone seems to act by preventing OIC, the intermittent dosing of methylnaltrexone every other day seems to stimulate defaecation by provoking an intestinal withdrawal response. The availability of PORAs provides a novel opportunity to specifically control OIC and other peripheral adverse effects of opioid analgesics (e.g., urinary retention and pruritus). The continuous dosing of a PORA has the advantage of few adverse effects, while intermittent dosing of a PORA can be associated with abdominal cramp-like pain.

  17. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence

    NARCIS (Netherlands)

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M; Kreek, Mary Jeanne

    2016-01-01

    BACKGROUND: Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence.

  18. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence

    NARCIS (Netherlands)

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R.; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M.; Kreek, Mary Jeanne

    2016-01-01

    Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence. Genetic

  19. The prescription opioid epidemic: an overview for anesthesiologists.

    Science.gov (United States)

    Alam, Asim; Juurlink, David N

    2016-01-01

    The objectives for preparing this article were to review the historical context and epidemiology surrounding the North American prescription opioid crisis, to summarize the evidence regarding the benefits and harms of long-term opioid therapy for non-cancer pain, and to outline ways in which anesthesiologists may help ameliorate the problem. We searched PubMed, Google Scholar, and EMBASE™ for relevant articles using various search terms, including pain, opioid epidemic, history of opioid use, perioperative care, and addiction. Related citations were further explored and searched depending on the specific subtopic of interest. In the 1980s and early 1990s, opioids were infrequently used for the treatment of chronic pain. Thereafter, however, physicians were gradually inculcated with the message that long-term opioid therapy was a safe and effective treatment option for patients with chronic non-cancer pain. Pharmaceutical companies supported this growing movement and employed aggressive and sometimes misleading marketing strategies for new opioid formulations. As a result, the practice of prescribing opioids flourished in the late 1990s. The surge in prescribing opioids was accompanied by a marked increase in opioid-related morbidity and mortality. This change in practice transpired despite the absence of randomized trials showing clinically significant benefit from the long-term use of opioids. Subsequently, however, a large and growing body of evidence has emerged quantifying the harms associated with long-term opioid therapy. Anesthesiologists widely prescribe opioids for acute and chronic pain; yet, as a group, they may be largely unaware of the current state of this growing epidemic and what role they can play to rectify this problem. Anesthesiologists are well positioned to take a leadership role in the management of postoperative discharge opioid therapy in an effort to curb the overutilization of opioids. Furthermore, anesthesiologists who regularly

  20. The impact of opioids on the endocrine system.

    Science.gov (United States)

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  1. Possible Opioid Shopping and its Correlates.

    Science.gov (United States)

    Walker, Alexander M; Weatherby, Lisa B; Cepeda, M Soledad; Bradford, Daniel; Yuan, Yingli

    2017-11-01

    We created an operational definition of possible opioid shopping in US commercial health insurance data and examined its correlates. The population consisted of 264,204 treatment courses in persons with a fill for an opioid or diuretic prescription in 2012 and a second within 18 months. We examined counts of prescribers and pharmacies and the numbers of fills and overlaps for ability to discriminate courses of opioids from diuretics, which were a negative control. The most discriminatory measure, indicating possible shopping behavior, was cross-tabulated against other prescriptions filled and diagnoses as found in insurance claims. The associations between claims characteristics and shopping behavior were assessed in a logistic regression. A definition that classified possible "moderate" or "extensive" shopping when a person obtained drug through at least 3 practices and at least 3 pharmacies over 18 months was highly discriminatory between opioid and diuretic treatment. Overlaps between fills and number of fills did not improve the discrimination. Data from insurance claims strongly predicted moderate-to-extensive levels of possible shopping (c=0.82). Prominent among 20 significant predictors were: state of residence; amount of opioid dispensed; self-payment; use of nonspecialist prescribers; high use of anxiolytics, hypnotics, psychostimulants, and antipsychotics; and use of both immediate release and extended-release or long-acting opioids. The use of ≥3 prescribing practices and ≥3 dispensing pharmacies over 18 months sharply discriminated courses of opioid treatment from courses of diuretics. This pattern of fills was additionally associated with the numbers of nonspecialist and self-paid fills, the total morphine milligram equivalents dispensed, and heavier use of drugs for anxiety, sleep, attention, and psychosis.

  2. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  3. Buprenorphine for managing opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M; Mbewe, Dalitso

    2017-02-21

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of substitution treatment. To assess the effects of buprenorphine versus tapered doses of methadone, alpha 2 -adrenergic agonists, symptomatic medications or placebo, or different buprenorphine regimens for managing opioid withdrawal, in terms of the intensity of the withdrawal syndrome experienced, duration and completion of treatment, and adverse effects. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 11, 2016), MEDLINE (1946 to December week 1, 2016), Embase (to 22 December 2016), PsycINFO (1806 to December week 3, 2016), and the Web of Science (to 22 December 2016) and handsearched the reference lists of articles. Randomised controlled trials of interventions using buprenorphine to modify the signs and symptoms of withdrawal in participants who were primarily opioid dependent. Comparison interventions involved reducing doses of methadone, alpha 2 -adrenergic agonists (clonidine or lofexidine), symptomatic medications or placebo, and different buprenorphine-based regimens. We used standard methodological procedures expected by Cochrane. We included 27 studies involving 3048 participants. The main comparators were clonidine or lofexidine (14 studies). Six studies compared buprenorphine versus methadone, and seven compared different rates of buprenorphine dose reduction. We assessed 12 studies as being at high risk of bias in at least one of seven domains of methodological quality. Six of these studies compared buprenorphine with clonidine or lofexidine and two with methadone; the other four studies compared different rates of buprenorphine dose reduction.For the comparison of buprenorphine and methadone in tapered doses, meta-analysis was not possible for the outcomes of intensity of withdrawal or adverse effects. However, information reported by the individual studies was suggestive of buprenorphine and methadone having similar capacity to

  4. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: a perspective from different continents.

    Science.gov (United States)

    Häuser, Winfried; Schug, Stephan; Furlan, Andrea D

    2017-05-01

    A marked rise in opioid prescriptions for patients with chronic noncancer pain (CNCP) with a parallel increase in opioid abuse/misuse, and resulting deaths was noted in the Unites states in the past decade (opioid epidemic). In response, the US Center of Diseases Control (CDC) developed a guideline for prescribing of opioids for patients with CNCP. To assess (1) if there is an opioid epidemic in Australia, Canada, and Germany (2) to compare Australian, Canadian, German, and Center of Diseases Control guidelines recommendations for long-term opioid therapy for CNCP. National evidence-based guidelines and PubMed were searched for recommendations for opioid prescriptions for CNCP. There are signs of an opioid epidemic in Australia and Canada, but not in Germany. Guidelines in all 4 countries provide similar recommendations: opioids are not the first-line therapy for patients with CNCP; regular clinical assessments of benefits and harms are necessary; excessive doses should be avoided (recommended morphine equivalent daily doses range from 50 to 200 mg/d); stopping rules should be followed. All guidelines do not recommend the use of opioids in chronic pain conditions without an established nociceptive or neuropathic cause such as fibromyalgia and primary headache. Implementation of opioid prescribing guidelines should ensure that physicians prescribe opioids only for appropriate indications in limited doses for selected patients and advice patients on their safe use. These measures could contribute to reduce prescription opioid misuse/abuse and deaths.

  5. Opioid Overdoses Treated in Emergency Departments PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second public service announcement is based on the March 2018 CDC Vital Signs report. Opioid overdoses continue to increase in the United States. Learn what can be done to help prevent opioid overdose and death.

  6. Opioids and Chronic Pain | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Long-term daily use of opioids leads to physical dependence, which is not to be confused with addiction ... be screened and closely monitored. When people have physical dependence and the opioid use is stopped, withdrawal symptoms ...

  7. Pain Management in the Opioid-Dependent Pregnant Woman.

    Science.gov (United States)

    Safley, Rebecca R; Swietlikowski, Jamie

    Opioid dependence is an epidemic in the United States, and the percentage of pregnant women who are opioid dependent has increased dramatically in the last decade. Pain management, already a concern for intrapartum and postpartum care, is complicated in the context of opioid dependence. This clinical review surveys the literature on pain management in opioid-dependent pregnant women to summarize current consensus and evidence to guide clinical practice. Points of consensus for pain management in opioid-dependent pregnant women include continual opioid maintenance therapy throughout the pregnancy and the postpartum period; adequate management of acute pain; the contraindication of opioid agonist-antagonists for pain management; and the need for interdisciplinary teams using a multimodal approach to provide optimal care to opioid-dependent pregnant women.

  8. Recovering from Opioid Overdose: Resources for Overdose Survivors & Family Members

    Science.gov (United States)

    ... and gratitude, all accompanied by the discomfort of opioid withdrawal. Most need the support of family and friends to take the next steps toward recovery. While many factors can contribute to opioid overdose, it is al most always an accident. ...

  9. Past-year Prescription Drug Monitoring Program Opioid Prescriptions and Self-reported Opioid Use in an Emergency Department Population With Opioid Use Disorder.

    Science.gov (United States)

    Hawk, Kathryn; D'Onofrio, Gail; Fiellin, David A; Chawarski, Marek C; O'Connor, Patrick G; Owens, Patricia H; Pantalon, Michael V; Bernstein, Steven L

    2017-11-22

    Despite increasing reliance on prescription drug monitoring programs (PDMPs) as a response to the opioid epidemic, the relationship between aberrant drug-related behaviors captured by the PDMP and opioid use disorder is incompletely understood. How PDMP data should guide emergency department (ED) assessment has not been studied. The objective was to evaluate a relationship between PDMP opioid prescription records and self-reported nonmedical opioid use of prescription opioids in a cohort of opioid-dependent ED patients enrolled in a treatment trial. PDMP opioid prescription records during 1 year prior to study enrollment on 329 adults meeting Diagnostic and Statistical Manual IV criteria for opioid dependence entering a randomized clinical trial in a large, urban ED were cross-tabulated with data on 30-day nonmedical prescription opioid use self-report. The association among these two types of data was assessed by the Goodman and Kruskal's gamma; a logistic regression was used to explore characteristics of participants who had PDMP record of opioid prescriptions. During 1 year prior to study enrollment, 118 of 329 (36%) patients had at least one opioid prescription (range = 1-51) in our states' PDMP. Patients who reported ≥15 of 30 days of nonmedical prescription opioid use were more likely to have at least four PDMP opioid prescriptions (20/38; 53%) than patients reporting 1 to 14 days (14/38, 37%) or zero days of nonmedical prescription opioid use (4/38, 11%; p = 0.002). Female sex and having health insurance were significantly more represented in the PDMP (p Medicine.

  10. The evolution of chronic opioid therapy and recognizing addiction.

    Science.gov (United States)

    Daum, Akiva M; Berkowitz, Oren; Renner, John A

    2015-05-01

    Chronic pain is one of the most common complaints in the United States. Opioids have become a frequently prescribed treatment for patients with chronic nonmalignant pain. Concurrently, opioid use disorders have risen to epidemic levels. Studies investigating iatrogenic opioid addiction have been of limited quality. Aberrant drug-related behaviors may be warning signs of impending addiction. Proper screening and close monitoring are essential for managing patients on opioids for chronic nonmalignant pain.

  11. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  13. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention

    Science.gov (United States)

    Snyder, Adam C.; Morais, Michael J.

    2016-01-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. PMID:27466133

  14. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  15. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  16. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    Science.gov (United States)

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  17. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  18. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?

    OpenAIRE

    Dienel, Gerald A.

    2013-01-01

    Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during b...

  19. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    Science.gov (United States)

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  1. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  2. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

    OpenAIRE

    Ting, Jonathan T.; Kelley, Brooke G.; Lambert, Talley J.; Cook, David G.; Sullivan, Jane M.

    2006-01-01

    Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transm...

  3. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans.

    Science.gov (United States)

    Lofwall, Michelle R; Babalonis, Shanna; Nuzzo, Paul A; Elayi, Samy Claude; Walsh, Sharon L

    2016-07-01

    The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21h before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. Oxycodone produced prototypic opioid agonist effects (i.e. suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Access to opioids: a global pain management crisis.

    Science.gov (United States)

    Buitrago, Rosa

    2013-03-01

    The lack of availability of opioids in many countries has created a pain management crisis. Because the Single Convention on Narcotic Drugs requires governments to report annual opioid statistics, there is a need for methods to calculate individual nations' opioid needs. Ways to address this need are discussed.

  5. Global Supply and Demand of Opioids for Pain Management.

    Science.gov (United States)

    Kunnumpurath, Sreekumar; Julien, Natasha; Kodumudi, Gopal; Kunnumpurath, Anamika; Kodumudi, Vijay; Vadivelu, Nalini

    2018-04-04

    The goal of this review is to evaluate the global supply and demand of opioids used for pain management and discuss how it relates to the utilization of opioids around the world. The purpose of the review is also to determine the factors that contribute to inappropriate pain management. The total global production of opium for opioid manufacturing is enough to supply the growing global demands. However, licit opioids are only consumed by 20% of the world population. Most people throughout the world had no access to opioid analgesics for pain relief in case of need. Opioid misuse and abuse is not only a phenomena plague by the USA but globally across many countries. Many countries have a lack of availability of opioids, contributing factors being strict government regulations limiting access, lack of knowledge of the efficacy of opioid analgesics in treating acute and chronic pain and palliative care, and the stigma that opioids are highly addictive. For the countries in which opioids are readily available and prescribed heavily, diversion, misuse, abuse, and the resurgence of heroin have become problems leading to morbidity and mortality. It is pertinent to find a balance between having opioids accessible to patients in need, with ensuring that opioids are regulated along with other illicit drugs to decrease abuse potential.

  6. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    Science.gov (United States)

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.

  7. The opioid ketobemidone has a NMDA blocking effect

    DEFF Research Database (Denmark)

    Andersen, S; Dickenson, A H; Kohn, M

    1996-01-01

    There are clinical observations that neurogenic pain can respond well to the opioid ketobemidone, in contrast to pethidine and morphine. This has led us to the hypothesis that the analgesic effect of ketobemidone in neurogenic pain may be due to both opioid as well as additional non-opioid effect...

  8. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  9. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    Science.gov (United States)

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  10. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  11. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+, EPSC(-, and EPSC(+/- based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs, using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+ neurons, but increased it in EPSC(- neurons. Unlike EPSC(+ and EPSC(- neurons, EPSC(+/- neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/- neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  12. Glucose Rapidly Induces Different Forms of Excitatory Synaptic Plasticity in Hypothalamic POMC Neurons

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J.; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(−), and EPSC(+/−)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(−) neurons. Unlike EPSC(+) and EPSC(−) neurons, EPSC(+/−) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/−) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals. PMID:25127258

  13. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    Science.gov (United States)

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  14. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  15. Postoperative opioid analgesia: time for a reconsideration?

    DEFF Research Database (Denmark)

    Kehlet, H; Rung, G W; Callesen, T

    1996-01-01

    Postoperative pain relief has improved in recent years with the development of new analgesics, additional routes of administration and the appearance of the hypothesis of preemptive as well as balanced analgesia (Kehlet H; Postoperative pain relief-what is the issue? Br J Anaesth 1994;72:375-8). ......Postoperative pain relief has improved in recent years with the development of new analgesics, additional routes of administration and the appearance of the hypothesis of preemptive as well as balanced analgesia (Kehlet H; Postoperative pain relief-what is the issue? Br J Anaesth 1994......;72:375-8). Many initial improvements simply involved the administration of opioid analgesics in new ways, such as continuous or on demand intravenous (i.v.) or epidural infusion. These methods allow lower total opioid dosages, provide a more stable concentration of opioid at the receptor and correspondingly...

  16. Primary care for opioid use disorder

    Directory of Open Access Journals (Sweden)

    Mannelli P

    2016-08-01

    Full Text Available Paolo Mannelli,1 Li-Tzy Wu1–41Department of Psychiatry and Behavioral Sciences, 2Department of Medicine, 3Duke Clinical Research Institute, Duke University Medical Center, 4Center for Child and Family Policy, Sanford School of Public Policy, Duke University, Durham, NC, USARecent reports on prescription opioid misuse and abuse have described unprecedented peaks of a national crisis and the only answer is to expand prevention and treatment, including different levels of care.1 Nonetheless, concerns remain about the ability of busy primary care settings to manage problem opioid users along with other patients. In particular, proposed extensions of buprenorphine treatment, a critically effective intervention for opioid use disorder (OUD, are cautiously considered due to the potential risk of misuse or abuse.2 General practitioners are already facing this burden daily in the treatment of chronic pain, and expert supervision and treatment model adjustment are needed to help improve outcomes. Approximately 20% of patients in primary care have noncancer pain symptoms, with most of them receiving opioid prescriptions by their physicians, and their number is increasing.3 Pain diagnoses are comparable in severity to those of tertiary centers and are complicated by significant psychiatric comorbidity, with a measurable lifetime risk of developing OUD.4,5 Some primary care physicians report frustration about opioid abuse and diversion by their patients; support from pain specialists would improve their competence, the quality f their performance, and the ability to identify patients at risk of opioid misuse.6 Thus, buprenorphine treatment should not be adding to a complex clinical scenario. To this end, the promising models of care emphasize the integration of medical with psychological and pharmacological expertise for the management of OUD. 

  17. Opioid receptor mediated anticonvulsant effect of pentazocine.

    Science.gov (United States)

    Khanna, N; Khosla, R; Kohli, J

    1998-01-01

    Intraperitoneal (i.p.) administration of (+/-) pentazocine (10, 30 & 50 mg/kg), a Sigma opioid agonist, resulted in a dose dependent anticonvulsant action against maximal electroshock seizures in mice. This anticonvulsant effect of pentazocine was not antagonized by both the doses of naloxone (1 and 10 mg/kg) suggesting thereby that its anticonvulsant action is probably mediated by Sigma opiate binding sites. Its anticonvulsant effect was potentiated by both the anticonvulsant drugs viz. diazepam and diphenylhydantoin. Morphine, mu opioid agonist, on the other hand, failed to protect the animals against maximal electroshock seizures when it was given in doses of 10-40 mg/kg body wt.

  18. Non-analgesic effects of opioids

    DEFF Research Database (Denmark)

    Højsted, Jette; Kurita, Geana Paula; Kendall, Sally

    2012-01-01

    Opioids constitute the basis for pharmacological treatment of moderate to severe pain in cancer pain and non-cancer pain patients. Their action is mediated by the activation of opioid receptors, which integrates the pain modulation system with other effects in the central nervous system including...... groups: no effects or worsening of cognitive function in cancer pain patients and no effect or improvements in the chronic non-cancer pain patients, however, due to methodological limitations and a huge variety of designs definite conclusions are difficult to draw from the studies. In studies of higher...

  19. Opioids in Cancer Pain: Right or Privilege?

    Science.gov (United States)

    Jackson, Leanne K; Imam, Syed N; Braun, Ursula K

    2017-09-01

    Opioid analgesia is a mainstay of the treatment of cancer pain. Treatment of pain in patients with cancer with an ongoing substance abuse disorder can be difficult. We report the ethical challenges of treating a patient with cancer with a concomitant substance abuse disorder in an outpatient palliative care setting. We present an analysis of ethical considerations for the palliative care physician and strategies to aid in the successful treatment of such patients. We argue that there are select patients with cancer for whom exclusion from treatment with opioid therapy is warranted if their health is endangered by prescription of these medications.

  20. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: a perspective from different continents

    Directory of Open Access Journals (Sweden)

    Winfried Häuser

    2017-06-01

    Conclusion:. Implementation of opioid prescribing guidelines should ensure that physicians prescribe opioids only for appropriate indications in limited doses for selected patients and advice patients on their safe use. These measures could contribute to reduce prescription opioid misuse/abuse and deaths.

  1. Risk factors for opioid overdose and awareness of overdose risk among veterans prescribed chronic opioids for addiction or pain.

    Science.gov (United States)

    Wilder, Christine M; Miller, Shannon C; Tiffany, Elizabeth; Winhusen, Theresa; Winstanley, Erin L; Stein, Michael D

    2016-01-01

    Rising overdose fatalities among U.S. veterans suggest veterans taking prescription opioids may be at risk for overdose. However, it is unclear whether veterans prescribed chronic opioids are aware of this risk. The objective of this study was to identify risk factors and determine awareness of risk for opioid overdose in veterans treated with opioids for chronic pain, using veterans treated with methadone or buprenorphine for opioid use disorder as a high-risk comparator group. In the current study, 90 veterans on chronic opioid medication, for either opioid use disorder or pain management, completed a questionnaire assessing risk factors, knowledge, and self-estimate of risk for overdose. Nearly all veterans in both groups had multiple overdose risk factors, although individuals in the pain management group had on average a significantly lower total number of risk factors than did individuals in the opioid use disorder group (5.9 versus 8.5, p opioid overdose risk factors (12.1 versus 13.5, p opioid overdose risk factors. Our results suggest that veterans in both groups underestimated their risk for opioid overdose. Expansion of overdose education to include individuals on chronic opioids for pain management and a shift in educational approaches to overdose prevention may be indicated.

  2. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    DEFF Research Database (Denmark)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jørn Dybkjær

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches...... of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence......, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude...

  3. Functional interactions between endogenous cannabinoid and opioid systems: focus on alcohol, genetics and drug-addicted behaviors.

    Science.gov (United States)

    López-Moreno, J A; López-Jiménez, A; Gorriti, M A; de Fonseca, F Rodríguez

    2010-04-01

    Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of cannabinoid addiction reports. More recently, functional interactions have been demonstrated between the endogenous cannabinoid and opioid systems. For example, the cannabinoid brain receptor type 1 (CB1) and mu opioid receptor type 1 (MOR1) co-localize in the same presynaptic nerve terminals and signal through a common receptor-mediated G-protein pathway. Here, we review a great variety of behavioral models of drug addiction and alcohol-related behaviors. We also include data providing clear evidence that activation of the cannabinoid and opioid endogenous systems via WIN 55,512-2 (0.4-10 mg/kg) and morphine (1.0-10 mg/kg), respectively, produces similar levels of relapse to alcohol in operant alcohol self-administration tasks. Finally, we discuss genetic studies that reveal significant associations between polymorphisms in MOR1 and CB1 receptors and drug addiction. For example, the SNP A118G, which changes the amino acid aspartate to asparagine in the MOR1 gene, is highly associated with altered opioid system function. The presence of a microsatellite polymorphism of an (AAT)n triplet near the CB1 gene is associated with drug addiction phenotypes. But, studies exploring haplotypes with regard to both systems, however, are lacking.

  4. Fentanyl and a Novel Synthetic Opioid U-47700 Masquerading as Street "Norco" in Central California: A Case Report.

    Science.gov (United States)

    Armenian, Patil; Olson, Alexander; Anaya, Andres; Kurtz, Alicia; Ruegner, Rawnica; Gerona, Roy R

    2017-01-01

    In 2013 and 2014, more than 700 deaths were attributed to fentanyl and fentanyl analogues in the United States. Of recent concern is the cluster of unintentional fentanyl overdoses because of tablets thought to be "Norco" purchased on the street in Northern California. U-47700 (trans-3,4-dichloro-N-[2-(dimethyl-amino)cyclohexyl]-N-methylbenz-amide) is a nonfentanyl-based synthetic opioid with 7.5 times the binding affinity of morphine to μ-opioid. We report a case of fentanyl and U-47700 intoxication from what was thought to be illicitly purchased Norco. A 41-year-old woman presented to the emergency department (ED) for altered mental status shortly after ingesting 3 beige Norco pills bearing a Watson imprint. She had pinpoint pupils and respiratory depression, which reversed after 0.4 mg naloxone administration intravenously. She had complete recovery and was discharged from the ED after a 4-hour observation period. Serum testing with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC 1260 QTOF/MS 6550; Agilent, Santa Clara, CA) confirmed the presence of the medications the patient reported receiving, and additionally fentanyl (15.2 ng/mL) and U-47700 (7.6 ng/mL). In this case report, street Norco purchased in Central California resulted in altered mental status requiring naloxone reversal because of fentanyl and the novel synthetic opioid U-47700. Because these compounds are not detected by routine urine drug testing and physical examination findings are similar to those of a traditional opioid toxidrome, emergency providers should use the patient's history and other circumstantial details to aid in diagnosis. In cases with suspicion of opioid or opioid analogue cause, we recommend that emergency providers contact their local poison control center, medical toxicologist, or public health department to aid in the investigation. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  5. Prescription opioid abuse, pain and addiction: clinical issues and implications.

    Science.gov (United States)

    Ling, Walter; Mooney, Larissa; Hillhouse, Maureen

    2011-05-01

    Prescription opioid misuse in the USA has increased over threefold since 1990 to epidemic proportions, with substantial increases in prescription opioid use also reported in other countries, such as Australia and New Zealand. The broad availability of prescription pain medications, coupled with public misconceptions about their safety and addictive potential, have contributed to the recent surge in non-medical use of prescription opioids and corresponding increases in treatment admissions for problems related to opioid misuse. Given competing pressures faced by physicians to both diagnose and treat pain syndromes and identify individuals at risk for addictive disorders, the use of opioids in the treatment of pain poses a significant clinical challenge. This paper reviews the interaction between pain and opioid addiction with a focus on clinical management issues, including risk factors for opioid dependence in patients with chronic pain and the use of assessment tools to identify and monitor at-risk individuals. Treatment options for opioid dependence and pain are reviewed, including the use of the partial µ agonist buprenorphine in the management of concurrent pain and opioid addiction. Physicians should strive to find a reasonable balance between minimising potential adverse effects of opioid medications without diminishing legitimate access to opioids for analgesia. The article discusses the need to identify methods for minimising risks and negative consequences associated with opioid analgesics and poses research directions, including the development of abuse-deterrent opioid formulations, genetic risk factors for opioid dependence and opioid-induced hyperalgesia as a potential target for medication therapy. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  6. Development and preliminary validation of the Opioid Abuse Risk Screener

    Directory of Open Access Journals (Sweden)

    Patricia Henrie-Barrus

    2016-05-01

    Full Text Available Prescription opioid drug abuse has reached epidemic proportions. Individuals with chronic pain represent a large population at considerable risk of abusing opioids. The Opioid Abuse Risk Screener was developed as a comprehensive self-administered measure of potential risk that includes a wide range of critical elements noted in the literature to be relevant to opioid risk. The creation, refinement, and preliminary modeling of the item pool, establishment of preliminary concurrent validity, and the determination of the factor structure are presented. The initial development and validation of the Opioid Abuse Risk Screener shows promise for effective risk stratification.

  7. The Relative Potency of Inverse Opioid Agonists and a Neutral Opioid Antagonist in Precipitated Withdrawal and Antagonism of Analgesia and Toxicity

    OpenAIRE

    Sirohi, Sunil; Dighe, Shveta V.; Madia, Priyanka A.; Yoburn, Byron C.

    2009-01-01

    Opioid antagonists can be classified as inverse agonists and neutral antagonists. In the opioid-dependent state, neutral antagonists are significantly less potent in precipitating withdrawal than inverse agonists. Consequently, neutral opioid antagonists may offer advantages over inverse agonists in the management of opioid overdose. In this study, the relative potency of three opioid antagonists to block opioid analgesia and toxicity and precipitate withdrawal was exa...

  8. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    Science.gov (United States)

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Sucrose ingestion causes opioid analgesia

    Directory of Open Access Journals (Sweden)

    F.N. Segato

    1997-08-01

    Full Text Available The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/l for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean ± SEM, N = 12 for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 ± 0.04, 0.10 ± 0.05, 0.15 ± 0.08 and 0.49 ± 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47 = 9.521, P<0.001 and the Tukey multiple comparison test (P<0.05 showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7 receiving sucrose exhibited an analgesia index of 0.20 ± 0.10 while rats receiving only sucrose (N = 7 had an index of 0.68 ± 0.11 (t = 0.254, 10 degrees of freedom, P<0.03. This result indicates that the analgesic effect of sucrose depends on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.

  10. Computational opioid prescribing: a novel application of clinical pharmacokinetics.

    Science.gov (United States)

    Linares, Oscar A; Linares, Annemarie L

    2011-01-01

    We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist prescribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen designs for individual patients using COP, and those values are not readily available to prescribers because they exist scattered in the vast pharmacology literature, we estimated the population pharmacokinetic parameter values for 12 commonly prescribed opioids from various sources using the bootstrap resampling technique. Our results show that opioid dosing regimen design, evaluation, and modification is feasible using COP. We conclude that COP is a new technique for the quantitative assessment of opioid dosing regimen design evaluation and adjustment, which may help prescribers to manage acute and chronic pain at the point-of-care. Potential benefits include opioid dose optimization and minimization of adverse opioid drug events, leading to potential improvement in patient treatment outcomes and safety.

