WorldWideScience

Sample records for operon bistable switch

  1. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  2. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation.

    Science.gov (United States)

    Chatterjee, Anushree; Johnson, Christopher M; Shu, Che-Chi; Kaznessis, Yiannis N; Ramkrishna, Doraiswami; Dunny, Gary M; Hu, Wei-Shou

    2011-06-07

    Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from donor cells to recipient cells. Using mathematical modeling and experimentation, we demonstrate that convergent transcription in the prgX/prgQ operon endows the system with the properties of a robust genetic switch through premature termination of elongating transcripts due to collisions between RNA polymerases (RNAPs) transcribing from opposite directions and antisense regulation between complementary counter-transcripts. Evidence is provided for the presence of truncated RNAs resulting from convergent transcription from both the promoters that are capable of sense-antisense interactions. A mathematical model predicts that both RNAP collision and antisense regulation are essential for a robust bistable switch behavior in the control of conjugation initiation by prgX/prgQ operons. Moreover, given that convergent transcription is conserved across species, the mechanism of coupling RNAP collision and antisense interaction is likely to have a significant regulatory role in gene expression.

  3. Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Hernández

    2010-07-01

    Full Text Available In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG. In accordance with previously published experimental results and computer simulations, our simulations predict that: (1 when the system is induced by TMG, the system shows a discernible bistable behavior while, (2 when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.

  4. Dynamics and bistability in a reduced model of the lac operon

    Science.gov (United States)

    Yildirim, Necmettin; Santillán, Moisés; Horike, Daisuke; Mackey, Michael C.

    2004-06-01

    It is known that the lac operon regulatory pathway is capable of showing bistable behavior. This is an important complex feature, arising from the nonlinearity of the involved mechanisms, which is essential to understand the dynamic behavior of this molecular regulatory system. To find which of the mechanisms involved in the regulation of the lac operon is the origin of bistability, we take a previously published model which accounts for the dynamics of mRNA, lactose, allolactose, permease and β-galactosidase involvement and simplify it by ignoring permease dynamics (assuming a constant permease concentration). To test the behavior of the reduced model, three existing sets of data on β-galactosidase levels as a function of time are simulated and we obtain a reasonable agreement between the data and the model predictions. The steady states of the reduced model were numerically and analytically analyzed and it was shown that it may indeed display bistability, depending on the extracellular lactose concentration and growth rate.

  5. Design of a bistable switch to control cellular uptake.

    Science.gov (United States)

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  6. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence

    Science.gov (United States)

    Klein, Johannes; Bücker, René; Herbst, Katharina; Heroven, Ann Kathrin; Pisano, Fabio; Wittmann, Christoph; Münch, Richard; Müller, Johannes; Jahn, Dieter

    2016-01-01

    Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer’s patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host’s intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies. PMID:28006011

  7. A faster switching regime for zenithal bistable nematic displays

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, J

    1997-12-01

    A simpler and faster switching regime for Zenithal Bistable Nematic displays is reported. A cell, based on homeotropic alignment of nematic liquid crystal over a continuous blazed monograting on one surface, can be switched using bipolar pulses an order of magnitude faster than monopolar pulses of the same voltage. We propose that this regime relies on simple dielectric coupling to drive the cell into a higher energy state with a long pulse time, and the relaxation into a lower energy state after the creation of surface defects from a shorter applied pulse. Although flexoelectric effects are observed, they do not form the basis of state selection as was proposed for the monopolar pulses

  8. Toggling bistable atoms via mechanical switching of bond angle.

    Science.gov (United States)

    Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A; Kantorovich, Lev; Moriarty, Philip

    2011-04-01

    We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.

  9. Study of spatial signal transduction in bistable switches

    Science.gov (United States)

    Zhao, Qi; Yao, Cheng-Gui; Tang, Jun; Liu, Li-Wei

    2016-10-01

    Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1-D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch-like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.

  10. Atom-loss-induced quantum optical bi-stability switch

    Institute of Scientific and Technical Information of China (English)

    Wu Bao-Jun; Cui Fu-Cheng

    2012-01-01

    We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and errormethod to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.

  11. Linear population allocation by bistable switches in response to transient stimulation.

    Directory of Open Access Journals (Sweden)

    Jaydeep K Srimani

    Full Text Available Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON. While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness.

  12. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers

    Indian Academy of Sciences (India)

    Ajit Kumar

    2001-11-01

    Switching between the bistable soliton states in a doubly and inhomogeneously doped fiber system is studied numerically. Both the cases of lossless as well as lossy couplers are considered. It is shown that both up-switching (from the low state to the high state) and down-switching (from the high state to the low state) of solitons between bistable states are realizable, if the amplification of the input soliton for up-switching and the extraction of energy from it for down-switching are suitably adjusted.

  13. Stable Amplification and High Current Drop Bistable Switching in Supercritical GaAs Tills

    DEFF Research Database (Denmark)

    Izadpanah, S.H; Jeppsson, B; Jeppesen, Palle

    1974-01-01

    Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance.......Bistable switching with current drops of 40% and switching times of 100 ps are obtained in pulsed operation of 10¿m supercritically doped n+ nn+ GaAs Transferred Electron Devices (TEDs). When CW-operated the same devices exhibit a 5-17 GHz bandwidth for the stable negative resistance....

  14. The bistability phenomenon in single and coupled oscillators based on VO2 switches

    Science.gov (United States)

    Belyaev, M. A.; Putrolaynen, V. V.; Velichko, A. A.

    2017-01-01

    New operation regimes of single and coupled oscillators in circuits based on planar VO2 switches have been studied. The phenomenon of bistability is discovered, which consists in controlled switching of self-sustained oscillations by external pulses, which is a promising basis for the creation of oscillatory memory cells and implementation of pulse coupling regimes in artificial neural networks (ANNs). The duration of switch-on and switch-off pulses is no less that 20 μs and 30 ms, respectively. It is established that the region of threshold voltages for bistable switching in coupled oscillators is much wider than in a single oscillator and the hysteresis width in the former case can reach 2 V. A regime of initiation of switching packets has been observed that models the ANN packet activity.

  15. A bistable switch in dynamic thiodepsipeptide folding and template-directed ligation.

    Science.gov (United States)

    Mukherjee, Rakesh; Cohen-Luria, Rivka; Wagner, Nathaniel; Ashkenasy, Gonen

    2015-10-12

    Bistable reaction networks provide living cells with chemically controlled mechanisms for long-term memory storage. Such networks are also often switchable and can be flipped from one state to the other. We target here a major challenge in systems chemistry research, namely developing synthetic, non-enzymatic, networks that mimic such a complex function. Therefore, we describe a dynamic network that depending on initial thiodepsipeptide concentrations leads to one of two distinct steady states. This bistable system is readily switched by applying the appropriate stimuli. The relationship between the reaction network topology and its capacity to invoke bistability is then analyzed by control experiments and theory. We suggest that demonstrating bistable behavior using synthetic networks further highlights their possible role in early evolution, and may shine light on potential utility for novel applications, such as chemical memories.

  16. Switching between bistable states in a discrete nonlinear model with long-range dispersion

    DEFF Research Database (Denmark)

    Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth

    1998-01-01

    In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...

  17. Analysis on optical bistability parameters in photonic switching devices

    Science.gov (United States)

    Sarafraz, Hossein; Sayeh, Mohammad R.

    2016-06-01

    An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.

  18. Switching between optical bistability and multistability in plasmonic multilayer nanoparticles

    Science.gov (United States)

    Daneshfar, Nader; Naseri, Tayebeh

    2017-01-01

    We study the nonlinear optical response of multilayer metallic nanoparticles driven by an electromagnetic wave, which can show large field enhancement, hence significantly enhancing optical processes. In addition to optical bistability (OB), we find that optical multistability (OM), which plays a more important role in some applications than OB, is achievable and can be obtained in a multilayer plasmonic nanoparticle. Our results demonstrate that owing to strong localized fields created in the core and each layer of multilayer nanoshells, which occurs in the particles at frequencies close to the surface plasmon resonance, multilayer nanoparticles are promising systems with unique optical characteristics to control the light by light at the nanometer scale. It is demonstrated that OB can be converted to OM via adjusting the wavelength of the applied field and the size of the nanoshell, and the system can manifest optical hysteresis. It is found that the optical bistable or multistable threshold and the shape of hysteresis loops are strongly dependent on the thickness of shells, the incident wavelength, the permittivity of the surrounding medium, and the composition of the core and the inner/outer layers. We also give a discussion on the impact of the exciton-plasmon interaction and the intrinsic size effect on the nonlinear optical response of multilayer spherical nanoparticles.

  19. Designing a stochastic genetic switch by coupling chaos and bistability

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiang [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Ouyang, Qi [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); The Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China); Wang, Hongli, E-mail: hlwang@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China)

    2015-11-15

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  20. Bistable switching in supercritical n+-n-n+GaAs transferred electron devices

    DEFF Research Database (Denmark)

    Jøndrup, Peter; Jeppesen, Palle; Jeppson, Bert

    1976-01-01

    Bistable switching in supercritically doped n+-n-n+GaAs transferred electron devices (TED's) is investigated experimentally and interpreted in computer simulations, for which details of the computer program are given. Three switching modes all leading to stable anode domains are discussed, namely......: 1) cathode-triggered traveling domain; 2) cathode-triggered accumulation layer; 3) anode-triggered domain. Relative current drops up to 40 percent, and switching times down to 60 ps are obtained in low-duty-cycle pulsed experiments with threshold currents around 400 mA. Optimum device parameters...

  1. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions.

  2. Analysis of bistable inductive micro-switch based on surface micro size effect

    Science.gov (United States)

    Tian, Wenchao; Chen, Zhiqiang

    2015-04-01

    The inductive micro-switch can not only induce an external acceleration, but also be controlled by the external acceleration to realize a trigger action. It is an integrative device of a sensor and an actuator. However, little work has been done to develop a comprehensive model to accurately analyze the micro size effect during micro-switch contact process. So its malfunctions related to "fail-to-closure" and "transient-closure" result in low reliability and weak anti-jamming capability. A bistable inductive micro-switch is presented based on nano electro-mechanical system (NEMS) technology and micro size effect. And the sine-model is used to describe the rough contact surface of the micro-switch. Micro size forces such as the Casimir force and van der Waals (vdW) force are analyzed in detail using the principles of vacuum energy and the Wigner-Seitz micro-continuum media. The vdW force includes the repulsive force. The simulation results of the Casimir force varied with the gap are obtained, which is compared with the relative experimental result. The dynamic equation of the bistable inductive micro-switch is established. Dynamic simulation results are shown to be in agreement with experimental results. The threshold acceleration is 6.8 g, and the response time is 17.5 μs.

  3. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    Science.gov (United States)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.

  4. Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch.

    Directory of Open Access Journals (Sweden)

    Jun Cui

    Full Text Available BACKGROUND: The complex interplay between B-cell lymphoma 2 (Bcl-2 family proteins constitutes a crucial checkpoint in apoptosis. Its detailed molecular mechanism remains controversial. Our former modeling studies have selected the 'Direct Activation Model' as a better explanation for experimental observations. In this paper, we continue to extend this model by adding interactions according to updating experimental findings. METHODOLOGY/PRINCIPAL FINDINGS: Through mathematical simulation we found bistability, a kind of switch, can arise from a positive (double negative feedback in the Bcl-2 interaction network established by anti-apoptotic group of Bcl-2 family proteins. Moreover, Bax/Bak auto-activation as an independent positive feedback can enforce the bistability, and make it more robust to parameter variations. By ensemble stochastic modeling, we also elucidated how intrinsic noise can change ultrasensitive switches into gradual responses. Our modeling result agrees well with recent experimental data where bimodal Bax activation distributions in cell population were found. CONCLUSIONS/SIGNIFICANCE: Along with the growing experimental evidences, our studies successfully elucidate the switch mechanism embedded in the Bcl-2 interaction network and provide insights into pharmacological manipulation of Bcl-2 apoptotic switch as further cancer therapies.

  5. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    Science.gov (United States)

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  6. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine.

    Directory of Open Access Journals (Sweden)

    Alex T Nielsen

    Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a

  7. Bistable Switch in let-7 miRNA Biogenesis Pathway Involving Lin28

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2014-10-01

    Full Text Available miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases.

  8. Bistable switch in let-7 miRNA biogenesis pathway involving Lin28.

    Science.gov (United States)

    Shi, Fei; Yu, Wenbao; Wang, Xia

    2014-10-21

    miRNAs are small noncoding RNAs capable of regulating gene expression at the post-transcriptional level. A growing body of evidence demonstrated that let-7 family of miRNAs, as one of the highly conserved miRNAs, plays an important role in cell differentiation and development, as well as tumor suppressor function depending on their levels of expression. To explore the physiological significance of let-7 in regulating cell fate decisions, we present a coarse grained model of let-7 biogenesis network, in which let-7 and its regulator Lin28 inhibit mutually. The dynamics of this minimal network architecture indicates that, as the concentration of Lin28 increases, the system undergoes a transition from monostability to a bistability and then to a one-way switch with increasing strength of positive feedback of let-7, while in the absence of Lin28 inhibition, the system loses bistability. Moreover, the ratio of degradation rates of let-7 and Lin28 is critical for the switching sensitivity and resistance to stimulus fluctuations. These findings may highlight why let-7 is required for normal gene expression in the context of embryonic development and oncogenesis, which will facilitate the development of approaches to exploit this regulatory pathway by manipulating Lin28/let-7 axis for novel treatments of human diseases.

  9. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times.

    Science.gov (United States)

    Tiwari, Abhinav; Igoshin, Oleg A

    2012-10-01

    Biochemical regulatory networks governing diverse cellular processes such as stress-response, differentiation and cell cycle often contain coupled feedback loops. We aim at understanding how features of feedback architecture, such as the number of loops, the sign of the loops and the type of their coupling, affect network dynamical performance. Specifically, we investigate how bistability range, maximum open-loop gain and switching times of a network with transcriptional positive feedback are affected by additive or multiplicative coupling with another positive- or negative-feedback loop. We show that a network's bistability range is positively correlated with its maximum open-loop gain and that both quantities depend on the sign of the feedback loops and the type of feedback coupling. Moreover, we find that the addition of positive feedback could decrease the bistability range if we control the basal level in the signal-response curves of the two systems. Furthermore, the addition of negative feedback has the capacity to increase the bistability range if its dissociation constant is much lower than that of the positive feedback. We also find that the addition of a positive feedback to a bistable network increases the robustness of its bistability range, whereas the addition of a negative feedback decreases it. Finally, we show that the switching time for a transition from a high to a low steady state increases with the effective fold change in gene regulation. In summary, we show that the effect of coupled feedback loops on the bistability range and switching times depends on the underlying mechanistic details.

  10. On the Selection of Bistability in Genetic Regulatory Circuits

    Science.gov (United States)

    Ghim, Cheol-Min; Almaas, Eivind

    2008-03-01

    Bistability is a defining character of switching and memory devices. Many regulatory circuits observed in cellular reaction networks contain ``bistability motifs'' that endow a cell with efficient and reliable switching between different physiological modes of operation. One of the best characterized system, the lac operon in E. coli, has been shown to display a saddle-node bifurcation when induced by nonmetabolizable lactose analogue inducers, such as isopropylthio-β-D-galactoside (IPTG) and thio-methyl-galactoside (TMG). Motivated by the absence of bifurcation in the same system with its natural inducer, lactose, we studied the conditions for bistability and rationalized its fitness effects in the light of evolution. Stochastic simulations as well as mean-field approach confirm that history-dependent behavior as well as nongenetic inheritance, being realized by bistability motifs, may be beneficial in fluctuating environments.

  11. How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch.

    Directory of Open Access Journals (Sweden)

    Lucia Marucci

    Full Text Available Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA. Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.

  12. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    Science.gov (United States)

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  13. Colored Noise Induced Bistable Switch in the Genetic Toggle Switch Systems.

    Science.gov (United States)

    Wang, Pei; Lü, Jinhu; Yu, Xinghuo

    2015-01-01

    Noise can induce various dynamical behaviors in nonlinear systems. White noise perturbed systems have been extensively investigated during the last decades. In gene networks, experimentally observed extrinsic noise is colored. As an attempt, we investigate the genetic toggle switch systems perturbed by colored extrinsic noise and with kinetic parameters. Compared with white noise perturbed systems, we show there also exists optimal colored noise strength to induce the best stochastic switch behaviors in the single toggle switch, and the best synchronized switching in the networked systems, which demonstrate that noise-induced optimal switch behaviors are widely in existence. Moreover, under a wide range of system parameter regions, we find there exist wider ranges of white and colored noises strengths to induce good switch and synchronization behaviors, respectively; therefore, white noise is beneficial for switch and colored noise is beneficial for population synchronization. Our observations are very robust to extrinsic stimulus strength, cell density, and diffusion rate. Finally, based on the Waddington's epigenetic landscape and the Wiener-Khintchine theorem, physical mechanisms underlying the observations are interpreted. Our investigations can provide guidelines for experimental design, and have potential clinical implications in gene therapy and synthetic biology.

  14. Modeling the effect of transcriptional noise on switching in gene networks in a genetic bistable switch.

    Science.gov (United States)

    Chaudhury, Srabanti

    2015-06-01

    Gene regulatory networks in cells allow transitions between gene expression states under the influence of both intrinsic and extrinsic noise. Here we introduce a new theoretical method to study the dynamics of switching in a two-state gene expression model with positive feedback by explicitly accounting for the transcriptional noise. Within this theoretical framework, we employ a semi-classical path integral technique to calculate the mean switching time starting from either an active or inactive promoter state. Our analytical predictions are in good agreement with Monte Carlo simulations and experimental observations.

  15. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Science.gov (United States)

    Pal, Kaushik; Zhan, Bihong; Madhu Mohan, M. L. N.; Schirhagl, Romana; Wang, Guoping

    2015-12-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures-HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  16. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus.

    Science.gov (United States)

    Subramanian, Kartik; Paul, Mark R; Tyson, John J

    2013-01-01

    The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.

  17. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Kartik Subramanian

    Full Text Available The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.

  18. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kaushik, E-mail: kaushikpal@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Zhan, Bihong, E-mail: bihong_zhan@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China); Madhu Mohan, M.L.N. [Liquid Crystal Research Laboratory (LCRL), Bannari Amman Institute of Technology, Sathyamangalam 638 401 (India); Schirhagl, Romana [University Medical Center Groningen, Department of BioMedical Engineering, Ant. Deusinglaan 1, 9713 AV Groningen (Netherlands); Wang, Guoping, E-mail: guopingwang@whu.edu.cn [School of Power and Mechanical Engineering, Wuhan University, 8 East Lake South Road, Wuhan 430072 (China)

    2015-12-01

    constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures–HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  19. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  20. Temperature persistent bistability and threshold switching in a single barrier heterostructure hot-electron diode

    DEFF Research Database (Denmark)

    Stasch, R.; Hey, R.; Asche, M.

    1996-01-01

    Bistable current–voltage characteristics caused by competition of tunneling through and field-enhanced thermionic emission across a single barrier are investigated in an n–-GaAs/Al0.34Ga0.66As/n+-GaAs structure. The S-shaped part of the characteristic persists in the whole temperature regime betw...