  11. Comparison of craving for opioid in opioid-dependent individuals and people under methadone maintenance treatment

    Directory of Open Access Journals (Sweden)

    Azita Chehri

    2014-02-01

    Full Text Available Background: Methadone Maintenance Therapy (MMT is the most important treatment for opioid -dependency recurrence. The aim of this study was to compare the craving level in opioid-dependent individuals and people under methadone maintenance therapy. Methods: In this case – control study, 120 men with opioid dependency were selected through cluster sampling method. They were divided into two groups, 60 people in opioid-dependent group and 60 people in MMT group. Both groups were matched for age, sex, marital status, education, duration of opioid dependency and method of consumption. Then, they completed INCAS Substance Abuse Profile (ISAP, opiate withdrawal symptoms checklist, self–report of craving, Desire for Drug Questionnaire (DDQ, Obsessive Compulsive Drug Use Scale (OCDUS and visual cue-induced craving questionnaire. Data were analyzed by SPSS 15 using t-test and ANOVA. Results: Mean craving for drug significantly was lower in MMT group comparing opioid-dependent group (P<0.01. Conclusion: Methadone Maintenance Therapy decreased the craving for drugs and substances This can have an important role in relapse prevention.

  12. Who Benefits from Chronic Opioid Therapy? Rethinking the Question of Opioid Misuse Risk

    Directory of Open Access Journals (Sweden)

    Elizabeth Huber

    2016-05-01

    Full Text Available Beginning in the late 1990s, a movement began within the pain management field focused upon the underutilization of opioids, thought to be a potentially safe and effective class of pain medication. Concern for addiction and misuse were present at the start of this shift within pain medicine, and an emphasis was placed on developing reliable and valid methods and measures of identifying those at risk for opioid misuse. Since that time, the evidence for the safety and effectiveness of chronic opioid therapy (COT has not been established. Rather, the harmful, dose-dependent deleterious effects have become clearer, including addiction, increased risk of injuries, respiratory depression, opioid induced hyperalgesia, and death. Still, many individuals on low doses of opioids for long periods of time appear to have good pain control and retain social and occupational functioning. Therefore, we propose that the question, “Who is at risk of opioid misuse?” should evolve to, “Who may benefit from COT?” in light of the current evidence.

  13. Prescription opioid abuse: pharmacists’ perspective and response

    Directory of Open Access Journals (Sweden)

    Cochran G

    2016-08-01

    Full Text Available Gerald Cochran,1,2 Valerie Hruschak,2 Brooke DeFosse,3 Kenneth C Hohmeier3 1Department of Psychiatry, School of Medicine, 2School of Social Work, University of Pittsburgh, Pittsburgh, PA, 3Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee, Memphis, TN, USA Abstract: Opioid medication abuse and overdose are major concerns for public health, and a number of responses to address these issues have taken place across the US. Pharmacists and the pharmacy profession have made important contributions as a part of the response to this national crisis. This article provides a brief review of the antecedents, driving forces, and health status of patients involved in the opioid medication and overdose epidemic. This review further discusses pharmacy-based actions that have been undertaken to address this issue, including prescription drug monitoring, take-back, and naloxone training/distribution programs. This review likewise examines current efforts underway in the field to educate practitioners and needed future steps that must be taken by pharmacists in order to continue the profession’s pivotal role in working toward resolving this national public health problem. In particular, evidence and arguments are presented for proactively identifying and intervening with patients who abuse and/or are at risk for overdose. Continued and active engagement by pharmacists in these efforts has the potential to result in important reductions in opioid medication abuse and overdose and improvements for patient’s health. Keywords: opioid pain medication, addiction, pharmacy practice

  14. Prediction of withdrawal symptoms during opioid detoxification

    NARCIS (Netherlands)

    Dijkstra, Boukje A G; Krabbe, Paul F M; De Jong, Cor A J; van der Staak, Cees P F

    2008-01-01

    OBJECTIVE: The severity of self-reported withdrawal symptoms varies during detoxification of opioid-dependent patients. The aim of this study is to identify subgroups of withdrawal symptoms within the detoxification trajectory and to predict the severity of withdrawal symptoms on the basis of

  15. The Prescription Opioid Pain Medication Overdose Epidemic

    Centers for Disease Control (CDC) Podcasts

    2016-04-19

    Overdose related to prescription opioids has become an epidemic. This podcast discusses the risks of this type of drug sometimes used to treat pain, and how to protect yourself. .  Created: 4/19/2016 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 4/19/2016.

  16. Most drug overdose deaths from nonprescription opioids

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-12-01

    Full Text Available No abstract available. Article truncated at 150 words. The Centers for Disease Control (CDC is reporting in Morbidity and Mortality Weekly that the number of people dying from an opioid overdose rose 15.5% from 2014 to 2015, but the increase had little to do with prescription painkillers such as oxycodone or hydrocodone (1. Roughly 52,000 people died from drug overdoses in 2015 and of those deaths 33,091 involved an opioid. The increases in “death rates were driven by synthetic opioids other than methadone (72.2%, most likely illicitly-manufactured fentanyl, and heroin (20.6%”. Deaths from methadone, which is usually prescribed by physicians, decreased 9.1%. The largest increase in deaths occurred in the South and Northeast with 3% and 24% increases in deaths from synthetic opioids from 2014 to 2015. In the Midwest and West, there were more modest 17% and 9% increases during the same period. States in the Southwest with “good” to “excellent” reporting included Colorado, Nevada, and New …

  17. Endogenous Opioid-Masked Latent Pain Sensitization

    DEFF Research Database (Denmark)

    Pereira, Manuel P; Donahue, Renee R; Dahl, Jørgen B

    2015-01-01

    UNLABELLED: Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chr...

  18. Prediction of withdrawal symptoms during opioid detoxification

    NARCIS (Netherlands)

    Dijkstra, B.A.G.; Krabbe, P.F.M.; Jong, C.A.J. de; Staak, C.P.F. van der

    2008-01-01

    Objective: The severity of self-reported withdrawal symptoms varies during detoxification of opioid-dependent patients. The aim of this study is to identify subgroups of withdrawal symptoms within the detoxification trajectory and to predict the severity of withdrawal symptoms on the basis of

  19. Amino acid racemisation dating

    International Nuclear Information System (INIS)

    Murray-Wallace, C.V.

    1999-01-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject

  20. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  1. Women who abuse prescription opioids: findings from the Addiction Severity Index-Multimedia Version Connect prescription opioid database.

    Science.gov (United States)

    Green, Traci C; Grimes Serrano, Jill M; Licari, Andrea; Budman, Simon H; Butler, Stephen F

    2009-07-01

    Evidence suggests gender differences in abuse of prescription opioids. This study aimed to describe characteristics of women who abuse prescription opioids in a treatment-seeking sample and to contrast gender differences among prescription opioid abusers. Data collected November 2005 to April 2008 derived from the Addiction Severity Index Multimedia Version Connect (ASI-MV Connect) database. Bivariate and multivariable logistic regression examined correlates of prescription opioid abuse stratified by gender. 29,906 assessments from 220 treatment centers were included, of which 12.8% (N=3821) reported past month prescription opioid abuse. Women were more likely than men to report use of any prescription opioid (29.8% females vs. 21.1% males, phistory of drug overdose. Men-specific correlates were age screen and identify those at highest risk of prescription opioid abuse. Prevention and intervention efforts with a gender-specific approach are warranted.

  2. Thallium exists in opioid poisoned patients.

    Science.gov (United States)

    Ghaderi, Amir; Vahdati-Mashhadian, Naser; Oghabian, Zohreh; Moradi, Valiallah; Afshari, Reza; Mehrpour, Omid

    2015-08-01

    Thallium (Tl) is a toxic heavy metal that exists in nature. Tl poisoning (thallotoxicosis) may occur in opioid addicts. This study was designed to evaluate the frequency and level of urinary Tl in opioid abusers. In addition, clinical findings were evaluated. A total of 150 subjects were examined. Cases with a history of at least 3 years of abuse were admitted in the Imam Reza Hospital as the case group; 50 non-opioid abusers from the target population were included as the control group. Twenty-four hour urinary qualitative and quantitative Tl analyses were performed on both groups. Out of the 150 subjects, 128 (85 %) were negative for qualitative urinary Tl, followed by 5 % (trace), 7 % (1+), 2 % (2+), and 1 % (3+). Mean (standard error (SE), Min-Max) quantitative urinary Tl level was 14 μg/L (3.5 μg/L, 0-346 μg/L). Mean urinary Tl level in the case group was 21 μg/L (5 μg/L, 0-346 μg/L) and that in the controls was 1 μg/L (0.14 μg/L, 0-26 μg/L), which were significantly different (P = 0.001). The most frequent clinical findings were ataxia (86 %), sweating (81 %), and constipation (54 %). In all cases (n = 150), the mean (SE) value for cases with positive qualitative urinary Tl was 26.8 μg/L (0.9 μg/L) and that in the negative cases was 2.3 μg/L (0.2 μg/L), which were significantly different (P = 0.002). This study showed that long-term opioid abuse may lead to Tl exposure. In opioid abusers with the clinical manifestation of thallotoxicosis, urinary Tl should be determined.

  3. Nonopioid substance use disorders and opioid dose predict therapeutic opioid addiction.

    Science.gov (United States)

    Huffman, Kelly L; Shella, Elizabeth R; Sweis, Giries; Griffith, Sandra D; Scheman, Judith; Covington, Edward C

    2015-02-01

    Limited research examines the risk of therapeutic opioid addiction (TOA) in patients with chronic noncancer pain. This study examined TOA among 199 patients undergoing long-term opioid therapy at the time of admission to a pain rehabilitation program. It was hypothesized that nonopioid substance use disorders and opioid dosage would predict TOA. Daily mean opioid dose was 132.85 mg ± 175.39. Patients with nonopioid substance use disorders had 28 times the odds (odds ratio [OR] = 28.58; 95% confidence interval [CI] = 10.86, 75.27) of having TOA. Each 50-mg increase in opioid dose nearly doubled the odds of TOA (OR = 1.73; 95% CI = 1.29, 2.32). A 100-mg increase was associated with a 3-fold increase in odds (OR = 3.00; 95% CI = 1.67, 5.41). Receiver operating characteristic analysis revealed that opioid dose was a moderately accurate predictor (area under the curve = .75; 95% CI = .68, .82) of TOA. The sensitivity (.70) and specificity (.68) of opioid dose in predicting TOA was maximized at 76.10 mg; in addition, 46.00 mg yielded 80% sensitivity in identifying TOA. These results underscore the importance of obtaining a substance use history prior to prescribing and suggest a low screening threshold for TOA in patients who use opioids in the absence of improvement in pain or functional impairment. This article examines TOA in patients with chronic noncancer pain undergoing long-term opioid therapy. Results suggest that patients should be screened for nonopioid substance use disorders prior to prescribing. In the absence of improvement in pain or function, there is a low threshold (∼50 mg daily opioid dose) for addiction screening. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  5. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders.

    Science.gov (United States)

    Meldrum, B

    1993-01-01

    The possibility that some acidic amino acids occurring naturally or as additives in the diet can act as excitotoxins producing central nervous system pathology has been the subject of extensive debate in the last 20 years and is here reviewed. High doses of glutamate, aspartate or related excitatory amino acids given in isolation to neonatal rodents produce acute degeneration organs. Neuropathology resulting from consumption of glutamate or aspartate has not been described in man. Various unusual amino acids of plant origin can produce acute excitotoxic syndromes. In man domoate (consumed in mussels that have fed on (Nitschia pungens) can produce an acute syndrome associated with limbic system lesions and anterograde amnesia. Kainate and domoate produce similar syndromes in rodents; acromelate produces spinal pathology. The mechanisms and manifestations of chronic excitotoxicity are less clearly established. A combination of impaired energy metabolism or impaired buffering of calcium and free radicals and endogenous or exogenous excitotoxins may contribute to neuronal loss in human neurodegenerative disorders.

  6. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  7. Opiate-like excitatory effects of steroid sulfates and calcium-complexing agents given cerebroventricularly.

    Science.gov (United States)

    LaBella, F S; Havlicek, V; Pinsky, C

    1979-01-12

    Intracerebroventricular administration of 10--20 microgram of steroid-O-sulfates induced hypermotility, agitation, salivation, EEG abnormalities, stereotypies, wet dog shakes and seizures. Equivalent effects resulted from 30--200 microgram morphine sulfate (H2SO4 salt), 50 microgram EGTA or 300--400 microgram of sodium sulfate or phosphate, but not chloride, nitrate or acetate. Non-steroid sulfates, steroid glucuronides and steroid phosphates were inactive. Naloxone, previously found to antagonize the excitatory effects of androsterone sulfate, failed to antagonize those of cortisol sulfate, sodium sulfate or EGTA. These findings suggest a role for extracellular calcium ions and for sulfate derived from circulating steroids in central responses to opiates.

  8. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Rai, R

    1993-01-01

    In organotypic hippocampal slice cultures, kainate (KA) specifically induces cell loss in the CA3 region while N-methyl-D-aspartate induces cell loss in the CA1 region. The sensitivity of slice cultures to KA toxicity appears only after 2 weeks in vitro which parallels the appearance of mossy...... fibers. KA toxicity is potentiated by co-application with the GABA-A antagonist, picrotoxin. These data suggest that the excitotoxicity of KA in slice cultures is modulated by both excitatory and inhibitory synapses....

  9. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  10. Measurement of insulin and C-peptide excitatory test levels in gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Du Tongxin; Wang Zizheng

    2001-01-01

    To investigate the function of islet β cells in patients with gestational diabetes mellitus (GDM), serum insulin and C-peptide (C-P) excitatory test levels were measured dynamically by radioimmunoassay in 41 patients with GDM and 30 normal pregnant controls. The results showed that there were significant difference in insulin and C-peptide excitatory test levels between normal pregnancy for 32-40 weeks and patients with GDM (P < 0.001). The secretory peak of insulin occurred at 60 min in normal pregnancy, while at 120 min in patients with GDM, and the recovery postponed in patients with GDM. The peak time for C-P was just as same as that of insulin, but the peak error for C-P between normal pregnant controls and patients with GDM was more larger than that for insulin and it recovered more slowly. It suggested that majority of islet β cells in patients with GDM were good enough for response to islet resistance factors and big stress from pregnancy, and also suggested a relation between pregnancy and islet β cells function

  11. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  12. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    Directory of Open Access Journals (Sweden)

    Keith P. Johnson

    2018-02-01

    Full Text Available The spike trains of retinal ganglion cells (RGCs are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC. PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic. PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN of the thalamus and likely contribute to visual perception.

  13. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  14. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    Science.gov (United States)

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  15. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Directory of Open Access Journals (Sweden)

    Gabriele Radnikow

    2018-01-01

    Full Text Available From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.

  16. The influence of single bursts vs. single spikes at excitatory dendrodendritic synapses

    Science.gov (United States)

    Masurkar, Arjun V.; Chen, Wei R.

    2015-01-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in-vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC–interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, vs. single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. PMID:22277089

  17. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses.

    Science.gov (United States)

    Masurkar, Arjun V; Chen, Wei R

    2012-02-01

    The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Colin Kehrer

    2008-04-01

    Full Text Available Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDAreceptor subtype in the etiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation-inhibition (E/I balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.

  19. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention.

    Science.gov (United States)

    Snyder, Adam C; Morais, Michael J; Smith, Matthew A

    2016-10-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. Copyright © 2016 the American Physiological Society.

  20. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    Science.gov (United States)

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  1. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  2. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  3. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  4. Tolerance to non-opioid analgesics is opioid-sensitive in nucleus raphe magnus

    Directory of Open Access Journals (Sweden)

    Merab G Tsagareli

    2011-07-01

    Full Text Available Repeated injection of opioid analgesics can lead to a progressive loss of its effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs in the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM in the following four days result in progressively less antinociception, i.e. produce the development of tolerance to these drugs in mail rats. Special control experiments showed that post-treatment with μ-opioid antagonist naloxone in NRM significantly decreased antinociceptive effects of NSAIDs at the first day in behavioral tail flick reflex (TF and hot plate (HP latencies. At the second day, naloxone generally had trend effects in both TF and HP tests impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion on endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.

  5. Combined autoradiographic-immunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.

    1985-01-01

    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed. Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.

  6. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  7. The gut-brain interaction in opioid tolerance.

    Science.gov (United States)

    Akbarali, Hamid I; Dewey, William L

    2017-12-01

    The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Neurobiology of opioid withdrawal: Role of the endothelin system.

    Science.gov (United States)

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2016-08-15

    Morphine and oxycodone are potent opioid analgesics most commonly used for the management of moderate to severe acute and chronic pain. Their clinical utility is limited by undesired side effects like analgesic tolerance, dependence, and withdrawal. We have previously demonstrated that endothelin-A (ETA) receptor antagonists potentiate opioid analgesia and eliminate analgesic tolerance. Mechanistically, G proteins and regulatory proteins such as β-arrestins have shown to play an important role in mediating opioid tolerance, dependence, and withdrawal. Recently, the involvement of central ET mechanisms in opioid withdrawal was investigated. ETA receptor antagonist was shown to block majority of the signs and symptoms associated with opioid withdrawal. This review focuses on ET as one of the potential novel strategies to manage the challenge of opioid withdrawal. An overview of additional players in this process (G proteins and β-arrestin2), and the possible therapeutic implications of these findings are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Induction of synaptic long-term potentiation after opioid withdrawal.

    Science.gov (United States)

    Drdla, Ruth; Gassner, Matthias; Gingl, Ewald; Sandkühler, Jürgen

    2009-07-10

    mu-Opioid receptor (MOR) agonists represent the gold standard for the treatment of severe pain but may paradoxically also enhance pain sensitivity, that is, lead to opioid-induced hyperalgesia (OIH). We show that abrupt withdrawal from MOR agonists induces long-term potentiation (LTP) at the first synapse in pain pathways. Induction of opioid withdrawal LTP requires postsynaptic activation of heterotrimeric guanine nucleotide-binding proteins and N-methyl-d-aspartate receptors and a rise of postsynaptic calcium concentrations. In contrast, the acute depression by opioids is induced presynaptically at these synapses. Withdrawal LTP can be prevented by tapered withdrawal and shares pharmacology and signal transduction pathways with OIH. These findings provide a previously unrecognized target to selectively combat pro-nociceptive effects of opioids without compromising opioid analgesia.

  10. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment: a randomised controlled trial

    NARCIS (Netherlands)

    Jong, C.A.J. de; Laheij, R.J.F.; Krabbe, P.F.M.

    2005-01-01

    Aim  Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  11. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment : a randomized controlled trial

    NARCIS (Netherlands)

    De Jong, Cor A J; Laheij, Robert J F; Krabbe, Paul F M

    AIM: Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  12. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment: a randomized controlled trial.

    NARCIS (Netherlands)

    Jong, C.A.J. de; Laheij, R.J.F.; Krabbe, P.F.M.

    2005-01-01

    AIM: Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without

  13. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    Science.gov (United States)

    1984-11-30

    MEDICAL CENTER WILFORD HALL AIR FORCE MEDICAL CENTER Title of Thesis: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord" Name of...that the use of any copyrighted material in the dissertation manuscript entitled: "Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord...University of the Health Sciences 11 Abstract Title of Thesis: Heterogenity of Opioid Binding Sites In Guinea Pig Spinal Cord Gary Dean Zarr MAJ/ANC

  14. Computer Modeling of Human Delta Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Tatyana Dzimbova

    2013-04-01

    Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.

  15. Tobacco withdrawal among opioid-dependent smokers.

    Science.gov (United States)

    Streck, Joanna M; Heil, Sarah H; Higgins, Stephen T; Bunn, Janice Y; Sigmon, Stacey C

    2018-04-01

    Prevalence of cigarette smoking among opioid-dependent individuals is 6-fold that of the general U.S. adult population and their quit rates are notoriously poor. One possible reason for the modest cessation outcomes in opioid-dependent smokers may be that they experience more severe tobacco withdrawal upon quitting. In this secondary analysis, we evaluated tobacco withdrawal in opioid-dependent (OD) smokers versus smokers without co-occurring substance use disorders (SUDs). Participants were 47 methadone- or buprenorphine-maintained smokers and 25 non-SUD smokers who completed 1 of several 2-week studies involving daily visits for biochemical monitoring, delivery of financial incentives contingent on smoking abstinence, and assessment of withdrawal via the Minnesota Nicotine Withdrawal Scale (MNWS). Prior to quitting smoking, OD smokers presented with higher baseline withdrawal scores than non-SUD smokers (1.7 ± 0.2 vs. 0.7 ± 0.2, respectively; F [1, 63] = 7.31, p non-SUD smokers, suggesting that elevated withdrawal severity following quitting may not be a major factor contributing to the poor cessation outcomes consistently observed among OD smokers. Further scientific efforts are needed to improve our understanding of the high smoking rates and modest cessation outcomes in this challenging population. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Exercise induced asthma and endogenous opioids.

    Science.gov (United States)

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  17. Chronic Pain, Chronic Opioid Addiction: a Complex Nexus.

    Science.gov (United States)

    Salsitz, Edwin A

    2016-03-01

    Over the past two decades, there has been a significant increase in the prescribing of opioids, with associated increases in opioid addiction and overdose deaths. This article reviews the evidence for the effectiveness and risk of developing an opioid use disorder (OUD) in those patients treated with chronic opioid therapy (COT) for chronic non-cancer pain (CNCP). Rates of development of OUD range from 0-50 %, and aberrant drug related behaviors (ADRBs) are reported to be 20 %. Health care providers must properly assess, screen, and carefully monitor patients on COT utilizing evidence-based tools.

  18. Pain management and opioid risk mitigation in the military.

    Science.gov (United States)

    Sharpe Potter, Jennifer; Bebarta, Vikhyat S; Marino, Elise N; Ramos, Rosemarie G; Turner, Barbara J

    2014-05-01

    Opioid analgesics misuse is a significant military health concern recognized as a priority issue by military leadership. Opioids are among those most commonly prescribed medications in the military for pain management. The military has implemented opioid risk mitigation strategies, including the Sole Provider Program and the Controlled Drug Management Analysis and Reporting Tool, which are used to identify and monitor for risk and misuse. However, there are substantial opportunities to build on these existing systems to better ensure safer opioid prescribing and monitor for misuse. Opioid risk mitigation strategies implemented by the civilian sector include establishing clinical guidelines for opioid prescribing and prescription monitoring programs. These strategies may help to inform opioid risk mitigation in the military health system. Reducing the risk of opioid misuse and improving quality of care for our Warfighters is necessary. This must be done through evidence-based approaches with an investment in research to improve patient care and prevent opioid misuse as well as its sequelae. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  19. A case of rhabdomyolysis associated with severe opioid withdrawal.

    Science.gov (United States)

    Gangahar, Deepali

    2015-08-01

    While the risk of opioid overdose is widely accepted, the dangers of opioid withdrawal are far less clearly defined. The purpose of this publication is to provide evidence against the erroneous clinical dictum that opioid withdrawal is never life-threatening. This case report (N = 1) illustrates an unfortunate, common scenario of a man abusing prescription opioids and heroin. His attempt at self-detoxification with buprenorphine-naloxone resulted in life-threatening opioid withdrawal. A detailed account of each day of his withdrawal period was documented by patient and family report and review of all medical records. The patient was contacted three months after hospitalization to verify information and determine progress in treatment and abstinence from drugs and alcohol. A review of the literature was completed on severe cases of precipitated and spontaneous opioid withdrawal followed by a discussion of the significance as it relates to this case. Given the widespread use of prescription opioids and opioid maintenance treatment, physicians should be aware of the complications of acute opioid withdrawal and should be equipped to treat these complications. © American Academy of Addiction Psychiatry.

  20. Provider confidence in opioid prescribing and chronic pain management: results of the Opioid Therapy Provider Survey

    Science.gov (United States)

    Pearson, Amy CS; Moman, Rajat N; Moeschler, Susan M; Eldrige, Jason S; Hooten, W Michael

    2017-01-01

    Introduction Many providers report lack of confidence in managing patients with chronic pain. Thus, the primary aim of this study was to investigate the associations of provider confidence in managing chronic pain with their practice behaviors and demographics. Materials and methods The primary outcome measure was the results of the Opioid Therapy Provider Survey, which was administered to clinicians attending a pain-focused continuing medical education conference. Nonparametric correlations were assessed using Spearman’s rho. Results Of the respondents, 55.0% were women, 92.8% were white, and 56.5% were physicians. Primary care providers accounted for 56.5% of the total respondents. The majority of respondents (60.8%) did not feel confident managing patients with chronic pain. Provider confidence in managing chronic pain was positively correlated with 1) following an opioid therapy protocol (P=0.001), 2) the perceived ability to identify patients at risk for opioid misuse (P=0.006), and 3) using a consistent practice-based approach to improve their comfort level with prescribing opioids (Pcorrelated with the perception that treating pain patients was a “problem in my practice” (P=0.005). Conclusion In this study, the majority of providers did not feel confident managing chronic pain. However, provider confidence was associated with a protocolized and consistent practice-based approach toward managing opioids and the perceived ability to identify patients at risk for opioid misuse. Future studies should investigate whether provider confidence is associated with measurable competence in managing chronic pain and explore approaches to enhance appropriate levels of confidence in caring for patients with chronic pain. PMID:28652805

  1. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast).

    Science.gov (United States)

    Hutchinson, Mark R; Lewis, Susannah S; Coats, Benjamen D; Skyba, David A; Crysdale, Nicole Y; Berkelhammer, Debra L; Brzeski, Anita; Northcutt, Alexis; Vietz, Christine M; Judd, Charles M; Maier, Steven F; Watkins, Linda R; Johnson, Kirk W

    2009-02-01

    Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused three-to-five-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, while improving analgesia.

  2. Intentional intrathecal opioid detoxification in 3 patients: characterization of the intrathecal opioid withdrawal syndrome.

    Science.gov (United States)

    Jackson, Tracy P; Lonergan, Daniel F; Todd, R David; Martin, Peter R

    2013-04-01

    Intrathecal (IT) drug delivery systems for patients with chronic non-malignant pain are intended to improve pain and quality of life and reduce side effects of systemic use. A subset of patients may have escalating pain, functional decline, and/or intolerable side effects even as IT opioid doses are increased. Discontinuation of IT medications may represent a viable treatment option but strategies to accomplish this are needed. Three patients with intrathecal drug delivery systems (IDDS), inadequate pain control, and declining functionality underwent abrupt IT opioid cessation. This was accomplished through a standardized protocol with symptom-triggered administration of clonidine and buprenorphine, monitored using the clinical opiate withdrawal scale. Symptoms of IT withdrawal were similar in all patients and included diuresis, agitation, hyperalgesia, mild diarrhea, yawning, and taste and smell aversion. Hypertension and tachycardia were effectively controlled by clonidine administration. Classic symptoms of withdrawal, such as piloerection, chills, severe diarrhea, nausea, vomiting, diaphoresis, myoclonus, and mydriasis, were not noted. At 2 to 3 months follow-up, patients reported decreased, but ongoing pain, with improvements in functional capacity and quality of life. This preliminary work demonstrates the safety of abrupt IT opioid cessation utilizing standardized inpatient withdrawal protocols. To our knowledge, these are among the first reported cases of intentional, controlled IT opioid cessation without initiation of an opioid bridge: self-reported pain scores, functional capacity, and quality of life improved. The IT opioid withdrawal syndrome is characterized based upon our observations and a review of the literature. © 2012 The Authors. Pain Practice © 2012 World Institute of Pain.

  3. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  4. and amino acids

    Indian Academy of Sciences (India)

    Unknown

    P RABINDRA REDDY* and A MOHAN REDDY. Department of ... The mixed ligand complexes of Cu(II), Ni(II) and Co(II) with uridine and amino acids ..... Sabat M, Satyashur K A and Sundaralingam M 1983 J. Am. Chem. Soc. ... Uemura T, Shimura T, Nakamishi H, Tomahiro T, Nagawa Y and Okuno (Yohmei) H 1991. Inorg.

  5. PET imaging of human cardiac opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Villemagne, Patricia S.R.; Dannals, Robert F. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Ravert, Hayden T. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Frost, James J. [Department of Radiology, The Johns Hopkins University School of Medicine, 605 N Caroline St., Baltimore, Maryland (United States); Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2002-10-01

    The presence of opioid peptides and receptors and their role in the regulation of cardiovascular function has been previously demonstrated in the mammalian heart. The aim of this study was to image {mu} and {delta} opioid receptors in the human heart using positron emission tomography (PET). Five subjects (three females, two males, 65{+-}8 years old) underwent PET scanning of the chest with [{sup 11}C]carfentanil ([{sup 11}C]CFN) and [{sup 11}C]-N-methyl-naltrindole ([{sup 11}C]MeNTI) and the images were analyzed for evidence of opioid receptor binding in the heart. Either [{sup 11}C]CFN or [{sup 11}C]MeNTI (20 mCi) was injected i.v. with subsequent dynamic acquisitions over 90 min. For the blocking studies, either 0.2 mg/kg or 1 mg/kg of naloxone was injected i.v. 5 min prior to the injection of [{sup 11}C]CFN and [{sup 11}C]MeNTI, respectively. Regions of interest were placed over the left ventricle, left ventricular chamber, lung and skeletal muscle. Graphical analysis demonstrated average baseline myocardial binding potentials (BP) of 4.37{+-}0.91 with [{sup 11}C]CFN and 3.86{+-}0.60 with [{sup 11}C]MeNTI. Administration of 0.2 mg/kg naloxone prior to [{sup 11}C]CFN produced a 25% reduction in BP in one subject in comparison with baseline values, and a 19% decrease in myocardial distribution volume (DV). Administration of 1 mg/kg of naloxone before [{sup 11}C]MeNTI in another subject produced a 14% decrease in BP and a 21% decrease in the myocardial DV. These results demonstrate the ability to image these receptors in vivo by PET. PET imaging of cardiac opioid receptors may help to better understand their role in cardiovascular pathophysiology and the effect of abuse of opioids and drugs on heart function. (orig.)

  6. Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors

    Directory of Open Access Journals (Sweden)

    Orth Angela

    2009-04-01

    Full Text Available Abstract Background N-methyl-D-aspartate receptors (NMDARs are the most complex of ionotropic glutamate receptors (iGluRs. Subunits of this subfamily assemble into heteromers, which – depending on the subunit combination – may display very different pharmacological and electrophysiological properties. The least studied members of the NMDAR family, the NR3 subunits, have been reported to assemble with NR1 to form excitatory glycine receptors in heterologous expression systems. The heterogeneity of NMDARs in vivo is in part conferred to the receptors by splicing of the NR1 subunit, especially with regard to proton sensitivity. Results Here, we have investigated whether the NR3B subunit is capable of assembly with each of the eight functional NR1 splice variants, and whether the resulting receptors share the unique functional properties described for NR1-1a/NR3. We provide evidence that functional excitatory glycine receptors formed regardless of the NR1 isoform, and their pharmacological profile matched the one reported for NR1-1a/NR3: glycine alone fully activated the receptors, which were insensitive to glutamate and block by Mg2+. Surprisingly, amplitudes of agonist-induced currents showed little dependency on the C-terminally spliced NR1 variants in NR1/NR3B diheteromers. Even more strikingly, NR3B conferred proton sensitivity also to receptors containing NR1b variants – possibly via disturbing the "proton shield" of NR1b splice variants. Conclusion While functional assembly could be demonstrated for all combinations, not all of the specific interactions seen for NR1 isoforms with coexpressed NR2 subunits could be corroborated for NR1 assembly with NR3. Rather, NR3 abates trafficking effects mediated by the NR1 C terminus as well as the N-terminally mediated proton insensitivity. Thus, this study establishes that NR3B overrides important NR1 splice variant-specific receptor properties in NR1/NR3B excitatory glycine receptors.

  7. Observational study to calculate addictive risk to opioids: a validation study of a predictive algorithm to evaluate opioid use disorder

    Directory of Open Access Journals (Sweden)

    Brenton A

    2017-05-01

    Full Text Available Ashley Brenton,1 Steven Richeimer,2,3 Maneesh Sharma,4 Chee Lee,1 Svetlana Kantorovich,1 John Blanchard,1 Brian Meshkin1 1Proove Biosciences, Irvine, CA, 2Keck school of Medicine, University of Southern California, Los Angeles, CA, 3Departments of Anesthesiology and Psychiatry, University of Southern California, Los Angeles, CA, 4Interventional Pain Institute, Baltimore, MD, USA Background: Opioid abuse in chronic pain patients is a major public health issue, with rapidly increasing addiction rates and deaths from unintentional overdose more than quadrupling since 1999. Purpose: This study seeks to determine the predictability of aberrant behavior to opioids using a comprehensive scoring algorithm incorporating phenotypic risk factors and neuroscience-associated single-nucleotide polymorphisms (SNPs. Patients and methods: The Proove Opioid Risk (POR algorithm determines the predictability of aberrant behavior to opioids using a comprehensive scoring algorithm incorporating phenotypic risk factors and neuroscience-associated SNPs. In a validation study with 258 subjects with diagnosed opioid use disorder (OUD and 650 controls who reported using opioids, the POR successfully categorized patients at high and moderate risks of opioid misuse or abuse with 95.7% sensitivity. Regardless of changes in the prevalence of opioid misuse or abuse, the sensitivity of POR remained >95%. Conclusion: The POR correctly stratifies patients into low-, moderate-, and high-risk categories to appropriately identify patients at need for additional guidance, monitoring, or treatment changes. Keywords: opioid use disorder, addiction, personalized medicine, pharmacogenetics, genetic testing, predictive algorithm

  8. Bilateral Breast Reduction Without Opioid Analgesics: A Comparative Study.

    Science.gov (United States)

    Parsa, Fereydoun Don; Cheng, Justin; Stephan, Brad; Castel, Nikki; Kim, Leslie; Murariu, Daniel; Parsa, Alan A

    2017-09-01

    Breast reduction has traditionally been performed under general anesthesia with adjunct opioid use. However, opioids are associated with a wide variety of adverse effects, including nausea, vomiting, constipation, postoperative sedation, dizziness, and addiction. This study compares bilateral breast reduction using a multimodal opioid-free pain management regimen vs traditional general anesthesia with adjunct opioids. A total of 83 female patients were enrolled in this study. Group 1 includes a retrospective series of 39 patients that underwent breast reduction via general anesthesia with adjunct opioid use. This series was compared to 2 prospective groups of patients who did not receive opioids either preoperatively or intraoperatively. In group 2, twenty-six patients underwent surgery under intravenous sedation and local anesthesia. In group 3, eighteen patients underwent surgery with general anesthesia. All patients in groups 2 and 3 received preoperative gabapentin and celecoxib along with infiltration of local anesthetics during the operation and prior to discharge to the Post-Anesthesia Care Unit (PACU). Primary outcome measures included the duration of surgery, time from end of operation to discharge home, postoperative opioid and antiemetic use, and unplanned postoperative hospitalizations. When compared to group 1, groups 2 and 3 experienced a shorter time from end of operation to discharge home (P opioid use (P opioid-free bilateral breast reduction either under local or general anesthesia as an outpatient. This method resulted in significantly less morbidity, use of opioids postoperatively, as well as unplanned hospital admissions compared to "traditional" breast reduction under general anesthesia with the use of opioids. 3. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  9. Synchronization in a non-uniform network of excitatory spiking neurons

    Science.gov (United States)

    Echeveste, Rodrigo; Gros, Claudius

    Spontaneous synchronization of pulse coupled elements is ubiquitous in nature and seems to be of vital importance for life. Networks of pacemaker cells in the heart, extended populations of southeast asian fireflies, and neuronal oscillations in cortical networks, are examples of this. In the present work, a rich repertoire of dynamical states with different degrees of synchronization are found in a network of excitatory-only spiking neurons connected in a non-uniform fashion. In particular, uncorrelated and partially correlated states are found without the need for inhibitory neurons or external currents. The phase transitions between these states, as well the robustness, stability, and response of the network to external stimulus are studied.

  10. Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons

    International Nuclear Information System (INIS)

    Destexhe, A.

    1994-01-01

    Various types of spatiotemporal behavior are described for two-dimensional networks of excitatory and inhibitory neurons with time delayed interactions. It is described how the network behaves as several structural parameters are varied, such as the number of neurons, the connectivity, and the values of synaptic weights. A transition from spatially uniform oscillations to spatiotemporal chaos via intermittentlike behavior is observed. The properties of spatiotemporally chaotic solutions are investigated by evaluating the largest positive Lyapunov exponent and the loss of correlation with distance. Finally, properties of information transport are evaluated during uniform oscillations and spatiotemporal chaos. It is shown that the diffusion coefficient increases significantly in the spatiotemporal phase similar to the increase of transport coefficients at the onset of fluid turbulence. It is proposed that such a property should be seen in other media, such as chemical turbulence or networks of oscillators. The possibility of measuring information transport from appropriate experiments is also discussed

  11. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    Science.gov (United States)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  12. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons

    DEFF Research Database (Denmark)

    Borgius, Lotta; Restrepo, C. Ernesto; Leao, Richardson N.

    2010-01-01

    Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line...... showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior...... colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC...

  13. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  14. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters....... Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single...... neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting...

  15. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    Science.gov (United States)

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-08-09

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

  16. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    Science.gov (United States)

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  17. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    Directory of Open Access Journals (Sweden)

    H Francis Song

    2016-02-01

    Full Text Available The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle, which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural

  18. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    Science.gov (United States)

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    International Nuclear Information System (INIS)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-01-01

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH 2 -terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions

  20. ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations.

    Science.gov (United States)

    Cheng, Aifang; Zhao, Teng; Tse, Kai-Hei; Chow, Hei-Man; Cui, Yong; Jiang, Liwen; Du, Shengwang; Loy, Michael M T; Herrup, Karl

    2018-01-09

    ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake. In keeping with this, both proteins bind to AP-2 complex components as well as to clathrin, suggesting roles in endocytosis and vesicle recycling. The two proteins play complementary roles in the DDR; ATM is engaged in the repair of double-strand breaks, while ATR deals mainly with single-strand damage. Unexpectedly, this complementarity extends to these proteins' synaptic function as well. Superresolution microscopy and coimmunoprecipitation reveal that ATM associates exclusively with excitatory (VGLUT1 + ) vesicles, while ATR associates only with inhibitory (VGAT + ) vesicles. The levels of ATM and ATR respond to each other; when ATM is deficient, ATR levels rise, and vice versa. Finally, blocking NMDA, but not GABA, receptors causes ATM levels to rise while ATR levels respond to GABA, but not NMDA, receptor blockade. Taken together, our data suggest that ATM and ATR are part of the cellular "infrastructure" that maintains the excitatory/inhibitory balance of the nervous system. This idea has important implications for the human diseases resulting from their genetic deficiency.

  1. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  2. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  3. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

    Science.gov (United States)

    Wang, Xiao-Jing

    2016-01-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, “trained” networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale’s principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity

  4. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    Science.gov (United States)

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  6. Tolerance and withdrawal from prolonged opioid use in critically ill children.

    Science.gov (United States)

    Anand, Kanwaljeet J S; Willson, Douglas F; Berger, John; Harrison, Rick; Meert, Kathleen L; Zimmerman, Jerry; Carcillo, Joseph; Newth, Christopher J L; Prodhan, Parthak; Dean, J Michael; Nicholson, Carol

    2010-05-01

    After prolonged opioid exposure, children develop opioid-induced hyperalgesia, tolerance, and withdrawal. Strategies for prevention and management should be based on the mechanisms of opioid tolerance and withdrawal. Relevant manuscripts published in the English language were searched in Medline by using search terms "opioid," "opiate," "sedation," "analgesia," "child," "infant-newborn," "tolerance," "dependency," "withdrawal," "analgesic," "receptor," and "individual opioid drugs." Clinical and preclinical studies were reviewed for data synthesis. Mechanisms of opioid-induced hyperalgesia and tolerance suggest important drug- and patient-related risk factors that lead to tolerance and withdrawal. Opioid tolerance occurs earlier in the younger age groups, develops commonly during critical illness, and results more frequently from prolonged intravenous infusions of short-acting opioids. Treatment options include slowly tapering opioid doses, switching to longer-acting opioids, or specifically treating the symptoms of opioid withdrawal. Novel therapies may also include blocking the mechanisms of opioid tolerance, which would enhance the safety and effectiveness of opioid analgesia. Opioid tolerance and withdrawal occur frequently in critically ill children. Novel insights into opioid receptor physiology and cellular biochemical changes will inform scientific approaches for the use of opioid analgesia and the prevention of opioid tolerance and withdrawal.

  7. Opioid Overdoses Treated in Emergency Departments PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2018-03-06

    This 60 second public service announcement is based on the March 2018 CDC Vital Signs report. Opioid overdoses continue to increase in the United States. Learn what can be done to help prevent opioid overdose and death.  Created: 3/6/2018 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/6/2018.

  8. Secular trends in opioid prescribing in the USA

    Directory of Open Access Journals (Sweden)

    Pezalla EJ

    2017-02-01

    Full Text Available Edmund J Pezalla,1 David Rosen,2 Jennifer G Erensen,2 J David Haddox,2,3 Tracy J Mayne2 1Bioconsult, LLC, Wethersfield, 2Purdue Pharma L.P., Stamford, CT, 3Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA Abstract: Opioid abuse and misuse in the USA is a public health crisis. The use of prescription opioid analgesics increased substantially from 2002 through 2010, then plateaued and began to decrease in 2011. This study examined prescriptions of branded and generic immediate- and extended-release opioid analgesics from 1992 to 2016. This was juxtaposed against state and federal policies designed to decrease overutilization and abuse, as well as the launch of new opioid products, including opioids with abuse-deterrent properties (OADPs. The data indicate that these health policies, including the utilization and reimbursement of OADPs, have coincided with decreased opioid utilization. The hypothesis that OADPs will paradoxically increase opioid prescribing is not supported. Keywords: OADP, prescription, utilization trends, legislation, opioids

  9. Critical issues on opioids in chronic non-cancer pain

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Sjøgren, Per; Bruera, Eduardo

    2006-01-01

    -related quality of life (SF-36), use of the health care system, functional capabilities, satisfaction with medical pain treatment and regular or continuous use of medications. Participants reporting pain were divided into opioid and non-opioid users. The analyses were adjusted for age, gender, concomitant use...

  10. Treating opioid dependence. Growing implications for primary care.

    Science.gov (United States)

    Krantz, Mori J; Mehler, Philip S

    2004-02-09

    Almost 3 million Americans have abused heroin. The most effective treatment for this concerning epidemic is opioid replacement therapy. Although, from a historical perspective, acceptance of this therapy has been slow, growing evidence supports its efficacy. There are 3 approved medications for opioid maintenance therapy: methadone hydrochloride, levomethadyl acetate, and buprenorphine hydrochloride. Each has unique characteristics that determine its suitability for an individual patient. Cardiac arrhythmias have been reported with methadone and levomethadyl, but not with buprenorphine. Due to concerns about cardiac risk, levomethadyl use has declined and the product may ultimately be discontinued. These recent safety concerns, specifics about opioid detoxification and maintenance, and new federal initiatives were studied. Opioid detoxification has a role in both preventing acute withdrawal and maintaining long-term abstinence. Although only a minority of eligible patients are engaged in treatment, opioid maintenance therapy appears to offer the greatest public health benefits. There is growing interest in expanding treatment into primary care, allowing opioid addiction to be managed like other chronic illnesses. This model has gained wide acceptance in Europe and is now being implemented in the United States. The recent Drug Addiction Treatment Act enables qualified physicians to treat opioid-dependent patients with buprenorphine in an office-based setting. Mainstreaming opioid addiction treatment has many advantages; its success will depend on resolution of ethical and delivery system issues as well as improved and expanded training of physicians in addiction medicine.

  11. Endogene opioider og deres terapeutiske anvendelse i smertebehandling

    DEFF Research Database (Denmark)

    Juul, A; Pedersen, A T

    1990-01-01

    Cancer patients with chronic pain and obstetric patients have participated in clinical trials of the analgesic effects of endogenous opioids. It is possible to achieve adequate relief of pain in these patients following epidural or intrathecal administration of endogenous opioids. Further investi...

  12. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  14. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    Science.gov (United States)

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  15. Tolerance to Non-Opioid Analgesics is Opioid Sensitive in the Nucleus Raphe Magnus.

    Science.gov (United States)

    Tsagareli, Merab G; Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz

    2011-01-01

    Repeated injection of opioid analgesics can lead to a progressive loss of effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs) into the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac, and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM) in the following 4 days result in progressively less antinociception compare to the saline control, i.e., tolerance develops to these drugs in male rats. Special control experiments showed that post-treatment with the μ-opioid antagonist naloxone into the NRM significantly decreased antinociceptive effects of NSAIDs on the first day of testing in the tail-flick (TF) reflex and hot plate (HP) latency tests. On the second day, naloxone generally had trend effects in both TF and HP tests and impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine, and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.

  16. Addiction to opioids in chronic pain patients: a literature review

    DEFF Research Database (Denmark)

    Højsted, Jette; Sjøgren, Per

    2007-01-01

    , incidence and prevalence of addiction in opioid treated pain patients, screening tools for assessing opioid addiction in chronic pain patients and recommendations regarding addiction problems in national and international guidelines for opioid treatment in cancer patients and chronic non-malignant pain...... patients. The review indicates that the prevalence of addiction varied from 0% up to 50% in chronic non-malignant pain patients, and from 0% to 7.7% in cancer patients depending of the subpopulation studied and the criteria used. The risk of addiction has to be considered when initiating long-term opioid...... long-term opioid treatment, and specialised treatment facilities for pain management or addiction medicine should be consulted in these cases....

  17. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  18. Opioid prescriptions before and after high-energy trauma

    DEFF Research Database (Denmark)

    Zwisler, Stine T; Hallas, Jesper; Larsen, Morten S

    2015-01-01

    OBJECTIVE: To describe the legal use of opioids in adult patients before and after high-energy trauma. DESIGN: The study was a retrospective database study. SETTING: Clinical care outside hospitals. PATIENTS: All patients who suffered high-energy trauma and were brought to Odense University...... Hospital (OUH), Denmark, in 2007 and 2008 were retrieved from the trauma database. These patients were linked with data on opioid use from the regional prescription database. In all, 938 patients were included. MAIN OUTCOME MEASURE: Redemption of opioid prescription during the 6 months prior...... to a multitrauma or redemption of two or more prescriptions for opioids 6 months or later after a multitrauma. RESULTS: Of the 938 patients brought to OUH with severe trauma within the study period, 61 patients died (7 percent) and six of these had redeemed prescriptions for opioids within 6 months prior...

  19. The role of the opioid system in alcohol dependence.

    Science.gov (United States)

    Nutt, David J

    2014-01-01

    The role of the brain opioid system in alcohol dependence has been the subject of much research for over 25 years. This review explores the evidence: firstly describing the opioid receptors in terms of their individual subtypes, neuroanatomy, neurophysiology and ligands; secondly, summarising emerging data from specific neurochemical, behavioural and neuroimaging studies, explaining the characteristics of addiction with a focus on alcohol dependence and connecting the opioid system with alcohol dependence; and finally reviewing the known literature regarding opioid antagonists in clinical use for alcohol dependence. Further interrogation of how modulation of the opioid system, via use of MOP (mu), DOP (delta) and KOP (kappa) agents, restores the balance of a dysregulated system in alcohol dependence should increase our insight into this disease process and therefore guide better methods for understanding and treating alcohol dependence in the future.

  20. Long-term evaluation of opioid treatment in fibromyalgia.

    Science.gov (United States)

    Peng, Xiaomei; Robinson, Rebecca L; Mease, Philip; Kroenke, Kurt; Williams, David A; Chen, Yi; Faries, Douglas; Wohlreich, Madelaine; McCarberg, Bill; Hann, Danette

    2015-01-01

    In a 12-month observational study, we evaluated the effect of opioid use on the outcomes in 1700 adult patients with fibromyalgia. Data were evaluated using propensity score matching after patients were divided into cohorts based on their baseline medication use: (1) taking an opioid (concurrent use of tramadol was permitted); (2) taking tramadol (but no opioids); and (3) not taking opioids or tramadol. Changes in outcomes were assessed using the Brief Pain Inventory for severity and pain-related interference (BPI-S, BPI-I), Fibromyalgia Impact Questionnaire (FIQ), Patient Health Questionnaire for depression (PHQ-8), Insomnia Severity Index (ISI), Sheehan Disability Scale (SDS), 7-item Generalized Anxiety Disorder Scale (GAD-7), and economic factors. Time-to-opioid or tramadol discontinuation was analyzed using Kaplan-Meier survival analyses. Compared with the opioid cohort, the nonopioid cohort demonstrated significantly greater reductions (PFIQ, PHQ-8, SDS, and ISI; the tramadol cohort compared with the opioid group showed greater reductions on FIQ and ISI. Reductions in BPI-S and GAD-7 did not differ significantly among cohorts. Compared with the opioid cohort, patients in the tramadol cohort had fewer outpatient visits to health care providers. Few significant differences were found between the tramadol and nonopioid cohorts across outcomes. Although pain severity was reduced over time in all cohorts, opioid users showed less improvement in pain-related interference with daily living, functioning, depression, and insomnia. Overall, the findings show little support for the long-term use of opioid medications in patients with fibromyalgia given the poorer outcomes across multiple assessment domains associated with this cohort.

  1. Opioid Prescriptions by Specialty in Ohio, 2010-2014.

    Science.gov (United States)

    Weiner, Scott G; Baker, Olesya; Rodgers, Ann F; Garner, Chad; Nelson, Lewis S; Kreiner, Peter W; Schuur, Jeremiah D

    2018-05-01

    The current US opioid epidemic is attributed to the large volume of prescribed opioids. This study analyzed the contribution of different medical specialties to overall opioids by evaluating the pill counts and morphine milligram equivalents (MMEs) of opioid prescriptions, stratified by provider specialty, and determined temporal trends. This was an analysis of the Ohio prescription drug monitoring program database, which captures scheduled medication prescriptions filled in the state as well as prescriber specialty. We extracted prescriptions for pill versions of opioids written in the calendar years 2010 to 2014. The main outcomes were the number of filled prescriptions, pill counts, MMEs, and extended-released opioids written by physicians in each specialty, and annual prescribing trends. There were 56,873,719 prescriptions for the studied opioids dispensed, for which 41,959,581 (73.8%) had prescriber specialty type available. Mean number of pills per prescription and MMEs were highest for physical medicine/rehabilitation (PM&R; 91.2 pills, 1,532 mg, N = 1,680,579), anesthesiology/pain (89.3 pills, 1,484 mg, N = 3,261,449), hematology/oncology (88.2 pills, 1,534 mg, N = 516,596), and neurology (84.4 pills, 1,230 mg, N = 573,389). Family medicine (21.8%) and internal medicine (17.6%) wrote the most opioid prescriptions overall. Time trends in the average number of pills and MMEs per prescription also varied depending on specialty. The numbers of pills and MMEs per opioid prescription vary markedly by prescriber specialty, as do trends in prescribing characteristics. Pill count and MME values define each specialty's contribution to overall opioid prescribing more accurately than the number of prescriptions alone.

  2. Medication-Assisted Treatment For Opioid Addiction in Opioid Treatment Programs. Treatment Improvement Protocol (TIP) Series 43

    Science.gov (United States)

    Tinkler, Emily; Vallejos Bartlett, Catalina; Brooks, Margaret; Gilbert, Johnatnan Max; Henderson, Randi; Shuman, Deborah, J.

    2005-01-01

    TIP 43 provides best-practice guidelines for medication-assisted treatment of opioid addiction in opioid treatment programs (OTPs). The primary intended audience for this volume is substance abuse treatment providers and administrators who work in OTPs. Recommendations in the TIP are based on both an analysis of current research and determinations…

  3. Preparation, characterization and biological evaluation of fac(M(CO)3)+ labeled amino carboxy ligands

    International Nuclear Information System (INIS)

    Baishya, Rinku; Halder, K.K.; Debnath, M.C.

    2010-01-01

    Full text: The objective of this study is to radiolabel various amino carboxy based chelating ligands with fac(M(CO) 3 )+ core, their physicochemical and biological characterization so that they can be used as bifunctional chelators and could be incorporated into biomolecules. Introduction: Amino acids as a class attract considerable physiological interest because of their participation in many vital processes associated with the living system. Some amino acids express in some particular organ like glutamic acid acts as excitatory neurotransmitter in mammalian brain. Histidine, methionine, tryptophan express in the tumor cell. Amino acids also play an important role for development of a new series of chelate complexes of 99m Tc that can direct the biodistribution of the radiotracer for purposes in diagnostic nuclear medicine. Various 99m Tc-amino acid chelates based on (Tc(V)O) 3 + core were reported from this laboratory some of which exhibited high renal specificity in animals. The structural requirements favouring this biological behaviour could be the oxotechnetium glycine sequence (TcO-NH-CH 2 -COOH) resembling the -CO-glycine sequence of hippurate. In recent years with the development of organometallic chemistry of technetium and rhenium for biological application intensive efforts have been executed on designing of the bifunctional chelator for effective coordination to (M(CO) 3 )+ core. The suitability and stability of the metal carbonyl core has given rise to a new platform for the preparation of the metal complexes of biologically active peptide in macroscopic quantity using the solid phase synthetic approach. Materials and Methods: We chelated different amino carboxy based ligands with ( 99m Tc(CO) 3 )+ and (Re(CO) 3 )+ core. The choice of amino acid was made by taking representative members from various groupings such as mono amino mono carboxylate, mono amino poly carboxylate, poly amino mono carboxylate and sulfur containing amino carboxylates. The

  4. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  5. β2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate

    Science.gov (United States)

    Marek, Gerard J.; Ramos, Brian P.

    2018-01-01

    5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3–10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3–3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01–1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears

  6. DYNAMICS OF OPIOID SUBSTITUTION TREATMENTIN DIFFERENT INITIAL SUBSTANCE USER OPIOID DEPENDENT PATIENTS.

    Science.gov (United States)

    Todadze, Kh; Mosia, S

    2016-05-01

    Injecting drug user size estimation studies carried out in 2009, 2012 and 2015 revealed growing trends of drug abuse in Georgia:estimated number of people who inject drugs (PWID) have been increased from 40000 and 45000 to 50000. Since Soviet period the most popular injective narcotics have been opioids: home-made opium, heroine, buprenorphine and home-made desomorphine ("Krokodile") replacing each other on the black market. Self-made desomorphine typically contains big amounts of different toxic substances and causes significant somatic disorders, especially skin, bone, blood infections, liver and kidney failure; is highly addictive, associates with frequent injections that enhance injecting-related harm, including the risk of HIV transmission, in comparison with typical opioids. The aim of the study was to determine the effectiveness of opioid substitution treatment (OST) on depression and anxiety in opioid dependent clients with history of different opioid substance use. 104 opioid drug users undergoing OST with intensive psychological counseling have been divided in 5 groups according to the principal opioid drug that was abused during past 6 months before starting treatment: heroine, desomorphine, illicit methadone injectors, illicit buprenorphine injectors, and multiple drug abusers consuming opioids as primary drugs. Level of depression (Beck Depression Inventory), anxiety (Spielberger Anxiety Inventory) as well as clinical symptoms, risky behavior, quality of life (WHO), and other data were measured before starting and after 3, 9, 15, 21 months of treatment. The illegal use of psychotropic-narcotics was checked through random urine-testing 1-2 times per patient per month. In all five groups remarkable decrease of depression and anxiety was observed in comparison with the starting data. Before inclusion desomorphine and poly-drug users had the highest scores of depression and anxiety while buprenorphine users manifested the lowest rate. Improvement of

  7. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    Science.gov (United States)

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  8. Effectiveness of ketamine as an adjuvant to opioid-based therapy in decreasing pain associated with opioid tolerance in adults undergoing orthopedic surgery: a systematic review protocol.

    Science.gov (United States)

    Bennett, Marsha; Bonanno, Laura; Kuhn, William

    2016-10-01

    The objective of this systematic review is to examine the best available evidence on the clinical effectiveness of ketamine as an adjuvant to opioid-based therapy versus opioid-based therapy alone in decreasing perioperative pain associated with opioid tolerance in adult patients, aged 18-70 years, undergoing orthopedic surgical procedures.The following question guides the systematic review: does the administration of ketamine as an adjuvant to opioid-based therapy, compared to opioid-based therapy alone, improve perioperative pain relief in opioid-tolerant adult patients undergoing orthopedic surgical procedures?

  9. Opioid system of the brain and ethanol.

    Science.gov (United States)

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  10. A Motion Videogame for Opioid Relapse Prevention.