  1. A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    DEFF Research Database (Denmark)

    Nielsen, Alex Toftgaard; Dolganov, N. A.; Rasmussen, Thomas

    2010-01-01

    A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene...... expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co...... into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a mechanism that could generate a subpopulation of V. cholerae that continues to produce TCP and CT in the rice water stools of cholera patients....

  2. Bistable organic materials in optoelectrical switches: Two-electrode devices vs. organic field effect transistors

    CERN Document Server

    Sworakowski, Juliusz

    2011-01-01

    The paper presents a short overview of research into properties of organic materials and structures that could be used in optoelectrical switches, i.e., switches in which changes in electrical properties are triggered by light of appropriate wavelengths. In particular, described are the structures acting by virtue of reversible photochemical reactions occurring in photochromic molecular materials.

  3. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens

    NARCIS (Netherlands)

    Gallie, J.; Libby, E.; Bertels, F.; Jendresen, C.B.; Martinussen, J.; Kilstrup, M.; Desprat, N.; Buffing, M.F.; Sauer, U.; Beaumont, H.J.E.; Rainey, P.B.

    2015-01-01

    Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical

  4. Resistance switching memory operation using the bistability in current-voltage characteristics of GaN/AlN resonant tunneling diodes

    Science.gov (United States)

    Nagase, Masanori; Takahashi, Tokio; Shimizu, Mitsuaki

    2016-10-01

    Resistance switching memory operations using the bistability in the current-voltage (I-V) characteristics of GaN/AlN resonant tunneling diodes (RTDs) were investigated to realize an ultrafast nonvolatile memory operating at a picosecond time scale. Resistance switching memory operations based on electron accumulation due to intersubband transitions and electron release due to tunneling current were demonstrated with high reproducibility at room temperature when the leakage of electrons accumulating in the quantum well from the deep level in the AlN barrier was suppressed. A nonvolatile memory for the processor core in a normally off computing system is expected to be realized using the bistability in the I-V characteristics of GaN/AlN RTDs.

  5. Coherent all-optical switching in a bistable waveguide-cavity-waveguide system

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2011-01-01

    All optical switching based on non-linear material effects is a promising technique for use in future optical communication systems. Promising advances in the field has been achieved using optical microcavities in photonic crystals to increase the optical field strength and hence reduce...... the required power of the input field [1]. In this work we consider an alternative method of switching, in which the input power is kept constant and only the phase of the input field is varied....

  6. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches.

    Directory of Open Access Journals (Sweden)

    Tobias Sikosek

    2016-06-01

    Full Text Available Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.

  7. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens.

    Directory of Open Access Journals (Sweden)

    Jenna Gallie

    2015-03-01

    Full Text Available Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF, while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON. This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.

  8. Bistability in a Metabolic Network Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens

    DEFF Research Database (Denmark)

    Gallie, Jenna; Libby, Eric; Bertels, Frederic;

    2015-01-01

    levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular...... in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results...

  9. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches.

    Directory of Open Access Journals (Sweden)

    Ruben Perez-Carrasco

    2016-10-01

    Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can

  10. Optical Bistable Arrays: Prospects for Ultimate Performances,

    Science.gov (United States)

    OPTICAL SWITCHING, *OPTICAL INTERFEROMETERS, CAVITIES, IMPEDANCE, IMPEDANCE MATCHING , INTENSITY, LAYERS, MATERIALS, MIRRORS, OPTIMIZATION, PARAMETERS, REDUCTION, FRANCE, BISTABLE DEVICES, GALLIUM ARSENIDES, ALUMINUM GALLIUM ARSENIDES, HETEROJUNCTIONS.

  11. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network.

    Directory of Open Access Journals (Sweden)

    Alasdair J E Gordon

    2009-02-01

    Full Text Available Bistable epigenetic switches are fundamental for cell fate determination in unicellular and multicellular organisms. Regulatory proteins associated with bistable switches are often present in low numbers and subject to molecular noise. It is becoming clear that noise in gene expression can influence cell fate. Although the origins and consequences of noise have been studied, the stochastic and transient nature of RNA errors during transcription has not been considered in the origin or modeling of noise nor has the capacity for such transient errors in information transfer to generate heritable phenotypic change been discussed. We used a classic bistable memory module to monitor and capture transient RNA errors: the lac operon of Escherichia coli comprises an autocatalytic positive feedback loop producing a heritable all-or-none epigenetic switch that is sensitive to molecular noise. Using single-cell analysis, we show that the frequency of epigenetic switching from one expression state to the other is increased when the fidelity of RNA transcription is decreased due to error-prone RNA polymerases or to the absence of auxiliary RNA fidelity factors GreA and GreB (functional analogues of eukaryotic TFIIS. Therefore, transcription infidelity contributes to molecular noise and can effect heritable phenotypic change in genetically identical cells in the same environment. Whereas DNA errors allow genetic space to be explored, RNA errors may allow epigenetic or expression space to be sampled. Thus, RNA infidelity should also be considered in the heritable origin of altered or aberrant cell behaviour.

  12. Functionally rigid bistable [2]rotaxanes

    DEFF Research Database (Denmark)

    Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan;

    2007-01-01

    was investigated as a means to simplify both molecular structure and switching function previously observed in related bistable [2]rotaxanes with flexible spacers between their stations and incorporating a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. The nondegenerate MPTTF-NP switch was isolated as near isomer...

  13. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  14. Studies of Bistable Optical Devices.

    Science.gov (United States)

    1982-05-15

    Alternate Switching, and Subharmonic Generation in Bistable Optical Devices" (J. A. Goldstone, P.-T. Ho, E. Garmire) Appl. Phys. Lett. 37, 126 (1980). 7...demonstrated with modulators which are inherently slow, but have useful features. This includes driving a thin Fabry-Perot with a piezo -electric (McCall, Appl

  15. Bianthrone in a Single-Molecule Junction: Conductance Switching with a Bistable Molecule Facilitated by Image Charge Effects

    DEFF Research Database (Denmark)

    Bjørnholm, Thomas

    2010-01-01

    isomerization events. Temperature dependence of the switching rate allows for an estimate of the activation energy of the process, on the order of 120 +/- 50 meV. Quantum-chemical calculations of the potential energy relief of neutral bianthrone and its anion, including identification of transition states...

  16. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  17. Switching from optical bistability to multistability via terahertz signal radiation in a InGaN/GaN quantum dot nanostructure

    Science.gov (United States)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2014-06-01

    In this paper, the effect of terahertz signal field on optical bistability and multistability in InGaN/GaN quantum dot nanostructure inside a unidirectional ring cavity is investigated. Quantum dot nanostructure is designed numerically by Schrödinger and Poisson equations which solve self consistently. By size control of quantum dot and external voltage, one can design a four level quantum dot with appropriate energy levels which can be suitable for controlling the optical bistability and multistability by terahertz signal field. It is found that the frequency detuning and intensity control of terahertz signal radiation as well as the dephasing decay rates can influence the optical bistability and multistability behaviors.

  18. Bistability: requirements on cell-volume, protein diffusion, and thermodynamics.

    Directory of Open Access Journals (Sweden)

    Robert G Endres

    Full Text Available Bistability is considered wide-spread among bacteria and eukaryotic cells, useful, e.g., for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments and fast protein diffusion (well mixing. Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.

  19. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  20. Identification of optimal parameter combinations for the emergence of bistability.

    Science.gov (United States)

    Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila

    2015-11-24

    Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.

  1. Identification of optimal parameter combinations for the emergence of bistability

    Science.gov (United States)

    Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila

    2015-12-01

    Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.

  2. Optical bistability in a nonlinear-shell-coated metallic nanoparticle

    Science.gov (United States)

    Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei

    2016-01-01

    We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967

  3. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-01

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  4. Bistable dielectric elastomer minimum energy structures

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; McCoul, David; Xing, Zhiguang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    Dielectric elastomer minimum energy structures (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as soft actuators. If the task only needs binary action, the bistable structure will be an efficient solution and can save energy because it requires only a very short duration of voltage to switch its state. To obtain bistable DEMES, a method to realize the two stable states of traditional DEMES is provided in this paper. Based on this, a type of symmetrical bistable DEMES is proposed, and the required actuation pulse duration is shorter than 0.1 s. When a suitable mass is attached to end of the DEMES, or two layers of dielectric elastomer are affixed to both sides of the primary frame, the DEMES can realize two stable states and can be switched by a suitable pulse duration. To calculate the required minimum pulse duration, a mathematical model is provided and validated by experiment.

  5. Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature

    NARCIS (Netherlands)

    Warda, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We experimentally demonstrate optical bistability in Er(3+)-Yb(3+) phosphate glass microspheres at 295 K. Bistability is associated with both Er(3+) fluorescence and lasing behavior, and chromatic switching. The chromatic switching results from an intrinsic mechanism exploiting the thermal coupling

  6. Hybrid optoelectronic device with multiple bistable outputs

    Science.gov (United States)

    Costazo-Caso, Pablo A.; Jin, Yiye; Gelh, Michael; Granieri, Sergio; Siahmakoun, Azad

    2011-01-01

    Optoelectronic circuits which exhibit optical and electrical bistability with hysteresis behavior are proposed and experimentally demonstrated. The systems are based on semiconductor optical amplifiers (SOA), bipolar junction transistors (BJT), PIN photodiodes (PD) and laser diodes externally modulated with integrated electro-absorption modulators (LD-EAM). The device operates based on two independent phenomena leading to both electrical bistability and optical bistability. The electrical bistability is due to the series connection of two p-i-n structures (SOA, BJT, PD or LD) in reverse bias. The optical bistability is consequence of the quantum confined Stark effect (QCSE) in the multi-quantum well (MQW) structure in the intrinsic region of the device. This effect produces the optical modulation of the transmitted light through the SOA (or reflected from the PD). Finally, because the optical transmission of the SOA (in reverse bias) and the reflected light from the PD are so small, a LD-EAM modulated by the voltage across these devices are employed to obtain a higher output optical power. Experiments show that the maximum switching frequency is in MHz range and the rise/fall times lower than 1 us. The temporal response is mainly limited by the electrical capacitance of the devices and the parasitic inductances of the connecting wires. The effects of these components can be reduced in current integration technologies.

  7. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  8. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  9. Membrane Bistability in Thalamic Reticular Neurons During Spindle Oscillations

    Science.gov (United States)

    Fuentealba, Pablo; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea

    2010-01-01

    The thalamic reticular (RE) nucleus is a major source of inhibition in the thalamus. It plays a crucial role in regulating the excitability of thalamocortical networks and in generating some sleep rhythms. Current-clamp intracellular recordings of RE neurons in cats under barbiturate anesthesia revealed the presence of membrane bistability in ~20% of neurons. Bistability consisted of two alternate membrane potentials, separated by ~17–20 mV. While non-bistable (common) RE neurons fired rhythmic spike-bursts during spindles, bistable RE neurons fired tonically, with burst modulation, throughout spindle sequences. Bistability was strongly voltage dependent and only expressed under resting conditions (i.e. no current injection). The transition from the silent to the active state was a regenerative event that could be activated by brief depolarization, whereas brief hyperpolarizations could switch the membrane potential from the active to the silent state. These effects outlasted the current pulses. Corticothalamic stimulation could also switch the membrane potential from silent to active states. Addition of QX-314 in the recording micropipette either abolished or disrupted membrane bistability, suggesting INa(p) to be responsible for its generation. Thalamocortical cells presented various patterns of spindling that reflected the membrane bistability in RE neurons. Finally, experimental data and computer simulations predicted a role for RE neurons’ membrane bistability in inducing various patterns of spindling in target thalamocortical cells. We conclude that membrane bistability of RE neurons is an intrinsic property, likely generated by INa(p) and modulated by cortical influences, as well as a factor that determines different patterns of spindle rhythms in thalamocortical neurons. PMID:15331618

  10. Remarkable Stability of High Energy Conformers in Self-Assembled Monolayers of a Bistable Electro- and Photoswitchable Overcrowded Alkene

    NARCIS (Netherlands)

    Ivashenko, Oleksii; Logtenberg, Hella; Areephong, Jetsuda; Coleman, Anthony C.; Wesenhagen, Philana V.; Geertsema, Edzard M.; Heureux, Nicolas; Feringa, Ben L.; Rudolf, Petra; Browne, Wesley R.

    2011-01-01

    Although bistability of molecular switches in solution is well established, achieving highly robust bistable molecular switching in self-assembled monolayers remains a challenge. Such systems are highly attractive as components in organic electronics and molecular-based photo and electrochromic

  11. Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber.

    Science.gov (United States)

    Tofighi, Sara; Farshemi, Somayeh Safari; Sajjad, Batool; Shahshahani, Fatemeh; Bahrampour, Ali Reza

    2012-10-10

    In this paper we study the optical bistability in a double coupler fiber ring resonator which consists of an erbium doped fiber amplifier (EDFA) in half part of the fiber ring and a quantum dot doped fiber (QDF) saturable absorber in the other half. The bistability is provided by the QDF section of the ring resonator. The EDFA is employed to reduce the switching power. The transmitted and reflected bistability characteristics are investigated. It is shown that the switching power for this new bistable device is less than 10 mW.

  12. Negative and positive hysteresis in double-cavity optical bistability in three-level atom

    CERN Document Server

    Babu, H Aswath

    2010-01-01

    We present novel hysteretic behaviour of a three-level ladder atomic system exhibiting double-cavity optical bistability in the mean-field limit. The two fields coupling the atomic system experience feedback via two independent, unidirectional, single mode ring cavities and exhibit cooperative phenomena, simultaneously. The system displays a range of rich dynamical features varying from normal switching to self pulsing and a period-doubling route to chaos for both the fields. We focus our attention to a new hump like feature in the bistable curve arising purely due to cavity induced inversion, which eventually leads to negative hysteresis in the bistable response. This is probably the only all-optical bistable system that exhibits positive as well as negative bistable hysteresis in different input field intensity regimes. For both the fields, the switching times, the associated critical slowing down, the self-pulsing characteristics, and the chaotic behaviour can be controlled to a fair degree, moreover, all ...

  13. Laser beam-induced bistability of concentration in nanofluids

    Science.gov (United States)

    Livashvili, A. I.; Krishtop, V. V.; Karpets, Y. M.; Bryuhanova, T. N.; Kireeva, N. M.

    2016-08-01

    We conduct a theoretical study ofthe dynamics of the concentration of nanoparticles in liquid-phase media under the influence of a laser light field. An exact solution of the nonlinear diffusion equation in the form of switching wavesis found. It is shown that, in the conditions of a fixed temperature and a nonlinear medium thermal conductivity, nanofluid becomes bistable.

  14. The formation process of a bistable state in nanofluids

    Science.gov (United States)

    Livashvili, A. I.; Krishtop, V. V.; Karpets, Y. M.; Kireyeva, N. M.

    2017-01-01

    We study the theory of the dynamics of the concentration of nanoparticles in a liquid-phase environment under the influence of a light field. An exact solution for the nonlinear diffusion equation was found in the form of switching waves. It is shown that under the conditions of a stationary and nonlinear temperature coefficient of thermal conductivity of the medium, nanofluids become bistable.

  15. Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles

    CERN Document Server

    Pinchuk, A

    2003-01-01

    Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.

  16. Bistability, mushrooms, and isolas

    Science.gov (United States)

    Ganapathisubramanian, N.; Showalter, Kenneth

    1984-05-01

    The iodate oxidation of arsenous acid exhibits single-hysteresis bistability in a continuous flow stirred tank reactor. Other patterns of multiple stationary states including mushrooms and isolas are exhibited by this system when a constant flow of solvent is introduced to the CSTR in addition to the usual flow of reactants. A simple empirical rate law model provides a near quantitative description of the behavior. This model is analyzed and compared to other model systems.

  17. Numerical simulation of optical bi-stability in antiferromagnetic sandwich structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dongmei [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Fu Shufang, E-mail: shufangfu@yahoo.com [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Zhou Sheng; Wang Xuanzhang [Provincial Key Laboratory of Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2012-01-15

    The magnetically optical bi-stability, a third-order nonlinear response, is investigated on an antiferromagnetic (AF) sandwich structure, where an AF film is sandwiched between two dielectric films. The configuration with the AF anisotropy axis and external static magnetic field both in the interfaces and normal to the incident plane is used. The incident wave is taken as a TE wave with its electric component transverse to the incident plane. We find that bistable switches can appear only in a finite frequency range and an incident angle range for a given regime of incident power, which means that there are the critical incident angle and frequency. The power threshold value for the bi-stability increases with the incident angle. In addition, the bi-stability also easily is modulated by the external magnetic field. - Highlights: > Antiferromagnetic sandwich NM/AF/NM. > Optical bi-stability near the resonant frequency. > Effect of magnetic field and incident angle.

  18. Distributed processing in bistable perception

    NARCIS (Netherlands)

    Knapen, T.H.J.

    2007-01-01

    A very incisive way of studying visual awareness and the mechanisms that underlie it, it to use bistable perception. In bistable perception, an observer's perceptual state alternates between one interpretation and its mutually exclusive counterpart while the stimulus remains the same. This gives us

  19. Optical bistability effect in plasmonic racetrack resonator with high extinction ratio.

    Science.gov (United States)

    Wang, Xiaolei; Jiang, Houqiang; Chen, Junxue; Wang, Pei; Lu, Yonghua; Ming, Hai

    2011-09-26

    In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55 µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38 ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

  20. A Novel Molecular Switch

    Science.gov (United States)

    Daber, Robert; Lewis, Mitchell

    2009-01-01

    Transcriptional regulation is a fundamental process for regulating the flux of all metabolic pathways. For the last several decades, the lac operon has served as a valuable model for studying transcription. More recently, the switch that controls the operon has also been successfully adapted to function in mammalian cells. Here we describe how, using directed evolution, we have created a novel switch that recognizes an asymmetric operator sequence. The new switch has a repressor with altered headpiece domains for operator recognition, and a redesigned dimer interface to create a heterodimeric repressor. Quite unexpectedly, the heterodimeric switch functions better than the natural system. It can repress more tightly than the naturally occurring switch of the lac operon; it is less leaky and can be induced more efficiently. Ultimately these novel repressors could be evolved to recognize eukaryotic promoters and used to regulate gene expression in mammalian systems. PMID:19540845

  1. Optical bistability with film-coupled metasurfaces.

    Science.gov (United States)

    Huang, Zhiqin; Baron, Alexandre; Larouche, Stéphane; Argyropoulos, Christos; Smith, David R

    2015-12-01

    Metasurfaces comprising arrays of film-coupled, nanopatch antennas are a promising platform for low-energy, all-optical switches. The large field enhancements that can be achieved in the dielectric spacer region between the nanopatch and the metallic substrate can substantially enhance optical nonlinear processes. Here we consider a dielectric material that exhibits an optical Kerr effect as the spacer layer and numerically calculate the optical bistability of a metasurface using the finite element method (FEM). We expect the proposed method to be highly accurate compared with other numerical approaches, such as those based on graphical post-processing techniques, because it self-consistently solves for both the spatial field distribution and the intensity-dependent refractive index distribution of the spacer layer. This method offers an alternative approach to finite-difference time-domain (FDTD) modeling. We use this numerical tool to design a metasurface optical switch and our optimized design exhibits exceptionally low switching intensity of 33  kW/cm2, corresponding to switching energy on the order of tens of attojoules per resonator, a value much smaller than those found for most devices reported in the literature. We propose our method as a tool for designing all-optical switches and modulators.