    Science.gov (United States)

    Abroms, Lorien C; Leavitt, Leah E; Van Alstyne, Judy M; Schindler-Ruwisch, Jennifer M; Fishman, Marc J; Greenberg, Daniel

    2015-12-01

    This study examined the feasibility and acceptability of a body motion-activated videogame, targeting the prevention of opioid relapse among youth in the context of outpatient treatment. Participants attended four weekly gameplay sessions. Surveys were conducted at baseline and following each week's gameplay and assessed satisfaction with gameplay, craving intensity, and self-efficacy to refuse opioids. Participants expressed a high level of satisfaction with the videogame throughout the 4 weeks and agreed with the statement that they would be more likely to attend treatment sessions if the game was present (mean=4.6; standard deviation [SD]=0.7) and would recommend the videogame to other people in treatment (mean=4.2; SD=0.8). All participants recommended playing the videogame as part of treatment at least weekly, with a third recommending playing daily. Self-reported cravings declined over the 4-week period from baseline (mean=12.7; SD=8.4) to Week 4 (mean=9.8; SD=8.3), although the decline was not significant. Although participants stated that they liked the game, one-third of participants had dropped out of the study by the fourth session of gameplay. Preliminary evidence indicates that a motion videogame for addiction recovery may be feasible and acceptable within the context of outpatient treatment, although additional efforts are needed to keep youth in treatment. Future studies are needed to assess the impact of the game on long-term abstinence, treatment adherence, and engagement.

  11. Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.

    Science.gov (United States)

    Aoki, Chiye; Sherpa, Ang D

    2017-01-01

    Mature excitatory synapses are composed of more than 1500 proteins postsynaptically and hundreds more that operate presynaptically. Among them, drebrin is an F-actin-binding protein that increases noticeably during juvenile synaptogenesis. Electron microscopic analysis reveals that drebrin is highly enriched specifically on the postsynaptic side of excitatory synapses. Since dendritic spines are structures specialized for excitatory synaptic transmission, the function of drebrin was probed by analyzing the ultrastructural characteristics of dendritic spines of animals with genetic deletion of drebrin A (DAKO), the adult isoform of drebrin. Electron microscopic analyses revealed that these brains are surprisingly intact, in that axo-spinous synaptic junctions are well-formed and not significantly altered in number. This normal ultrastructure may be because drebrin E, the alternate embryonic isoform, compensates for the genetic deletion of drebrin A. However, DAKO results in the loss of homeostatic plasticity of N-methyl-D-aspartate receptors (NMDARs). The NMDAR activation-dependent trafficking of the NR2A subunit-containing NMDARs from dendritic shafts into spine head cytoplasm is greatly diminished within brains of DAKO. Conversely, within brains of wild-type rodents, spines respond to NMDAR blockade with influx of F-actin, drebrin A, and NR2A subunits of NMDARs. These observations indicate that drebrin A facilitates the trafficking of NMDAR cargos in an F-actin-dependent manner to mediate homeostatic plasticity. Analysis of the brains of transgenic mice used as models of Alzheimer's disease (AD) reveals that the loss of drebrin from dendritic spines predates the emergence of synaptic dysfunction and cognitive impairment, suggesting that this form of homeostatic plasticity contributes toward cognition. Two studies suggest that the nature of drebrin's interaction with NMDARs is dependent on the receptor's subunit composition. Drebrin A can be found co

  12. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro

    Science.gov (United States)

    Aulí, M; Martínez, E; Gallego, D; Opazo, A; Espín, F; Martí-Gallostra, M; Jiménez, M; Clavé, P

    2008-01-01

    Background and purpose: To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. Experimental approach: Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. Key results: Strips developed weak spontaneous rhythmic contractions (3.67±0.49 g, 2.54±0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 μM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1–100 μM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by NG-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 μM) or the P2Y1 receptor antagonist MRS 2179 (10 μM) and were unaffected by the P2X antagonist NF279 (10 μM) or α-chymotrypsin (10 U mL−1). Amplitude of on- and off-contractions was reduced by atropine (1 μM) and the selective NK2 receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (1 μM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM–1 mM) or substance P (1 nM–10 μM). Conclusions and implications: Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y1 receptors through apamin-sensitive K+ channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK2 receptors. Prejunctional P2Y1 receptors might modulate the activity of excitatory EMNs. P2Y1 and NK2 receptors might be therapeutic targets for colonic motor disorders. PMID:18846038

  13. Comorbid Post-Traumatic Stress Disorder and Opioid Dependence.

    Science.gov (United States)

    Patel, Rikinkumar S; Elmaadawi, Ahmed; Nasr, Suhayl; Haskin, John

    2017-09-03

    Post-traumatic stress disorder (PTSD) is predominant amongst individuals addicted to opioids and obscures the course of illness and the treatment outcome. We report the case of a patient with major depressive disorder and opioid dependence, who experienced post-traumatic stress disorder symptoms during a recent visit to the inpatient unit. The similarity of symptoms between post-traumatic stress disorder and opioid dependence is so high that, sometimes, it is a challenge to differentiate between these conditions. Since opioid withdrawal symptoms mimic hyper vigilance, this results in an exaggeration of the response of patients with post-traumatic stress disorder. This comorbidity is associated with worse health outcomes, as its pathophysiology involves a common neurobiological circuit. Opioid substitution therapy and psychotherapeutic medications in combination with evidence-based cognitive behavioral therapy devised for individuals with comorbid post-traumatic stress disorder and opioid dependence may improve treatment outcomes in this population. Therefore, we conclude that the screening for post-traumatic stress disorder in the opioid-abusing population is crucial. To understand the underlying mechanisms for this comorbidity and to improve the treatment response, further research should be encouraged.

  14. Pain in the management of opioid use disorder

    Directory of Open Access Journals (Sweden)

    Sirohi S

    2016-11-01

    Full Text Available Sunil Sirohi,1 Amit K Tiwari21Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 2Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USAOpioids remain the drug of choice for the clinical management of moderate to severe pain. However, in addition to their most effective analgesic actions, opioids also produce a sense of well-being and euphoria, which may trigger significant concerns associated with their use.1 In fact, there has been an alarming increase in prescription opioid use, abuse and illicit use; and according to the National Center for Health Statistics, the total number of deaths related to opioid overdose has more than tripled from 2011 to 2014.2–5 Although representing 5.0 % of the global population, studies report that Americans consume 80% of the global opioid supply,3 and the United States is experiencing an opioid abuse epidemic.6 Considering this unprecedented rise in opioid consumption, the United States Centers for Disease Control and Prevention has listed prescription opioid overdose among one of the 10 most important public health problems in all the 50 states.7

  15. Risk Factors for Opioid-Use Disorder and Overdose.

    Science.gov (United States)

    Webster, Lynn R

    2017-11-01

    Opioid analgesics are recognized as a legitimate medical therapy for selected patients with severe chronic pain that does not respond to other therapies. However, opioids are associated with risks for patients and society that include misuse, abuse, diversion, addiction, and overdose deaths. Therapeutic success depends on proper candidate selection, assessment before administering opioid therapy, and close monitoring throughout the course of treatment. Risk assessment and prevention include knowledge of patient factors that may contribute to misuse, abuse, addiction, suicide, and respiratory depression. Risk factors for opioid misuse or addiction include past or current substance abuse, untreated psychiatric disorders, younger age, and social or family environments that encourage misuse. Opioid mortality prevalence is higher in people who are middle aged and have substance abuse and psychiatric comorbidities. Suicides are probably undercounted or frequently misclassified in reports of opioid-related poisoning deaths. Greater understanding and better assessment are needed of the risk associated with suicide risk in patients with pain. Clinical tools and an evolving evidence base are available to assist clinicians with identifying patients whose risk factors put them at risk for adverse outcomes with opioids.

  16. Comparison of periodontal manifestations in amphetamine and opioids' consumers

    Directory of Open Access Journals (Sweden)

    Masoome Eivazi

    2016-03-01

    Full Text Available Background: Drug abuse is one of the most important etiologic and deteriorating factors in periodontal disease. Amphetamines and opioids, the most commonly used drugs worldwide, play an important role in this regard. The aim of this study was to compare the periodontal status of amphetamines and opioids consumers in Kermanshah city, Iran in 1393. Methods: Three drug rehabilitation clinics were selected randomly in Kermanshah. According to inclusion and exclusion criteria, 20 amphetamine consumers and 20 opioid consumers were selected randomly and participated in this study. A questionnaire for drug use and periodontal variables was designed. The collected data were entered into SPSS-18 software and Mann-Whitney and t-test were used for statistical analysis. Results: Pocket depth, gingival index and gingival bleeding in amphetamines users were more than those in opioids consumers (P<0.021. Plaque index and gingival recession in opioids users were more than those of amphetamines consumers (P<0.001. The number of periodontal disease cases in amphetamines group were 13 persons (65% and in opioids group 8 persons (40%. Conclusion: Our study showed that periodontal hygine in amphetamine consumers was worse than opioid consumers.

  17. Opioid withdrawal syndrome: emerging concepts and novel therapeutic targets.

    Science.gov (United States)

    Rehni, Ashish K; Jaggi, Amteshwar S; Singh, Nirmal

    2013-02-01

    Opioid withdrawal syndrome is a debilitating manifestation of opioid dependence and responds poorly to the available clinical therapies. Studies from various in vivo and in vitro animal models of opioid withdrawal syndrome have led to understanding of its pathobiology which includes complex interrelated pathways leading to adenylyl cyclase superactivation based central excitation. Advancements in the elucidation of opioid withdrawal syndrome mechanisms have revealed a number of key targets that have been hypothesized to modulate clinical status. The present review discusses the neurobiology of opioid withdrawal syndrome and its therapeutic target recptors like calcitonin gene related peptide receptors (CGRP), N-methyl-D-aspartate (NMDA) receptors, gamma aminobutyric acid receptors (GABA), G-proteingated inwardly rectifying potassium (GIRK) channels and calcium channels. The present review further details the potential role of second messengers like calcium (Ca2+) / calmodulin-dependent protein kinase (CaMKII), nitric oxide synthase, cytokines, arachidonic acid metabolites, corticotropin releasing factor, fos and src kinases in causing opioid withdrawal syndrome. The exploitation of these targets may provide effective therapeutic agents for the management of opioid dependence-induced abstinence syndrome.

  18. Methylnaltrexone in the treatment of opioid-induced constipation

    Directory of Open Access Journals (Sweden)

    Beverley Greenwood-Van Meerveld

    2008-12-01

    Full Text Available Beverley Greenwood-Van Meerveld1, Kelly M Standifer21Veterans Affairs Medical Center, Oklahoma Center for Neuroscience, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; 2Department of Pharmaceutical Sciences, Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USAAbstract: Constipation is a significant problem related to opioid medications used to manage pain. This review attempts to outline the latest findings related to the therapeutic usefulness of a μ opioid receptor antagonist, methylnaltrexone in the treatment of opioid-induced constipation. The review highlights methylnaltrexone bromide (RelistorTM; Progenics/Wyeth a quaternary derivative of naltrexone, which was recently approved in the United States, Europe and Canada. The Food and Drug Administration in the United States approved a subcutaneous injection for the treatment of opioid bowel dysfunction in patients with advanced illness who are receiving palliative care and when laxative therapy has been insufficient. Methylnaltrexone is a peripherally restricted, μ opioid receptor antagonist that accelerates oral–cecal transit in patients with opioidinduced constipation without reversing the analgesic effects of morphine or inducing symptoms of opioid withdrawal. An analysis of the mechanism of action and the potential benefits of using methylnaltrexone is based on data from published basic research and recent clinical studies.Keywords: methylnaltrexone, constipation, opioid

  19. The influence of propoxyphene withdrawal on opioid use in veterans.

    Science.gov (United States)

    Hayes, Corey J; Hudson, Teresa J; Phillips, Martha M; Bursac, Zoran; Williams, James S; Austin, Mark A; Edlund, Mark J; Martin, Bradley C

    2015-11-01

    Our aim is to determine if propoxyphene withdrawal from the US market was associated with opioid continuation, continued chronic opioid use, and secondary propoxyphene-related adverse events (emergency department visits, opioid-related events, and acetaminophen toxicity). Medical service use and pharmacy data from 19/11/08 to 19/11/11 were collected from the national Veterans Healthcare Administration healthcare databases. A quasi-experimental pre-post retrospective cohort design utilizing a historical comparison group provided the study framework. Logistic regression controlling for baseline covariates was used to estimate the effect of propoxyphene withdrawal. There were 24,328 subjects (policy affected n = 10,747; comparison n = 13,581) meeting inclusion criteria. In the policy-affected cohort, 10.6% of users ceased using opioids, and 26.6% stopped chronic opioid use compared with 3.8% and 13.5% in the historical comparison cohort, respectively. Those in the policy-affected cohort were 2.7 (95%CI: 2.5-2.8) and 3.2 (95%CI: 2.9-3.6) times more likely than those in the historical comparison cohort to discontinue chronic opioid and any opioid use, respectively. Changes in adverse events and Emergency Department (ED) visits were not different between policy-affected and historical comparison cohorts (p > 0.05). The withdrawal of propoxyphene-containing products resulted in rapid and virtually complete elimination in propoxyphene prescribing in the veterans population; however, nearly 90% of regular users of propoxyphene switched to an alternate opioid, and three quarters continued to use opioids chronically. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.

    Science.gov (United States)

    Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas

    2016-07-13

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly

  1. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation.

    Science.gov (United States)

    Pastor, Raúl; Sanchis-Segura, Carles; Aragon, Carlos M G

    2004-12-01

    Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are

  2. Opioid-induced preconditioning: recent advances and future perspectives.

    Science.gov (United States)

    Peart, Jason N; Gross, Eric R; Gross, Garrett J

    2005-01-01

    Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ

  3. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.; Bressloff, Paul C.

    2009-01-01

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  4. Alterations of excitatory transmission in the lateral amygdala during expression and extinction of fear memory.

    Science.gov (United States)

    Lin, Hui-Ching; Mao, Sheng-Chun; Su, Chun-Lin; Gean, Po-Wu

    2010-04-01

    Understanding the neurophysiology of fear extinction has important implications for the treatment of post-traumatic stress disorders. Here we report that fear conditioning resulted in an increase in AMPA/NMDA ratio as well as depression of paired-pulse facilitation (PPF) in neurons of the lateral nucleus of amygdala. These conditioning-induced changes in synaptic transmission were not affected by extinction training. D-cycloserine (DCS), a partial agonist at the glycine-binding site of the NMDA receptor, facilitated extinction and reversed the increase in AMPA/NMDA ratio without altering the depression of PPF when administered before extinction training. Extinction training, however, significantly increased the frequency and amplitude of miniature inhibitory post-synaptic currents and these effects were unaffected by the DCS treatment. Disruption of AMPA receptor endocytosis with a synthetic peptide containing a short C-terminal sequence of GluR2 (869YKEGYNVYG877, GluR23Y) specifically blocked DCS-induced reversal of AMPA/NMDA ratio and the facilitation of extinction. These results suggest that extinction training mainly increases inhibitory transmission leaving conditioning-induced excitatory association unaltered. DCS does not affect inhibitory transmission but reverses the conditioning-induced post-synaptic memory trace when administered before extinction training.

  5. An Excitatory Neural Assembly Encodes Short-Term Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2018-02-01

    Full Text Available Short-term memory (STM is crucial for animals to hold information for a small period of time. Persistent or recurrent neural activity, together with neural oscillations, is known to encode the STM at the cellular level. However, the coding mechanisms at the microcircuitry level remain a mystery. Here, we performed two-photon imaging on behaving mice to monitor the activity of neuronal microcircuitry. We discovered a neuronal subpopulation in the medial prefrontal cortex (mPFC that exhibited emergent properties in a context-dependent manner underlying a STM-like behavior paradigm. These neuronal subpopulations exclusively comprise excitatory neurons and mainly represent a group of neurons with stronger functional connections. Microcircuitry plasticity was maintained for minutes and was absent in an animal model of Alzheimer’s disease (AD. Thus, these results point to a functional coding mechanism that relies on the emergent behavior of a functionally defined neuronal assembly to encode STM.

  6. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2009-10-29

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  7. APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses

    Directory of Open Access Journals (Sweden)

    Hilla Fogel

    2014-06-01

    Full Text Available Accumulation of amyloid-β peptides (Aβ, the proteolytic products of the amyloid precursor protein (APP, induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer’s disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer’s disease.

  8. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    Science.gov (United States)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics.

    Science.gov (United States)

    Uzunova, Genoveva; Pallanti, Stefano; Hollander, Eric

    2016-04-01

    Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.

  10. Comparing the Efficacy of Excitatory Transcranial Stimulation Methods Measuring Motor Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Vera Moliadze

    2014-01-01

    Full Text Available The common aim of transcranial stimulation methods is the induction or alterations of cortical excitability in a controlled way. Significant effects of each individual stimulation method have been published; however, conclusive direct comparisons of many of these methods are rare. The aim of the present study was to compare the efficacy of three widely applied stimulation methods inducing excitability enhancement in the motor cortex: 1 mA anodal transcranial direct current stimulation (atDCS, intermittent theta burst stimulation (iTBS, and 1 mA transcranial random noise stimulation (tRNS within one subject group. The effect of each stimulation condition was quantified by evaluating motor-evoked-potential amplitudes (MEPs in a fixed time sequence after stimulation. The analyses confirmed a significant enhancement of the M1 excitability caused by all three types of active stimulations compared to sham stimulation. There was no significant difference between the types of active stimulations, although the time course of the excitatory effects slightly differed. Among the stimulation methods, tRNS resulted in the strongest and atDCS significantly longest MEP increase compared to sham. Different time courses of the applied stimulation methods suggest different underlying mechanisms of action. Better understanding may be useful for better targeting of different transcranial stimulation techniques.

  11. Intracortical inhibitory and excitatory circuits in subjects with minimal hepatic encephalopathy: a TMS study.

    Science.gov (United States)

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Brigo, Francesco; Golaszewski, Stefan; Frey, Vanessa N; Orioli, Andrea; Trinka, Eugen

    2016-10-01

    Minimal hepatic encephalopathy (MHE) is the earliest form of hepatic encephalopathy (HE) and affects up to 80 % of patients with liver cirrhosis. By definition, MHE is characterized by psychomotor slowing and subtle cognitive deficits,  but obvious clinical manifestations are lacking. Given its covert nature, MHE is often underdiagnosed. This study was aimed at detecting neurophysiological changes, as assessed by means of transcranial magnetic stimulation (TMS), involved in the early pathogenesis of the HE. We investigated motor cortex excitability in 15 patients with MHE and in 15 age-matched age-matched cirrhotic patients without MHE; the resting motor threshold, the short-interval intracortical inhibition (SICI) and the intracortical facilitation (ICF) were examined. Paired-pulse TMS revealed significant increased SICI and reduced ICF in the patients with MHE. These findings may reflect abnormalities in intrinsic brain activity and altered organization of functional connectivity networks. In particular, the results suggest a shift in the balance between intracortical inhibitory and excitatory mechanisms towards a net increase of inhibitory neurotransmission. Together with other neurophysiological (in particular EEG) and neuroimaging techniques, TMS may thus provide early markers of cerebral dysfunction in cirrhotic patients with MHE.

  12. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    Science.gov (United States)

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Emergent spatial patterns of excitatory and inhibitory synaptic strengths drive somatotopic representational discontinuities and their plasticity in a computational model of primary sensory cortical area 3b

    Directory of Open Access Journals (Sweden)

    Kamil A. Grajski

    2016-07-01

    Full Text Available Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers, boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.

  14. Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain.

    Science.gov (United States)

    Miranda, Hugo F; Noriega, Viviana; Zanetta, Pilar; Prieto, Juan Carlos; Prieto-Rayo, Juan Carlos; Aranda, Nicolás; Sierralta, Fernando

    2014-07-15

    Opioids have been used for the management of pain and coadministration of two opioids may induce synergism. In a model of tonic pain, the acetic acid writhing test and in a phasic model, the hot plate, the antinociceptive interaction between fentanyl, methadone, morphine, and tramadol was evaluated. The potency of opioids in the writhing test compared to the hot plate assay was from 2.5 (fentanyl) to 15.5 (morphine) times, respectively. The ED50 was used in a fixed ratio for each of the six pairs of opioid combinations, which, resulted in a synergistic antinociception except for methadone/tramadol and fentanyl/tramadol which were additive, in the hot plate. The opioid antagonists naltrexone, naltrindole and nor-binaltorphimine, suggests that the synergism of morphine combinations are due to the activation of MOR subtypes with partially contribution of DOR and KOR, however fentanyl and methadone combinations are partially due to the activation of MOR and DOR subtypes and KOR lack of participation. The antinociceptive effects of tramadol combinations, are partially due to the activation of MOR, DOR and KOR opioid subtypes. These results suggets that effectiveness and magnitude of the interactions between opioids are dependent on pain stimulus intensity.

  15. Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase.

    NARCIS (Netherlands)

    De Jeu, M.T.G.; Pennartz, C.M.A.

    2002-01-01

    Gramicidin-perforated patch-clamp recordings were made from slices of the suprachiasmatic nucleus (SCN) of adult rats to characterize the role of gamma-amino butyric acid (GABA) in the circadian timing system. During the day, activation of GABA(A) receptors hyperpolarized the membrane of SCN

  16. Health-Related Quality of Life among Chronic Opioid Users, Nonchronic Opioid Users, and Nonopioid Users with Chronic Noncancer Pain.

    Science.gov (United States)

    Hayes, Corey J; Li, Xiaocong; Li, Chenghui; Shah, Anuj; Kathe, Niranjan; Bhandari, Naleen Raj; Payakachat, Nalin

    2018-02-25

    Evaluate the association between opioid therapy and health-related quality of life (HRQoL) in participants with chronic, noncancer pain (CNCP). Medical Expenditure Panel Survey Longitudinal, Medical Conditions, and Prescription Files. Using a retrospective cohort study design, the Mental Health Component (MCS12) and Physical Health Component (PCS12) scores of the Short Form-12 Version 2 were assessed to measure mental and physical HRQoL. Chronic, noncancer pain participants were classified as chronic, nonchronic, and nonopioid users. One-to-one propensity score matching was employed to match chronic opioid users to nonchronic opioid users plus nonchronic opioid users and chronic opioid users to nonopioid users. A total of 5,876 participants were identified. After matching, PCS12 was not significantly different between nonchronic versus nonopioid users (LSM Diff = -0.98, 95% CI: -2.07, 0.10), chronic versus nonopioid users (LSM Diff = -2.24, 95% CI: -4.58, 0.10), or chronic versus nonchronic opioid users (LSM Diff = -2.23, 95% CI: -4.53, 0.05). Similarly, MCS12 was not significantly different between nonchronic versus nonopioid users (LSM Diff = 0.76, 95% CI: -0.46, 1.98), chronic versus nonopioid users (LSM Diff = 1.08, 95% CI: -1.26, 3.42), or chronic versus nonchronic opioid users (LSM Diff = -0.57, 95% CI: -2.90, 1.77). Clinicians should evaluate opioid use in participants with CNCP as opioid use is not correlated with better HRQoL. © Health Research and Educational Trust.

  17. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  18. Identification of a New Class of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors Followed by a Structure-Activity-Relationship Study

    DEFF Research Database (Denmark)

    Hansen, Stinne Wessel; Erichsen, Mette Norman; Fu, Bingru

    2016-01-01

    in analogues with substantially improved inhibitory potencies at EAAT1 compared to that displayed by the hit, it provided a detailed insight into structural requirements for EAAT1 activity of this scaffold. The discovery of this new class of EAAT1-selective inhibitors not only supplements the currently...

  19. The role of excitatory amino acids and substance P in the mediation of the cough reflex within the nucleus tractus solitarii of the rabbit.

    Science.gov (United States)

    Mutolo, Donatella; Bongianni, Fulvia; Fontana, Giovanni A; Pantaleo, Tito

    2007-09-28

    We hypothesized that cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit is primarily mediated by glutamatergic neurotransmission at the level of the caudal portions of the medial subnucleus of the nucleus tractus solitarii (NTS) and the lateral commissural NTS where cough-related afferents terminate, and that this reflex is potentiated by local release of substance P. To test our hypothesis, we performed bilateral microinjections (30-50 nl) of ionotropic glutamate receptor antagonists or substance P into these locations in pentobarbitone anaesthetized, spontaneously breathing rabbits. Blockade of NMDA and non-NMDA receptors by 50mM kynurenic acid abolished the cough reflex without affecting the Breuer-Hering inflation reflex or the pulmonary chemoreflex. Blockade of non-NMDA receptors using 10mM CNQX or 5mM NBQX caused identical effects. Blockade of NMDA receptors by 10mM D-AP5 strongly reduced, but did not abolish cough responses. Microinjections of 1mM substance P increased peak and rate of rise of abdominal muscle activity as well as cough number. These results are the first to provide evidence that ionotropic glutamate receptors, especially non-NMDA receptors, located within specific regions of NTS are primarily involved in the mediation of cough evoked by mechanical stimulation of the tracheobronchial tree in the rabbit. Present findings on substance P cough-enhancing effects extend previous observations and are relevant to the tachykinin-mediated central sensitization of the cough reflex. They also may provide hints for further studies on centrally acting antitussive drugs.

  20. Long-term opioid therapy in Denmark

    DEFF Research Database (Denmark)

    Birke, H; Ekholm, Ola; Sjøgren, P

    2017-01-01

    significantly associated with initiation of L-TOT in individuals with CNCP at baseline. During follow-up, L-TOT in CNCP patients increased the likelihood of negative changes in pain interference with work (OR 9.2; 95% CI 1.9-43.6) and in moderate activities (OR 3.7; 95% CI 1.1-12.6). The analysis of all......,145). A nationally representative subsample of individuals (n = 2015) completed the self-administered questionnaire in both 2000 and 2013. Collected information included chronic pain (≥6 months), health behaviour, self-rated health, pain interference with work activities and physical activities. Long-term users were...... individuals indicated a dose-response relationship between longer treatment duration and the risk of experiencing negative changes. CONCLUSIONS: Individuals on L-TOT seemed not to achieve the key goals of opioid therapy: pain relief, improved quality of life and functional capacity. SIGNIFICANCE: Long...

  1. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  2. Opioids and immunosupression in oncological postoperative patients

    Directory of Open Access Journals (Sweden)

    José Luis Bonilla-García

    Full Text Available Summary Introduction: Recent animal studies demonstrated immunosuppressive effects of opioid withdrawal resulting in a higher risk of infection. The aim of this study was to determine the impact of remifentanil discontinuation on Post-Anesthesia Care Unit (PACU-acquired infection after a schedule of sedoanalgesia of at least 6 days. Method: All patients over 18 years of age with a unit admission of more than 4 days were consecutively selected. The study population was the one affected by surgical pathology of any origin where sedation was based on any hypnotic and the opioid remifentanil was used as analgesic for at least 96 hours in continuous perfusion. Patients who died during admission to the unit and those with combined analgesia (peripheral or neuroaxial blocks were excluded. Bivariate analysis was performed to determine risk factors for infection acquired in the unit. A comparative study between periods of 6 days before and after the cessation of remifentanil was performed. Paired samples test and McNemar test was used for quantitative and categorical variables, respectively. Results: There were 1,789 patients admitted to the PACU during the study and the population eligible was constituted for 102 patients. The incidence rate of PACU-acquired infection was 38 per 1,000 PACU days. Ventilator-associated pneumonia was the most frequently diagnosed PACU-acquired infection. Pseudomona aeruginosa was the most frequently isolated microorganism. Hospital mortality was 36.27%. No statistically significant differences were seen in the incidence of HAI in cancer patients in relation to discontinuation of remifentanil (p=0.068. Conclusion: The baseline state of immunosuppression of cancer patients does not imply a higher incidence of HAI in relation to the interruption of remifentanil. It would be of interest to carry out a multicenter PACU study that included immunological patterns.

  3. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses

    Directory of Open Access Journals (Sweden)

    Makoto Nishiyama

    2010-06-01

    Full Text Available GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and post-synaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and post-synaptic spiking at θ and γ oscillations is largely unknown. We show here that activities mediated by postsynaptic GABAARs and presynaptic GABABRs determine, respectively, the spike timing- and frequency-dependence of activity-induced synaptic modifications at Schaffer collateral-CA1 excitatory synapses. We demonstrate that both feedforward and feedback GABAAR-mediated inhibition in the postsynaptic cell controls the spike timing-dependent long-term depression of excitatory inputs (“e-LTD” at the θ frequency. We also show that feedback postsynaptic inhibition specifically causes e-LTD of inputs that induce small postsynaptic currents (<70 pA with LTP timing, thus enforcing the requirement of cooperativity for induction of long-term potentiation at excitatory inputs (“e-LTP”. Furthermore, under spike-timing protocols that induce e-LTP and e-LTD at excitatory synapses, we observed parallel induction of LTP and LTD at inhibitory inputs (“i-LTP” and “i-LTD” to the same postsynaptic cells. Finally, we show that presynaptic GABABR-mediated inhibition plays a major role in the induction of frequency-dependent e-LTD at α and β frequencies. These observations demonstrate the critical influence of GABAergic interneuronal network activities in regulating the spike timing and frequency dependences of long-term synaptic modifications in the hippocampus.

  4. Differences in context sensitivity for second-learned inhibitory and excitatory stimuli in AAB and ABC designs

    OpenAIRE

    Elgueta, Tito

    2014-01-01

    Bouton (1997) proposed a model to explain Pavlovian conditioning according to which the order of the associations (first-learned or second-learned), not the valence of the associations (inhibitory or excitatory), determines context sensitivity in AAB and ABC renewal designs. As a consequence, Bouton’s model does not predict important differences in context sensitivity between AAB and ABC designs. However, evidence suggests that there are indeed differences in context sensitivity between these...

  5. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  6. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Science.gov (United States)

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  7. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  8. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  9. Anaplastic Lymphoma Kinase Is a Regulator of Alcohol Consumption and Excitatory Synaptic Plasticity in the Nucleus Accumbens Shell

    Directory of Open Access Journals (Sweden)

    Regina A. Mangieri

    2017-08-01

    Full Text Available Anaplastic lymphoma kinase (ALK is a receptor tyrosine kinase recently implicated in biochemical, physiological, and behavioral responses to ethanol. Thus, manipulation of ALK signaling may represent a novel approach to treating alcohol use disorder (AUD. Ethanol induces adaptations in glutamatergic synapses onto nucleus accumbens shell (NAcSh medium spiny neurons (MSNs, and putative targets for treating AUD may be validated for further development by assessing how their manipulation modulates accumbal glutamatergic synaptic transmission and plasticity. Here, we report that Alk knockout (AlkKO mice consumed greater doses of ethanol, relative to wild-type (AlkWT mice, in an operant self-administration model. Using ex vivo electrophysiology to examine excitatory synaptic transmission and plasticity at NAcSh MSNs that express dopamine D1 receptors (D1MSNs, we found that the amplitude of spontaneous excitatory post-synaptic currents (EPSCs in NAcSh D1MSNs was elevated in AlkKO mice and in the presence of an ALK inhibitor, TAE684. Furthermore, when ALK was absent or inhibited, glutamatergic synaptic plasticity – long-term depression of evoked EPSCs – in D1MSNs was attenuated. Thus, loss of ALK activity in mice is associated with elevated ethanol consumption and enhanced excitatory transmission in NAcSh D1MSNs. These findings add to the mounting evidence of a relationship between excitatory synaptic transmission onto NAcSh D1MSNs and ethanol consumption, point toward ALK as one important molecular mediator of this interaction, and further validate ALK as a target for therapeutic intervention in the treatment of AUD.

  10. Opioid Epidemic: Cellular & Molecular Anesthesia as a Key Solution

    Directory of Open Access Journals (Sweden)

    Ali Dabbagh

    2017-12-01

    Full Text Available Opioids are one of the most important arsenals armamentarium of physicians for fighting against pain. During the decades, opioids have been used in a wide range of indications; both for treatment of acute and chronic pain; as natural and synthetic compounds and in a variety of delivery forms from intravenous infusion to intrathecal adjuvants of local anesthetics or as transdermal patches. There is no doubt that we are in an opioid misuse epidemic status; whether in the US or other countries; but if we want to resolve this miserable multilateral complication, there is no doubt that Cellular and Molecular aspects of Anesthesia has a key role in resolving the problem; through creating an opioid free pain management era.

  11. Opioid interruptions, pain, and withdrawal symptoms in nursing home residents.

    Science.gov (United States)

    Redding, Sarah E; Liu, Sophia; Hung, William W; Boockvar, Kenneth S

    2014-11-01

    Interruptions in opioid use have the potential to cause pain relapse and withdrawal symptoms. The objectives of this study were to observe patterns of opioid interruption during acute illness in nursing home residents and examine associations between interruptions and pain and withdrawal symptoms. Patients from 3 nursing homes in a metropolitan area who were prescribed opioids were assessed for symptoms of pain and withdrawal by researchers blinded to opioid dosage received, using the Brief Pain Inventory Scale and the Clinical Opioid Withdrawal Scale, respectively, during prespecified time periods. The prespecified time periods were 2 weeks after onset of acute illness (eg, urinary tract infection), and 2 weeks after hospital admission and nursing home readmission, if they occurred. Opioid dosing was recorded and a significant interruption was defined as a complete discontinuation or a reduction in dose of >50% for ≥1 day. The covariates age, sex, race, comorbid conditions, initial opioid dose, and initial pain level were recorded. Symptoms pre- and post-opioid interruptions were compared and contrasted with those in a group without opioid interruptions. Sixty-six patients receiving opioids were followed for a mean of 10.9 months and experienced a total of 104 acute illnesses. During 64 (62%) illnesses, patients experienced any reduction in opioid dosing, with a mean (SD) dose reduction of 63.9% (29.9%). During 39 (38%) illnesses, patients experienced a significant opioid interruption. In a multivariable model, residence at 1 of the 3 nursing homes was associated with a lower risk of interruption (odds ratio = 0.073; 95% CI, 0.009 to 0.597; P pain score (difference -0.50 [2.66]; 95% CI, -3.16 to 2.16) and withdrawal score (difference -0.91 [3.12]; 95% CI, -4.03 to 2.21) after the interruption as compared with before interruption. However, when compared with patients without interruptions, patients with interruptions experienced larger increases in pain scores

  12. Opioid Overdose Prevention: Safety Advice for Patients & Family Members

    Science.gov (United States)

    ... the effects of opioids. Naloxone works by blocking opiate receptor sites. It is not effective in treating ... agitation, anxiety, confusion, or ringing in your ears.  Seizures (convulsions).  Feeling that you might pass out.  Slow ...

  13. Dramatic Increases in Maternal Opioid Use and Neonatal Abstinence Syndrome

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  14. Although Relatively Few, "Doctor Shoppers" Skew Opioid Prescribing

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  15. Fentanyl and Other Synthetic Opioids Drug Overdose Deaths

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  16. Polyglycerol-opioid conjugate produces analgesia devoid of side effects.

    Science.gov (United States)

    González-Rodríguez, Sara; Quadir, Mohiuddin A; Gupta, Shilpi; Walker, Karolina A; Zhang, Xuejiao; Spahn, Viola; Labuz, Dominika; Rodriguez-Gaztelumendi, Antonio; Schmelz, Martin; Joseph, Jan; Parr, Maria K; Machelska, Halina; Haag, Rainer; Stein, Christoph

    2017-07-04

    Novel painkillers are urgently needed. The activation of opioid receptors in peripheral inflamed tissue can reduce pain without central adverse effects such as sedation, apnoea, or addiction. Here, we use an unprecedented strategy and report the synthesis and analgesic efficacy of the standard opioid morphine covalently attached to hyperbranched polyglycerol (PG-M) by a cleavable linker. With its high-molecular weight and hydrophilicity, this conjugate is designed to selectively release morphine in injured tissue and to prevent blood-brain barrier permeation. In contrast to conventional morphine, intravenous PG-M exclusively activated peripheral opioid receptors to produce analgesia in inflamed rat paws without major side effects such as sedation or constipation. Concentrations of morphine in the brain, blood, paw tissue, and in vitro confirmed the selective release of morphine in the inflamed milieu. Thus, PG-M may serve as prototype of a peripherally restricted opioid formulation designed to forego central and intestinal side effects.

  17. The endogenous opioid system: a common substrate in drug addiction.

    Science.gov (United States)

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  18. Addiction to opioids in chronic pain patients: a literature review

    DEFF Research Database (Denmark)

    Højsted, Jette; Sjøgren, Per

    2007-01-01

    , incidence and prevalence of addiction in opioid treated pain patients, screening tools for assessing opioid addiction in chronic pain patients and recommendations regarding addiction problems in national and international guidelines for opioid treatment in cancer patients and chronic non-malignant pain...... patients. The review indicates that the prevalence of addiction varied from 0% up to 50% in chronic non-malignant pain patients, and from 0% to 7.7% in cancer patients depending of the subpopulation studied and the criteria used. The risk of addiction has to be considered when initiating long-term opioid...... treatment as addiction may result in poor pain control. Several screening tools were identified, but only a few were thoroughly validated with respect to validity and reliability. Most of the identified guidelines mention addiction as a potential problem. The guidelines in cancer pain management...

  19. carcass amino acid composition and utilization of dietary amino

    African Journals Online (AJOL)

    Maynard (1954), Fisher & Scott (1954), Forbes &. Rao (1959), Hartsook & Mitchell (1956). King (1963) showed that individual amino acids in the carcass could differ widely from the requirement by the anirnal for those particular amino acids used for purposes other than protein synthesis and subsequent retention. How-.

  20. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  1. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  2. Influence of intravenous opioid dose on postoperative ileus.

    Science.gov (United States)

    Barletta, Jeffrey F; Asgeirsson, Theodor; Senagore, Anthony J

    2011-07-01

    Intravenous opioids represent a major component in the pathophysiology of postoperative ileus (POI). However, the most appropriate measure and threshold to quantify the association between opioid dose (eg, average daily, cumulative, maximum daily) and POI remains unknown. To evaluate the relationship between opioid dose, POI, and length of stay (LOS) and identify the opioid measure that was most strongly associated with POI. Consecutive patients admitted to a community teaching hospital who underwent elective colorectal surgery by any technique with an enhanced-recovery protocol postoperatively were retrospectively identified. Patients were excluded if they received epidural analgesia, developed a major intraabdominal complication or medical complication, or had a prolonged workup prior to surgery. Intravenous opioid doses were quantified and converted to hydromorphone equivalents. Classification and regression tree (CART) analysis was used to determine the dosing threshold for the opioid measure most associated with POI and define high versus low use of opioids. Risk factors for POI and prolonged LOS were determined through multivariate analysis. The incidence of POI in 279 patients was 8.6%. CART analysis identified a maximum daily intravenous hydromorphone dose of 2 mg or more as the opioid measure most associated with POI. Multivariate analysis revealed maximum daily hydromorphone dose of 2 mg or more (p = 0.034), open surgical technique (p = 0.045), and days of intravenous narcotic therapy (p = 0.003) as significant risk factors for POI. Variables associated with increased LOS were POI (p POI and prolonged LOS, particularly when the maximum hydromorphone dose per day exceeds 2 mg. Clinicians should consider alternative, nonopioid-based pain management options when this occurs.

  3. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  4. The Neuroanatomy of Sexual Dimorphism in Opioid Analgesia

    Science.gov (United States)

    2014-04-13

    2012 for review). Studies utilizing orofacial , somatosensory or visceral pain assays typically report that morphine produces a significantly greater...Review The neuroanatomy of sexual dimorphism in opioid analgesia Dayna R. Loyd a, Anne Z. Murphy b,⁎ a Pain Management Research Area, United States...online 13 April 2014 Keywords: Pain Periaqueductal gray Morphine Mu opioid receptor The influence of sex has been neglected in clinical studies on pain

  5. Safety of oral dronabinol during opioid withdrawal in humans.

    Science.gov (United States)

    Jicha, Crystal J; Lofwall, Michelle R; Nuzzo, Paul A; Babalonis, Shanna; Elayi, Samy Claude; Walsh, Sharon L

    2015-12-01

    Opioid dependence remains a significant public health problem worldwide with only three FDA-approved treatments, all targeting the mu-opioid receptor. Dronabinol, a cannabinoid (CB) 1 receptor agonist, is currently under investigation as a novel opioid withdrawal treatment. This study reports on safety outcomes of dronabinol among adults in opioid withdrawal. Twelve adults physically dependent on short-acting opioids participated in this 5-week within-subject, randomized, double blind, placebo-controlled inpatient study. Volunteers were maintained on oral oxycodone 30 mg qid. Double-blind placebo substitutions occurred for 21 h before each of 7 experimental sessions in order to produce opioid withdrawal. A single oral test dose was administered each session (placebo, oxycodone 30 and 60 mg, dronabinol 5, 10, 20, and 30 mg [decreased from 40 mg]). Heart rate, blood pressure, respiratory outcomes and pupil diameter were assessed repeatedly. Dronabinol 40 mg produced sustained sinus tachycardia accompanied by anxiety and panic necessitating dose reduction to 30 mg. Sinus tachycardia and anxiety also occurred in one volunteer after dronabinol 20mg. Compared to placebo, dronabinol 20 and 30 mg produced significant increases in heart rate beginning 1h after drug administration that lasted approximately 2h (popioid agonist effects (e.g., miosis). Dronabinol 20mg and higher increased heart rate among healthy adults at rest who were in a state of opioid withdrawal, raising concern about its safety. These results have important implications for future dosing strategies and may limit the utility of dronabinol as a treatment for opioid withdrawal. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Is there a role for opioids in the treatment of fibromyalgia?

    Science.gov (United States)

    Littlejohn, Geoffrey O; Guymer, Emma K; Ngian, Gene-Siew

    2016-05-01

    The use of opioids for chronic pain has increased significantly due to a combination of the high patient burden of pain and the more widespread availability of a range of long-acting opioid preparations. This increased opioid use has translated into the care of many patients with fibromyalgia. The pain mechanism in fibromyalgia is complex but does not seem to involve disturbance of opioid analgesic functions. Hence, there is general concern about the harms in the absence of benefits of opioids in this setting. There is no evidence that pure opioids are effective in fibromyalgia but there is some evidence that opioids with additional actions on the norepinephrine-related pain modulatory pathways, such as tramadol, can be clinically useful in some patients. Novel actions of low-dose opioid antagonists may lead to better understanding of the role of opioid function in fibromyalgia.

  7. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2012-05-01

    Full Text Available Abstract The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.

  8. A nationwide pharmacy chain responds to the opioid epidemic.

    Science.gov (United States)

    Shafer, Emily; Bergeron, Nyahne; Smith-Ray, Renae; Robson, Chester; O'Koren, Rachel

    To describe the 3-pronged approach taken by a large national retail pharmacy chain to address the opioid epidemic and associated overdoses. Large national retail pharmacy chain with more than 8200 stores in 50 states. Eight million customer interactions daily through in-store and digital settings. This is a company with a long history of responding to public health crises. Initiated 3 programs to respond to the opioid crisis: 1) provide safe medication disposal kiosks; 2) expand national access to naloxone; and 3) provide education on the risk and avoidance of opioid overdose. Used the RE-AIM framework to evaluate and enhance the quality, speed, and public health impact of the interventions. Not applicable. Early results are safe medication disposal kiosks in more than 43 states, naloxone-dispensing program in 33 states, and patient and support system education using the Opioid Overdose Toolkit from the Substance Abuse and Mental Health Services Administration. The availability of safe drug-disposal kiosks, naloxone dispensing at pharmacies, and patient education are key prevention initiatives to address the opioid epidemic and reduce the increasing national burden of opioid overdose. Early results are quantitatively and qualitatively promising. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Preventing Opioid Use Disorders among Fishing Industry Workers

    Directory of Open Access Journals (Sweden)

    Angela Wangari Walter

    2018-03-01

    Full Text Available Fishing industry workers are at high risk for work-related musculoskeletal disorders (MSDs and injuries. Prescription opioids used to treat pain injuries may put these workers at increased risk for developing substance disorders. Using a Community-Based Participatory Research approach, formative research was conducted to inform the eventual development of relevant interventions to prevent and reduce opioid use disorders among fishing industry workers. Qualitative interviews (n = 21 were conducted to assess: knowledge and attitudes about opioid use disorders; features of fishing work that might affect use and/or access to treatment; and community and organizational capacity for prevention and treatment. Participants reported numerous pathways connecting commercial fishing with opioid use. The combination of high stress and physically tasking job duties requires comprehensive workplace interventions to prevent chronic pain and MSDs, in addition to tailored and culturally responsive treatment options to address opioid use disorders in this population. Public health programs must integrate workplace health and safety protection along with evidence-based primary, secondary, and tertiary interventions in order to address opioid use disorders, particularly among workers in strenuous jobs.

  10. Clinical implications of patient-provider agreements in opioid prescribing.

    Science.gov (United States)

    Kraus, Carl N; Baldwin, Alan T; Curro, Frederick A; McAllister, R G

    2015-01-01

    In June, 2012 the United States Food and Drug Administration (FDA) developed a "blueprint" for prescriber education as a means of directing Certified Medical Education (CME) activities that included content which would meet the regulatory requirements of the class-wide, longacting/ extended-release (LA-ER) opioid Risk Evaluation Mitigation Strategies (REMS). Within the blueprint is the suggested adoption of Patient-Provider Agreements (PPAs) to be used in association with opioid prescribing, but, to our knowledge, there have been no reported evaluations of the role played by opioid-agent PPAs in clinical practice, or of the perceptions of this regulatory mandate by clinicians. Therefore, we conducted a survey regarding PPA perceptions by opioid prescribers that was posted for five weeks on a well-trafficked online CME service provider (Medscape). Of the 1,232 respondents (reflecting a 99.5% completion rate), 52.4% treat acute or chronic pain with opioids. The survey identified an improvement of opioid safe-use education (21% of respondents) as the most frequently selected beneficial element of PPAs. Conversely, the challenges to adoption included time constraints (21% of physicians) as well as lack of evidence that PPAs will reduce drug misuse, and the lack of a uniform, patient-friendly PPA. Based on our survey, clinicians consider the PPA of potential value, but data regarding the utility of such an instrument are lacking.

  11. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    International Nuclear Information System (INIS)

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced [ 3 H]-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of [ 3 H]-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand [ 3 H]-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity

  12. Reviewing opioid use, monitoring, and legislature: Nursing perspectives

    Directory of Open Access Journals (Sweden)

    Deniece A. Jukiewicz

    2017-10-01

    Full Text Available The phenomena of prescription opioid misuse and abuse have a complicated history of contributing factors including policies, practices, and prescribing leading to contemporary phenomena. Some factors implicated in the opioid drug abuse problem include inefficient prescribing and improper use, lack of knowledge related to interpretation and assessment of pain levels, and decreased oversight and regulation from government and policy agents. Nurses, often frontline providers, need to be knowledgeable and embrace the guidelines, and necessary implications associated with both prescribing and administration of opioids. Additionally, all providers including physicians, physician assistants, nurse practitioners, and bedside nurses must have a firm understanding of the improper use and abuse of opioids. The examination and review of opioid policies at the state and federal level has revealed inconsistency with regulations, policies, and guidelines that have lead to the current situation. The use of an interdisciplinary team with nurses and various other practitioners is a good strategy to help reduce this problem. Keywords: Abuse, Administration, Legislature, Nursing, Opioid, Overdose, Policy, Prescribing

  13. Preference or fat? Revisiting opioid effects on food intake.

    Science.gov (United States)

    Taha, Sharif A

    2010-07-14

    It is well established that opioid signaling in the central nervous system constitutes a powerful stimulus for food intake. The role of opioids in determining food preference, however, is less well defined. Opioids have been proposed to promote intake of preferred foods, or, alternatively, to preferentially increase consumption of fat. In the present manuscript, I comprehensively review results from previous studies investigating this issue. Data from these studies suggests a mechanism for opioid action that may reconcile the previously proposed hypotheses: opioid effects on food intake do appear to be largely specific for fat consumption, but individual animals' sensitivity to this effect may be dependent on baseline food preferences. In addition, I highlight the possibility that the selectivity of endogenous opioid effects may importantly differ from that of exogenous agonists in the degree to which baseline preferences, rather than macronutrient intake, are altered. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. 2010 Elsevier Inc. All rights reserved.

  14. Yiguanjian cataplasm attenuates opioid dependence in a mouse

    Science.gov (United States)

    Gao, Shuai; Gao, Hong; Fan, Yuchen; Zhang, Guanghua; Sun, Fengkai; Zhao, Jing; Li, Feng; Yang, Yang; Wang, Kai

    2016-08-01

    To investigate the effect of Yiguanjian (YGJ) cataplasm on the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. One hundred Swiss albino mice, of equal male to female ratio, were randomly and equally divided into 10 groups. A portion (3 cm2) of the backside hair of the mice was removed 1 day prior to the experiment. Morphine (5 mg/kg) was intraperitoneally administered twice daily for 5 days. YGJ cataplasm was prepared and pasted on the bare region of the mice immediately before morphine administration on day 3 and subsequently removed at the end day 5. On day 6, naloxone (8 mg/kg) was intraperitoneally injected to precipitate opioid withdrawal syndrome. Behavioral observation was performed in two 30-min phases immediately after naloxone injection. The YGJ cataplasm significantly and dose-dependently attenuated morphine-naloxone- induced experimental opioid withdrawal, in terms of withdrawal severity score and the frequencies of jumping, rearing, forepaw licking, and circling behaviors. However, YGJ cataplasm treatment did not alter the acute analgesic effect of morphine. YGJ cataplasm could attenuate opioid dependence and its associated withdrawal symptoms. Therefore, YGJ cataplasm could serve as a potential therapy for opioid addiction in the future.

  15. Pavlovian conditioning of multiple opioid-like responses in mice.

    Science.gov (United States)

    Bryant, Camron D; Roberts, Kristofer W; Culbertson, Christopher S; Le, Alan; Evans, Christopher J; Fanselow, Michael S

    2009-07-01

    Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2mg/kg, i.p.) in a novel context and subsequently given a vehicle injection. In separate experiments, locomotor activity, Straub tail, hot plate sensitivity, and conditioned place preference (CPP) were measured. Mice exhibited multiple conditional opioid-like responses including conditional hyperlocomotion, a conditional pattern of opioid-like locomotion, Straub tail, analgesia, and place preference. Modulating drug expectation via administration of fentanyl to "demonstrator" mice in the home cage did not affect the expression of conditioned place preference or the concomitant locomotor activity in "observer" mice. In summary, Pavlovian conditioning of an opioid in a novel context induced multiple conditional opioid-like behaviors and provides a model for studying the neurobiological mechanisms of the placebo response in mice.

  16. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  17. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking.

    Science.gov (United States)

    Stuber, Garret D; Sparta, Dennis R; Stamatakis, Alice M; van Leeuwen, Wieke A; Hardjoprajitno, Juanita E; Cho, Saemi; Tye, Kay M; Kempadoo, Kimberly A; Zhang, Feng; Deisseroth, Karl; Bonci, Antonello

    2011-06-29

    The basolateral amygdala (BLA) has a crucial role in emotional learning irrespective of valence. The BLA projection to the nucleus accumbens (NAc) is thought to modulate cue-triggered motivated behaviours, but our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural-circuit elements of this pathway selectively during behaviour. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibres from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology. Here we show that optical stimulation of the pathway from the BLA to the NAc in mice reinforces behavioural responding to earn additional optical stimulation of these synaptic inputs. Optical stimulation of these glutamatergic fibres required intra-NAc dopamine D1-type receptor signalling, but not D2-type receptor signalling. Brief optical inhibition of fibres from the BLA to the NAc reduced cue-evoked intake of sucrose, demonstrating an important role of this specific pathway in controlling naturally occurring reward-related behaviour. Moreover, although optical stimulation of glutamatergic fibres from the medial prefrontal cortex to the NAc also elicited reliable excitatory synaptic responses, optical self-stimulation behaviour was not observed by activation of this pathway. These data indicate that whereas the BLA is important for processing both positive and negative affect, the glutamatergic pathway from the BLA to the NAc, in conjunction with dopamine signalling in the NAc, promotes motivated behavioural responding. Thus, optogenetic manipulation of anatomically distinct synaptic inputs to the NAc reveals functionally distinct properties of these inputs in controlling reward-seeking behaviours.

  18. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  19. The Effects of Excitatory and Inhibitory Social Cues on Cocaine-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Mark Andrew Smith

    2016-11-01

    Full Text Available Social partners influence the likelihood of using drugs, developing a substance use disorder, and relapse to drug use after a period of abstinence. Preclinical studies report that social cues influence the acquisition of cocaine use, the escalation of cocaine use over time, and the compulsive patterns of cocaine use that emerge during an extended binge. The purpose of this study was to examine the effects of social cues on the reinstatement of cocaine-seeking behavior after a period of abstinence. Male rats were obtained at weaning, assigned to triads (3 rats/cage, reared to adulthood, and implanted with intravenous catheters. Rats from each triad were then assigned to one of three conditions: (1 test rats were trained to self-administer cocaine and were tested for reinstatement, (2 cocaine partners were trained to self-administer cocaine and were predictive of response-contingent cocaine delivery, and (3 abstinent partners were not given access to cocaine and were predictive of extinction. Test rats alternated social partners every 5 days for 20 days such that responding was reinforced with cocaine in the presence of the cocaine partner (S+ for 10 days and not reinforced with cocaine in the presence of the abstinent partner (S- for 10 days. Responding of the test rats was then extinguished over 7 days under isolated conditions. Tests of reinstatement were then conducted in the presence of the cocaine partner and abstinent partner under extinction conditions. Neither social partner reinstated responding relative to that observed on the final day of extinction; however, responding was greater in the presence of the cocaine partner (S+ than the abstinent partner (S- during the reinstatement test. These data fail to demonstrate that a social partner reinstates cocaine-seeking behavior after a period of abstinence, but they do indicate that social partners can serve as either excitatory or inhibitory discriminative stimuli to influence drug

  20. Role of cyclooxygenase isoforms in the altered excitatory motor pathways of human colon with diverticular disease.

    Science.gov (United States)

    Fornai, M; Colucci, R; Antonioli, L; Ippolito, C; Segnani, C; Buccianti, P; Marioni, A; Chiarugi, M; Villanacci, V; Bassotti, G; Blandizzi, C; Bernardini, N

    2014-08-01

    The COX isoforms (COX-1, COX-2) regulate human gut motility, although their role under pathological conditions remains unclear. This study examines the effects of COX inhibitors on excitatory motility in colonic tissue from patients with diverticular disease (DD). Longitudinal muscle preparations, from patients with DD or uncomplicated cancer (controls), were set up in organ baths and connected to isotonic transducers. Indomethacin (COX-1/COX-2 inhibitor), SC-560 (COX-1 inhibitor) or DFU (COX-2 inhibitor) were assayed on electrically evoked, neurogenic, cholinergic and tachykininergic contractions, or carbachol- and substance P (SP)-induced myogenic contractions. Distribution and expression of COX isoforms in the neuromuscular compartment were assessed by RT-PCR, Western blot and immunohistochemical analysis. In control preparations, neurogenic cholinergic contractions were enhanced by COX inhibitors, whereas tachykininergic responses were blunted. Carbachol-evoked contractions were increased by indomethacin or SC-560, but not DFU, whereas all inhibitors reduced SP-induced motor responses. In preparations from DD patients, COX inhibitors did not affect electrically evoked cholinergic contractions. Both indomethacin and DFU, but not SC-560, decreased tachykininergic responses. COX inhibitors did not modify carbachol-evoked motor responses, whereas they counteracted SP-induced contractions. COX-1 expression was decreased in myenteric neurons, whereas COX-2 was enhanced in glial cells and smooth muscle. In control colon, COX-1 and COX-2 down-regulate cholinergic motility, whereas both isoforms enhance tachykininergic motor activity. In the presence of DD, there is a loss of modulation by both COX isoforms on the cholinergic system, whereas COX-2 displays an enhanced facilitatory control on tachykininergic contractile activity. © 2014 The British Pharmacological Society.

  1. Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata.

    Science.gov (United States)

    Rojas, Alejandra; Torres, Mónica; Rojas, J Isela; Feregrino, Angélica; Heimer-de la Cotera, Edgar P

    2002-06-01

    In the present paper, we describe the results obtained from a preliminary pharmacological and biochemical study of the fire coral Millepora complanata, a regular component of coral reefs in the Mexican Caribbean. The protein-containing crude extract obtained from M. complanata (tested from 0.001 to 1000 microg protein/ml) caused a concentration-dependent stimulation of spontaneous contractions of the guinea pig ileum. The extract (EC(50)=11.55+/-2.36 microg/ml) was approximately 12-fold less potent than ionomycin (EC(50)=0.876+/-0.25 microg/ml) and its maximum induced contraction (1mg protein/ml) was equivalent to 68% of the response to 60mM KCl. FPLC size exclusion chromatography of the M. complanta extract afforded 12 primary fractions, of which only FV (containing proteins with molecular weights ranging from 17 to 44 kDa) and FVIII (consisting of peptides with molecular weights lesser than 1.8k Da) elicited an excitatory effect when tested at the EC(50) of the original extract. After incubation in Ca(2+)-free medium, the ileal response to FV and FVIII was significantly reduced. Blockage of L-type Ca(2+) channels with nifedipine (1 microM) inhibited FV and FVIII-evoked contractions. Cd(2+) (10 microM), an unspecific blocker of voltage-activated calcium channels, also antagonized FV and FVIII-induced effects, whereas the Na(+) channel blocker tetrodotoxin (10nM) did not significantly affect FV and FVIII responses. These results suggest that the contractions induced by the bioactive fractions obtained from the crude extract of M. complanata are caused mainly by a direct action on smooth muscle cells, via an increase in Ca(2+) permeability that occurs, at least partly, through L-type voltage-dependent Ca(2+) channels found in the cell membrane of smooth muscle. Copright 2002 Elsevier Science Ltd.