  2. NMR studies of the allosteric effectors of the lac operon

    NARCIS (Netherlands)

    Romanuka, J.

    2009-01-01

    The aim of this thesis is to characterize the regulatory mechanism of the Lac repressor which is the molecular switch of the lac operon. Lac repressor binds to its cognate DNA operator and inhibits transcription. When an inducer binds to the protein, it triggers a conformational change that releases

  3. Bistable non-volatile elastic membrane memcapacitor exhibiting chaotic behavior

    OpenAIRE

    Martinez-Rincon, J.; Pershin, Y. V.

    2011-01-01

    We suggest a realization of a bistable non-volatile memory capacitor (memcapacitor). Its design utilizes a strained elastic membrane as a plate of a parallel-plate capacitor. The applied stress generates low and high capacitance configurations of the system. We demonstrate that a voltage pulse of an appropriate amplitude can be used to reliably switch the memcapacitor into the desired capacitance state. Moreover, charged-voltage and capacitance-voltage curves of such a system demonstrate hyst...

  4. Low-threshold optical bistability of graphene-wrapped dielectric composite.

    Science.gov (United States)

    Huang, Yang; Miroshnichenko, Andrey E; Gao, Lei

    2016-03-21

    We theoretically study the effective third-order nonlinear response and optical bistability of the 3D graphene based composite consisting of graphene wrapped dielectric nanoparticles embedded in dielectric host at terahertz frequencies. Taking into account the nonlinear conductivity of graphene, we derive the analytical expressions for the effective third-order nonlinear coefficient χe3 in weakly nonlinear limit. Moreover, for strong applied fields, the criterion for achieving optical bistability in such a graphene coated sphere, as well as the switching thresholds of optical bistability are discussed. We find that both χe3 and optical bistability are strongly dependent on the Fermi energy of graphene and it is possible to achieve very low switching thresholds under the normal graphene dissipation. We further propose a scheme to study the transmittance of this nonlinear composite slab. These results reveal novel regime of the optical bistability of the transmittance of light. We show that this kind of graphene-wrapped composite, which has tunable and low threshold optical bistability, can be the best candidate for unique nonlinear optical materials.

  5. Band gap transmission in periodic bistable mechanical systems

    Science.gov (United States)

    Frazier, Michael J.; Kochmann, Dennis M.

    2017-02-01

    We theoretically and numerically investigate the supratransmission phenomenon in discrete, nonlinear systems containing bistable elements. While linear waves cannot propagate within the band gaps of periodic structures, supratransmission allows large-amplitude waves to transmit energy through the band gap. For systems lacking bistability, the threshold amplitude for such energy transmission at a given frequency in the linear band gap is fixed. We show that the topological transitions due to bistability provide an avenue for switching the threshold amplitude between two well-separated values. Moreover, this versatility is achieved while leaving the linear dispersion properties of the system essentially unchanged. Interestingly, the behavior changes when an elastic chain is coupled to bistable resonators (in an extension of the well-studied linear locally resonant metamaterials). Here, we show that a fraction of the injected energy is confined near the boundary due to the resonators, providing a means of regulating the otherwise unrestrained energy flow due to supratransmission. Together, the results illustrate new means of controlling nonlinear wave propagation and energy transport in systems having multi-stable elements.

  6. Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-07-20

    The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

  7. Generic Bistability in Creased Conical Surfaces

    Science.gov (United States)

    Lechenault, F.; Adda-Bedia, M.

    2015-12-01

    The emerging field of mechanical metamaterials has sought inspiration in the ancient art of origami as archetypal deployable structures that carry geometric rigidity, exhibit exotic material properties, and are potentially scalable. A promising venue to introduce functionality consists in coupling the elasticity of the sheet and the kinematics of the folds. In this spirit, we introduce a scale-free, analytical description of a very general class of snap-through, bistable patterns of creases naturally occurring at the vertices of real origami that can be used as building blocks to program and actuate the overall shape of the decorated sheet. These switches appear at the simplest possible level of creasing and admit straightforward experimental realizations.

  8. Engineering optical soliton bistability in colloidal media

    CERN Document Server

    Matuszewski, Michal

    2010-01-01

    We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.

  9. Bistability properties of magnetic micro-nanowires

    Science.gov (United States)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.

    2016-12-01

    A mathematical model that describes the process of the reversal magnetization of an amorphous microwire with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the optimization of the signal-tonoise ratio. Using nonlinear model, we studied the physical factors that cause the fluctuations of the start field. Based on the results of numerical experiments, the new data on the behavior of the start field under different conditions of a switching in a bistable ferromagnetic, including the conditions of high-frequency swapping, have been obtained and compared to the existing data. The results obtained do not contradict the existing physical concepts concerning a domain wall motion and are more general and realistic in a comparison with the previous model.

  10. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  11. A CW Gunn Diode Switching Element.

    Science.gov (United States)

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  12. Optical bistability without the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-04-26

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  13. Bistable liquid crystal device fabricated via microscale liquid crystal alignment

    Science.gov (United States)

    Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki

    2016-10-01

    Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.

  14. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang [State Key laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan, Ren-Gang [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  15. Bistability between equatorial and axial dipoles during magnetic field reversals

    CERN Document Server

    Gissinger, Christophe; Schrinner, Martin; Dormy, Emmanuel

    2012-01-01

    Numerical simulations of the geodynamo in presence of an heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m = 0 axial dipolar field is replaced by an hemispherical magnetic field, dominated by an oscillating m = 1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of the Earth's dynamo.

  16. Bistability between equatorial and axial dipoles during magnetic field reversals.

    Science.gov (United States)

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-08

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.

  17. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  18. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    A post-transcriptional operon is a set of monocistronic mRNAs encoding functionally related proteins that are co-regulated by a group of RNA-binding proteins and/or small non-coding RNAs so that protein expression is coordinated at the post-transcriptional level. The post-transcriptional operon...... model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  19. Piezoelectric vibration-driven locomotion systems - Exploiting resonance and bistable dynamics

    Science.gov (United States)

    Fang, Hongbin; Wang, K. W.

    2017-03-01

    While a piezoelectric-based vibration-driven system is an excellent candidate for actuating small-size crawling-type locomotion robots, it has the major drawback of limited stroke output that would severely constraint the system's locomotion performance. In this paper, to advance the state of the art, we propose two novel designs of piezoelectric vibration-driven locomotion systems. The first utilizes the resonant amplification concept, and the second explores the design of a bistable device. While these two ideas have been explored for piezoelectric actuation amplification in general, they have never been exploited for crawling-type robotic locomotion. Numerical analyses on both systems reveal that resonance and bistability can substantially increase the systems' average locomotion speed. Moreover, this research shows that with bistability, the system is able to output high average locomotion speed in a wider frequency band, possess multiple locomotion modes, and achieve fast switches among them. Through proof-of-concept prototypes, the predicted locomotion performance improvements brought by resonance and bistability are verified. Finally, the basin stability is evaluated to systematically describe the occurring probability of certain locomotion behavior of the bistable system, which would provide useful guideline to the design and control of bistable vibration-driven locomotion systems.

  20. Flexible Bistable Cholesteric Reflective Displays

    Science.gov (United States)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  1. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  2. Optical Bistability with Two Serially Integrated InP-SOAs on a Chip

    Science.gov (United States)

    Plascak, Michael Edward

    Optical Bistability with Two Serially Integrated InP-SOAs on a Chip Thesis Advisor: Dr. Azad Siahmakoun A photonic switch using two series-connected, reverse-biased semiconductor optical amplifiers integrated onto a single device has been proposed and switching operation has been verified experimentally. The switching operates on two principles; an electrical bistability arising from the connection of two p-i-n structures in series, and the quantum confined Stark effect in reverse-biased multiple quantum well structures. The result is an electroabsorption modulation of the light through the SOAs due to the alternating voltage states. The system simultaneously produces outputs with both inverted and non-inverted hysteresis behavior, with experimental switching speeds demonstrated up to 400 kHz for a reverse-bias voltage of VRB=2.000V.

  3. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  4. Low Threshold Bistability In TiO2-SiO2 Interference Filters

    Science.gov (United States)

    Mitschke, Fedor M.; Ankerhold, George; Lange, Wulfhard K.

    1989-03-01

    We have studied optical bistability in Ti02/Si02 interference filters ("hard coatings"). These systems compare favourably with the more conventional ZnSe filters in important characteristics, particularly in durability, switching contrast and long term stability. Unfortunately, switching is very slow. Our analysis reveals a unique mechanism: water molecu)es in pores of the coating are reversibly desorbed from well below the outside surface as the spot temperature is driven up and down by the irradiated light.

  5. Bistability in a stochastic RNA-mediated gene network

    Science.gov (United States)

    Lloyd-Price, Jason; Ribeiro, Andre S.

    2013-09-01

    Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes. A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets the first gene's transcript. Here, we investigate the properties of this motif in a stochastic model which takes the low copy numbers of the RNA components into account. First, we examine the conditions for stability of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals, mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that asymmetry between the two interactions forming the switch allows an external input to induce the transition from “high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize that this asymmetric switching property allows these circuits to be more sensitive to one external input, without sacrificing the stability of one of the noisy attractors.

  6. Bistability of silence and seizure-like bursting.

    Science.gov (United States)

    Barnett, William; O'Brien, Gabrielle; Cymbalyuk, Gennady

    2013-11-15

    Neuronal circuits exhibiting seizure episodes have been shown to be prone to multistability. The coexistence of normal and pathological regimes could explain why seizures suddenly start and stop. Methods developed in dynamical systems theory are powerful tools for determining the cellular mechanisms that underlie multistable seizure dynamics. Here, we present two different approaches to assess multistability in a model neuron. In this model, we identified a bursting regime and a silent regime. First, we investigated properties of a square pulse of injected current which produced a switch from seizure-like bursting into silence. By systematically varying the phase and amplitude of the pulse, we found contiguous pulse parameter sets, so-called windows, that satisfied this criterion, and we determined the dependence of these windows on the parameter gleak. As gleak increased, the size of each window scaled according to the same law as the amplitude of the saddle orbit. Second, we examined the role of each current in supporting bistability of bursting and silence. We defined the index of propensity for multistability as the range of gleak for which bursting and silence coexisted. We computed this quantity while iteratively varying the maximal conductance of each voltage-gated current one at a time. Increasing the maximal conductance of the slow potassium current or the hyperpolarization-activated current increased the range of bistability. In contrast, decreasing the maximal conductance of the persistent sodium current increased the range of bistability. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Controllable Optical Bistability in a Crystal of Molecular Magnets System

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-Bing; LU Xin-You; HAO Xiang-Ying; SI Liu-Gang; YANG Xiao-Xue

    2008-01-01

    We investigate the formation of opticai bistability (OB) in a crystal of molecular magnets contained in a unidirectional ring cavity. The crystal is subjected to one de magnetic field and two (probe and coupling) ac resonant magnetic field. The results show that OB can be controlled efficiently by adjusting the intensity of the control field, the detuning of probe magnetic field and the cooperation parameter. Furthermore, within certain parameter range, the optical multistablity (OM) can also be observed in the crystal medium. This investigation can be used for designing new types of nonelectronic devices for realizing switching process.

  8. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)

    2012-10-15

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  9. Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior

    Science.gov (United States)

    Martinez-Rincon, Julian; Pershin, Yuriy V.

    2011-06-01

    We suggest a realization of a bistable non-volatile memory capacitor (memcapacitor). Its design utilizes a strained elastic membrane as a plate of a parallel-plate capacitor. The applied stress generates low and high capacitance configurations of the system. We demonstrate that a voltage pulse of an appropriate amplitude can be used to reliably switch the memcapacitor into the desired capacitance state. Moreover, charged-voltage and capacitance-voltage curves of such a system demonstrate hysteresis and transition into a chaotic regime in a certain range of ac voltage amplitudes and frequencies. Membrane memcapacitor connected to a voltage source comprises a single element nonautonomous chaotic circuit.

  10. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  11. Bistability in radiative heat exchange

    Science.gov (United States)

    Rudakov, V. I.; Ovcharov, V. V.; Prigara, V. P.

    2008-08-01

    The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

  12. Chiroptical Molecular Switches 1; Principles and Syntheses.

    NARCIS (Netherlands)

    Lange, Ben de; Jager, Wolter F.; Feringa, Bernard

    1992-01-01

    The concept and the synthesis of the basic molecules for a chiroptical molecular switch are described. This molecular switch is based on photochemical interconversion of two bistable forms of chiral sterically overcrowded olefins. A large variety of these alkenes with different properties have been

  13. Brain networks underlying bistable perception.

    Science.gov (United States)

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time. Copyright © 2015. Published by Elsevier Inc.

  14. Low-threshold optical bistability with multilayer graphene-covering Otto configuration

    Science.gov (United States)

    Wang, Hengliang; Wu, Jipeng; Guo, Jun; Jiang, Leyong; Xiang, Yuanjiang; Wen, Shuangchun

    2016-06-01

    In this paper, we propose a modified Otto configuration to realize tunable and low-threshold optical bistability at terahertz frequencies by attaching multilayer graphene sheets to a nonlinear substrate interface. Our work demonstrates that the threshold of optical bistability can be markedly reduced (three orders of magnitude) by covering the nonlinear substrate with multilayer graphene sheets, due to strong local field enhancement with the excitation of surface plasmons. We present the influences of the Fermi energy of graphene, the incident angle, the thickness of air gap and the relaxation time of graphene on the hysteresis phenomenon and give a way to optimize the surface plasmon resonance, which will enable us to further lower the minimal power requirements for realizing optical bistability due to the strong interaction of light with graphene sheets. These results are promising for realization of terahertz optical switches, optical modulators and logical devices.

  15. Green upconversion lasing and thermo-optical bistability in ZBNA microspheres

    Science.gov (United States)

    Wu, Yuqiang; Ward, Jonathan M.; Nic Chormaic, Síle

    2010-05-01

    We demonstrate upconversion lasing and fluorescence from active microspheres fabricated from a novel fluorozirconate, Er3+-doped glass, ZBNA, when pumped around 978 nm through a tapered optical fibre. An ultralow, green lasing threshold of ~3 μW for 550 nm emissions is measured. This is one order of magnitude lower than that previously obtained for ZBLAN microspheres. Optical bistability effects observed within the microspheres indicate that this material is suitable for low-frequency, all-optical switching. The bistable mechanism is discussed and attributed to shifts of the resonances due to thermal expansion of the sphere, where the heat is generated by phonon transitions excited after optical pumping around 978 nm. We also report multiple bistability loops within the microspheres. In a separate experiment, the latching behaviour of the microspheres is illustrated.

  16. Evaluation of the current biased integrated optical processors based on bistable dode elements

    Science.gov (United States)

    Tang, C. L.; Swanson, P. D.; Parker, M. A.; Libby, S. I.

    1994-07-01

    Three optical switching elements have been designed, fabricated and tested for use in an integrated, optical signal processor. The first, and optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam (s) to control the output light. This technique, along with the use of a two-pad bistable output laser, is used in the demonstration of the feasibility of the second device, an all optical RS flip-flop. The third device consists of a broad area orthogonal mode switch laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  17. Towards an optimal model for a bistable nematic liquid crystal display device

    KAUST Repository

    Cummings, L. J.

    2013-03-13

    Bistable liquid crystal displays offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine a theoretical model of a possible bistable device, originally proposed by Cummings and Richardson (Euro J Appl Math 17:435-463 2006), and explore means by which it may be optimized, in terms of optical contrast, manufacturing considerations, switching field strength, and switching times. The compromises inherent in these conflicting design criteria are discussed. © 2013 Springer Science+Business Media Dordrecht.

  18. Bifurcation properties of nematic liquid crystals exposed to an electric field: Switchability, bistability, and multistability

    KAUST Repository

    Cummings, L. J.

    2013-07-01

    Bistable liquid crystal displays (LCDs) offer the potential for considerable power savings compared with conventional (monostable) LCDs. The existence of two (or more) stable field-free states that are optically distinct means that contrast can be maintained in a display without an externally applied electric field. An applied field is required only to switch the device from one state to the other, as needed. In this paper we examine the basic physical principles involved in generating multiple stable states and the switching between these states. We consider a two-dimensional geometry in which variable surface anchoring conditions are used to control the steady-state solutions and explore how different anchoring conditions can influence the number and type of solutions and whether or not switching is possible between the states. We find a wide range of possible behaviors, including bistability, tristability, and tetrastability, and investigate how the solution landscape changes as the boundary conditions are tuned. © 2013 American Physical Society.

  19. Bistability in doped organic thin film transistors.

    Science.gov (United States)

    Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F

    2007-09-06

    Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.

  20. A novel bistable energy harvesting concept

    Science.gov (United States)

    Scarselli, G.; Nicassio, F.; Pinto, F.; Ciampa, F.; Iervolino, O.; Meo, M.

    2016-05-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%-6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments.

  1. The Life-cycle of Operons

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  2. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  3. The relative value of operon predictions

    NARCIS (Netherlands)

    Brouwer, Rutger W. W.; Kuipers, Oscar P.; van Hijum, Sacha A. F. T.

    2008-01-01

    For most organisms, computational operon predictions are the only source of genome-wide operon information. Operon prediction methods described in literature are based on (a combination of) the following five criteria: (i) intergenic distance, (ii) conserved gene clusters, (iii) functional relation,

  4. Noise-induced coherent switch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Taking the famous genetic toggle switch as an example,we numerically investigated the effect of noise on bistability.We found that extrinsic noise resulting from stochastic fluctuations in synthesis and degradation rates and from the environmental fluctuation in gene regulatory processes can induce coherent switch,and that there is an optimal noise intensity such that the noise not only can induce this switch,but also can amplify a weak input signal.In addition,we found that the intrinsic noise introduced through the Poisson τ-leap algorithm cannot induce such a switch.

  5. Low power all optical switches

    Institute of Scientific and Technical Information of China (English)

    Alireza Bananej; LI Chun-fei 李淳飞

    2004-01-01

    In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.

  6. Zero-power shock sensors using bistable compliant mechanisms

    Science.gov (United States)

    Hansen, Brett J.; Carron, Christopher J.; Hawkins, Aaron R.; Schultz, Stephen M.

    2007-04-01

    This paper demonstrates the design, fabrication, and analysis of a small plastic latching accelerometer, or shock sensor, that is bi-stable and functions without the use of electricity. The sensor has two stable mechanical states. When force above a certain threshold limit is applied, the sensor changes states and remains in the changed state indicating the amount of force that has been applied to the sensor. The devices were laser-cut from ABS and Delrin plastics, and the surface area of the free-moving section was varied to produce sensors with a range of force sensitivities. The switching action of the devices was analyzed with the use of a centrifuge, which supplied the necessary force to switch the accelerometers from one mechanical state to another. The surface area of the sensors varied from 100 mm2 to 500 mm2 and the G-force sensitivity range varied between 10 and 800 g.

  7. Interplay of gene expression noise and ultrasensitive dynamics affects bacterial operon organization.

    Directory of Open Access Journals (Sweden)

    J Christian J Ray

    Full Text Available Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes.

  8. Optimization of Bistable Viscoelastic Systems

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Szabo, Peter; Okkels, Fridolin

    2014-01-01

    We consider the flow of a viscoelastic fluid in a symmetric cross geometry. For small driving pressures the flow is symmetric, but beyond a certain critical pressure the symmetric flow becomes unstable; two stable asymmetric solutions appear, and forcing of the unstable symmetric flow beyond...... find a design that significantly reduces the driving pressure required for bistability, and furthermore is in agreement with the approach followed by experimental researchers. Furthermore, by comparing the two asymmetric solutions, we succesfully apply the same approach to a problem with two fluids...

  9. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    Directory of Open Access Journals (Sweden)

    Michael Bednarz

    Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.

  10. Detecting uber-operons in prokaryotic genomes.

    Science.gov (United States)

    Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying

    2006-01-01

    We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: http://csbl.bmb.uga.edu/uber, the first of its kind.

  11. Design of a Clap Activated Switch

    Directory of Open Access Journals (Sweden)

    Seyi Stephen OLOKEDE

    2008-12-01

    Full Text Available This paper presents the design of a clap activated switch device that will serve well in different phono-controlled applications, providing inexpensive key and at the same time flee from false triggering.This involves the design of various sages consisting of the pickup transducer, low frequency, audio low power and low noise amplifier, timer, bistable and switches. It also consists of special network components to prevent false triggering and ensure desired performance objectives. A decade counter IC serves the bistable function instead of flip-flop, special transistor and edge triggering network for low audio frequency.

  12. Transcriptional delay stabilizes bistable gene networks

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2014-01-01

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner. PMID:23952450

  13. Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited.

    Science.gov (United States)

    Vellela, Melissa; Qian, Hong

    2009-10-06

    Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.

  14. Generalized Bistability in Origami Cylinders

    Science.gov (United States)

    Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic

    Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.

  15. The cyanase operon and cyanate metabolism.

    Science.gov (United States)

    Anderson, P M; Sung, Y C; Fuchs, J A

    1990-12-01

    Cyanase is an inducible enzyme in E. coli that catalyzes bicarbonate-dependent decomposition of cyanate. It is encoded as part of an operon we have named the cyn operon, which includes three genes in the following order: cynT (cyanate permease), cynS (cyanase), and cynX (protein of unknown function). The direction of transcription is opposite to that of the lac operon, and the 3'-end of the cyn operon overlaps the 3'-end of the lac operon by 98 nucleotides. The gene cynR (regulatory protein) is located upstream from the cyn operon, and its transcription is opposite that of the cyn operon. The genes of the cyn operon and the cynR gene have been cloned, sequenced and over-expressed. Cyanate at concentrations of about 1 mM is toxic to strains of E. coli lacking the cyanase gene, but strains in which the inducible gene for cyanase is present can grow on cyanate as the sole source of nitrogen at concentrations as high as 20 mM. The presence of cyanase itself is not sufficient to overcome cyanate toxicity--the permease must also be present. Strains lacking the cyanase gene, but having a functional permease gene, are extremely sensitive to cyanate. Uptake of cyanate involves the product of the permease gene in an energy-dependent process. It appears that the cyn operon has evolved to function in detoxification/decomposition of cyanate arising from both intra- and extracellular sources.

  16. Optical bistability and multistability driven by external magnetic field in a dielectric slab doped with nanodiamond nitrogen vacancy centres

    Science.gov (United States)

    Nasehi, R.; Norouzi, F.

    2016-08-01

    The theoretical investigation of controlling the optical bistability (OB) and optical multistability (OM) in a dielectric medium doped with nanodiamond nitrogen vacancy centres under optical excitation are reported. The shape of the OB curve from dielectric slab can be tuned by changing the external magnetic field and polarization of the control beam. The effect of the intensity of the control laser field and the frequency detuning of probe laser field on the OB and OM behaviour are also discussed in this paper. The results obtained can be used for realizing an all-optical bistable switching or development of nanoelectronic devices.

  17. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices

    Science.gov (United States)

    Li, Xu; Lu, Yue; Guan, Li; Li, Jiantao; Wang, Yichao; Dong, Guoyi; Tang, Aiwei; Teng, Feng

    2016-09-01

    Hybrid organic/inorganic electrically bistable devices (EBDs) based on Cu2S/PVK nanocomposites have been fabricated by using a simple spin-coating method. An obvious electrical bistability is observed in the current-voltage (I-V) characteristics of the devices, and the presence of the buffer layer and the annealing process have an important effect on the enhancement of the ON/OFF current ratios. Different electrical conduction mechanisms are responsible for the charge switching of the devices in the presence and absence of the buffer layer.

  18. An analytical approach to bistable biological circuit discrimination using real algebraic geometry.

    Science.gov (United States)

    Siegal-Gaskins, Dan; Franco, Elisa; Zhou, Tiffany; Murray, Richard M

    2015-07-06

    Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturm's theorem--a tool from nineteenth-century real algebraic geometry--to comparing 'functionally equivalent' bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh-Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturm's theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis.

  19. Temporal dynamics of different cases of bi-stable figure-ground perception.

    Science.gov (United States)

    Kogo, Naoki; Hermans, Lore; Stuer, David; van Ee, Raymond; Wagemans, Johan

    2015-01-01

    Segmentation of a visual scene in "figure" and "ground" is essential for perception of the three-dimensional layout of a scene. In cases of bi-stable perception, two distinct figure-ground interpretations alternate over time. We were interested in the temporal dynamics of these alternations, in particular when the same image is presented repeatedly, with short blank periods in-between. Surprisingly, we found that the intermittent presentation of Rubin's classical "face-or-vase" figure, which is frequently taken as a standard case of bi-stable figure-ground perception, often evoked perceptual switches during the short presentations and stabilization was not prominent. Interestingly, bi-stable perception of Kanizsa's anomalous transparency figure did strongly stabilize across blanks. We also found stabilization for the Necker cube, which we used for comparison. The degree of stabilization (and the lack of it) varied across stimuli and across individuals. Our results indicate, against common expectation, that the stabilization phenomenon cannot be generally evoked by intermittent presentation. We argue that top-down feedback factors such as familiarity, semantics, expectation, and perceptual bias contribute to the complex processes underlying the temporal dynamics of bi-stable figure-ground perception.

  20. Energy landscape and dynamics of brain activity during human bistable perception.

    Science.gov (United States)

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  1. Theoretical Investigation on Bistable Switching and Dynamic Characteristics of Tapered Nonlinear Bragg Gratings%切趾型非线性布拉格光纤光栅双稳开关及动态特性的理论研究

    Institute of Scientific and Technical Information of China (English)

    陈建军; 木拉提·哈米提; 胡彦婷

    2011-01-01

    基于耦合模方程,利用含有时间推移变量的传输矩阵方法对非线性布拉格光栅(NLBG)双稳特性进行了理论分析,结果表明:在稳态情况下,不同切趾参数对NLBG双稳开关的阈值影响不同,并且正负切趾具有明显的光隔离器特点.考虑连续波输入,NLBG表现出的双稳开关特性在动态情形下极易出现一定周期性的自脉动,而且当输入光强增大到临界光强,输出可由自脉动转变为混沌状态;考虑切趾参数一定时,耦合系数的增大会导致脉动基座宽度和频率减小,当耦合系数达到一定数值后.输出状态将转变为弛豫衰减振荡.%Based on the coupled mode theory, by using the time-domain transfer matrix method, the bistable characteristics of nonlinear Bragg gratings (NLBG) are analyzed numerically. The results show that under steady case, various tapered factors have a different effects on the threshold switching energy and also positive and negative taper can cause the response of optical isolator in NLBG. On the other hand, with the continuous wave taken into consideration, the periodic self-pulsation may emerge extremely easy under the dynamic conditions in NLBG. As the input power increases to the critical intensity, the self-pulsation transforms into the chaos. For a certain tapered factor, the pulsation width and the frequency of the self-pulsation will reduce with the increase of coupling coefficient, but the output state will transform into relaxation damped oscillation when the coupling coefficient reaches a certain value.

  2. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  3. A bistable system with an electromagnetically induced grating

    Institute of Scientific and Technical Information of China (English)

    苏雪梅; 卓仲畅; 王立军; 高锦岳

    2002-01-01

    We propose a scheme of a bistable system with an electromagnetically induced grating and analyse the opticalbistabilities in the system. The stationary equations describing the system have been derived. This bistable systemshows typical hysteresis behaviour.

  4. Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure.

    Science.gov (United States)

    Kim, Ki-Han; Yu, Byeong-Hun; Choi, Sun-Wook; Oh, Seung-Won; Yoon, Tae-Hoon

    2012-10-22

    We propose a cholesteric liquid crystal device with a three-terminal electrode structure that can be operated in both the dynamic and the bistable modes. Fast switching (less than 5 ms) between the planar and the in-plane-field-induced states can be realized by applying an in-plane electric field, and conventional bistable switching between the planar and focal conic states can be realized by applying a vertical electric field.

  5. Effect of signal modulating noise in bistable stochastic dynamical systems

    Institute of Scientific and Technical Information of China (English)

    肖方红; 闫桂荣; 张新武

    2003-01-01

    The effect of signal modulating noise in bistable stochastic dynamical systems is studied.The concept of instan taneous steady state is proposed for bistable dynamical systems.By making a dynamical analysis of bistable stochastic systems,we find that global and local effect of signal modulating noise as well as stochastic resonance can occur in bistable dynamical systems on which both a weak sinusoidal signal and noise are forced.The effect is demonstrated by numerical simulation.

  6. Reversing invasion in bistable systems.

    Science.gov (United States)

    Alzahrani, Ebraheem O; Davidson, Fordyce A; Dodds, Niall

    2012-12-01

    In this paper, we discuss a class of bistable reaction-diffusion systems used to model the competitive interaction of two species. The interactions are assumed to be of classic "Lotka-Volterra" type and we will consider a particular problem with relevance to applications in population dynamics: essentially, we study under what conditions the interplay of relative motility (diffusion) and competitive strength can cause waves of invasion to be halted and reversed. By establishing rigorous results concerning related degenerate and near-degenerate systems, we build a picture of the dependence of the wave speed on system parameters. Our results lead us to conjecture that this class of competition model has three "zones of response". In the central zone, varying the motility can slow, halt and reverse invasion. However, in the two outer zones, the direction of invasion is independent of the relative motility and is entirely determined by the relative competitive strengths. Furthermore, we conjecture that for a large class of competition models of the type studied here, the wave speed is an increasing function of the relative motility.

  7. Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates

    Science.gov (United States)

    Kuder, I. K.; Fasel, U.; Ermanni, P.; Arrieta, A. F.

    2016-11-01

    Morphing systems able to efficiently adjust their characteristics to resolve the conflicting demands of changing operating conditions offer great potential for enhanced performance and functionality. The main practical challenge, however, consists in combining the desired compliance to accomplish radical reversible geometry modifications at reduced actuation effort with the requirement of high stiffness imposed by operational functions. A potential decoupling strategy entails combining the conformal shape adaptation benefits of distributed compliance with purely elastic stiffness variability provided by embedded bi-stable laminates. This selective compliance can allow for on-demand stiffness adaptation by switching between the stable states of the internal elements. The current paper considers the optimal positioning of the bi-stable components within the structure while assessing the energy required for morphing under aerodynamic loading. Compared to a time-invariant system, activating specific deformation modes permits decreasing the amount of actuation energy, and hence the amount of actuation material to be carried. A concurrent design and optimisation framework is implemented to develop selective configurations targeting different flight conditions. First, an aerodynamically favourable high-lift mode achieves large geometric changes due to reduced actuation demands. This is only possible by virtue of the internally tailored compliance, arising from the stable state switch of the embedded bi-stable components. A second, stiff configuration, targets operation under increased aerodynamic loading. The dynamic adequacy of the design is proved via high fidelity fluid-structure interaction simulations.

  8. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    Science.gov (United States)

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  9. Modeling of optically controlled reflective bistability in a vertical cavity semiconductor saturable absorber

    Science.gov (United States)

    Mishra, L.

    2015-05-01

    Bistability switching between two optical signals has been studied theoretically utilizing the concept of cross absorption modulation in a vertical cavity semiconductor saturable absorber (VCSSA). The probe beam is fixed at a wavelength other than the low power cavity resonance wavelength, which exhibits bistable characteristic by controlling the power of a pump beam (λpump≠λprobe). The cavity nonlinear effects that arises simultaneously from the excitonic absorption bleaching, and the carrier induced nonlinear index change has been considered in the model. The high power absorption in the active region introduces thermal effects within the nonlinear cavity due to which the effective cavity length changes. This leads to a red-shift of the cavity resonance wavelength, which results a change in phase of the optical fields within the cavity. In the simulation, the phase-change due to this resonance shifting is considered to be constant over time, and it assumes the value corresponding to the maximum input power. Further, an initial phase detuning of the probe beam has been considered to investigate its effect on switching. It is observed from the simulated results that, the output of the probe beam exhibits either clockwise or counter-clockwise bistability, depending on its initial phase detuning.

  10. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  11. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  12. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L.; Iriye, Heather; Seth, Anil K.; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant’s individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  13. Gain-assisted optical bistability and multistability in superconducting phase quantum circuits

    Science.gov (United States)

    Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.

    2017-02-01

    We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.

  14. Investigations on the p olarization switching and bistability in a 1550 nm vertical-cavity surface-emitting laser under variable-p olarization optical injection%可变偏振光注入下1550 nm垂直腔面发射激光器的偏振开关及双稳特性∗

    Institute of Scientific and Technical Information of China (English)

    陈俊; 陈建军; 吴正茂; 蒋波; 夏光琼

    2016-01-01

    基于自旋反转模型,研究了可变偏振光注入1550 nm垂直腔面发射激光器(VPOI-1550 nm-VCSEL)的偏振开关(PS)及双稳(PB)特性。研究结果表明:对于一自由运行的1550 nm-VCSEL,在给定电流下,激光器中的平行偏振模式(Y偏振模式)激射,而正交偏振模式(X偏振模式)被抑制。引入可变偏振光注入后,在给定频率失谐∆ν(定义为注入光与X偏振模式之间的频率差异)的条件下,当注入光偏振角θp(定义为注入光的偏振方向与自由运行1550 nm-VCSEL中主导偏振模式的夹角)足够大时,正向扫描(逐渐增加)注入光功率可观察到1550 nm-VCSEL发生I类PS,反向扫描(逐渐减小)注入光功率可使1550 nm-VCSEL产生II类PS,且两类PS 的开关点要求的注入功率不一致,即出现PB现象。对于一确定的频率失谐∆ν,随着θp的增加, I类、II类PS开关点对应的注入功率以及PB区宽度都呈现减小的趋势,且|∆ν|值越大,尽管I类PS的开关点所需注入功率更大,但PB区域更宽;在给定注入功率,对于特定∆ν,通过正向及反向扫描θp也可观察到VPOI-1550 nm-VCSEL输出功率呈现的PS以及PB现象。当|∆ν|较小时,发生I类和II 类PS所要求的θp近似相同,因此PB区宽度较窄,而当|∆ν|较大时,发生两类PS所需的θp以及PB宽度随∆ν的变化曲线均呈现较大波动。因此,在1550 nm-VCSEL 工作参数给定的条件下,通过调节可变偏振光注入的注入参量,可优化1550 nm-VCSEL呈现的PS及PB特性。%Due to the potential applications in optical storage, optical logic gates and all-optical signal shaping, the polarization switching (PS) and bistability (PB) of vertical-cavity surface-emitting lasers (VCSELs) under external disturbance have attracted much attention. In this work, based on the spin-flip model, the characteristics of PS and PB in a variable-polarization optical injection 1550 nm VCSEL (VPOI-1550 nm-VCSEL) are investigated numerically

  15. Operon and non-operon gene clusters in the C. elegans genome.

    Science.gov (United States)

    Blumenthal, Thomas; Davis, Paul; Garrido-Lecca, Alfonso

    2015-04-28

    Nearly 15% of the ~20,000 C. elegans genes are contained in operons, multigene clusters controlled by a single promoter. The vast majority of these are of a type where the genes in the cluster are ~100 bp apart and the pre-mRNA is processed by 3' end formation accompanied by trans-splicing. A spliced leader, SL2, is specialized for operon processing. Here we summarize current knowledge on several variations on this theme including: (1) hybrid operons, which have additional promoters between genes; (2) operons with exceptionally long (> 1 kb) intercistronic regions; (3) operons with a second 3' end formation site close to the trans-splice site; (4) alternative operons, in which the exons are sometimes spliced as a single gene and sometimes as two genes; (5) SL1-type operons, which use SL1 instead of SL2 to trans-splice and in which there is no intercistronic space; (6) operons that make dicistronic mRNAs; and (7) non-operon gene clusters, in which either two genes use a single exon as the 3' end of one and the 5' end of the next, or the 3' UTR of one gene serves as the outron of the next. Each of these variations is relatively infrequent, but together they show a remarkable variety of tight-linkage gene arrangements in the C. elegans genome.

  16. Asymptotic iteration approach to supersymmetric bistable potentials

    Institute of Scientific and Technical Information of China (English)

    H. Ciftci; O. ozer; P. Roy

    2012-01-01

    We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.

  17. High-Speed and Low-Energy Flip-Flop Operation of Asymmetric Active-Multimode Interferometer Bi-Stable Laser Diodes

    DEFF Research Database (Denmark)

    Jiang, Haisong; Chaen, Yutaka; Hagio, Takuma;

    2011-01-01

    High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses.......High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses....

  18. Generalized nematohydrodynamic boundary conditions with application to bistable twisted nematic liquid-crystal displays

    KAUST Repository

    Fang, Angbo

    2008-12-08

    Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.

  19. Bistable perception modeled as competing stochastic integrations at two levels.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2009-07-01

    Full Text Available We propose a novel explanation for bistable perception, namely, the collective dynamics of multiple neural populations that are individually meta-stable. Distributed representations of sensory input and of perceptual state build gradually through noise-driven transitions in these populations, until the competition between alternative representations is resolved by a threshold mechanism. The perpetual repetition of this collective race to threshold renders perception bistable. This collective dynamics - which is largely uncoupled from the time-scales that govern individual populations or neurons - explains many hitherto puzzling observations about bistable perception: the wide range of mean alternation rates exhibited by bistable phenomena, the consistent variability of successive dominance periods, and the stabilizing effect of past perceptual states. It also predicts a number of previously unsuspected relationships between observable quantities characterizing bistable perception. We conclude that bistable perception reflects the collective nature of neural decision making rather than properties of individual populations or neurons.