  2. Healthcare resource use and costs of opioid-induced constipation among non-cancer and cancer patients on opioid therapy

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Christensen, Helene Nordahl; Ibsen, Rikke

    2017-01-01

    -based cohort study including patients ≥18 years of age initiating ≥4 weeks opioid therapy (1998–2012) in Denmark. A measure of OIC was constructed based on data from Danish national health registries, and defined as ≥1 diagnosis of constipation, diverticulitis, mega colon, ileus/subileus, abdominal pain....../acute abdomen or haemorrhoids and/or ≥2 subsequent prescription issues of laxatives. Total healthcare resource utilization and costs (including pharmacy dispense, inpatient-, outpatient-, emergency room- and primary care) were estimated according to OIC status, opioid treatment dosage and length, gender, age...... characteristics of non-cancer OIC patients showed a higher frequency of strong opioid treatment (69% versus 41%), long-term opioid treatment (1189 days versus 584 days), advanced age (73 years versus 61 years), and cardiovascular disease (31% versus 19%) compared to those without OIC (P 

  3. Gabapentin, opioids, and the risk of opioid-related death: A population-based nested case-control study.

    Directory of Open Access Journals (Sweden)

    Tara Gomes

    2017-10-01

    Full Text Available Prescription opioid use is highly associated with risk of opioid-related death, with 1 of every 550 chronic opioid users dying within approximately 2.5 years of their first opioid prescription. Although gabapentin is widely perceived as safe, drug-induced respiratory depression has been described when gabapentin is used alone or in combination with other medications. Because gabapentin and opioids are both commonly prescribed for pain, the likelihood of co-prescription is high. However, no published studies have examined whether concomitant gabapentin therapy is associated with an increased risk of accidental opioid-related death in patients receiving opioids. The objective of this study was to investigate whether co-prescription of opioids and gabapentin is associated with an increased risk of accidental opioid-related mortality.We conducted a population-based nested case-control study among opioid users who were residents of Ontario, Canada, between August 1, 1997, and December 31, 2013, using administrative databases. Cases, defined as opioid users who died of an opioid-related cause, were matched with up to 4 controls who also used opioids on age, sex, year of index date, history of chronic kidney disease, and a disease risk index. After matching, we included 1,256 cases and 4,619 controls. The primary exposure was concomitant gabapentin use in the 120 days preceding the index date. A secondary analysis characterized gabapentin dose as low (<900 mg daily, moderate (900 to 1,799 mg daily, or high (≥1,800 mg daily. A sensitivity analysis examined the effect of concomitant nonsteroidal anti-inflammatory drug (NSAID use in the preceding 120 days. Overall, 12.3% of cases (155 of 1,256 and 6.8% of controls (313 of 4,619 were prescribed gabapentin in the prior 120 days. After multivariable adjustment, co-prescription of opioids and gabapentin was associated with a significantly increased odds of opioid-related death (odds ratio [OR] 1.99, 95% CI

  4. Characteristics of opioid-users whose death was related to opioid-toxicity: a population-based study in Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Parvaz Madadi

    Full Text Available The impact of the prescription opioid public health crisis has been illustrated by the dramatic increase in opioid-related deaths in North America. We aimed to identify patterns and characteristics amongst opioid-users whose cause of death was related to opioid toxicity.This was a population-based study of Ontarians between the years 2006 and 2008. All drug-related deaths which occurred during this time frame were reviewed at the Office of the Chief Coroner of Ontario, and opioid-related deaths were identified. Medical, toxicology, pathology, and police reports were comprehensively reviewed. Narratives, semi-quantitative, and quantitative variables were extracted, tabulated, and analyzed.Out of 2330 drug-related deaths in Ontario, 58% were attributed either in whole or in part, to opioids (n = 1359. Oxycodone was involved in approximately one-third of all opioid-related deaths. At least 7% of the entire cohort used opioids that were prescribed for friends and/or family, 19% inappropriately self-administered opioids (injection, inhalation, chewed patch, 3% were recently released from jail, and 5% had been switched from one opioid to another near the time of death. Accidental deaths were significantly associated with personal history of substance abuse, enrollment in methadone maintenance programs, cirrhosis, hepatitis, and cocaine use. Suicides were significantly associated with mental illness, previous suicide attempts, chronic pain, and a history of cancer.These results identify novel, susceptible groups of opioid-users whose cause of death was related to opioids in Ontario and provide the first evidence to assist in quantifying the contribution of opioid misuse and diversion amongst opioid-related mortality in Canada. Multifaceted prevention strategies need to be developed based on subpopulations of opioid users.

  5. Nurses and opioids: results of a bi-national survey on mental models regarding opioid administration in hospitals.

    Science.gov (United States)

    Guest, Charlotte; Sobotka, Fabian; Karavasopoulou, Athina; Ward, Stephen; Bantel, Carsten

    2017-01-01

    Pain remains insufficiently treated in hospitals. Increasing evidence suggests human factors contribute to this, due to nurses failing to administer opioids. This behavior might be the consequence of nurses' mental models about opioids. As personal experience and conceptions shape these models, the aim of this prospective survey was to identify model-influencing factors. A questionnaire was developed comprising of 14 statements concerning ideations about opioids and seven questions concerning demographics, indicators of adult learning, and strength of religious beliefs. Latent variables that may underlie nurses' mental models were identified using undirected graphical dependence models. Representative items of latent variables were employed for ordinal regression analysis. Questionnaires were distributed to 1,379 nurses in two London, UK, hospitals (n=580) and one German (n=799) hospital between September 2014 and February 2015. A total of 511 (37.1%) questionnaires were returned. Mean (standard deviation) age of participants were 37 (11) years; 83.5% participants were female; 45.2% worked in critical care; and 51.5% had more than 10 years experience. Of the nurses, 84% were not scared of opioids, 87% did not regard opioids as drugs to help patients die, and 72% did not view them as drugs of abuse. More English (41%) than German (28%) nurses were afraid of criminal investigations and were constantly aware of side effects (UK, 94%; Germany, 38%) when using opioids. Four latent variables were identified which likely influence nurses' mental models: "conscious decision-making"; "medication-related fears"; "practice-based observations"; and "risk assessment". They were predicted by strength of religious beliefs and indicators of informal learning such as experience but not by indicators of formal learning such as conference attendance. Nurses in both countries employ analytical and affective mental models when administering the opioids and seem to learn from experience

  6. Pleiotropic opioid regulation of spinal endomorphin 2 release and its adaptations to opioid withdrawal are sexually dimorphic.

    Science.gov (United States)

    Chakrabarti, Sumita; Liu, Nai-Jiang; Zadina, James E; Sharma, Tarak; Gintzler, Alan R

    2012-01-01

    We studied adaptations to acute precipitated opioid withdrawal of spinal μ-opioid receptor (MOR)-coupled regulation of the release of endomorphin 2 (EM2). The release of this highly MOR-selective endogenous opioid from opioid-naive spinal tissue of male rats is subjected to MOR-coupled positive as well as negative modulation via cholera toxin-sensitive G(s) and pertussis toxin-sensitive G(i)/G(o), respectively. The net effect of this concomitant bidirectional modulation is inhibitory. MOR-coupled pleiotropic regulation of EM2 release is retained in opioid-withdrawn spinal tissue of male rats, but the balance of MOR-coupled inhibitory and facilitatory regulation shifted such that facilitatory regulation predominates. Augmented coupling of MOR to G(s) is causally associated with this change. Strikingly, pleiotropic characteristics of MOR-coupled regulation of spinal EM2 release and adaptations thereof to opioid withdrawal are male-specific. In females, MOR-coupled regulation of EM2 release from opioid-naive and -withdrawn spinal tissue does not have a significant G(s)-coupled facilitatory component, and MOR-coupled inhibition of EM2 release persists unabated in withdrawn preparations. The male-specific adaptations to chronic morphine that shift the relative predominance of opposing dual G protein-coupled MOR pathways provides a mechanism for mitigating inhibitory MOR signaling without losing MOR-coupled feedback regulation. These adaptations enable using endogenous EM2 as a substitute for morphine that had been precipitously removed. The sexually dimorphic functionality and regulation of spinal EM2/MOR-coupled signaling suggest the clinical utility of using sex-specific treatments for addiction that harness the activity of endogenous opioids.

  7. Undertreatment of pain and low use of opioids in Latin America.

    Science.gov (United States)

    García, César Amescua; Santos Garcia, Joao Batista; Rosario Berenguel Cook, María Del; Colimon, Frantz; Flores Cantisani, José Alberto; Guerrero, Carlos; Rocío Guillén Núnez, María Del; Hernández Castro, John Jairo; Kraychete, Durval Campos; Lara-Solares, Argelia; Lech, Osvandré; Rico Pazos, María Antonieta; Gallegos, Manuel Sempértegui; Marcondes, Lizandra Pattaro

    2018-05-01

    Pain is highly prevalent among the adult Latin American population. However, many patients with moderate to severe pain do not have access to effective pain management with opioids due to limited access to healthcare, overuse of nonopioid analgesics, regulatory barriers and lack of appropriate information about opioids. There is scarce training on use of opioids among physicians and other healthcare providers, which leads to misconceptions, mainly related to a fear of prescribing opioids. Although opioids are safe and effective drugs for the treatment of moderate to severe chronic pain, the use of opioids in Latin American nations is clearly below standards compared with developed countries.

  8. Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium.

    LENUS (Irish Health Repository)

    Fanning, Rebecca A

    2013-01-05

    The existence of opioid receptors in mammalian myometrial tissue is now widely accepted. Previously enkephalin degrading enzymes have been shown to be elevated in pregnant rat uterus and a met-enkephalin analogue has been shown to alter spontaneous contractility of rat myometrium. Here we have undertaken studies to determine the effects of met-enkephalin on in vitro human myometrial contractility and investigate the expression of opioid receptors in pregnant myometrium. Myometrial biopsies were taken from women undergoing elective caesarean delivery at term. Organ bath experiments were used to investigate the effect of the met-enkephalin analogue [d-Ala 2, d-met 5] enkephalin (DAMEA) on spontaneous contractility. A confocal immunofluorescent technique and real time PCR were used to determine the expression of protein and mRNA, respectively for two opioid receptor subtypes, mu and delta. DAMEA had a concentration dependent inhibitory effect on contractile activity (1 × 10(-7)M-1 × 10(-4)M; 54% reduction in contractile activity, P<0.001 at 1 × 10(-4)M concentration). Mu and delta opioid receptor protein sub-types and their respective mRNA were identified in all tissues sampled. This is the first report of opioid receptor expression and of an opioid mediated uterorelaxant action in term human non-labouring myometrium in vitro.

  9. Experience of the use of Ketamine to manage opioid withdrawal in an addicted woman: a case report

    OpenAIRE

    Lalanne, Laurence; Nicot, Chloe; Lang, Jean-Philippe; Bertschy, Gilles; Salvat, Eric

    2016-01-01

    Background Opioids are good painkillers, but many patients treated with opioids as painkillers developed a secondary addiction. These patients need to stop misusing opioids, but the mild-to-severe clinical symptoms associated with opioid withdrawal risk increasing their existing pain. In such cases, ketamine, which is used by anaesthetists and pain physicians to reduce opioid medication, may be an effective agent for managing opioid withdrawal. Case presentation We describe the case of a woma...

  10. Studies on radiolysis of amino acids, (4)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    In order to elucidate the effect of adding methionine on the loss of amino acid by γ-irradiation in amino acid mixture, because methionine is one of the most radio-sensitive in amino acids, the remaining amino acids in γ-irradiated aqueous solution of amino acid mixture were studied by determining the total amount of each remaining amino acid. The mixture of 18 amino acids which contains methionine and that of 17 amino acids without methionine were used. Amino acids and the irradiation products were determined with an automatic amino acid analyzer. The total amount of remaining amino acids in the irradiated solution of 18 amino acid mixture was more than that of 17 amino acid mixture. The order of the total amount of each remaining amino acid by low-dose irradiation was Gly>Ala>Asp>Glu>Val>Ser, Pro>Ile, Leu>Thr>Lys>Tyr>Arg>His>Phe>Try>Cys>Met. In case of the comparison of amino acids of same kinds, the total remaining amount of each amino acid in amino acid mixture was more than that of individually irradiated amino acid. The total remaining amounts of glycine, alanine and aspartic acid in irradiated 17 amino acid mixture resulted in slight increase. Ninhydrin positive products formed from 18 amino acid mixture irradiated with 2.640 x 10 3 rad were ammonia, methionine sulfoxide and DOPA of 1.34, 0.001 and 0.25 μmoles/ml of the irradiated solution, respectively. (Kobake, H.)

  11. Characteristics of prescribers whose patients shop for opioids: results from a cohort study.

    Science.gov (United States)

    Cepeda, M Soledad; Fife, Daniel; Berlin, Jesse A; Mastrogiovanni, Gregory; Yuan, Yingli

    2012-01-01

    Little is known about the prevalence of opioid shoppers in clinical practices and the relation between prescriber characteristics and the risk of having opioid shoppers. Describe the prevalence of opioid shoppers in prescribers' practices. Assess the relation between prescribers' characteristics and patient opioid shopping behavior. Retrospective cohort study using a large US retail prescription database. Patients with ≥1 opioid dispensing were followed 18 months. These patients' prescribers are the focus of the study. A patient was a "shopper" if he or she had opioid prescriptions written by ≥1 prescriber with ≥1 day of overlap filled at ≥3 pharmacies and a "heavy shopper" if he or she had ≥5 shopping episodes. The proportions of shoppers by prescriber and the proportion of prescribers with ≥1 shopper or heavy shopper were calculated. Among 858,290 opioid prescribers, most (87 percent) had no shoppers and 98 percent had no heavy shoppers. Prescribers who were aged 70-79 years, male, or who prescribed schedule II opioids had an increased likelihood of having shoppers. As the number of patients for whom a prescriber prescribed opioids increased, the proportion of shoppers also increased. Prescribers with 66 or more patients receiving opioids, who represented 25 percent of prescribers, prescribed for 82 percent of all shoppers. The great majority of opioid prescribers appear to have no shoppers in their practice. Any educational program will be more cost effective if targeted to prescribers of schedule II opioids with a large volume of patients requiring opioids.

  12. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier

  13. Advances in the delivery of buprenorphine for opioid dependence

    Directory of Open Access Journals (Sweden)

    Rosenthal RN

    2017-08-01

    Full Text Available Richard N Rosenthal,1 Viral V Goradia2 1Department of Psychiatry, Addiction Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, 2Department of Psychiatry, Upstate Medical University, Syracuse, NY, USA Abstract: Opioid use disorders (OUDs have long been a global problem, but the prevalence rates have increased over 20 years to epidemic proportions in the US, with concomitant increases in morbidity and all-cause mortality, but especially opioid overdose. These increases are in part attributable to a several-fold expansion in the prescription of opioid pain medications over the same time period. Opioid detoxification and psychosocial treatments alone have each not yielded sufficient efficacy for OUD, but μ-opioid receptor agonist, partial agonist, and antagonist medications have demonstrated the greatest overall benefit in OUD treatment. Buprenorphine, a μ-opioid receptor partial agonist, has been used successfully on an international basis for several decades in sublingual tablet and film preparations for the treatment of OUD, but the nature of formulation, which is typically self-administered, renders it susceptible to nonadherence, diversion, and accidental exposure. This article reviews the clinical trial data for novel buprenorphine delivery systems in the form of subcutaneous depot injections, transdermal patches, and subdermal implants for the treatment of OUD and discusses both the clinical efficacy of longer-acting formulations through increasing consistent medication exposure and their potential utility in reducing diversion. These new delivery systems also offer new dosing opportunities for buprenorphine and strategies for dosing intervals in the treatment of OUD. Keywords: opioid use disorder, buprenorphine, drug diversion, drug implants, depot medications, maintenance therapy, treatment adherence

  14. The opioid receptors of the rat periaqueductal gray

    Energy Technology Data Exchange (ETDEWEB)

    Fedynyshyn, J.P.

    1989-01-01

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO, DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.

  15. Review of Opioid Pharmacogenetics and Considerations for Pain Management.

    Science.gov (United States)

    Owusu Obeng, Aniwaa; Hamadeh, Issam; Smith, Michael

    2017-09-01

    Opioid analgesics are the standards of care for the treatment of moderate to severe nociceptive pain, particularly in the setting of cancer and surgery. Their analgesic properties mainly emanate from stimulation of the μ receptors, which are encoded by the OPRM1 gene. Hepatic metabolism represents the major route of elimination, which, for some opioids, namely codeine and tramadol, is necessary for their bioactivation into more potent analgesics. The highly polymorphic nature of the genes coding for phase I and phase II enzymes (pharmacokinetics genes) that are involved in the metabolism and bioactivation of opioids suggests a potential interindividual variation in their disposition and, most likely, response. In fact, such an association has been substantiated in several pharmacokinetic studies described in this review, in which drug exposure and/or metabolism differed significantly based on the presence of polymorphisms in these pharmacokinetics genes. Furthermore, in some studies, the observed variability in drug exposure translated into differences in the incidence of opioid-related adverse effects, particularly nausea, vomiting, constipation, and respiratory depression. Although the influence of polymorphisms in pharmacokinetics genes, as well as pharmacodynamics genes (OPRM1 and COMT) on response to opioids has been a subject of intense research, the results have been somehow conflicting, with some evidence insinuating for a potential role for OPRM1. The Clinical Pharmacogenetics Implementation Consortium guidelines provide CYP2D6-guided therapeutic recommendations to individualize treatment with tramadol and codeine. However, implementation guidelines for other opioids, which are more commonly used in real-world settings for pain management, are currently lacking. Hence, further studies are warranted to bridge this gap in our knowledge base and ultimately ascertain the role of pharmacogenetic markers as predictors of response to opioid analgesics. © 2017

  16. Impact of opioid therapy on gonadal hormones: focus on buprenorphine.

    Science.gov (United States)

    Varma, Anjali; Sapra, Mamta; Iranmanesh, Ali

    2018-02-17

    Objective The USA is in the midst of an opioid crisis. Understanding the impact of opioids and commonly used treatments for opioid dependence is essential for clinicians and researchers in order to educate and treat the nation's growing population with opioid use disorders. As a relatively new treatment for opioid dependence, buprenorphine is gaining popularity to the extent of becoming not only a preferred approach to the maintenance of opiate addiction, but also an option for chronic pain management. The purpose of this report is to review the available evidence on the endocrine effects of buprenorphine, particularly as it relates to the hypothalamic-pituitary-gonadal (HPG) axis, which is controversial and not fully defined. Method We conducted a Pubmed search (2000-2017) for human studies in the English language for articles that were available as full length regarding buprenorphine, endocrinopathy, hypogonadism, bone density, opioids. Case reports were also reviewed, although prospective studies and randomized controlled trials received more weight. Results Opioid induced hypogonadism is well established. Most studies report that buprenorphine being a partial agonist/antagonist may not be impacting the pituitary trophic hormones as much. There are reports of sexual dysfunction in subjects maintained on buprenorphine, some without hormonal correlation. Thus with the understanding that pertinent clinical studies are limited in number, varied in methodology, mostly cross sectional, predominantly in men and small number of participants, more research in this area is warranted. Conclusion Based on a comprehensive review of the available literature, we conclude that despite its increasing popularity, buprenorphine has not been adequately studied in respect to its long-term effects on the hypothalamic-pituitary-adrenal (HPA) axis. There is a great need for longitudinal systematic trials to define the potential buprenorphine-induced endocrine consequences.

  17. A Conceptual Framework for Understanding Unintended Prolonged Opioid Use.

    Science.gov (United States)

    Hooten, W Michael; Brummett, Chad M; Sullivan, Mark D; Goesling, Jenna; Tilburt, Jon C; Merlin, Jessica S; St Sauver, Jennifer L; Wasan, Ajay D; Clauw, Daniel J; Warner, David O

    2017-12-01

    An urgent need exists to better understand the transition from short-term opioid use to unintended prolonged opioid use (UPOU). The purpose of this work is to propose a conceptual framework for understanding UPOU that posits the influence of 3 principal domains that include the characteristics of (1) individual patients, (2) the practice environment, and (3) opioid prescribers. Although no standardized method exists for developing a conceptual framework, the process often involves identifying corroborative evidence, leveraging expert opinion to identify factors for inclusion in the framework, and developing a graphic depiction of the relationships between the various factors and the clinical problem of interest. Key patient characteristics potentially associated with UPOU include (1) medical and mental health conditions; (2) pain etiology; (3) individual affective, behavioral, and neurophysiologic reactions to pain and opioids; and (4) sociodemographic factors. Also, UPOU could be influenced by structural and health care policy factors: (1) the practice environment, including the roles of prescribing clinicians, adoption of relevant practice guidelines, and clinician incentives or disincentives, and (2) the regulatory environment. Finally, characteristics inherent to clinicians that could influence prescribing practices include (1) training in pain management and opioid use; (2) personal attitudes, knowledge, and beliefs regarding the risks and benefits of opioids; and (3) professionalism. As the gatekeeper to opioid access, the behavior of prescribing clinicians directly mediates UPOU, with the 3 domains interacting to determine this behavior. This proposed conceptual framework could guide future research on the topic and allow plausible hypothesis-based interventions to reduce UPOU. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  18. Variability in prescription opioid intake and reinforcement amongst 129 substrains.

    Science.gov (United States)

    Jimenez, S M; Healy, A F; Coelho, M A; Brown, C N; Kippin, T E; Szumlinski, K K

    2017-09-01

    Opioid abuse in the United States has reached epidemic proportions, with treatment admissions and deaths associated with prescription opioid abuse quadrupling over the past 10 years. Although genetics are theorized to contribute substantially to inter-individual variability in the development, severity and treatment outcomes of opioid abuse/addiction, little direct preclinical study has focused on the behavioral genetics of prescription opioid reinforcement and drug-taking. Herein, we employed different 129 substrains of mice currently available from The Jackson Laboratory (129S1/SvlmJ, 129X1/SvJ, 129S4/SvJaeJ and 129P3/J) as a model system of genetic variation and assayed mice for oral opioid intake and reinforcement, as well as behavioral and somatic signs of dependence. All substrains exhibited a dose-dependent increase in oral oxycodone and heroin preference and intake under limited-access procedures and all, but 129S1/SvlmJ mice, exhibited oxycodone reinforcement. Relative to the other substrains, 129P3/J mice exhibited higher heroin and oxycodone intake. While 129X1/SvJ exhibited the highest anxiety-like behavior during natural opioid withdrawal, somatic and behavior signs of precipitated withdrawal were most robust in 129P3/J mice. These results demonstrate the feasibility and relative sensitivity of our oral opioid self-administration procedures for detecting substrain differences in drug reinforcement/intake among 129 mice, of relevance to the identification of genetic variants contributing to high vs. low oxycodone reinforcement and intake. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Resisting Prescribed Opioids: A Qualitative Study of Decision Making in Patients Taking Opioids for Chronic Noncancer Pain.

    Science.gov (United States)

    Paterson, Charlotte; Ledgerwood, Kay; Arnold, Carolyn; Hogg, Malcolm; Xue, Charlie; Zheng, Zhen

    2016-04-01

    Opioids are increasingly prescribed for chronic noncancer pain across the developed world. Clinical guidelines for management of these patients focus on over-use. However, research into other types of long-term medication indicates that many patients minimize drug use whenever possible. To identify the varying influences on patients' decisions about their use of prescribed opioids and explore whether concepts of resistance and minimization of intake apply to these patients. A multiprofessional team performed a qualitative interview study using the constant-comparative method. Patient's decision making was explored in depth and with a thematic analysis utilizing a published "Model of medicine-taking." A purposive sample of 20 participants drawn from two pain clinics in Melbourne, Australia. The sample was biased toward patients interested in nonmedication pain management options. Patients' needs to obtain relief from severe pain, maintain function, and minimize side effects could lead to under-use as well as over-use of prescribed opioids. In keeping with the published Model of medicine-taking, resistance to taking opioids was a common and important influence on behavior. In the face of severe chronic pain, many participants used a variety of strategies to evaluate, avoid, reduce, self-regulate, and replace opioids. Furthermore, participants perceived a resistance to opioids within the system and among some healthcare professionals. This sometimes adversely affected their adherence. Both patients and doctors exhibit aspects of resistance to the use of prescribed opioids for chronic noncancer pain, suggesting that this shared concern could be the basis of a productive therapeutic alliance to improve communication and shared decision making. Clinical guidelines for opioids use for chronic noncancer pain focus on over-use. Our qualitative interview study found that many patients resisted and minimized the use of opioids. Using a published "Model of medicine-taking," we

  20. Wavelet analysis of nonstationary fluctuations of Monte Carlo-simulated excitatory postsynaptic currents.

    Science.gov (United States)

    Aristizabal, F; Glavinovic, M I

    2003-10-01

    currents is not highly accurate owing to the varying number of the activatable AMPA channels caused by desensitization. The spatial nonuniformity of open, bound, and desensitized AMPA channels, and the time dependence and spatial nonuniformity of the glutamate concentration in the synaptic cleft, further reduce the accuracy of estimates of the number of AMPA channels from synaptic currents. In conclusion, wavelet analysis of nonstationary fluctuations of patch and synaptic currents expands our ability to determine accurately the variance and frequency of current fluctuations, demonstrates the limits of applicability of techniques currently used to evaluate the single channel current and number of AMPA channels, and offers new insights into the mechanisms involved in the generation of unitary quantal events at excitatory central synapses.

  1. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  2. Irradiation exposure modulates central opioid functions

    International Nuclear Information System (INIS)

    Dougherty, P.M.; Dafny, N.

    1987-01-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets

  3. Irradiation exposure modulates central opioid functions

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, P.M.; Dafny, N.

    1987-11-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets.

  4. Amino Acids in Cerebrospinal Fluid of Patients with Aneurysmal Subarachnoid Haemorrhage: An Observational Study

    Directory of Open Access Journals (Sweden)

    Bartosz Sokół

    2017-08-01

    Full Text Available BackgroundThe authors are aware of only one article investigating amino acid concentrations in cerebrospinal fluid (CSF in patients with ruptured intracranial aneurysms, and this was published 31 years ago. Since then, both management of subarachnoid haemorrhage (SAH and amino acid assay techniques have seen radical alterations, yet the pathophysiology of SAH remains unclear.ObjectiveTo analyse the pattern of concentrations of amino acids and related compounds in patients with different outcomes following aneurysmal SAH.Methods49 CSF samples were collected from 23 patients on days 0–3, 5, and 10 post-SAH. Concentrations of 33 amino acids and related compounds were assayed by liquid chromatography tandem mass spectrometry in patients with good [Glasgow Outcome Scale (GOS 1–3] and poor (GOS 4–5 outcome.ResultsOf the 33 compounds assayed, only hydroxyproline and 3-aminoisobutyric acid appeared not to increase significantly following SAH. In poor outcome patients, we found significantly higher concentrations of aspartic acid (p = 0.038, glutamic acid (p = 0.038, and seven other compounds on days 0–3 post-SAH; glutamic acid (p = 0.041 on day 5 post-SAH, and 2-aminoadipic acid (p = 0.033 on day 10 post-SAH. The most significant correlation with GOS at 3 months was found for aminoadipic acid on day 10 post-SAH (cc = −0.81.ConclusionAneurysmal rupture leads to a generalised increase of amino acids and related compounds in CSF. The patterns differ between good and poor outcome cases. Increased excitatory amino acids are strongly indicative of poor outcome.

  5. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  6. Managing Opioid Addiction Risk in Plastic Surgery during the Perioperative Period.

    Science.gov (United States)

    Demsey, Daniel; Carr, Nicholas J; Clarke, Hance; Vipler, Sharon

    2017-10-01

    Opioid addiction is a public health crisis that affects all areas of medicine. Large numbers of the population across all racial and economic demographics misuse prescription opioids and use illicit opioids. The current understanding is that opioid misuse is a disease that requires treatment, and is not an issue of choice or character. Use of opioid medication is a necessary part of postoperative analgesia, but many physicians are unsure of how to do this safely given the risk of patients developing an opioid misuse disorder. This review gives an update of the current state of the opioid crisis, explains how current surgeons' prescribing practices are contributing to it, and gives recommendations on how to use opioid medication safely in the perioperative period.