  20. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  1. Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system

    Science.gov (United States)

    Bao, Chengjun; Qi, Yihong; Niu, Yueping; Gong, Shangqing

    2016-07-01

    We theoretically investigated optical bistability (OB) of a coupled excition-plasmon hybrid system in a unidirectional ring cavity. It is found that the threshold and the region of OB can be tuned by adjusting the center-center distance between the quantum dot and metal nanoparticle (MNP), the Rabi frequency of the control field and the radius of the MNP. Due to the significantly enhanced optical nonlinearity by the surface plasmon effect, the threshold of OB can be decreased greatly when the probe field is parallel to the major axis of the hybrid system. The enhanced OB may have promising applications in optical switching and optical storage.

  2. Memory devices based on organic electric bistable materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; BAI Hua; SHI GaoQuan

    2007-01-01

    Organic/metallic composites have demonstrated electrical bistability, as well as memory effects. These advanced materials have shown potential applications in digital information storage because of their good stability, flexibility and fast response speed. The electric bistability phenomenon can be explained by electric field-induced electron transfer/storage. This article reviews the recent progress of memory devices based on organic/metallic and polymeric composites with electric bistability.

  3. Dynamo efficiency controlled by hydrodynamic bistability.

    Science.gov (United States)

    Miralles, Sophie; Herault, Johann; Herault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow-where one disk has been replaced by a propeller-are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.

  4. Catalytic constants enable the emergence of bistability in dual phosphorylation.

    Science.gov (United States)

    Conradi, Carsten; Mincheva, Maya

    2014-06-06

    Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.

  5. Bistable heat transfer in a nanofluid.

    Science.gov (United States)

    Donzelli, Gea; Cerbino, Roberto; Vailati, Alberto

    2009-03-13

    Heat convection in water can be suppressed by adding a small amount of highly thermophilic nanoparticles. We show that such suppression is not effective when a suspension with uniform concentration of nanoparticles is suddenly heated from below. At Rayleigh numbers smaller than a sample dependent threshold Ra;{*} we observe transient oscillatory convection. Unexpectedly, the duration of convection diverges at Ra;{*}. Above Ra;{*} oscillatory convection becomes permanent and the heat transferred exhibits bistability. Our results are explained only partially and qualitatively by existing theories.

  6. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  7. Three-way switching in a cyanide-bridged [CoFe] chain

    Science.gov (United States)

    Hoshino, Norihisa; Iijima, Fumichika; Newton, Graham N.; Yoshida, Norifumi; Shiga, Takuya; Nojiri, Hiroyuki; Nakao, Akiko; Kumai, Reiji; Murakami, Youichi; Oshio, Hiroki

    2012-11-01

    Bistable compounds that exist in two interchangeable phases under identical conditions can act as switches under external stimuli. Among such switchable materials, coordination complexes have energy levels (or phases) that are determined by the electronic states of their constituent metal ions and ligands. They can exhibit multiple bistabilities and hold promise in the search for multifaceted materials that display different properties in different phases, accessible through the application of contrasting external stimuli. Molecular systems that exhibit both thermo- and photoinduced magnetic bistabilities are excellent candidates for such systems. Here we describe a cyanide-bridged [CoFe] one-dimensional chiral coordination polymer that displays both magnetic and electric bistabilities in the same temperature range. Both the electric and magnetic switching probably arise from the same electron-transfer coupled spin-transition phenomenon, which enables the reversible conversion between an insulating diamagnetic phase and either a semiconducting paramagnetic (thermoinduced) or a type of ferromagnetic single-chain magnet (photoinduced) state.

  8. Escherichia coli fliAZY operon.

    OpenAIRE

    Mytelka, D S; Chamberlin, M J

    1996-01-01

    We have cloned the Escherichia coli fliAZY operon, which contains the fliA gene (the alternative sigma factor sigma F) and two novel genes, fliZ and fliY. Transcriptional mapping of this operon shows two start sites, one of which is preceded by a canonical E sigma F-dependent consensus and is dependent on sigma F for expression in vivo and in vitro. We have overexpressed and purified sigma F and demonstrated that it can direct core polymerase to E sigma F-dependent promoters. FliZ and FliY ar...

  9. Stochastic simulations of the tetracycline operon

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2011-01-01

    Full Text Available Abstract Background The tetracycline operon is a self-regulated system. It is found naturally in bacteria where it confers resistance to antibiotic tetracycline. Because of the performance of the molecular elements of the tetracycline operon, these elements are widely used as parts of synthetic gene networks where the protein production can be efficiently turned on and off in response to the presence or the absence of tetracycline. In this paper, we investigate the dynamics of the tetracycline operon. To this end, we develop a mathematical model guided by experimental findings. Our model consists of biochemical reactions that capture the biomolecular interactions of this intriguing system. Having in mind that small biological systems are subjects to stochasticity, we use a stochastic algorithm to simulate the tetracycline operon behavior. A sensitivity analysis of two critical parameters embodied this system is also performed providing a useful understanding of the function of this system. Results Simulations generate a timeline of biomolecular events that confer resistance to bacteria against tetracycline. We monitor the amounts of intracellular TetR2 and TetA proteins, the two important regulatory and resistance molecules, as a function of intrecellular tetracycline. We find that lack of one of the promoters of the tetracycline operon has no influence on the total behavior of this system inferring that this promoter is not essential for Escherichia coli. Sensitivity analysis with respect to the binding strength of tetracycline to repressor and of repressor to operators suggests that these two parameters play a predominant role in the behavior of the system. The results of the simulations agree well with experimental observations such as tight repression, fast gene expression, induction with tetracycline, and small intracellular TetR2 amounts. Conclusions Computer simulations of the tetracycline operon afford augmented insight into the

  10. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.

    Science.gov (United States)

    Li, Jian-Bo; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Chen, Li-Qun; Wu, Gui-Hong; Peng, Yu-Xiang; Luo, Xiao-Yu; Guo, Ze-Ping

    2016-02-08

    We investigate theoretically four-wave mixing (FWM) response and optical bistability (OB) in a hybrid nanosystem composed of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) coupled to a nanomechanical resonator (NR). It is shown that the FWM signal is enhanced by more than three orders of magnitude as compared to that of the system without exciton-phonon interaction, and the FWM signal can also be suppressed significantly and broadened due to the exciton-plasmon interaction. As the MNP couples strongly with the SQD, the bistable FWM response can be achieved by adjusting the SQD-MNP distance and the pumping intensity. For a given pumping constant and a fixed SQD-MNP distance, the enhanced exciton-phonon interaction can promote the occurrence of bistability. Our findings not only present a feasible way to detect the spacing between two nanoparticles, but also hold promise for developing quantum switches and nanoscale rulers.

  11. Observation of single artificial atom optical bi-stability and its application to single-shot readout in circuit quantum electrodynamics

    Science.gov (United States)

    Sun, Luyan; Ginossar, Eran; Guy, Mikhael; Reed, Matthew; Paik, Hanhee; Bishop, Lev S.; Sears, Adam; Petrenko, Andrei; Brecht, Teresa; Frunzio, Luigi; Girvin, Steven; Schoelkopf, Robert

    2012-02-01

    The high power transient behavior of superconducting qubit-cavity systems has recently been used to perform high fidelity readout of transmon qubits [1]. We show that in the steady state, the system exhibits a bi-stable behavior that can be observed on the single-shot level, with the cavity state switching stochastically between dim and bright states. The switching times are shown to be long compared to the cavity and qubit lifetimes. Some features of the bi-stability can be explained by mean field theory, while its switching dynamics is studied with large scale simulations. Understanding these dynamics will be crucial for studying the transient response, an essential aspect of the qubit readout. We will discuss progress on optimizing readout by shaping the measurement pulse. [4pt] [1] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010)

  12. Bi-stability in turbulent, rotating spherical Couette flow

    CERN Document Server

    Zimmerman, Daniel S; Lathrop, Daniel P; 10.1063/1.3593465

    2011-01-01

    Flow between concentric spheres of radius ratio $\\eta = r_\\mathrm{i}/r_\\mathrm{o} = 0.35$ is studied in a 3 m outer diameter experiment. We have measured the torques required to maintain constant boundary speeds as well as localized wall shear stress, velocity, and pressure. At low Ekman number $E = 2.1\\times10^{-7}$ and modest Rossby number $0.07 < Ro < 3.4$, the resulting flow is highly turbulent, with a Reynolds number ($Re=Ro/E$) exceeding fifteen million. Several turbulent flow regimes are evident as $Ro$ is varied for fixed $E$. We focus our attention on one flow transition in particular, between $Ro = 1.8$ and $Ro = 2.6$, where the flow shows bistable behavior. For $Ro$ within this range, the flow undergoes intermittent transitions between the states observed alone at adjacent $Ro$ outside the switching range. The two states are clearly distinguished in all measured flow quantities, including a striking reduction in torque demanded from the inner sphere by the state lying at higher $Ro$. The redu...

  13. Teaching the Big Ideas of Biology with Operon Models

    Science.gov (United States)

    Cooper, Robert A.

    2015-01-01

    This paper presents an activity that engages students in model-based reasoning, requiring them to predict the behavior of the trp and lac operons under different environmental conditions. Students are presented six scenarios for the "trp" operon and five for the "lac" operon. In most of the scenarios, specific mutations have…

  14. Bubbling and bistability in two parameter discrete systems

    Indian Academy of Sciences (India)

    G Ambika; N V Sujatha

    2000-05-01

    We present a graphical analysis of the mechanisms underlying the occurrences of bubbling sequences and bistability regions in the bifurcation scenario of a special class of one dimensional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability is decided by the sign of the third derivative at the inflection point of the map function.

  15. Construction of a genetic toggle switch in Escherichia coli

    Science.gov (United States)

    Gardner, Timothy S.; Cantor, Charles R.; Collins, James J.

    2000-01-01

    It has been proposed that gene-regulatory circuits with virtually any desired property can be constructed from networks of simple regulatory elements. These properties, which include multistability and oscillations, have been found in specialized gene circuits such as the bacteriophage λ switch and the Cyanobacteria circadian oscillator. However, these behaviours have not been demonstrated in networks of non-specialized regulatory components. Here we present the construction of a genetic toggle switch-a synthetic, bistable gene-regulatory network-in Escherichia coli and provide a simple theory that predicts the conditions necessary for bistability. The toggle is constructed from any two repressible promoters arranged in a mutually inhibitory network. It is flipped between stable states using transient chemical or thermal induction and exhibits a nearly ideal switching threshold. As a practical device, the toggle switch forms a synthetic, addressable cellular memory unit and has implications for biotechnology, biocomputing and gene therapy.

  16. Asymmetric stochastic switching driven by intrinsic molecular noise.

    Directory of Open Access Journals (Sweden)

    David Frigola

    Full Text Available Low-copy-number molecules are involved in many functions in cells. The intrinsic fluctuations of these numbers can enable stochastic switching between multiple steady states, inducing phenotypic variability. Herein we present a theoretical and computational study based on Master Equations and Fokker-Planck and Langevin descriptions of stochastic switching for a genetic circuit of autoactivation. We show that in this circuit the intrinsic fluctuations arising from low-copy numbers, which are inherently state-dependent, drive asymmetric switching. These theoretical results are consistent with experimental data that have been reported for the bistable system of the gallactose signaling network in yeast. Our study unravels that intrinsic fluctuations, while not required to describe bistability, are fundamental to understand stochastic switching and the dynamical relative stability of multiple states.

  17. Polarization bistability in strained ridge-waveguide InGaAsP/InP lasers: Experiment and theory

    Science.gov (United States)

    Berger, G.; Müller, R.; Klehr, A.; Voss, M.

    1995-06-01

    New experimental and theoretical results on TE/TM bistability in 1.3 μm ridge-waveguide InGaAsP/InP bulk lasers at room temperature are presented. Measured polarization resolved light power-current (P-I) characteristics as well as lateral near- and far-field patterns are compared with results from a theoretical model based on the paraxial wave equations for TE- and TM-polarized modes and the diffusion equation for the carrier distribution. The model was numerically evaluated by use of the beam propagation method. The observed TE/TM bistability is explained by the interplay of three different effects: (i) Tensile stress of about 109 dyn/cm2 promotes the TM gain strongly enough to compete with the TE mode. (ii) Improved TM waveguiding due to an enhancement of the effective refractive index near the beam axis caused by carrier depletion with increasing current leads to the onset of TM lasing and TE/TM switching. (iii) The TE/TM transition is accompanied by an abrupt increase of spatial hole burning in the lateral carrier distribution. Because of this nonlinear effect, a lower current is needed to switch the laser back to TE, giving rise to a hysteresis loop in the P-I characteristics and to TE/TM polarization bistability.

  18. Bistability in Scanning Tunneling Spectroscopy of Ga-terminated Si(111)

    Science.gov (United States)

    Chen, Dongmin; Altfeder, Igor

    2000-03-01

    The bistable transport characteristics have been the basis of modern power and high speed switching devices. All these devices share a common and essential double barrier structure. Here we report on a surprising observation of the bistable tunneling characteristics in an apparent single barrier tunnel junction consisted of a Ga-terminated Si(111) surface and a W-tip of a scanning tunneling microscope (STM) operating at 77K. Under a negative tip bias condition, a switching from an initially high-impedance, low-current OFF state to a low-impedance, high-current ON state occurs at a bias higher than that for the subsequent reversal transition, giving rise to a large hysteresis loops. The turn-on bias varies from 3.1V to 4.0V,showing a large inverse dependence on the tip-sample distances, indicating strong field effect. On contrary, the turn-off bias is essentially pined at 2.7V, suggesting the existence of a conductance threshold. This opens the possioblity to engineer a new type of swithching device using only single layer atomic dopping in place of a more complex double barrier structure.

  19. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad, E-mail: mahmoudi@znu.ac.ir

    2014-07-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system.

  20. Bistability and hysteresis of the 'Secteur' differentiation are controlled by a two-gene locus in Nectria haematococca

    Directory of Open Access Journals (Sweden)

    Daboussi Marie-Josée

    2004-08-01

    Full Text Available Abstract Background Bistability and hysteresis are increasingly recognized as major properties of regulatory networks governing numerous biological phenomena, such as differentiation and cell cycle progression. The full scope of the underlying molecular mechanisms leading to bistability and hysteresis remains elusive. Nectria haemaotcocca, a saprophytic or pathogenic fungus with sexual reproduction, exhibits a bistable morphological modification characterized by a reduced growth rate and an intense pigmentation. Bistability is triggered by the presence or absence of σ, a cytoplasmic determinant. This determinant spreads in an infectious manner in the hyphae of the growing margin, insuring hysteresis of the differentiation. Results Seven mutants specifically affected in the generation of σ were selected through two different screening strategies. The s1 and s2 mutations completely abolish the generation of σ and of its morphological expression, the Secteur. The remaining five mutations promote its constitutive generation, which determines an intense pigmentation but not growth alteration. The seven mutations map at the same locus, Ses (for 'Secteur-specific'. The s2 mutant was obtained by an insertional mutagenesis strategy, which permitted the cloning of the Ses locus. Sequence and transcription analysis reveals that Ses is composed of two closely linked genes, SesA, mutated in the s1 and s2 mutant strains, and SesB, mutated in the s* mutant strains. SesB shares sequence similarity with animal and fungal putative proteins, with potential esterase/lipase/thioesterase activity, whereas SesA is similar to proteins of unknown function present only in the filamentous fungi Fusarium graminearum and Podospora anserina. Conclusions The cloning of Ses provides evidence that a system encoded by two linked genes directs a bistable and hysteretic switch in a eukaryote. Atypical regulatory relations between the two proteins may account for the hysteresis

  1. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    Science.gov (United States)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write–erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  2. Engineering adherent bacteria by creating a single synthetic curli operon.

    Science.gov (United States)

    Drogue, Benoît; Thomas, Philippe; Balvay, Laurent; Prigent-Combaret, Claire; Dorel, Corinne

    2012-11-16

    The method described here consists in redesigning E. coli adherence properties by assembling the minimum number of curli genes under the control of a strong and metal-overinducible promoter, and in visualizing and quantifying the resulting gain of bacterial adherence. This method applies appropriate engineering principles of abstraction and standardization of synthetic biology, and results in the BBa_K540000 Biobrick (Best new Biobrick device, engineered, iGEM 2011). The first step consists in the design of the synthetic operon devoted to curli overproduction in response to metal, and therefore in increasing the adherence abilities of the wild type strain. The original curli operon was modified in silico in order to optimize transcriptional and translational signals and escape the "natural" regulation of curli. This approach allowed to test with success our current understanding of curli production. Moreover, simplifying the curli regulation by switching the endogenous complex promoter (more than 10 transcriptional regulators identified) to a simple metal-regulated promoter makes adherence much easier to control. The second step includes qualitative and quantitative assessment of adherence abilities by implementation of simple methods. These methods are applicable to a large range of adherent bacteria regardless of biological structures involved in biofilm formation. Adherence test in 24-well polystyrene plates provides a quick preliminary visualization of the bacterial biofilm after crystal violet staining. This qualitative test can be sharpened by the quantification of the percentage of adherence. Such a method is very simple but more accurate than only crystal violet staining as described previously with both a good repeatability and reproducibility. Visualization of GFP-tagged bacteria on glass slides by fluorescence or laser confocal microscopy allows to strengthen the results obtained with the 24-well plate test by direct observation of the phenomenon.

  3. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Kori, Ayako; Ishihama, Akira

    2013-07-01

    Escherichia coli is able to utilize d-ribose as its sole carbon source. The genes for the transport and initial-step metabolism of d-ribose form a single rbsDACBK operon. RbsABC forms the ABC-type high-affinity d-ribose transporter, while RbsD and RbsK are involved in the conversion of d-ribose into d-ribose 5-phosphate. In the absence of inducer d-ribose, the ribose operon is repressed by a LacI-type transcription factor RbsR, which is encoded by a gene located downstream of this ribose operon. At present, the rbs operon is believed to be the only target of regulation by RbsR. After Genomic SELEX screening, however, we have identified that RbsR binds not only to the rbs promoter but also to the promoters of a set of genes involved in purine nucleotide metabolism. Northern blotting analysis indicated that RbsR represses the purHD operon for de novo synthesis of purine nucleotide but activates the add and udk genes involved in the salvage pathway of purine nucleotide synthesis. Taken together, we propose that RbsR is a global regulator for switch control between the de novo synthesis of purine nucleotides and its salvage pathway.

  4. A global analysis of adaptive evolution of operons in cyanobacteria.

    Science.gov (United States)

    Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-02-01

    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

  5. Annealing study of a bistable cluster defect

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra, E-mail: alexandra.junkes@desy.d [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Makarenko, Leonid F. [Belarusian State University, Minsk (Belarus); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)

    2010-01-11

    This work deals with the influence of neutron and proton induced cluster related defects on the properties of n-type silicon detectors. Defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) technique, while the full depletion voltage and the reverse current were extracted from capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The annealing behaviour of the reverse current can be correlated with the annealing of the cluster related defect levels labeled E4a and E4b by making use of their bistability. This bistability was characterised by isochronal and isothermal annealing studies and it was found that the development with increasing annealing temperature is similar to that of divacancies. This supports the assumption that E4a and E4b are vacancy related defects. In addition we observe an influence of the disordered regions on the shape and height of the DLTS or TSC signals corresponding to point defects like the vacancy-oxygen complex.