  7. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    Science.gov (United States)

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  8. Effect of Intravenous Acetaminophen on Postoperative Opioid Use in Bariatric Surgery Patients

    OpenAIRE

    Wang, Shan; Saha, Ronik; Shah, Neal; Hanna, Adel; DeMuro, Jonas; Calixte, Rose; Brathwaite, Collin

    2015-01-01

    Opioids are often used to relieve pain after surgery, but they are associated with serious adverse effects. In this retrospective chart-review analysis, the use of intravenous acetaminophen did not reduce opioid use following bariatric surgery.

  9. South African guideline for the use of chronic opioid therapy for ...

    African Journals Online (AJOL)

    pain and chronic pain associated with cancer and at the end of life. Although .... Opioid drugs are agonists that bind to endogenous opioid receptors and mimic ..... interstitial cystitis/painful bladder syndrome, chronic prostate pain, and irritable ...

  10. The challenge of perioperative pain management in opioid-tolerant patients

    Science.gov (United States)

    Coluzzi, Flaminia; Bifulco, Francesca; Cuomo, Arturo; Dauri, Mario; Leonardi, Claudio; Melotti, Rita Maria; Natoli, Silvia; Romualdi, Patrizia; Savoia, Gennaro; Corcione, Antonio

    2017-01-01

    The increasing number of opioid users among chronic pain patients, and opioid abusers among the general population, makes perioperative pain management challenging for health care professionals. Anesthesiologists, surgeons, and nurses should be familiar with some pharmacological phenomena which are typical of opioid users and abusers, such as tolerance, physical dependence, hyperalgesia, and addiction. Inadequate pain management is very common in these patients, due to common prejudices and fears. The target of preoperative evaluation is to identify comorbidities and risk factors and recognize signs and symptoms of opioid abuse and opioid withdrawal. Clinicians are encouraged to plan perioperative pain medications and to refer these patients to psychiatrists and addiction specialists for their evaluation. The aim of this review was to give practical suggestions for perioperative management of surgical opioid-tolerant patients, together with schemes of opioid conversion for chronic pain patients assuming oral or transdermal opioids, and patients under maintenance programs with methadone, buprenorphine, or naltrexone. PMID:28919771

  11. 77 FR 44695 - Revised Meeting Notice: Leadership Meeting on Maternal, Fetal, and Infant Opioid Exposure and...

    Science.gov (United States)

    2012-07-30

    ... maternal prescription drug abuse and dependence and resulting increases in opioid exposed babies with NAS and possibly other consequences. Misuse and abuse of, and dependence upon, prescription opioid drugs... access treatment through family medicine and gynecological practitioners, and specialty treatment...

  12. Dexmedetomidine infusion to facilitate opioid detoxification and withdrawal in a patient with chronic opioid abuse

    Directory of Open Access Journals (Sweden)

    Surjya Prasad Upadhyay

    2011-01-01

    Full Text Available Many patients are admitted to the intensive care unit (ICU for acute intoxication, serious complication of overdose, or withdrawal symptoms of illicit drugs. An acute withdrawal of drugs with addiction potential is associated with a sympathetic overactivity leading to marked psychomimetic disturbances. Acute intoxication or withdrawal of such drugs is often associated with life-threatening complications which require ICU admission and necessitate prolonged sedative analgesic medications, weaning from which is often complicated by withdrawal and other psychomimetic symptoms. Dexmedetomidine, an alpha-2 (α2 agonist, has been used successfully to facilitate withdrawal and detoxification of various drugs and also to control delirium in ICU patients. Herein, we report a case of a chronic opioid abuse (heroin patient admitted with acute overdose complications leading to a prolonged ICU course requiring sedative-analgesic medication; the drug withdrawal-related symptoms further complicated the weaning process. Dexmedetomidine infusion was successfully used as a sedative-analgesic to control the withdrawal-related psychomimetic symptoms and to facilitate smooth detoxification and weaning from opioid and other sedatives.

  13. Age differences in heroin and prescription opioid abuse among enrolees into opioid treatment programs

    Directory of Open Access Journals (Sweden)

    Fong Chunki

    2011-06-01

    Full Text Available Abstract Background In the United States, among those entering opioid treatment programs (OTPs, prescription opioid (PO abusers tend to be younger than heroin users. Admissions of older persons to OTPs have been increasing, and it is important to understand typical patterns of use among those older enrolees. Methods To disentangle the effect of age on recent heroin and PO abuse 29,114 enrolees into 85 OTPs were surveyed across 34 states from 2005-2009. OTPs where PO use was prevalent were oversampled. Results Mean age was 34; 28% used heroin only. Younger enrolees had increased odds of using POs relative to using heroin only but mixed model analysis showed that much of the total variability in type of use was attributed to variation in age between OTPs rather than within OTPs. Conclusions Organizational and cultural phenomena (e.g., OTP characteristics must be examined to better understand the context of individual characteristics (e.g., age. If nesting of enrolees within OTPs is ignored, then associations that primarily operate at the OTP level may be misinterpreted as exclusively dependent on individuals.

  14. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies.

    Science.gov (United States)

    Melichar, Jan K; Hume, Susan P; Williams, Tim M; Daglish, Mark R C; Taylor, Lindsay G; Ahmad, Rabia; Malizia, Andrea L; Brooks, David J; Myles, Judith S; Lingford-Hughes, Anne; Nutt, David J

    2005-01-01

    Substitute methadone prescribing is one of the main modes of treatment for opioid dependence with established evidence for improved health and social outcomes. However, the pharmacology underpinning the effects of methadone is little studied despite controversies about dosing in relation to outcome. We therefore examined the relationship between methadone dose and occupation of opioid receptors in brain using the positron emission tomography (PET) radioligand [(11)C]diprenorphine in humans and rats. Eight opioid-dependent subjects stable on their substitute methadone (18-90 mg daily) had an [(11)C]diprenorphine PET scan at predicted peak plasma levels of methadone. These were compared with eight healthy controls. No difference in [(11)C]diprenorphine binding was found between the groups, with no relationship between methadone dose and occupancy. Adult male Sprague-Dawley rats that had been given an acute i.v. injection of methadone hydrochloride (0.35, 0.5, 0.7, or 1.0 mg kg(-1)) before [(11)C]diprenorphine showed a dose-dependent increase in biodistribution but no reduction in [(11)C]diprenorphine binding. We suggest that the lack of a dose-dependent relationship between methadone dose, either given chronically in human or acutely in rat, and occupancy of opioid receptor measured with [(11)C]diprenorphine PET is related to efficacy of this opioid agonist at very low levels of opioid receptor occupancy. This has implications for understanding the actions of methadone in comparison with other opioid drugs such as partial agonists and antagonists.

  15. Buprenorphine implants in medical treatment of opioid addiction.

    Science.gov (United States)

    Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria

    2017-08-01

    Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.

  16. Reducing the health consequences of opioid addiction in primary care.

    Science.gov (United States)

    Bowman, Sarah; Eiserman, Julie; Beletsky, Leo; Stancliff, Sharon; Bruce, R Douglas

    2013-07-01

    Addiction to prescription opioids is prevalent in primary care settings. Increasing prescription opioid use is largely responsible for a parallel increase in overdose nationally. Many patients most at risk for addiction and overdose come into regular contact with primary care providers. Lack of routine addiction screening results in missed treatment opportunities in this setting. We reviewed the literature on screening and brief interventions for addictive disorders in primary care settings, focusing on opioid addiction. Screening and brief interventions can improve health outcomes for chronic illnesses including diabetes, hypertension, and asthma. Similarly, through the use of screening and brief interventions, patients with addiction can achieve improved health outcome. A spectrum of low-threshold care options can reduce the negative health consequences among individuals with opioid addiction. Screening in primary care coupled with short interventions, including motivational interviewing, syringe distribution, naloxone prescription for overdose prevention, and buprenorphine treatment are effective ways to manage addiction and its associated risks and improve health outcomes for individuals with opioid addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. [Management of opioid maintenance treatments when analgesic treatments are required].

    Science.gov (United States)

    Laprevote, Vincent; Geoffroy, Pierre A; Rolland, Benjamin; Leheup, Benoît F; Di Patrizio, Paolo; Cottencin, Olivier; Schwan, Raymund

    2013-01-01

    Opioid maintenance treatments (OMT) reduce illicit opiate use and its associated risks. They are often prescribed on a long-term basis. Physiological changes induced by long-term OMT may cause hyperalgesia and cross-tolerance to opioid agonists, which suggests that the dosage of analgesic treatment should be modified in cases of acute pain, especially when an opioid-based analgesia is required. When treatment with analgesics is necessary, OMT must be maintained, except in exceptional cases. If a split-dosing schedule is temporarily employed during OMT, the daily dosage should not be increased for analgesic purposes. Analgesic treatment must be managed differently in case of treatment with buprenorphine or methadone. With buprenorphine, non-opioid analgesics should be introduced first, if possible. If this strategy is inefficient or contraindicated, a temporary or definitive switch to methadone should be considered. In the case of methadone-based OMT, opioid analgesics should be added directly and the dosage should be adapted according to the level of pain reported by the patient. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity

    Directory of Open Access Journals (Sweden)

    Allison Doyle Brackley

    2016-09-01

    Full Text Available Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR, those that target the delta class (DOR also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2 naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP. protein kinase C (PKC-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.

  19. Haloperidol Disrupts Opioid-Antinociceptive Tolerance and Physical Dependence

    Science.gov (United States)

    Yang, Cheng; Chen, Yan; Tang, Lei

    2011-01-01

    Previous studies from our laboratory and others have implicated a critical role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in opioid tolerance and dependence. Translational research targeting the CaMKII pathway is challenging, if not impossible, because of a lack of selective inhibitors. We discovered in a preliminary study that haloperidol, a butyrophenone antipsychotic drug, inhibited CaMKII, which led us to hypothesize that haloperidol can attenuate opioid tolerance and dependence by inhibiting CaMKII. The hypothesis was tested in two rodent models of opioid tolerance and dependence. Pretreatment with haloperidol (0.2–1.0 mg/kg i.p.) prevented the development of morphine tolerance and dependence in a dose-dependent manner. Short-term treatment with haloperidol (0.06–0.60 mg/kg i.p.) dose-dependently reversed the established morphine-antinociceptive tolerance and physical dependence. Correlating with behavioral effects, pretreatment or short-term treatment with haloperidol dose-dependently inhibited morphine-induced up-regulation of supraspinal and spinal CaMKIIα activity. Moreover, haloperidol given orally was also effective in attenuating morphine-induced CaMKIIα activity, antinociceptive tolerance, and physical dependence. Taken together, these data suggest that haloperidol attenuates opioid tolerance and dependence by suppressing CaMKII activity. Because haloperidol is a clinically used drug that can be taken orally, we propose that the drug may be of use in attenuating opioid tolerance and dependence. PMID:21436292

  20. Pennsylvania State Core Competencies for Education on Opioids and Addiction.

    Science.gov (United States)

    Ashburn, Michael A; Levine, Rachel L

    2017-10-01

    The objective of this project was to develop core competencies for education on opioids and addiction to be used in all Pennsylvania medical schools. The Pennsylvania Physician General created a task force that was responsible for the creation of the core competencies. A literature review was completed, and a survey of graduating medical students was conducted. The task force then developed, reviewed, and approved the core competencies. The competencies were grouped into nine domains: understanding core aspects of addiction; patient screening for substance use disorder; proper referral for specialty evaluation and treatment of substance use disorder; proper patient assessment when treating pain; proper use of multimodal treatment options when treating acute pain; proper use of opioids for the treatment of acute pain (after consideration of alternatives); the role of opioids in the treatment of chronic noncancer pain; patient risk assessment related to the use of opioids to treat chronic noncancer pain, including the assessment for substance use disorder or increased risk for aberrant drug-related behavior; and the process for patient education, initiation of treatment, careful patient monitoring, and discontinuation of therapy when using opioids to treat chronic noncancer pain. Specific competencies were developed for each domain. These competencies will be incorporated into the educational process at all Pennsylvania medical schools. It is hoped that these curriculum changes will improve student knowledge and attitudes in these areas, thus improving patient outcomes. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Benzodiazepines, opioids and driving: an overview of the experimental research.

    Science.gov (United States)

    Leung, Stefanie Y

    2011-05-01

    Road crashes contribute significantly to the total burden of injury in Australia, with the risk of injury being associated with the presence of drugs and/or alcohol in the driver's blood. Increasingly, some of the most commonly detected drugs include prescription medicines, the most notable of these being benzodiazepines and opioids. However, there is a paucity of experimental research into the effects of prescribed psychoactive drugs on driving behaviours. This paper provides an overview of experimental studies investigating the effects of prescribed doses of benzodiazepines and opioids on driving ability, and points to future directions for research. There is growing epidemiological evidence linking the therapeutic use of benzodiazepines and opioids to an increased crash risk. However, the current experimental literature remains unclear. Limitations to study methodologies have resulted in inconsistent findings. Limited experimental evidence exists to inform policy and guidelines regarding fitness-to-drive for patients taking prescribed benzodiazepines and opioids. Further experimental research is required to elucidate the effects of these medications on driving, under varying conditions and in different medical contexts. This will ensure that doctors prescribing benzodiazepines and opioids are well informed, and can appropriately advise patients of the risks associated with driving whilst taking these medications. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  2. Inferring Trial-to-Trial Excitatory and Inhibitory Synaptic Inputs from Membrane Potential using Gaussian Mixture Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Milad eLankarany

    2013-09-01

    Full Text Available Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The Kalman filtering is followed by an expectation maximization algorithm to infer the statistical parameters (time-varying mean and variance of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model. The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012 with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  3. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  4. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    Science.gov (United States)

    2016-07-01

    treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...al., J Neurosci Methods, 1994), starting with 0.1 g and ending with 2.0 g filament as cutoff value. As shown in Figure 2, our preliminary experiments

  5. Evaluation of the Tolerability of Switching Patients on Chronic Full ?-Opioid Agonist Therapy to Buccal Buprenorphine

    OpenAIRE

    Webster, Lynn; Gruener, Daniel; Kirby, Todd; Xiang, Qinfang; Tzanis, Evan; Finn, Andrew

    2016-01-01

    Objective?Assess whether patients with chronic pain receiving 80 to 220?mg oral morphine sulfate equivalent of a full ?-opioid agonist could be transitioned to buccal buprenorphine at approximately 50% of their full dose without inducing opioid withdrawal or sacrificing analgesic efficacy. Methods.?A randomized, double-blind, double-dummy, active-controlled, two-period crossover study in adult patients receiving around-the-clock full opioid agonist therapy and confirmed to be opioid dependent...

  6. Changing Trends in Opioid Use Among Patients With Rheumatoid Arthritis in the United States.

    Science.gov (United States)

    Curtis, Jeffrey R; Xie, Fenglong; Smith, Christian; Saag, Kenneth G; Chen, Lang; Beukelman, Timothy; Mannion, Melissa; Yun, Huifeng; Kertesz, Stefan

    2017-09-01

    Opioid prescribing recently has come under intense scrutiny. However, longitudinal patterns of prescription opioid receipt in a population-based cohort of patients with chronic pain, such as those with rheumatoid arthritis (RA), have not been well characterized. The aim of this study was to examine both trends over time and variability in individual physician prescribing of short-term and long-term use of opioids. We identified a cohort of RA patients based on 2006-2014 Medicare data and evaluated longitudinal time trends in "regular" use of opioids. A separate analysis conducted in 2014 assessed rheumatologist-specific variability in regular use of opioid prescriptions in patients with RA. We identified 97,859 RA patients meeting the eligibility criteria. The mean age of the patients was 67 years, 80% were female, 82% were white, and 12% were African American. The most commonly used opioids were those that combined acetaminophen with hydrocodone or propoxyphene. Regular opioid prescribing increased slowly but peaked in 2010 before propoxyphene was withdrawn from the market. Following the withdrawal of propoxyphene, receipt of hydrocodone and tramadol increased commensurately, and overall opioid use declined only slightly. Factors associated with regular use of opioids included younger age, female sex, African American race, back pain, fibromyalgia, anxiety, and depression. Variability between US rheumatologists (n = 4,024) in prescribing the regular use of opioids for their RA patients was high; in the average rheumatologist's practice, 40% of RA patients used prescription opioids regularly. In almost half of the patients, at least some opioid prescriptions were written by a rheumatologist, and 14% received opioids that were co-prescribed concurrently by more than 1 physician. In the US, opioid use in older patients with RA peaked in 2010 and is now declining slightly. Withdrawal of propoxyphene from the US market in 2010 had minimal effect on overall opioid

  7. Novel pharmacotherapeutic strategies for treatment of opioid-induced neonatal abstinence syndrome

    OpenAIRE

    McLemore, Gabrielle L.; Lewis, Tamorah; Jones, Catherine H.; Gauda, Estelle B.

    2012-01-01

    The non-medical use of prescription drugs, in general, and opioids, in particular, is a national epidemic, resulting in enormous addiction rates, healthcare expenditures, and overdose deaths. Prescription opioids are overly prescribed, illegally trafficked, and frequently abused, all of which have created a new opioid addiction pathway, adding to the number of opioid-dependent newborns requiring treatment for neonatal abstinence syndrome (NAS), and contributing to challenges in effective care...

  8. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  9. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)

    2015-01-15

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.

  10. The anticonvulsant action of the galanin receptor agonist NAX-5055 involves modulation of both excitatory- and inhibitory neurotransmission

    DEFF Research Database (Denmark)

    Walls, Anne B; Flynn, Sean P; West, Peter J

    2016-01-01

    -based anti-convulsant drugs was prompted. Based on this, a rationally designed GalR1 preferring galanin analogue, NAX-5055, was synthesized. This compound demonstrates anti-convulsant actions in several animal models of epilepsy. However, the alterations at the cellular level leading to this anti......-convulsant action of NAX-5055 are not known. Here we investigate the action of NAX-5055 at the cellular level by determining its effects on excitatory and inhibitory neurotransmission, i.e. vesicular release of glutamate and GABA, respectively, in cerebellar, neocortical and hippocampal preparations. In addition...

  11. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    International Nuclear Information System (INIS)

    Lafranceschina, Jacopo; Wackerbauer, Renate

    2015-01-01

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state

  12. The changing landscape of opioid prescribing: long-acting and extended-release opioid class-wide Risk Evaluation and Mitigation Strategy

    Directory of Open Access Journals (Sweden)

    Gudin JA

    2012-05-01

    Full Text Available Jeffrey A GudinEnglewood Hospital and Medical Center, Englewood, NJ, USAAbstract: Prescriptions for opioid analgesics to manage moderate-to-severe chronic noncancer pain have increased markedly over the last decade, as have postmarketing reports of adverse events associated with opioids. As an unintentional consequence of greater prescription opioid utilization, there has been the parallel increase in misuse, abuse, and overdose, which are serious risks associated with all opioid analgesics. In response to these concerns, the Food and Drug Administration announced the requirement for a class-wide Risk Evaluation and Mitigation Strategy (REMS for long-acting and extended-release (ER opioid analgesics in April 2011. An understanding of the details of this REMS will be of particular importance to primary care providers. The class-wide REMS is focused on educating health care providers and patients on appropriate prescribing and safe use of ER opioids. Support from primary care will be necessary for the success of this REMS, as these clinicians are the predominant providers of care and the main prescribers of opioid analgesics for patients with chronic pain. Although currently voluntary, future policy will likely dictate that providers undergo mandatory training to continue prescribing medications within this class. This article outlines the elements of the class-wide REMS for ER opioids and clarifies the impact on primary care providers with regard to training, patient education, and clinical practice.Keywords: long-acting opioid, extended-release opioid, risk, REMS, FDA, primary care

  13. Behavioral intervention to reduce opioid overdose among high-risk persons with opioid use disorder: A pilot randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Phillip Oliver Coffin

    Full Text Available The United States is amidst an opioid epidemic, including synthetic opioids that may result in rapid death, leaving minimal opportunity for bystander rescue. We pilot tested a behavioral intervention to reduce the occurrence of opioid overdose among opioid dependent persons at high-risk for subsequent overdose.We conducted a single-blinded randomized-controlled trial of a repeated dose motivational interviewing intervention (REBOOT to reduce overdose versus treatment as usual, defined as information and referrals, over 16 months at the San Francisco Department of Public Health from 2014-2016. Participants were 18-65 years of age, had opioid use disorder by Structured Clinical Interview, active opioid use, opioid overdose within 5 years, and prior receipt of naloxone kits. The intervention was administered at months 0, 4, 8, and 12, preceded by the assessment which was also administered at month 16. Dual primary outcomes were any overdose event and number of events, collected by computer-assisted personal interview, as well as any fatal overdose events per vital records.A total of 78 persons were screened and 63 enrolled. Mean age was 43 years, 67% were born male, 65% White, 17% African-American, and 14% Latino. Ninety-two percent of visits and 93% of counseling sessions were completed. At baseline, 33.3% of participants had experienced an overdose in the past four months, with a similar mean number of overdoses in both arms (p = 0.95; 29% overdosed during follow-up. By intention-to-treat, participants assigned to REBOOT were less likely to experience any overdose (incidence rate ratio [IRR] 0.62 [95%CI 0.41-0.92, p = 0.019 and experienced fewer overdose events (IRR 0.46, 95%CI 0.24-0.90, p = 0.023, findings that were robust to sensitivity analyses. There were no differences between arms in days of opioid use, substance use treatment, or naloxone carriage.REBOOT reduced the occurrence of any opioid overdose and the number of overdoses

  14. Effect Of A “No Superuser Opioid Prescription” Policy On ED Visits And Statewide Opioid Prescription

    Directory of Open Access Journals (Sweden)

    Zachary P. Kahler

    2017-07-01

    Full Text Available Introduction: The U.S. opioid epidemic has highlighted the need to identify patients at risk of opioid abuse and overdose. We initiated a novel emergency department- (ED based interventional protocol to transition our superuser patients from the ED to an outpatient chronic pain program. The objective was to evaluate the protocol’s effect on superusers’ annual ED visits. Secondary outcomes included a quantitative evaluation of statewide opioid prescriptions for these patients, unique prescribers of controlled substances, and ancillary testing. Methods: Patients were referred to the program with the following inclusion criteria: ≥ 6 visits per year to the ED; at least one visit identified by the attending physician as primarily driven by opioid-seeking behavior; and a review by a committee comprising ED administration and case management. Patients were referred to a pain management clinic and informed that they would no longer receive opioid prescriptions from visits to the ED for chronic pain complaints. Electronic medical record (EMR alerts notified ED providers of the patient’s referral at subsequent visits. We analyzed one year of data pre- and post-referral. Results: A total of 243 patients had one year of data post-referral for analysis. Median annual ED visits decreased from 14 to 4 (58% decrease, 95% CI [50 to 66]. We also found statistically significant decreases for these patients’ state prescription drug monitoring program (PDMP opioid prescriptions (21 to 13, total unique controlled-substance prescribers (11 to 7, computed tomography imaging (2 to 0, radiographs (5 to 1, electrocardiograms (12 to 4, and labs run (47 to 13. Conclusion: This program and the EMR-based alerts were successful at decreasing local ED visits, annual opioid prescriptions, and hospital resource allocation for this population of patients. There is no evidence that these patients diverted their visits to neighboring EDs after being informed that they

  15. Nurses and opioids: results of a bi-national survey on mental models regarding opioid administration in hospitals

    Directory of Open Access Journals (Sweden)

    Guest C

    2017-03-01

    Full Text Available Charlotte Guest,1 Fabian Sobotka,2 Athina Karavasopoulou,3 Stephen Ward,3 Carsten Bantel4,5 1Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK; 2Division of Epidemiology and Biometry, Department of Health Services Research, Faculty 6, Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; 3Pain Service, Barts Health, St Bartholomew’s Hospital, London, UK; 4Department of Anaesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Oldenburg University, Klinikum Oldenburg Campus, Oldenburg, Germany; 5Department of Surgery and Cancer, Anaesthetics Section, Imperial College London, Chelsea and Westminster Hospital Campus, London, UK Objective: Pain remains insufficiently treated in hospitals. Increasing evidence suggests human factors contribute to this, due to nurses failing to administer opioids. This behavior might be the consequence of nurses’ mental models about opioids. As personal experience and conceptions shape these models, the aim of this prospective survey was to identify model-influencing factors. Material and methods: A questionnaire was developed comprising of 14 statements concerning ideations about opioids and seven questions concerning demographics, indicators of adult learning, and strength of religious beliefs. Latent variables that may underlie nurses’ mental models were identified using undirected graphical dependence models. Representative items of latent variables were employed for ordinal regression analysis. Questionnaires were distributed to 1,379 nurses in two London, UK, hospitals (n=580 and one German (n=799 hospital between September 2014 and February 2015. Results: A total of 511 (37.1% questionnaires were returned. Mean (standard deviation age of participants were 37 (11 years; 83.5% participants were female; 45.2% worked in critical care; and 51.5% had more than 10 years experience. Of the nurses, 84% were not scared of opioids, 87

  16. European Pain Federation position paper on appropriate opioid use in chronic pain management

    DEFF Research Database (Denmark)

    O'Brien, T; Christrup, L L; Drewes, A M

    2017-01-01

    rests with the primary care physician and other non-specialist opioid prescribers. There is much confusing and conflicting information available to non-specialist prescribers regarding opioid therapy and a great deal of unjustified fear is generated. Opioid therapy should only be initiated by competent...

  17. Information on risk of constipation for Danish users of opioids, and their laxative use

    DEFF Research Database (Denmark)

    Pottegård, Anton; Knudsen, Thomas Bøllingtoft; van Heesch, Kim

    2014-01-01

    of opioids by the time of the first prescription regarding the risk of constipation. Method Interviews with patients filling an opioid at a community pharmacy were performed by the dispensing pharmacist or pharmaconomist at the pharmacy. Information collected concerned the patient, the opioid, information...

  18. Detecting aberrant opioid behavior in the emergency department: a prospective study using the screener and Opioid Assessment for Patients with Pain-Revised (SOAPP®-R), Current Opioid Misuse Measure (COMM)™, and provider gestalt.

    Science.gov (United States)

    Varney, Shawn M; Perez, Crystal A; Araña, Allyson A; Carey, Katherine R; Ganem, Victoria J; Zarzabal, Lee A; Ramos, Rosemarie G; Bebarta, Vikhyat S

    2018-03-03

    Emergency department (ED) providers have limited time to evaluate patients at risk for opioid misuse. A validated tool to assess the risk for aberrant opioid behavior may mitigate adverse sequelae associated with prescription opioid misuse. We sought to determine if SOAPP-R, COMM, and provider gestalt were able to identify patients at risk for prescription opioid misuse as determined by pharmacy records at 12 months. We conducted a prospective observational study of adult patients in a high volume US ED. Patients completed the SOAPP-R and COMM, and treating EM providers evaluated patients' opioid misuse risk. We performed variable-centered, person-centered, and hierarchical cluster analyses to determine whether provider gestalt, SOAPP-R, or COMM, or a combination, predicted higher misuse risk. The primary outcome was the number of opioid prescriptions at 12 months according to pharmacy records. For 169 patients (mean age 43 years, 51% female, 73% white), correlation analysis showed a strong relationship between SOAPP-R and COMM with predicting the number of opioid prescriptions dispensed at 12 months. Provider scores estimating opioid misuse were not related to SOAPP-R and only weakly associated with COMM. In our adjusted regression models, provider gestalt and SOAPP-R uniquely predicted opioid prescriptions at 6 and 12 months. Using designated cutoff scores, only SOAPP-R detected a difference in the number of opioid prescriptions. Cluster analysis revealed that provider gestalt, SOAPP-R, and COMM scores jointly predicted opioid prescriptions. Provider gestalt and self-report instruments uniquely predicted the number of opioid prescriptions in ED patients. A combination of gestalt and self-assessment scores can be used to identify at-risk patients who otherwise miss the cutoff scores for SOAPP-R and COMM.

  19. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System.

    Science.gov (United States)

    Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  20. A trigger for opioid misuse: Chronic pain and stress dysregulate the mesolimbic pathway and kappa opioid system

    Directory of Open Access Journals (Sweden)

    Nicolas Massaly

    2016-11-01

    Full Text Available Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in acute pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  1. Novel approaches for the treatment of psychostimulant and opioid abuse - focus on opioid receptor-based therapies.

    Science.gov (United States)

    Bailey, Chris P; Husbands, Stephen M

    2014-11-01

    Psychostimulant and opioid addiction are poorly treated. The majority of abstinent users relapse back to drug-taking within a year of abstinence, making 'anti-relapse' therapies the focus of much current research. There are two fundamental challenges to developing novel treatments for drug addiction. First, there are three key stimuli that precipitate relapse back to drug-taking: stress, presentation of drug-conditioned cue, taking a small dose of drug. The most successful novel treatment would be effective against all three stimuli. Second, a large number of drug users are poly-drug users: taking more than one drug of abuse at a time. The ideal anti-addiction treatment would, therefore, be effective against all classes of drugs of abuse. In this review, the authors discuss the clinical need and animal models used to uncover potential novel treatments. There is a very broad range of potential treatment approaches and targets currently being examined as potential anti-relapse therapies. These broadly fit into two categories: 'memory-based' and 'receptor-based' and the authors discuss the key targets here within. Opioid receptors and ligands have been widely studied, and research into how different opioid subtypes affect behaviours related to addiction (reward, dysphoria, motivation) suggests that they are tractable targets as anti-relapse treatments. Regarding opioid ligands as novel 'anti-relapse' medication targets, research suggests that a 'non-selective' approach to targeting opioid receptors will be the most effective.