  6. Domain wall dynamics of magnetically bistable microwires

    Directory of Open Access Journals (Sweden)

    Ipatov M.

    2012-06-01

    Full Text Available We studied domain wall propagation of magnetically-bistable Fe- Co-rich microwires paying attention on effect of applied and internal stresses. We measured hysteresis loops and domain wall propagation in various magnetic Fe- Co-rich amorphous microwires with metallic nucleus diameters (from 12 □m till 22 □m using Sixtus Tonks-like experiments. Application of tensile stresses results in decreasing of domain wall velocity. We discussed magnetoelastic contribution in dynamics of domain wall propagation. We observed, that microwires with different geometries exhibit v(H dependences with different slopes. Application of stresses resulted in decrease of DW velocity, v, and DW mobility S. Quite fast DW propagation (v till 2500 m/s at H about 30 A/m has been observed in low magnetostrictive magnetically bistable Co56Fe8Ni10Si110B16 microwires. Consequently, we can assume that generally magnetoelastic energy affects DW dynamics: decreasing magnetoelastic energy, Kme, DW velocity increases.

  7. ProOpDB: Prokaryotic Operon DataBase.

    Science.gov (United States)

    Taboada, Blanca; Ciria, Ricardo; Martinez-Guerrero, Cristian E; Merino, Enrique

    2012-01-01

    The Prokaryotic Operon DataBase (ProOpDB, http://operons.ibt.unam.mx/OperonPredictor) constitutes one of the most precise and complete repositories of operon predictions now available. Using our novel and highly accurate operon identification algorithm, we have predicted the operon structures of more than 1200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: (i) organism name, (ii) metabolic pathways, as defined by the KEGG database, (iii) gene orthology, as defined by the COG database, (iv) conserved protein domains, as defined by the Pfam database, (v) reference gene and (vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient method to select the most representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool to visualize their genomic context and retrieve the sequence of their corresponding 5' regulatory regions, as well as the nucleotide or amino acid sequences of their genes.

  8. Frustrated bistability as a means to engineer oscillations in biological systems

    Science.gov (United States)

    Krishna, S.; Semsey, S.; Jensen, M. H.

    2009-09-01

    Oscillations play an important physiological role in a variety of biological systems. For example, respiration and carbohydrate synthesis are coupled to the circadian clock in cyanobacteria (Ishiura et al 1998 Science 281 1519) and ultradian oscillations with time periods of a few hours have been observed in immune response (NF-κB, Hoffmann et al 2002 Science 298 1241, Neson et al 2004 Science 306 704), apoptosis (p53, Lahav et al 2004 Nat. Genet. 36 53), development (Hes, Hirata et al 2002 Science 298 840) and growth hormone secretion (Plotsky and Vale 1985 Science 230 461, Zeitler et al 1991 Proc. Natl. Acad. Sci. USA 88 8920). Here we discuss how any bistable system can be 'frustrated' to produce oscillations of a desired nature—we use the term frustration, in analogy to frustrated spins in antiferromagnets, to refer to the addition of a negative feedback loop that destabilizes the bistable system. We show that the molecular implementation can use a wide variety of methods ranging from translation regulation, using small non-coding RNAs, to targeted protein modification to transcriptional regulation. We also introduce a simple graphical method for determining whether a particular implementation will produce oscillations. The shape of the resulting oscillations can be readily tuned to produce spiky and asymmetric oscillations—quite different from the shapes produced by synthetic oscillators (Elowitz and Leibler 2000 Nature 403 335, Fung et al 2005 Nature 435 118). The time period and amplitude can also be manipulated and these oscillators are easy to reset or switch on and off using a tunable external input. The mechanism of frustrated bistability could thus prove to be an easily implementable way to synthesize flexible, designable oscillators.

  9. Multilevel conductance switching of memory device through photoelectric effect.

    Science.gov (United States)

    Ye, Changqing; Peng, Qian; Li, Mingzhu; Luo, Jia; Tang, Zhengming; Pei, Jian; Chen, Jianming; Shuai, Zhigang; Jiang, Lei; Song, Yanlin

    2012-12-12

    A photoelectronic switch of a multilevel memory device has been achieved using a meta-conjugated donor-bridge-acceptor (DBA) molecule. Such a DBA optoelectronic molecule responds to both the optical and electrical stimuli. The device exhibits good electrical bistable switching behaviors under dark, with a large ON/OFF ratio more than 10(6). In cooperation with the UV light, photoelectronic ternary states are addressable in a bistable switching system. On the basis of the CV measurement, charge carriers transport modeling, quantum chemical calculation, and absorption spectra analysis, the mechanism of the DBA memory is suggested to be attributed to the substep charge transfer transition process. The capability of tailoring photoelectrical properties is a very promising strategy to explore the multilevel storage, and it will give a new opportunity for designing multifunctional devices.

  10. Evaluation of laser diode based optical switches for optical processors

    Science.gov (United States)

    Swanson, Paul D.; Parker, Michael A.; Libby, Stuart I.

    1993-07-01

    Three optical switching elements have been designed, fabricated, and tested for use in an integrated, optical signal processor. The first, an optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam(s) to control the output light. This technique, along with the use of a two pad bistable output laser, is used in demonstrating the feasibility of the second device, an all optical RS flip flop. The third device consists of a broad area orthogonal model switching laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  11. Bistability, Epigenetics, and Bet-Hedging in Bacteria

    NARCIS (Netherlands)

    Veening, Jan-Willem; Smits, Wiep Klaas; Kuipers, Oscar P.

    2008-01-01

    Clonal populations of microbial cells often show a high degree of phenotypic variability under homogeneous conditions. Stochastic fluctuations in the cellular components that determine cellular states can cause two distinct subpopulations, a property called bistability Phenotypic heterogeneity can b

  12. Bifurcation of transition paths induced by coupled bistable systems

    Science.gov (United States)

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-01

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.

  13. Phenotypic bistability in Escherichia coli's central carbon metabolism

    NARCIS (Netherlands)

    Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L.; Heinemann, Matthias

    2014-01-01

    Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is

  14. The power of operon rearrangements for predicting functional associations

    Directory of Open Access Journals (Sweden)

    Gabriel Moreno-Hagelsieb

    2015-01-01

    Full Text Available In this mini-review I aim to make the case that operons might be the most powerful source for predicted associations among gene products. Such associations can help identify potential processes where the products of unannotated genes might play a role. The power of the operon for providing insight into functional associations stems from four features: (1 on average, around 60% of the genes in prokaryotes are associated into operons; (2 the functional associations between genes in operons tend to be highly conserved; (3 operons can be predicted with high accuracy by conservation of gene order and by the distances between adjacent genes in the same DNA strand; and (4 operons frequently reorganize, providing further insight into functional associations that would not be evident without these reorganization events.

  15. Bistability in one equation or fewer.

    Science.gov (United States)

    Anderson, Graham A; Liu, Xuedong; Ferrell, James E

    2012-01-01

    When several genes or proteins modulate one another's activity as part of a network, they sometimes produce behaviors that no protein could accomplish on its own. Intuition for these emergent behaviors often cannot be obtained simply by tracing causality through the network in discreet steps. Specifically, when a network contains a feedback loop, biologists need specialized tools to understand the network's behaviors and their necessary conditions. This analysis is grounded in the mathematics of ordinary differential equations. We, however, will demonstrate the use of purely graphical methods to determine, for experimental data, the plausibility of two network behaviors, bistability and irreversibility. We use the Xenopus laevis oocyte maturation network as our example, and we make special use of iterative stability analysis, a graphical tool for determining stability in two dimensions.

  16. Electronic bistability in linear beryllium chains.

    Science.gov (United States)

    Helal, Wissam; Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry

    2009-04-30

    A theoretical investigation on the mixed-valence behavior (bistability) of a series of cationic linear chains composed of beryllium atoms, Be(N)(+) (with N = 6,..., 12), is presented. The calculations were performed at CAS-SCF and MR-CI levels by using an ANO basis set containing 6s4p3d2f orbitals for each atom. Our results show a consistent gradual shift between different classes of mixed-valence compounds as the number of beryllium atoms increases, from class III strong coupling toward class II valence trapped. Indeed, in the largest cases (N > 10), the cationic chains were found to be closer to class I, where the coupling vanishes. The intramolecular electron transfer parameters V(ab), E(a), and E(opt) were calculated for each atomic chain. It is shown that the decrease of V(ab) with increasing N follows an exponential pattern.

  17. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  18. Interaction of multiarmed spirals in bistable media.

    Science.gov (United States)

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  19. Bistability in a Driven-Dissipative Superfluid

    Science.gov (United States)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  20. Internal promoters of the his operon in Salmonella typhimurium.

    OpenAIRE

    Schmid, M. B.; Roth, J. R.

    1983-01-01

    Two internal promoters in the his operon of Salmonella typhimurium have been precisely mapped genetically. The internal promoters are found in, or very close to, gene border regions in the his operon. The his operon was examined for the presence of additional internal promoters whose transcripts were sensitive to rho-mediated transcription termination and therefore had escaped detection. No new internal promoters were found. It is argued that the internal promoters described here are not like...

  1. Deterministic and stochastic population-level simulations of an artificial lac operon genetic network

    Directory of Open Access Journals (Sweden)

    Zygourakis Kyriacos

    2011-07-01

    Full Text Available Abstract Background The lac operon genetic switch is considered as a paradigm of genetic regulation. This system has a positive feedback loop due to the LacY permease boosting its own production by the facilitated transport of inducer into the cell and the subsequent de-repression of the lac operon genes. Previously, we have investigated the effect of stochasticity in an artificial lac operon network at the single cell level by comparing corresponding deterministic and stochastic kinetic models. Results This work focuses on the dynamics of cell populations by incorporating the above kinetic scheme into two Monte Carlo (MC simulation frameworks. The first MC framework assumes stochastic reaction occurrence, accounts for stochastic DNA duplication, division and partitioning and tracks all daughter cells to obtain the statistics of the entire cell population. In order to better understand how stochastic effects shape cell population distributions, we develop a second framework that assumes deterministic reaction dynamics. By comparing the predictions of the two frameworks, we conclude that stochasticity can create or destroy bimodality, and may enhance phenotypic heterogeneity. Conclusions Our results show how various sources of stochasticity act in synergy with the positive feedback architecture, thereby shaping the behavior at the cell population level. Further, the insights obtained from the present study allow us to construct simpler and less computationally intensive models that can closely approximate the dynamics of heterogeneous cell populations.

  2. Does visual attention drive the dynamics of bistable perception?

    Science.gov (United States)

    Dieter, Kevin C; Brascamp, Jan; Tadin, Duje; Blake, Randolph

    2016-10-01

    How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct-depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences.

  3. Fabrication of electrically bistable organic semiconducting/ferroelectric blend films by temperature controlled spin coating.

    Science.gov (United States)

    Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong

    2015-03-25

    Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.

  4. Feedback Control of Bistability in the Turbulent Wake of an Ahmed Body

    Science.gov (United States)

    Brackston, Rowan; Wynn, Andrew; Garcia de La Cruz, Juan Marcos; Rigas, Georgios; Morrison, Jonathan

    2015-11-01

    Three-dimensional bluff body wakes have seen considerable interest in recent years, not least because of their relevance to road vehicles. A key feature of these wakes is spatial symmetry breaking, reminiscent of the large scale structures observed during the laminar and transitional regimes. For the flat backed Ahmed body, this feature manifests itself as a bistability of the wake in which the flow switches randomly between two asymmetric states. This feature is associated with instantaneous lateral forces on the body as well as increased pressure drag. Starting from the modelling approach of Rigas et al. (J. Fluid Mech. 778, R2, 2015)we identify a linearised model for this mode of the flow, obtaining parameters via a system identification. The identified model is then used to design a linear feedback controller with the aim of restoring the flow to the unstable, symmetric state. The controller is implemented experimentally at Re ~ 3 ×105 and is found to both suppress the bistability of the flow and reduce the drag on the body. Furthermore, the control system is found to have a positive energy balance, providing a key demonstration of efficient feedback control applied to a 3D bluff body at Reynolds numbers representative of road vehicle wakes.

  5. A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films

    Science.gov (United States)

    Takase, Yuki; Tien Thanh, Pham; Fujimura, Ryushi; Kajikawa, Kotaro

    2014-04-01

    An all-optical bistable (AOB) resonator device composed of a 430-nm-thick liquid crystal (LC) layer embedded in two thin gold films (MLM) is reported in this paper. This device allows the use of the incident illumination at normal incidence, whereas the previous AOB devices based on twisted nematic (TN)-LC function only for illumination at oblique incidence. The fastest switching time was measured to be 1.8 ms, which is significantly faster than that of TN-LC. Because the MLM device operates free from electronic circuits, it is promising for two-dimensional optical data processing, random access optical memories, and spatial light modulators.

  6. Archaeal rRNA operons, intron splicing and homing endonucleases, RNA polymerase operons and phylogeny

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Aagaard, Claus Sindbjerg; Andersen, Morten;

    1994-01-01

    Over the past decade our laboratory has had a strong interest in defining the phylogenetic status of the archaea. This has involved determining and analysing the sequences of operons of both rRNAs and RNA polymerases and it led to the discovery of the first archaeal rRNA intron. What follows...

  7. Ultrafast all-optical switching using signal flow graph for PANDA resonator.

    Science.gov (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P

    2013-04-20

    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  8. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  9. Realization of optical bistability and multistability in Landau-quantized graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hamedi, H. R. [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Asadpour, S. H. [Department of Physics, University of Guilan, Rasht P. O. Box 1914, 41335 (Iran, Islamic Republic of)

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  10. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  11. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Science.gov (United States)

    Li, Xiaopu; Ma, Chung T.; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.; Poon, S. Joseph

    2016-01-01

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  12. Phase control of optical bistability and multistability in closed-type Landau-quantized graphene

    Science.gov (United States)

    Zhang, Duo; Yu, Rong; Ding, Chunling; Huang, Hailin; Sun, Zhaoyu; Yang, Xiaoxue

    2016-12-01

    We investigate the dynamic characteristics of a Landau-quantized graphene monolayer system interacting with three infrared laser probe fields in a monodirectional ring cavity, and analyse the input-output properties of the infrared laser probe field under a steady-state condition. The results show that we can effectively control the appearance or disappearance of optical bistability (OB) or optical multistability (OM) by adjusting the relative phase of three coherent fields, the coupling field intensity, as well as the frequency detunings of the probe field and the control field. In addition, we discuss in detail the influences of the left-hand and right-hand circularly polarized component intensity of the control field on the behaviors of OB and OM. Our investigation may be used to build more efficient logic-gate devices to realize an all-optic switching process.

  13. The stochastic behavior of a molecular switching circuit with feedback

    Directory of Open Access Journals (Sweden)

    Smith Eric

    2007-05-01

    Full Text Available Abstract Background Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component. Results Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio. Conclusion The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states. Reviewers This article was reviewed by Artem Novozhilov (nominated by Eugene Koonin, Sergei Maslov, and Ned Wingreen.

  14. Interaction of bistable glass-coated microwires in different positional relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, V., E-mail: rodionova@magn.ru [Magnetism Department, Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Kudinov, N. [Magnetism Department, Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Zhukov, A. [Departamento Fisica de Materiales, Facultad Quimicas, UPV/EHU, 20018 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Perov, N. [Magnetism Department, Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2012-05-01

    The amorphous ferromagnetic glass-coated microwires with positive magnetostriction constant of the metallic core possess the bistable magnetization reversal and the fast domain wall propagation along the microwire axis. These properties and also the magnetization processes in the systems of the microwires are of interest in the magnetic sensing technology, encoding systems and smart composite applications. In this work we present the results of the experimental investigation, simulations and theoretical estimations of the hysteresis process in the systems of the magnetically bistable microwires with different length and positional relationship between them. The location of the short microwires near the long microwire affects the switching fields (external coaxial magnetic field applied for starting of the domain wall propagation along the microwire axis) and the hysteresis process. The changes of these properties are not directly proportional to the value of the shorter microwire shift along the longer one. When the short microwire was placed in the middle of the long one and when the one end of the long microwire coincided with the end of the short one, the two-steps hysteresis loops were observed for both sample orientations: before and after sample rotation on 180 Degree-Sign . When the short microwire was placed close to the end of the long microwire (but did not coincide with it) we observed at first the two-steps hysteresis loop and single step behavior for one branch of the hysteresis loop after sample rotation. Moreover, changing of the orientation of the samples results in the shift of the switching field of the shorter microwire when its end was located near the end or coincided with the end of the longer one. This uncommon hysteresis behavior was explained and illustrated using results of the simulations. The values of microwires interaction were also estimated.

  15. Pivotal role of hMT+ in long-range disambiguation of interhemispheric bistable surface motion.

    Science.gov (United States)

    Duarte, João Valente; Costa, Gabriel Nascimento; Martins, Ricardo; Castelo-Branco, Miguel

    2017-10-01

    It remains an open question whether long-range disambiguation of ambiguous surface motion can be achieved in early visual cortex or instead in higher level regions, which concerns object/surface segmentation/integration mechanisms. We used a bistable moving stimulus that can be perceived as a pattern comprehending both visual hemi-fields moving coherently downward or as two widely segregated nonoverlapping component objects (in each visual hemi-field) moving separately inward. This paradigm requires long-range integration across the vertical meridian leading to interhemispheric binding. Our fMRI study (n = 30) revealed a close relation between activity in hMT+ and perceptual switches involving interhemispheric segregation/integration of motion signals, crucially under nonlocal conditions where components do not overlap and belong to distinct hemispheres. Higher signal changes were found in hMT+ in response to spatially segregated component (incoherent) percepts than to pattern (coherent) percepts. This did not occur in early visual cortex, unlike apparent motion, which does not entail surface segmentation. We also identified a role for top-down mechanisms in state transitions. Deconvolution analysis of switch-related changes revealed prefrontal, insula, and cingulate areas, with the right superior parietal lobule (SPL) being particularly involved. We observed that directed influences could emerge either from left or right hMT+ during bistable motion integration/segregation. SPL also exhibited significant directed functional connectivity with hMT+, during perceptual state maintenance (Granger causality analysis). Our results suggest that long-range interhemispheric binding of ambiguous motion representations mainly reflect bottom-up processes from hMT+ during perceptual state maintenance. In contrast, state transitions maybe influenced by high-level regions such as the SPL. Hum Brain Mapp 38:4882-4897, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  16. An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-09-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  17. Controllable optical bistability of Bose-Einstein condensate in an optical cavity with a Kerr medium

    Institute of Scientific and Technical Information of China (English)

    Zheng Qiang; Li Sheng-Chang; Zhang Xiao-Ping; You Tai-Jie; Fu Li-Bin

    2012-01-01

    We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with a Kerr medium.We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons.In particular,we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.

  18. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  19. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Science.gov (United States)

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  20. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  1. Oscillations in the bistable regime of neuronal networks.

    Science.gov (United States)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  2. Working cycles of devices based on bistable carbon nanotubes

    Science.gov (United States)

    Shklyaev, Oleg; Mockensturm, Eric; Crespi, Vincent; Carbon Nanotubes Collaboration

    2013-03-01

    Shape-changing nanotubes are an example of variable-shape sp2 carbon-based systems where the competition between strain and surface energies can be moderated by an externally controllable stimuli such as applied voltage, temperature, or pressure of gas encapsulated inside the tube. Using any of these stimuli one can transition a bistable carbon nanotube between the collapsed and inflated states and thus perform mechanical work. During the working cycle of such a device, energy from an electric or heat source is transferred to mechanical energy. Combinations of these stimuli allow the system to convert energy between different sources using the bistable shape-changing tube as a mediator. For example, coupling a bistable carbon nanotube to the heat and charge reservoirs can enable energy transfer between heat and electric forms. The developed theory can be extended to other nano-systems which change configurations in response to external stimuli.

  3. Charge-induced optical bistability in thermal Rydberg vapor

    CERN Document Server

    Weller, Daniel; Rico, Andy; Löw, Robert; Kübler, Harald

    2016-01-01

    We investigate the phenomenon of optical bistability in a driven ensemble of Rydberg atoms. By performing two experiments with thermal vapors of rubidium and cesium, we are able to shed light onto the underlying interaction mechanisms causing such a non-linear behavior. Due to the different properties of these two atomic species, we conclude that the large polarizability of Rydberg states in combination with electric fields of spontaneously ionized Rydberg atoms is the relevant interaction mechanism. In the case of rubidium, we directly measure the electric field in a bistable situation via two-species spectroscopy. In cesium, we make use of the different sign of the polarizability for different l-states and the possibility of applying electric fields. Both these experiments allow us to rule out dipole-dipole interactions, and support our hypothesis of a charge-induced bistability.

  4. A phylogenomic analysis of the Actinomycetales mce operons

    Directory of Open Access Journals (Sweden)

    Riley Lee W

    2007-02-01

    Full Text Available Abstract Background The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes termed mce operons. Despite extensive research that has demonstrated the importance of these operons on infection outcome, their physiological function remains obscure. Expanding databases of complete microbial genome sequences facilitate a comparative genomic approach that can provide valuable insight into the role of uncharacterized proteins. Results The M. tuberculosis mce loci each include two yrbE and six mce genes, which have homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons with an identical structure were identified in all Mycobacterium species examined, as well as in five other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal location downstream of the majority of Actinomycetales operons. Operons containing linked mkl, yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be common in Gram-negative bacteria and appear to be associated with changes in properties of the cell surface. Conclusion Evidence presented suggests that the mce operons of Actinomycetales species and related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a possible role in remodeling the cell envelope.

  5. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana [Centro de Radioastronomia y Astrofisica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacan (Mexico); Kim, Jongsoo, E-mail: a.gazol@crya.unam.mx, E-mail: jskim@kasi.re.kr [Korea Astronomy and Space Science Institute, 61-1, Hwaam-Dong, Yuseong-Ku, Daejeon 305-348 (Korea, Republic of)

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  6. Bistable fiber-optic Michelson interferometer that uses wavelength control.

    Science.gov (United States)

    Fürstenau, N

    1991-12-01

    Feedback of the interference signal of an unbalanced Michelson interferometer to the current supply of the semiconductor-laser source yields bistability under input intensity variation owing to wavelength-induced phase modulation. A linear stability analysis of the system's differential equation gives the ratio of the system time constant tau to the feedback delay time T to determine the critical input intensity for the onset of self-oscillations. Input-output characteristics that exhibit bistability and self-oscillations are obtained experimentally through modulation of the input power by using an integrated-optics intensity modulator.

  7. On the Origin of Traveling Pulses in Bistable Systems

    CERN Document Server

    Elphick, C; Malomed, B A; Meron, E

    1997-01-01

    The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation. Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model.

  8. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  9. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  10. Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm.

    Directory of Open Access Journals (Sweden)

    Ioannis G Aviziotis

    Full Text Available Heterogeneity in cell populations originates from two fundamentally different sources: the uneven distribution of intracellular content during cell division, and the stochastic fluctuations of regulatory molecules existing in small amounts. Discrete stochastic models can incorporate both sources of cell heterogeneity with sufficient accuracy in the description of an isogenic cell population; however, they lack efficiency when a systems level analysis is required, due to substantial computational requirements. In this work, we study the effect of cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network of lac operon, which exhibits solution multiplicity over a wide range of extracellular conditions. For such systems, the strategy of performing solely direct temporal solutions is a prohibitive task, since a large ensemble of initial states needs to be tested in order to drive the system--through long time simulations--to possible co-existing steady state solutions. We implement a multiscale computational framework, the so-called "equation-free" methodology, which enables the performance of numerical tasks, such as the computation of coarse steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable solutions are computed and the effect of intrinsic noise on the range of bistability is efficiently investigated. The results are compared with the homogeneous model, which neglects all sources of heterogeneity, with the deterministic cell population balance model, as well as with a stochastic model neglecting the heterogeneity originating from intrinsic noise effects. We show that when the effect of intrinsic source of heterogeneity is intensified, the bistability range shifts towards higher extracellular inducer concentration values.

  11. A single Jahn-Teller active electron as a multi-throw multipolar conductance switch

    Science.gov (United States)

    Rios, Laura; Lee, Joonhee; Tallarida, Nicholas; Apkarian, V. Ara

    2014-03-01

    The final limit in miniaturization of molecular electronics may be regarded as functionality attained through the manipulation of a single electron and no other moving parts. We demonstrate this limit, in the form of a three-throw, bipolar, bistable conductance switch realized by manipulating a Jahn-Teller (JT) active electron on a single zinc etioporphyrin radical anion (ZnEtio-) molecule at the double barrier junction of a cryogenic scanning tunneling microscope (STM). The vibronic JT potential determines the anisotropy of the topography. At resonance, the topography undergoes bistable switching and electroluminescence. Their difference map yields the wiring diagram of the conductance switch; and the spatially-resolved switching kinetics within the molecule yields functional maps for controlling the frequency/amplitude of the switch. Through detailed balance of spontaneous on/off rates, the energy difference between the states leading to the observed bistability is determined as ~ 1 meV. We obtain a consistent interpretation of all observations by assigning the two states to Kramer's pair, with degeneracy broken due to pseudo-rotation on the JT vector potential, where the switching is understood as spin-flipping driven by scattering of tunneling electrons at resonance. Funding by NSF CCI Chemistry at the Space-Time Limit, CHE-082913.

  12. Pattern formation in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik

    1996-01-01

    The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...

  13. Bistability in a simple fluid network due to viscosity contrast

    CERN Document Server

    Geddes, John B; Gardner, David; Carr, Russell T

    2009-01-01

    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles.

  14. Dynamics of a bistable Miura-origami structure

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  15. The Missing Luminous Blue Variables and the Bistability Jump

    NARCIS (Netherlands)

    N. Smith; J.S. Vink; A. de Koter

    2004-01-01

    We discuss an interesting feature of the distribution of luminous blue variables (LBVs) on the H-R diagram, and we propose a connection with the bistability jump seen in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Doradus instability strip at lumi

  16. A mathematical model for apoptotic switch in Drosophila

    Science.gov (United States)

    Ziraldo, Riccardo; Ma, Lan

    2015-10-01

    Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.

  17. Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.

    Science.gov (United States)

    Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V

    2015-05-01

    A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.

  18. Theory of frequency and phase synchronization in a rocked bistable stochastic system.

    Science.gov (United States)

    Casado-Pascual, Jesús; Gómez-Ordóñez, José; Morillo, Manuel; Lehmann, Jörg; Goychuk, Igor; Hänggi, Peter

    2005-01-01

    We investigate the role of noise in the phenomenon of stochastic synchronization of switching events in a rocked, overdamped bistable potential driven by white Gaussian noise, the archetype description of stochastic resonance. We present an approach to the stochastic counting process of noise-induced switching events: starting from the Markovian dynamics of the nonstationary, continuous particle dynamics, one finds upon contraction onto two states a non-Markovian renewal dynamics. A proper definition of an output discrete phase is given, and the time rate of change of its noise average determines the corresponding output frequency. The phenomenon of noise-assisted phase synchronization is investigated in terms of an effective, instantaneous phase diffusion. The theory is applied to rectangular-shaped rocking signals versus increasing input-noise strengths. In this case, for an appropriate choice of the parameter values, the system exhibits a noise-induced frequency locking accompanied by a very pronounced suppression of the phase diffusion of the output signal. Precise numerical simulations corroborate very favorably our analytical results. The novel theoretical findings are also compared with prior ones.

  19. Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches

    KAUST Repository

    Zheng, Yue Bing

    2009-02-11

    A gold nanodisk array, coated with bistable, redox-controllable [2]rotaxane molecules, when exposed to chemical oxidants and reductants, undergoes switching of its plasmonic properties reversibly. By contrast, (i) bare gold nanodisks and (ii) disks coated with a redox-active, but mechanically inert, control compound do not display surface-plasmon-based switching. Along with calculations based on time-dependent density functional theory, these experimental observations suggest that the nanoscale movements within surface-bound “molecular machines” can be used as the active components in plasmonic devices.

  20. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  1. Switch wear leveling

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  2. Supra-transmission and bistability in nonlinear media with a photonic and electronic forbidden band gap; Supratransmission et bistabilite nonlineaire dans les milieux a bandes interdites photoniques et electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Chevriaux, D

    2007-06-15

    We study wave scattering in different nonlinear media possessing a natural forbidden band gap. In particular, we show the existence of a bistable behavior in media governed by the sine-Gordon equation (short pendular chain, Josephson junction array, quantum Hall bilayer), or the nonlinear Schroedinger equation (Kerr and Bragg media), in discrete and continuous models. These different media are submitted to periodic boundary conditions with a frequency in the forbidden band gap and an amplitude that determines their stability states. Indeed, for a sufficient amplitude (supra-transmission), the medium switches from reflector to transmitter, hence allowing the output signal to jump from evanescent to large values. We give a complete analytical description of the bistability that allows to understand the different stationary states observed and to predict the switch of one state to the other. (author)

  3. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  4. Multistable decision switches for flexible control of epigenetic differentiation.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2008-11-01

    Full Text Available It is now recognized that molecular circuits with positive feedback can induce two different gene expression states (bistability under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number of stable states (multistability is however largely unknown. Here, we first examine how autoregulation, a common attribute of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules' parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches or multistable (decision switches regimes. We demonstrate the potential of decision switches for multifaceted stimulus processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous developmental scenarios. Indeed, many of the presented information-processing features of decision switches could ultimately demonstrate a more flexible control of epigenetic differentiation.

  5. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    electron-vibration coupling in transport through single moleculesKatharina J Franke and Jose Ignacio Pascual Vibrational heating in single-molecule switches: an energy-dependent density-of-states approachT Brumme, R Gutierrez and G Cuniberti Reversible switching of single tin phthalocyanine molecules on the InAs(111)A surfaceC Nacci, K Kanisawa and S Fölsch Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube-spiropyran distanceP Bluemmel, A Setaro, C Maity, S Hecht and S Reich Carbon nanotubes as substrates for molecular spiropyran-based switchesE Malic, A Setaro, P Bluemmel, Carlos F Sanz-Navarro, Pablo Ordejón, S Reich and A Knorr Ultrafast dynamics of dithienylethenes differently linked to the surface of TiO2 nanoparticlesLars Dworak, Marc Zastrow, Gehad Zeyat, Karola Rück-Braun and Josef Wachtveitl Switching the electronic properties of Co-octaethylporphyrin molecules on oxygen-covered Ni films by NO adsorptionC F Hermanns, M Bernien, A Krüger, J Miguel and W Kuch STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100)K Zenichowski, Ch Nacci, S Fölsch, J Dokić, T Klamroth and P Saalfrank A switch based on self-assembled thymineFatih Kalkan, Michael Mehlhorn and Karina Morgenstern The growth and electronic structure of azobenzene-based functional molecules on layered crystalsJ Iwicki, E Ludwig, J Buck, M Kalläne, F Köhler, R Herges, L Kipp and K Rossnagel Voltage-dependent conductance states of a single-molecule junctionY F Wang, N Néel, J Kröger, H Vázquez, M Brandbyge, B Wang and R Berndt Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulationJohannes Mielke, Sofia Selvanathan, Maike Peters, Jutta Schwarz, Stefan Hecht and Leonhard Grill Preparing and regulating a bi-stable molecular switch by atomic manipulationS Sakulsermsuk, R E Palmer and P A Sloan Mixed self

  6. Deliberate Switching of Single Photochromic Triads

    Science.gov (United States)

    Maier, Johannes; Pärs, Martti; Weller, Tina; Thelakkat, Mukundan; Köhler, Jürgen

    2017-01-01

    Photochromic molecules can be reversibly converted between two bistable conformations by light, and are considered as promising building blocks in novel macromolecular structures for sensing and imaging techniques. We have studied individual molecular triads consisting of two strong fluorophores (perylene bisimide) that are covalently linked via a photochromic unit (dithienylcyclopentene) and distinguished between deliberate switching and spontaneous blinking. It was verified that the probability for observing deliberate light-induced switching of a single triad (rather than stochastic blinking) amounts to 0.8 ± 0.1. In a few exceptional cases this probability can exceed 0.95. These numbers are sufficiently large for application in sensitive biosensing, and super-resolution imaging. This opens the possibility to develop devices that can be controlled by an external optical stimulus on a truly molecular length scale.

  7. A quintuple quantum dot system for electrical and optical control of multi/bistability in a telecommunication window

    Science.gov (United States)

    Mehmannavaz, Mohammad Reza; Sattari, Hamed

    2015-02-01

    We propose a model for a quintuple coupled quantum dot system based on a GaAs/AlGaAs heterostructure. Then, we analyze the optical bistability (OB) and optical multistability (OM) behaviours and transition between the regimes at a wavelength of λ =1.550 μ \\text{m}. We take the benefit of consecutive and parallel interdot tunnelling and an incoherent pumping field for electrical and even optical control of the processes. It is shown that OB, OM and transition between them can be accomplished and controlled by adjusting the rate of the inter-dot tunnellings (electrical bias), probe wavelength detuning and rate of the optical incoherent pumping field. By proper choice of the controlling parameters, the bistable hysteresis loop becomes narrower, which makes it easier for the cavity field to reach saturation. We interpret the OB and OM behaviours by discussing the absorption of the active medium. We also investigate switching time between the two stable states when the output field jumps from a lower branch to an upper branch. Such a controllable OB/OM and transition between them in multiple QD molecules at a wavelength of 1.550 μm, may provide some new possibilities for technological applications in optoelectronics, solid-state quantum information science and systems dealing with signal processing.

  8. A method for inverse bifurcation of biochemical switches: inferring parameters from dose response curves.

    Science.gov (United States)

    Otero-Muras, Irene; Yordanov, Pencho; Stelling, Joerg

    2014-11-20

    Within cells, stimuli are transduced into cell responses by complex networks of biochemical reactions. In many cell decision processes the underlying networks behave as bistable switches, converting graded stimuli or inputs into all or none cell responses. Observing how systems respond to different perturbations, insight can be gained into the underlying molecular mechanisms by developing mathematical models. Emergent properties of systems, like bistability, can be exploited to this purpose. One of the main challenges in modeling intracellular processes, from signaling pathways to gene regulatory networks, is to deal with high structural and parametric uncertainty, due to the complexity of the systems and the difficulty to obtain experimental measurements. Formal methods that exploit structural properties of networks for parameter estimation can help to overcome these problems. We here propose a novel method to infer the kinetic parameters of bistable biochemical network models. Bistable systems typically show hysteretic dose response curves, in which the so called bifurcation points can be located experimentally. We exploit the fact that, at the bifurcation points, a condition for multistationarity derived in the context of the Chemical Reaction Network Theory must be fulfilled. Chemical Reaction Network Theory has attracted attention from the (systems) biology community since it connects the structure of biochemical reaction networks to qualitative properties of the corresponding model of ordinary differential equations. The inverse bifurcation method developed here allows determining the parameters that produce the expected behavior of the dose response curves and, in particular, the observed location of the bifurcation points given by experimental data. Our inverse bifurcation method exploits inherent structural properties of bistable switches in order to estimate kinetic parameters of bistable biochemical networks, opening a promising route for developments in

  9. Topical Meeting on Optical Bistability Held at Rochester, New York on 15-17 June 1983.

    Science.gov (United States)

    1983-01-01

    Duffing oscillator that leads to a of Science and Technology, Seoul, Korea. bistable...8217 - • . " -" -’ . " " " " " . . . . . . " ’ . -’ . " - • .. . •! . - " .7- WHb1- 2 example is the driven Duffing oscillator ’ + . :x- xl A cos,,’ tit.. which can be experimentally...bistability in the susceptibility tensor. Bistability in the susceptibility tensor may be seen classically by studying the Duffing oscillator ,

  10. Stochastic sensitivity of a bistable energy model for visual perception

    Science.gov (United States)

    Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev

    2017-01-01

    Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.

  11. Snaking and isolas of localised states in bistable discrete lattices

    CERN Document Server

    Taylor, Chris; 10.1016/j.physleta.2010.10.010

    2010-01-01

    We consider localised states in a discrete bistable Allen-Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localised states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of 'isolas': closed curves of solutions in the bifurcation diagram. Isolas appear for some non-periodic boundary conditions in one spatial dimension but seem to appear generically in two dimensions. We point out how features of the bifurcation diagram in 1D help to explain some (unintuitive) features of the bifurcation diagram in 2D.

  12. Phase-bistable Kerr cavity solitons and patterns

    Science.gov (United States)

    de Valcárcel, Germán J.; Staliunas, Kestutis

    2013-04-01

    We study pattern formation in a passive nonlinear optical cavity on the basis of the classic Lugiato-Lefever model with a periodically modulated injection. When the injection amplitude sign alternates, e.g., following a sinusoidal modulation in time or in space, a phase-bistable response emerges, which is at the root of the spatial pattern formation in the system. An asymptotic description is given in terms of a damped nonlinear Schrödinger equation with parametric amplification, which allows gaining insight into the basic spatiotemporal dynamics of the system. One- and two-dimensional phase-bistable spatial patterns, such as bright and dark-ring cavity solitons and labyrinths, are demonstrated.

  13. Random-order fractional bistable system and its stochastic resonance

    Science.gov (United States)

    Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia

    2017-01-01

    In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.

  14. In-Plane Bistable Nanowire For Memory Devices

    CERN Document Server

    Charlot, B; Yamashita, K; Fujita, H; Toshiyoshi, H

    2008-01-01

    We present a nanomechanical device design to be used in a non-volatile mechanical memory point. The structure is composed of a suspended slender nanowire (width : 100nm, thickness 430nm length : 8 to 30$\\mu$m) clamped at its both ends. Electrodes are placed on each sides of the nanowire and are used to actuate the structure (writing, erasing) and to measure the position through a capactive bridge (reading). The structure is patterned by electron beam lithography on a pre-stressed thermally grown silicon dioxide layer. When later released, the stressed material relaxes and the beam buckles in a position of lower energy. Such symmetric beams, called Euler beams, show two stable deformed positions thus form a bistable structure. This paper will present the fabrication, simulation and mechanical and electrical actuation of an in plane bistable nanowire. Final paper will include a section on FEM simulations.