  2. Pharmacist's role in dispensing opioids for acute and chronic pain.

    Science.gov (United States)

    Marlowe, Karen F; Geiler, Richard

    2012-10-01

    Pain continues to be a serious health care concern in the United States. Patients with chronic pain experience the impact of the disease throughout their lives including their social interactions, family relationships, and in many cases economic productivity. Multiple surveys have found that many pharmacists hold misconceptions regarding opioids, pain disease states, and their understandings of current regulations. Multiple barriers affect the ability of pharmacists to deliver care to patients' prescribed opioid therapy. Inadequate communication between health care professionals and patients is one of the hurdles, which prevents quality care. Increased communication between health care providers including access to health information is one step, which is crucial to improving provision of pharmacotherapy. Finally, the quality of educational opportunities relative to opioids and pain management specifically for pharmacists needs to be increased, and consideration needs to be given for making appropriate pain management education mandatory.

  3. Endogenous opioid antagonism in physiological experimental pain models

    DEFF Research Database (Denmark)

    Werner, Mads U; Pereira, Manuel P; Andersen, Lars Peter H

    2015-01-01

    hyperalgesia models (6 studies), 'pain' models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and r...... ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 'pain' model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect......Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double...

  4. Substitution treatment for opioid addicts in Germany

    Directory of Open Access Journals (Sweden)

    Gerlach Ralf

    2007-02-01

    Full Text Available Abstract Background After a long and controversial debate methadone maintenance treatment (MMT was first introduced in Germany in 1987. The number of patients in MMT – first low because of strict admission criteria – increased considerably since the 1990s up to some 65,000 at the end of 2006. In Germany each general practitioner (GP, who has completed an additional training in addiction medicine, is allowed to prescribe substitution drugs to opioid dependent patients. Currently 2,700 GPs prescribe substitution drugs. Psychosocial care should be made available to all MMT patients. Results The results of research studies and practical experiences clearly indicate that patients benefit substantially from MMT with improvements in physical and psychological health. MMT proves successful in attaining high retention rates (65 % to 85 % in the first years, up to 50 % after more than seven years and plays a major role in accessing and maintaining ongoing medical treatment for HIV and hepatitis. MMT is also seen as a vital factor in the process of social re-integration and it contributes to the reduction of drug related harms such as mortality and morbidity and to the prevention of infectious diseases. Some 10 % of MMT patients become drug-free in the long run. Methadone is the most commonly prescribed substitution medication in Germany, although buprenorphine is attaining rising importance. Access to MMT in rural areas is very patchy and still constitutes a problem. There are only few employment opportunities for patients participating in MMT, although regular employment is considered unanimously as a positive factor of treatment success. Substitution treatment in German prisons is heterogeneous in access and treatment modalities. Access is very patchy and the number of inmates in treatment is limited. Nevertheless, substitution treatment plays a substantial part in the health care system provided to drug users in Germany. Conclusion In Germany, a

  5. Substitution treatment for opioid addicts in Germany.

    Science.gov (United States)

    Michels, Ingo Ilja; Stöver, Heino; Gerlach, Ralf

    2007-02-02

    After a long and controversial debate methadone maintenance treatment (MMT) was first introduced in Germany in 1987. The number of patients in MMT--first low because of strict admission criteria--increased considerably since the 1990s up to some 65,000 at the end of 2006. In Germany each general practitioner (GP), who has completed an additional training in addiction medicine, is allowed to prescribe substitution drugs to opioid dependent patients. Currently 2,700 GPs prescribe substitution drugs. Psychosocial care should be made available to all MMT patients. The results of research studies and practical experiences clearly indicate that patients benefit substantially from MMT with improvements in physical and psychological health. MMT proves successful in attaining high retention rates (65% to 85% in the first years, up to 50% after more than seven years) and plays a major role in accessing and maintaining ongoing medical treatment for HIV and hepatitis. MMT is also seen as a vital factor in the process of social re-integration and it contributes to the reduction of drug related harms such as mortality and morbidity and to the prevention of infectious diseases. Some 10% of MMT patients become drug-free in the long run. Methadone is the most commonly prescribed substitution medication in Germany, although buprenorphine is attaining rising importance. Access to MMT in rural areas is very patchy and still constitutes a problem. There are only few employment opportunities for patients participating in MMT, although regular employment is considered unanimously as a positive factor of treatment success. Substitution treatment in German prisons is heterogeneous in access and treatment modalities. Access is very patchy and the number of inmates in treatment is limited. Nevertheless, substitution treatment plays a substantial part in the health care system provided to drug users in Germany. In Germany, a history of substitution treatment spanning 20 years has meanwhile

  6. SURAMIN AS AN INHIBITOR OF SYMPATHETIC EXCITATORY. JUNCTION POTENTIALS: STUDY IN GUINEA PIG ISOLATED VAS DEFERENS

    Directory of Open Access Journals (Sweden)

    M AYATOLLAHI

    2001-06-01

    Full Text Available

    Introduction. Suramin, as a selective P2x-Pourinoceptor antagonist can inhibit the sympathetic excitatory junction potentials (SEJPs. Experiments have shown that the biphasic contractile responses (bcr in smooth muscles of vascular and vas deferens (vds is evoked by cotransmission of ATP and neuradrenaline. Therefore, vds is considered as a model for studying the role of A TP and antagonizing its effect. By using different concentrations of Suramin, its antagonistic effect in phase one of bcr is observed To confirm the purinergic origin of SEJPs, some experiments should be performed electrophysiologically at different concentrations of Suramin.
    Methods. Suramin was dissolved in distilled water and after diluting with physiological salt solution freezed as a stock solution at concentration of 10-1M. After killing and dissecting the albino male guinea pigs (weighing 2S0-300 gm, both testes were pushed up to give out the whole vds. The vds was cleaned from surrounding tissues and cut from epididymic and prostatic ends. vds was maintained at 3SC in physiological salt solution bubbled with 9S percent O2 and 5 percent CO2. Intracellular microelectrodes (with resistance of 20-40 MQ recordings were made from prostatic end of vds.
    Results. The resting membrane potential of the control smooth muscle cells was 67.4±.0.7 mV (n=48. Electrical stimulation at frequency of 0.5 Hz evokes SEJPs which are magnified consistently due to facilitation. Mean magnitude of fully facilitated SEJPs which were evoked from control cells was 8.5±0.8 mV (n=23. Further facilitation was evoked at frequencies of 1 Hz or 2 Hz, because SEJPs were obtained at the threshold limit to begin the action potentials which were 55 mV in most cells. It was difficult to estimate correctly the threshold potential in a cell because disseminated potential might

  7. Evidence for opioid involvement in the motivation to sing

    Science.gov (United States)

    Riters, Lauren V.

    2009-01-01

    Songbirds produce high rates of song within multiple social contexts, suggesting that they are highly motivated to sing and that song production itself may be rewarding. Progress has been made in understanding the neural basis of song learning and sensorimotor processing, however little is known about neurobiological mechanisms regulating the motivation to sing. Neural systems involved in motivation and reward have been conserved across species and in songbirds are neuroanatomically well-positioned to influence the song control system. Opioid neuropeptides within these systems play a primary role in hedonic reward, at least in mammals. In songbirds, opioid neuropeptides and receptors are found throughout the song control system and within several brain regions implicated in both motivation and reward, including the medial preoptic nucleus (POM) and ventral tegmental area (VTA). Growing research shows these regions to play a role in birdsong that differs depending upon whether song is sexually-motivated in response to a female, used for territorial defense or sung as part of a flock but not directed towards an individual (undirected song). Opioid pharmacological manipulations and immunocytochemical data demonstrate a role for opioid activity possibly within VTA and POM in the regulation of song production. Although future research is needed, data suggest that opioids may be most critically involved in reinforcing song that does not result in any obvious form of immediate externally-mediated reinforcement, such as undirected song produced in large flocks or during song learning. Data are reviewed supporting the idea that dopamine activity underlies the motivation or drive to sing, but that opioid release is what makes song production rewarding. PMID:19995531

  8. Reward systems and food intake: role of opioids.

    Science.gov (United States)

    Gosnell, B A; Levine, A S

    2009-06-01

    Humans eat for many reasons, including the rewarding qualities of foods. A host of neurotransmitters have been shown to influence eating behavior and some of these appear to be involved in reward-induced eating. Endogenous opioid peptides and their receptors were first reported more than 30 years ago, and studies suggesting a role of opioids in the regulation of food intake date back nearly as far. Opioid agonists and antagonists have corresponding stimulatory and inhibitory effects on feeding. In addition to studies aimed at identifying the relevant receptor subtypes and sites of action within the brain, there has been a continuing interest in the role of opioids on diet/taste preferences, food reward, and the overlap of food reward with others types of reward. Data exist that suggest a role for opioids in the control of appetite for specific macronutrients, but there is also evidence for their role in the stimulation of intake based on already-existing diet or taste preferences and in controlling intake motivated by hedonics rather than by energy needs. Finally, various types of studies indicate an overlap between mechanisms mediating drug reward and palatable food reward. Preference or consumption of sweet substances often parallels the self-administration of several drugs of abuse, and under certain conditions, the termination of intermittent access to sweet substances produces symptoms that resemble those observed during opiate withdrawal. The overconsumption of readily available and highly palatable foods likely contributes to the growing rates of obesity worldwide. An understanding of the role of opioids in mediating food reward and promoting the overconsumption of palatable foods may provide insights into new approaches for preventing obesity.

  9. Prescription History of Emergency Department Patients Prescribed Opioids

    Directory of Open Access Journals (Sweden)

    Jason A Hoppe

    2013-05-01

    Full Text Available Introduction: To use Colorado’s prescription drug monitoring program (PDMP to describe the recent opioid prescription history of patients discharged from our emergency department (ED with a prescription for opioid pain medications.Methods: Retrospective cohort study of 300 adult ED patients who received an opioid prescription. We abstracted prescription histories for the six months prior to the ED visit from the PDMP, and abstracted clinical and demographic variables from the chart.Results: There were 5,379 ED visits during the study month, 3,732 of which were discharged. Providers wrote 1,165 prescriptions for opioid analgesics to 1,124/3,732 (30% of the patients. Median age was 36 years. Thirty-nine percent were male. Patients were 46% Caucasian, 26% African American, 22% Hispanic, 2% Asian and 4% other. These were similar to our overall ED population. There was substantial variability in the number of prescriptions, prescribers and total number of pills. A majority (205/296 of patients had zero or one prescription. The 90th percentile for number of prescriptions was seven, while the 10th percentile was zero. Patients in the highest decile tended to be older, with a higher proportion of Caucasians and females. Patients in the lowest decile resembled the general ED population. The most common diagnoses associated with opioid prescriptions were abdominal pain (11.5%, cold/flu symptoms (9.5%, back pain (5.4%, flank pain (5.0% and motor vehicle crash (4.7%.Conclusion: Substantial variability exists in the opioid prescription histories of ED patients, but a majority received zero or one prescription in the preceding six months. The top decile of patients averaged more than two prescriptions per month over the six months prior to ED visit, written by more than 6 different prescribers. There was a trend toward these patients being older, Caucasian and female. [West J Emerg Med. 2013;14(3:247–252.

  10. Analgesic synergy between opioid and α2 -adrenoceptors.

    Science.gov (United States)

    Chabot-Doré, A-J; Schuster, D J; Stone, L S; Wilcox, G L

    2015-01-01

    Opioid and α2 -adrenoceptor agonists are potent analgesic drugs and their analgesic effects can synergize when co-administered. These supra-additive interactions are potentially beneficial clinically; by increasing efficacy and/or reducing the total drug required to produce sufficient pain relief, undesired side effects can be minimized. However, combination therapies of opioids and α2 -adrenoceptor agonists remain underutilized clinically, in spite of a large body of preclinical evidence describing their synergistic interaction. One possible obstacle to the translation of preclinical findings to clinical applications is a lack of understanding of the mechanisms underlying the synergistic interactions between these two drug classes. In this review, we provide a detailed overview of the interactions between different opioid and α2 -adrenoceptor agonist combinations in preclinical studies. These studies have identified the spinal cord as an important site of action of synergistic interactions, provided insights into which receptors mediate these interactions and explored downstream signalling events enabling synergy. It is now well documented that the activation of both μ and δ opioid receptors can produce synergy with α2 -adrenoceptor agonists and that α2 -adrenoceptor agonists can mediate synergy through either the α2A or the α2C adrenoceptor subtypes. Current hypotheses surrounding the cellular mechanisms mediating opioid-adrenoceptor synergy, including PKC signalling and receptor oligomerization, and the evidence supporting them are presented. Finally, the implications of these findings for clinical applications and drug discovery are discussed. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  11. Evidence for opioid involvement in the motivation to sing.

    Science.gov (United States)

    Riters, Lauren V

    2010-03-01

    Songbirds produce high rates of song within multiple social contexts, suggesting that they are highly motivated to sing and that song production itself may be rewarding. Progress has been made in understanding the neural basis of song learning and sensorimotor processing, however little is known about neurobiological mechanisms regulating the motivation to sing. Neural systems involved in motivation and reward have been conserved across species and in songbirds are neuroanatomically well-positioned to influence the song control system. Opioid neuropeptides within these systems play a primary role in hedonic reward, at least in mammals. In songbirds, opioid neuropeptides and receptors are found throughout the song control system and within several brain regions implicated in both motivation and reward, including the medial preoptic nucleus (POM) and ventral tegmental area (VTA). Growing research shows these regions to play a role in birdsong that differs depending upon whether song is sexually motivated in response to a female, used for territorial defense or sung as part of a flock but not directed towards an individual (undirected song). Opioid pharmacological manipulations and immunocytochemical data demonstrate a role for opioid activity possibly within VTA and POM in the regulation of song production. Although future research is needed, data suggest that opioids may be most critically involved in reinforcing song that does not result in any obvious form of immediate externally mediated reinforcement, such as undirected song produced in large flocks or during song learning. Data are reviewed supporting the idea that dopamine activity underlies the motivation or drive to sing, but that opioid release is what makes song production rewarding. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Opioid use following gynecologic and pelvic reconstructive surgery.

    Science.gov (United States)

    Hota, Lekha S; Warda, Hussein A; Haviland, Miriam J; Searle, Frances M; Hacker, Michele R

    2017-09-09

    Opioid use, addiction, and overdose are a growing epidemic in the USA. Our objective was to determine whether the amount of opioid medication prescribed following gynecologic and pelvic reconstructive surgery is insufficient, adequate, or in excess. We hypothesized that we were overprescribing postoperative opioids. Participants who were at least 18 years old and underwent gynecologic and/or pelvic reconstructive surgery from April through August 2016 were eligible to participate. Routine practice for pain management is to prescribe 30 tablets of opioids for major procedures and ten to 15 tablets for minor procedures. At the 2-week postoperative visit, participants completed a questionnaire regarding the number of tablets prescribed and used, postoperative pain control, and relevant medical history. Fisher's exact test was used to compare data. Sixty-five participants completed questionnaires. Half (49.1%) reported being prescribed more opioids than needed, while two (3.5%) felt the amount was less than needed. Though not significant, participants who underwent major surgeries were more likely to report being prescribed more than needed (53.5%) compared with participants who underwent minor surgeries (35.7%; p = 0.47). Though not significant, participants with anxiety were less likely to report being prescribed more tablets than needed compared with participants without anxiety (44.4% vs. 57.1%; p = 0.38). This was also true of participants with depression compared with those without (37.5% vs. 58.3%; p = 0.17), and those with chronic pain compared with those without (33.3% vs. 60.0%; p = 0.10). Our current opioid prescription practice for postoperative pain management may exceed what patients need.

  13. Peripheral δ-opioid receptors attenuate the exercise pressor reflex.

    Science.gov (United States)

    Leal, Anna K; Yamauchi, Katsuya; Kim, Joyce; Ruiz-Velasco, Victor; Kaufman, Marc P

    2013-10-15

    In rats with ligated femoral arteries, the exercise pressor reflex is exaggerated, an effect that is attenuated by stimulation of peripheral μ-opioid receptors on group IV metabosensitive afferents. In contrast, δ-opioid receptors are expressed mostly on group III mechanosensitive afferents, a finding that prompted us to determine whether stimulation of these opioid receptors could also attenuate the exaggerated exercise pressor reflex in "ligated" rats. We found femoral arterial injection of [D-Pen2,D-Pen5]enkephalin (DPDPE; 1.0 μg), a δ-opioid agonist, significantly attenuated the pressor and cardioaccelerator components of the exercise pressor reflex evoked by hindlimb muscle contraction in both rats with ligated and patent femoral arteries. DPDPE significantly decreased the pressor responses to muscle mechanoreflex activation, evoked by tendon stretch, in ligated rats only. DPDPE (1.0 μg) had no effect in either group on the pressor and cardioaccelerator responses to capsaicin (0.2 μg), which primarily stimulates group IV afferents. DPDPE (1.0 μg) had no effect on the pressor and cardioaccelerator responses to lactic acid (24 mM), which stimulates group III and IV afferents, in rats with patent femoral arteries but significantly decreased the pressor response in ligated rats. Western blots revealed the amount of protein comprising the δ-opioid receptor was greater in dorsal root ganglia innervating hindlimbs with ligated femoral arteries than in dorsal root ganglia innervating hindlimbs with patent femoral arteries. Our findings support the hypothesis that stimulation of δ-opioid receptors on group III afferents attenuated the exercise pressor reflex.

  14. In-hospital resuscitation: opioids and other factors influencing survival

    Directory of Open Access Journals (Sweden)

    Karamarie Fecho

    2009-12-01

    Full Text Available Karamarie Fecho1, Freeman Jackson1, Frances Smith1, Frank J Overdyk21Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina, USA; 2Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina, USAPurpose: “Code Blue” is a standard term used to alertt hospital staff that a patient requires resuscitation. This study determined rates of survival from Code Blue events and the role of opioids and other factors on survival.Methods: Data derived from medical records and the Code Blue and Pharmacy databases were analyzed for factors affecting survival.Results: During 2006, rates of survival from the code only and to discharge were 25.9% and 26.4%, respectively, for Code Blue events involving cardiopulmonary resuscitation (CPR; N = 216. Survival rates for events not ultimately requiring CPR (N = 77 were higher, with 32.5% surviving the code only and 62.3% surviving to discharge. For CPR events, rates of survival to discharge correlated inversely with time to chest compressions and defibrillation, precipitating event, need for airway management, location and age. Time of week, witnessing, postoperative status, gender and opioid use did not influence survival rates. For non-CPR events, opioid use was associated with decreased survival. Survival rates were lowest for patients receiving continuous infusions (P < 0.01 or iv boluses of opioids (P < 0.05.Conclusions: One-quarter of patients survive to discharge after a CPR Code Blue event and two-thirds survive to discharge after a non-CPR event. Opioids may influence survival from non-CPR events.Keywords: code blue, survival, opioids, cardiopulmonary resuscitation, cardiac arrest, patient safety

  15. Impact of Prior Therapeutic Opioid Use by Emergency Department Providers on Opioid Prescribing Decisions

    Directory of Open Access Journals (Sweden)

    Adam C Pomerleau

    2016-11-01

    Full Text Available INTRODUCTION: Our study sought to examine the opioid analgesic (OA prescribing decisions of emergency department (ED providers who have themselves used OA therapeutically and those who have not. A second objective was to determine if OA prescribing decisions would differ based on the patient's relationship to the provider. METHODS: We distributed an electronic survey to a random sample of ED providers at participating centers in a nationwide research consortium. Question topics included provider attitudes about OA prescribing, prior personal therapeutic use of OAs (indications, dosing, and disposal of leftover medication, and hypothetical analgesic-prescribing decisions for their patients, family members, and themselves for different painful conditions. RESULTS: The total survey population was 957 individuals; 515 responded to the survey, a 54% response rate. Prior personal therapeutic OA use was reported in 63% (95% CI = [58-68]. A majority of these providers (82%; 95% CI = [77-87] took fewer than half the number of pills prescribed. Regarding provider attitudes towards OA prescribing, 66% (95% CI = [61-71] agreed that OA could lead to addiction even with short-term use. When providers were asked if they would prescribe OA to a patient with 10/10 pain from an ankle sprain, 21% (95% CI = [17-25] would for an adult patient, 13% (95% CI = [10-16] would for an adult family member, and 6% (95% CI = [4-8] indicated they themselves would take an opioid for the same pain. When the scenario involved an ankle fracture, 86% (95% CI = [83-89] would prescribe OA for an adult patient, 75% (95% CI = [71-79] for an adult family member, and 52% (95% CI = [47-57] would themselves take OA. Providers who have personally used OA to treat their pain were found to make similar prescribing decisions compared to those who had not. CONCLUSION: No consistent differences in prescribing decisions were found between ED providers based on their prior therapeutic use of OA

  16. Willingness to pay for opioid agonist treatment among opioid dependent people who inject drugs in Ukraine.

    Science.gov (United States)

    Makarenko, Iuliia; Mazhnaya, Alyona; Marcus, Ruthanne; Bojko, Martha J; Madden, Lynn; Filippovich, Sergii; Dvoriak, Sergii; Altice, Frederick L

    2017-07-01

    In the context of decreasing external and limited Ukrainian governmental funding for opioid agonist treatments (OAT) for opioid dependent people who inject drugs in Ukraine, information on sustainable financial models is needed. Data on 855 opioid dependent people who inject drugs (PWID) were drawn from a cross-sectional nationwide survey of 1613 PWID. They comprised 434 participants who were receiving OAT and 421 who were on OAT in the past or have never been on OAT and were interested in receiving the treatment. Multivariate logistic regression was used to examine factors associated with willingness-to-pay (WTP) for OAT, stratified by OAT experience. Variation in the price which respondents were willing to pay for OAT and its effect on their monthly income among PWID with different OAT experience were assessed as a continuous variable using one-way ANOVA and Kruskal-Wallis test. Overall, 378 (44%) expressed WTP for OAT. Factors independently associated with WTP differed by OAT experience. Among those using OAT, independent predictors of WTP included: city (Dnipro - aOR=1.9; 95%CI=1.1-4.8 and Lviv - (aOR=2.2; 95%CI=1.1-4.8) compared to those elsewhere in Ukraine), higher income (aOR=1.8; 95%CI=1.2-2.7) and receiving psychosocial counseling (aOR=1.8; 95%CI=1.2-2.7). Among those who had previously been on OAT, positive attitude towards OAT (aOR=1.3; 95%CI=1.1-1.6) and family support of OAT (aOR=2.5; 95%CI=1.1-5.7) were independently associated with WTP. Among PWID who had never been on OAT, being male (aOR=2.2; 95%CI=1.1-4.2), younger age (aOR=1.9; 95%CI=1.2-3.2), higher income (aOR=2.0; 95%CI=1.2-3.4) and previous unsuccessful attempts to enter OAT (aOR=2.3; 95%CI=1.1-4.7) were independently associated with WTP. PWID were willing to commit a large percentage of their monthly income for OAT, which, however, varied significantly based on OAT experience: current OAT: 37% of monthly income, previous OAT: 53%, and never OAT: 60% (p-value=0.0009). WTP for OAT was

  17. Prescription opioid use: Patient characteristics and misuse in community pharmacy.

    Science.gov (United States)

    Cochran, Gerald; Bacci, Jennifer L; Ylioja, Thomas; Hruschak, Valerie; Miller, Sharon; Seybert, Amy L; Tarter, Ralph

    2016-01-01

    Opioid pain medication misuse is a major concern for US public health. The purpose of this article is to: 1) describe the demographic and physical, behavioral, and mental health characteristics of patients who fill opioid medications in community pharmacy settings; and 2) describe the extent of opioid medication misuse behaviors among these patients. We recruited and screened a convenience sample of patients with the use of a tablet computer-based assessment protocol that examined behavioral, mental, and physical health. Descriptive and inferential statistics were calculated to describe respondents and their opioid medication misuse and health characteristics. Patients were screened in 2 urban and 2 rural community pharmacies in southwestern Pennsylvania. Survey participants were adult patients filling opioid pain medications who were not currently receiving treatment for a cancer diagnosis. None. Validated screening measures included the Prescription Opioid Misuse Index, Alcohol Use Disorders Identification Test C, Short Form 12, Drug Abuse Screening Test 10, Primary Care Post-traumatic Stress Disorder (PTSD) screen, and the Patient Health Questionnaire 2. A total of 333 patients were screened (71.2% response rate). Nearly the entire population reported pain above and general health below national norms. Hydrocodone (19.2%) and morphine (20.8%) were found to be the medications with the highest rates of misuse-with hydrocodone having more than 4 times higher odds of misuse compared with other medications (adjusted odds ratio [AOR] 4.48, 95% confidence interval [CI] 1.1-17.4). Patients with positive screens for illicit drug use (AOR 8.07, 95% CI 2.7-24.0), PTSD (AOR 5.88, 95% CI 2.3-14.7), and depression (AOR 2.44, 95% CI 1.0-5.9) also had significantly higher odds for misuse compared with those with negative screening results. These findings provide important foundational data that suggest implementation of regular opioid misuse screening protocols within

  18. The US Opioid Crisis: Current Federal and State Legal Issues.

    Science.gov (United States)

    Soelberg, Cobin D; Brown, Raeford E; Du Vivier, Derick; Meyer, John E; Ramachandran, Banu K

    2017-11-01

    The United States is in the midst of a devastating opioid misuse epidemic leading to over 33,000 deaths per year from both prescription and illegal opioids. Roughly half of these deaths are attributable to prescription opioids. Federal and state governments have only recently begun to grasp the magnitude of this public health crisis. In 2016, the Centers for Disease Control and Prevention released their Guidelines for Prescribing Opioids for Chronic Pain. While not comprehensive in scope, these guidelines attempt to control and regulate opioid prescribing. Other federal agencies involved with the federal regulatory effort include the Food and Drug Administration (FDA), the Drug Enforcement Agency (DEA), and the Department of Justice. Each federal agency has a unique role in helping to stem the burgeoning opioid misuse epidemic. The DEA, working with the Department of Justice, has enforcement power to prosecute pill mills and physicians for illegal prescribing. The DEA could also implement use of prescription drug monitoring programs (PDMPs), currently administered at the state level, and use of electronic prescribing for schedule II and III medications. The FDA has authority to approve new and safer formulations of immediate- and long-acting opioid medications. More importantly, the FDA can also ask pharmaceutical companies to cease manufacturing a drug. Additionally, state agencies play a critical role in reducing overdose deaths, protecting the public safety, and promoting the medically appropriate treatment of pain. One of the states' primary roles is the regulation of practice of medicine and the insurance industry within their borders. Utilizing this authority, states can both educate physicians about the dangers of opioids and make physician licensure dependent on registering and using PDMPs when prescribing controlled substances. Almost every state has implemented a PDMP to some degree; however, in addition to mandating their use, increased interstate

  19. Pain relief and clinical outcome: from opioids to balanced analgesia

    DEFF Research Database (Denmark)

    Kehlet, H

    1996-01-01

    If it is generally accepted that adequate postoperative pain relief will improve outcome from surgery, several controlled trials demonstrated this only for lower body surgical procedures with epidural and spinal anesthetics. Important effects on outcome were not shown when postoperative opioids...... were administered with patient controlled (PCA) or epidural techniques. However, the most optimal pain relief seems to be best achieved with balanced analgesia techniques using combinations of epidural opioids and local anesthetics and systemic non-steroidal antiinflammatory drugs. Future efforts...... should aim at including physical rehabilitation programs in the pain treatment regimen....

  20. Predictors of opioid efficacy in patients with chronic pain

    DEFF Research Database (Denmark)

    Grosen, Kasper; Olesen, Anne E; Gram, Mikkel

    2017-01-01

    of life after 14 days of opioid treatment. Secondary outcomes included patient's global impression of clinical change and side effects. Logistic regression models adjusted for age and sex were used to identify biomarkers predictive for successful treatment, defined as at least a 30% reduction in average.......03), relative delta (OR: 0.76; P = 0.03) and beta EEG activity (OR: 1.18; P = 0.04) induced by experimental cold pain. None of the study variables were related to improvement in quality of life. For the first time, individual pain processing characteristics have been linked to opioid response in a mixed chronic...