  15. Intrinsic Optical Bistability in a Strongly-Driven Rydberg Ensemble

    CERN Document Server

    de Melo, Natalia R; Sibalic, Nikola; Kondo, Jorge M; Adams, Charles S; Weatherill, Kevin J

    2016-01-01

    We observe and characterize intrinsic optical bistability in a dilute Rydberg vapor. The bistability is characterized by sharp jumps between states of low and high Rydberg occupancy with jump up and down positions displaying hysteresis depending on the direction in which the control parameter is changed. We find that the shift in frequency of the jump point scales with the fourth power of the principal quantum number. Also, the width of the hysteresis window increases with increasing principal quantum number, before reaching a peak and then closing again. The experimental results are consistent with predictions from a simple theoretical model based on semiclassical Maxwell-Bloch equations including the effect of broadening and frequency shifts. These results provide insight to the dynamics of driven dissipative systems.

  16. Intrinsic optical bistability between left-handed material and nonlinear optical materials

    Institute of Scientific and Technical Information of China (English)

    Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping

    2005-01-01

    The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.

  17. Statistical Mechanics of finite arrays of coupled bistable elements

    OpenAIRE

    Gómez-Ordóñez, José; Casado, José M.; Morillo, Manuel; Honisch, Christoph; Friedrich, Rudolf

    2009-01-01

    We discuss the equilibrium of a single collective variable characterizing a finite set of coupled, noisy, bistable systems as the noise strength, the size and the coupling parameter are varied. We identify distinct regions in parameter space. The results obtained in prior works in the asymptotic infinite size limit are significantly different from the finite size results. A procedure to construct approximate 1-dimensional Langevin equation is adopted. This equation provides a useful tool to u...

  18. Stochastic resonance enhanced by dichotomic noise in a bistable system

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Robert [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany); Neiman, Alexander [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, Lutz [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany)

    2000-09-01

    We study linear responses of a stochastic bistable system driven by dichotomic noise to a weak periodic signal. We show that the effect of stochastic resonance can be greatly enhanced in comparison with the conventional case when dichotomic forcing is absent, that is, both the signal-to-noise ratio and the spectral power amplification reach much greater values than in the standard stochastic resonance setup. (c) 2000 The American Physical Society.

  19. Multivariate analysis of bistable flow; Analisis multivariable de flujo biestable

    Energy Technology Data Exchange (ETDEWEB)

    Castillo D, R.; Ortiz V, J.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Calleros M, G. [CFE, Alto LUcero, Veracruz (Mexico)]. e-mail: rcd@nuclear.inin.mx

    2007-07-01

    In this work a bistable flow analysis with an autoregressive multivariate analysis is presented. The bistable flow happens in the boiling water nuclear reactors with external recirculation pumps, and it is presented in the bolster of discharge of the recirculation knot toward the central jet pumps. The phenomenon has two flow patterns, one with greater hydraulic lost that the other one. To irregular time intervals, the flow changes pattern in a random way. The program NOISE that it is in development in the ININ was used and that it uses a autoregressive multivariate model to determine the autoregression coefficients that contain the dynamic information of the signals and that later on they are used to obtain the relative contribution of power, which allows to settle down the influence that exists among the different analyzed variables. It was analyzed an event of bistable flow happened in a BWR5 to operation conditions of 80% power and 69% of total flow through the core. The signal flow noise in each one of the 20 jet pumps, of the power of a monitor of power average, of the motive flows of recirculation, of the controllers and of the position of the control valves in the knots, of the signals of the instrumentation of the recirculation pumps (power, current, pressure drop and suction temperature), and of the buses of where they take the feeding voltage the motors of the pumps. Among the main results it was found that the phenomenon of bistable flow affects to the pressure drop in the recirculation pump of the knot in that occur, what affects to the motor flow in the knot by what the opening system of the flow control valve of recirculation of the knot responds. (Author)

  20. The pressure distribution in thermally bistable turbulent flows

    OpenAIRE

    2005-01-01

    We present a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal pressure distribution in thermally bistable flows. The simulations employ a random turbulent driving generated in Fourier space rather than star-like heating. The turbulent fluctuations are characterized by their rms Mach number M and the energy injection wavenumber, k_for. Our results are consistent with the picture that as either of these parameters is increased, the local ratio of turbul...

  1. Bistable large-strain actuation of interpenetrating polymer networks.

    Science.gov (United States)

    Niu, Xiaofan; Yang, Xinguo; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sungryul; Yu, Zhibin; Pei, Qibing

    2012-12-18

    The bistable electroactive polymer is a new smart material capable of large strain, rigid-to-rigid actuation. At the rubbery state of the polymer heated to above its glass transition, stable electrically-induced actuation is obtained at strains as large as 150%. Electromechanical instability can be effectively overcome by the formation of interpenetrating polymer networks. An application as a refreshable braille display is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Software development for bistable module of SMART plant protection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Park, H. S.; Jeo, C. W. [Samchang Enterprise Co., Ltd., Taejon (Korea, Republic of); Lee, J. G.; Park, H. Y.; Koo, I. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Digitalized PPS(Plant Protection System) is going on development for SMART. The PPS consists of two different types of CPUs and DSP boards for the each functional processor modules of PPS. Software for the system has been progressed with teamwork of CASE TOOL to develop the reliable software. In this paper, we propose the software development method and show the examples for Bistable module through the functional analysis and the development of Structure Chart and M-Spec.

  3. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    Science.gov (United States)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  4. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly.

    Science.gov (United States)

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2016-02-02

    The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization.

  5. Differential Translation Tunes Uneven Production of Operon-Encoded Proteins

    Directory of Open Access Journals (Sweden)

    Tessa E.F. Quax

    2013-09-01

    Full Text Available Clustering of functionally related genes in operons allows for coregulated gene expression in prokaryotes. This is advantageous when equal amounts of gene products are required. Production of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms to generate subunits in appropriate relative quantities. Using comparative genomic analysis, we show that differential translation is a key determinant of modulated expression of genes clustered in operons and that codon bias generally is the best in silico indicator of unequal protein production. Variable ribosome density profiles of polycistronic transcripts correlate strongly with differential translation patterns. In addition, we provide experimental evidence that de novo initiation of translation can occur at intercistronic sites, allowing for differential translation of any gene irrespective of its position on a polycistronic messenger. Thus, modulation of translation efficiency appears to be a universal mode of control in bacteria and archaea that allows for differential production of operon-encoded proteins.

  6. A bistable microelectronic circuit for sensing extremely low electric field

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Liu, Norman; Kho, Andy; Neff, Joseph D.; Palacios, Antonio; Bulsara, Adi R.

    2010-01-01

    Bistable systems are prevalently found in many sensor systems. Recently, we have explored (unidirectionally) coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through the critical points of bifurcations [V. In et al., Phys. Rev. E 68, 045102-R (2003); A. R. Bulsara et al., Phys. Rev. E 70, 036103 (2004); V. In et al., Phys. Rev. E 72, 045104-R (2005); Phys Rev. Lett. 91, 244101 (2003); A. Palacios et al., Phys. Rev. E 72, 026211 (2005); V. In et al., Phys. Rev. E 73, 066121 (2006)]. Complex behaviors emerge, in addition, from these (relatively simple) coupled systems when an external signal (ac or dc) is applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent behavior for a coupled system comprised of mean-field hysteretic elements describing a "single-domain" ferromagnetic sample. The results are being used to develop extremely sensitive magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong to the same class of dynamics as the aforementioned (ferromagnetic) system, with the nonlinear features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem from the operational transconductance amplifiers used in constructing the microcircuits. The emergent behavior is being applied to develop an extremely sensitive electric-field sensor.

  7. Brain mechanisms for simple perception and bistable perception.

    Science.gov (United States)

    Wang, Megan; Arteaga, Daniel; He, Biyu J

    2013-08-27

    When faced with ambiguous sensory inputs, subjective perception alternates between the different interpretations in a stochastic manner. Such multistable perception phenomena have intrigued scientists and laymen alike for over a century. Despite rigorous investigations, the underlying mechanisms of multistable perception remain elusive. Recent studies using multivariate pattern analysis revealed that activity patterns in posterior visual areas correlate with fluctuating percepts. However, increasing evidence suggests that vision--and perception at large--is an active inferential process involving hierarchical brain systems. We applied searchlight multivariate pattern analysis to functional magnetic resonance imaging signals across the human brain to decode perceptual content during bistable perception and simple unambiguous perception. Although perceptually reflective activity patterns during simple perception localized predominantly to posterior visual regions, bistable perception involved additionally many higher-order frontoparietal and temporal regions. Moreover, compared with simple perception, both top-down and bottom-up influences were dramatically enhanced during bistable perception. We further studied the intermittent presentation of ambiguous images--a condition that is known to elicit perceptual memory. Compared with continuous presentation, intermittent presentation recruited even more higher-order regions and was accompanied by further strengthened top-down influences but relatively weakened bottom-up influences. Taken together, these results strongly support an active top-down inferential process in perception.

  8. Asymmetry bistability for a coupled dielectric elastomer minimum energy structure

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2016-11-01

    In this paper, a novel design of asymmetry bistability for a coupled dielectric elastomer minimum energy structure (DEMES) is presented. The structure can be stable both in the stretched and curved configurations, which are induced by the geometry coupling effect of two DEMESs with perpendicular bending axes. The unique asymmetry bistability and fully flexible compact design of the coupled DEMES can enrich the active morphing modes of the dielectric elastomer actuators. A theoretical model of the system’s strain energy is established to explain the bistability. Furthermore, a prototype is fabricated to verify the conceptual design. The experimental results show that when the applied voltage is below a critical transition one, the structure behaves as a conventional DEMES, once the applied voltage exceeds the critical voltage, the structure could change from the stretched (curved) configuration to the curved (stretched) configuration abruptly and maintain in a new stable configuration when the voltage is removed. A multi-segment structure with the coupled DEMES is also presented and fabricated, and it displays various voltage-actuated morphings. It indicates that the coupled DEMES and the multi-segment structures can be useful for the soft and shape-shifting robots.

  9. Bistable flapping of flexible flyers in oscillatory flow

    Science.gov (United States)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  10. Bistability and chaos at low levels of quanta.

    Science.gov (United States)

    Gevorgyan, T V; Shahinyan, A R; Chew, Lock Yue; Kryuchkyan, G Yu

    2013-08-01

    We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose, we consider a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to the dissipation rate driven by a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in the oscillatory mode are investigated in the framework of the purity of states and the Wigner functions calculated from the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour plots of the Wigner functions and the strange attractors on the classical Poincaré section. Considering bistability at a low limit of quanta, we analyze the minimal level of excitation numbers at which the bistable regime of the system is displayed. We also discuss the formation of an oscillatory chaotic regime by varying oscillatory excitation numbers at ranges of a few quanta. We demonstrate quantum-interference phenomena that are assisted hysteresis-cycle behavior and quantum chaos for the oscillator driven by a train of Gaussian pulses. We establish the border of quantum-classical correspondence for chaotic regimes in the case of strong nonlinearities.

  11. Dynamic model of gene regulation for the lac operon

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Maia; Ben-Halim, Asma, E-mail: maia.angelova@northumbria.ac.uk, E-mail: asma.benhalim@northumbria.ac.uk [Intelligent Modelling Lab, School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon Tyne NE2 1XE (United Kingdom)

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  12. Evolution of the leukotoxin operon in genus Mannheimia

    DEFF Research Database (Denmark)

    Larsen, J.; Pedersen, A. G.; Christensen, H.;

    2005-01-01

    The leukotoxin protein of Mannheimia haemolytica belongs to the HlyA-like subfamily of cytotoxic RTX (repeats in toxin) proteins. To test the hypothesis that different lineages of genus Mannheimia gained the leukotoxin operon via horizontal gene transfer we used a strategy that combines compositi......The leukotoxin protein of Mannheimia haemolytica belongs to the HlyA-like subfamily of cytotoxic RTX (repeats in toxin) proteins. To test the hypothesis that different lineages of genus Mannheimia gained the leukotoxin operon via horizontal gene transfer we used a strategy that combines...

  13. Experimental chaotic quantification in bistable vortex induced vibration systems

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear

  14. Critical transition to bistability arising from hidden degrees of freedom in origami structures

    Science.gov (United States)

    Cohen, Itai; Silverberg, Jesse; Na, Jun-Hee; Evans, Arthur; Liu, Bin; Hull, Thomas; Santangelo, Christian; Lang, Robert; Hayward, Ryan

    2015-03-01

    Origami, the traditional art of paper folding, is now being used to design responsive, dynamic, and customizable mechanical metamaterials. The remarkable abilities of these origami-inspired devices emerge from a predefined crease pattern, which couples kinematic folding constraints to the geometric placement of creases. In spite of this progress, a generalized physical understanding of origami remains elusive due to the challenge in determining whether local kinematic constraints are globally compatible, and an incomplete understanding of how bending and crease plasticity found in real materials contribute to the overall mechanical response. Here, we show experimentally and theoretically that the traditional square twist, whose crease pattern has zero degrees of freedom (DOF) and therefore should not be foldable, is nevertheless able to be folded by accessing higher energy scale deformations associated with bending. Due to the separation of bending and crease energy scales, these hidden DOF lead to a geometrically-driven critical bifurcation between mono- and bistability. The scale-free geometric underpinnings of this physical phenomenon suggest a generalized design principle that can be useful for fabricating micro- and nanoscale mechanical switches.

  15. Direct design of an energy landscape with bistable DNA origami mechanisms.

    Science.gov (United States)

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2015-03-11

    Structural DNA nanotechnology provides a feasible technique for the design and fabrication of complex geometries even exhibiting controllable dynamic behavior. Recently we have demonstrated the possibility of implementing macroscopic engineering design approaches to construct DNA origami mechanisms (DOM) with programmable motion and tunable flexibility. Here, we implement the design of compliant DNA origami mechanisms to extend from prescribing motion to prescribing an energy landscape. Compliant mechanisms facilitate motion via deformation of components with tunable stiffness resulting in well-defined mechanical energy stored in the structure. We design, fabricate, and characterize a DNA origami nanostructure with an energy landscape defined by two stable states (local energy minima) separated by a designed energy barrier. This nanostructure is a four-bar bistable mechanism with two undeformed states. Traversing between those states requires deformation, and hence mechanical energy storage, in a compliant arm of the linkage. The energy barrier for switching between two states was obtained from the conformational distribution based on a Boltzmann probability function and closely follows a predictive mechanical model. Furthermore, we demonstrated the ability to actuate the mechanism into one stable state via additional DNA inputs and then release the actuation via DNA strand displacement. This controllable multistate system establishes a foundation for direct design of energy landscapes that regulate conformational dynamics similar to biomolecular complexes.

  16. Exploiting bistable pinning of a ferromagnetic vortex for nitrogen-vacancy spin control

    Science.gov (United States)

    Badea, R.; Wolf, M. S.; Berezovsky, J.

    2016-09-01

    The strong, localized magnetic field produced by the core of a ferromagnetic vortex provides a platform for addressing and controlling individual nitrogen-vacancy (NV) center spins in diamond. Translation of a vortex state in a thin ferromagnetic disk or wire can be understood as motion through an effective pinning potential, arising from the defects in the material. Coupling an NV spin to a vortex state in a proximal ferromagnet imprints the pinning landscape onto the spin transitions. Quantitative characterization of the pinning potential is necessary to control the spin-vortex system. First, we map the effective pinning potential by raster scanning the vortex core through a permalloy disk and measuring the hysteretic vortex displacement vs. magnetic field using differential magneto-optical microscopy. Second, we demonstrate that the interaction between the vortex and a nearby NV spin can be characterized using the pinning map and the path taken by the vortex core through the landscape. Finally, we identify locations of bistability in the pinning landscape, and use them to manipulate the nitrogen vacancy spin in a controlled bimodal fashion by switching the spin on and off resonance with a driving field on a ˜ 10 ns timescale at room temperature.

  17. Temporal dynamics of optical bistability and modulation instability in colloidal nanoparticles

    Science.gov (United States)

    Sharif, Morteza A.; Ghafary, Bijan; Majles Ara, M. H.

    2015-01-01

    Colloidal nanoparticles are attractive optical materials for their low threshold nonlinear response and thus all-optical, nondestructive features which are important in biomedical optics and optical processing. We develop a theoretical scheme based on numerical solution of Nonlinear Schrödinger Equation and nonideal gas model of nonlinearity to investigate temporal analysis of optical bistability (OB) and modulation instability in colloidal nanoparticles. Our scheme determines the dependence of a nanosuspension system dynamic state on characteristic/control parameters including external feedback depth, nanosuspension length, and the initial density of nanoparticles as well as the optical input power. We show that these parameters are intensely correlated. We also indicate that the nonlinear response of nanosuspension may be saturated over a threshold of input power, and thus an unexpected procedure of system evolution toward stability rather than transition to chaos will occur. Consequently, provided that internal feedback is present inside the nanosuspension controlling chaos will be attainable by simply adjusting the optical input power as the control parameter in contrast to the other chaos control methods which require external injection. Finally, we propose an approach which gives a measure of switching time to optimize OB. The optimum results are obtained for the lowest taken values of characteristic/control parameters.

  18. Tunable bistability and asymmetric line shape in ring cavity-coupled Michelson interferometer

    Science.gov (United States)

    Li, Li; Zhang, Xinlu; Chen, Lixue

    2008-01-01

    A novel configuration of ring cavity-coupled Michelson interferometer is proposed to create sharp asymmetric multiple-resonance line shape, in which a ring cavity is side-coupled to one arm and a phase shifter is introduced into the other arm for static phase compensation. Such asymmetric line shape allows the tuning of the system between zero and complete transmission, with a phase offset much narrower than the full width of the cavity resonance itself. As tuning between resonance peak and notch of such asymmetric profile, optical transmission becomes much more sensitive to the round-trip phase shift of ring cavity than that in the case of symmetric Lorentzian line shape. By cooperating Kerr nonlinearity and cavity feedback, novel hysteresis loops and intrinsic bistability are achievable by adjusting incident power. The shapes of hysteresis curves associated with asymmetric resonance line shape are different from those arising from symmetric line shape. By adjusting the static phase compensation of phase shifter, tunable hysteresis loop and asymmetric multiple-resonance transmission can be easy performed. The simply constructed device is a good reference for sensitive optical switch, filter and sensor.

  19. Multiple cross-correlation noise induced transition in a stochastic bistable system

    Science.gov (United States)

    Wang, Can-Jun; Yang, Ke-Li; Du, Chun-Yan

    2017-03-01

    Based on the stochastic equivalent rules, the Fokker-Planck Equation for a general one-dimensional nonlinear system subjected to N-component noises and cross-correlation noises is derived, and the greatest advantage of the method lies in its simplicity. Applying this method, the effects of multiple sources of noise and the correlation forms of noises among them (i.e., two multiplicative noises, an additive noise and the correlation between the three noises) on the steady-state properties and the mean first passage time (MFPT) of a stochastic bistable system are discussed in details. The results show rich transition phenomena, such as the reentrance-like noise-induced phenomenon and the switch between the bimodal and the unimodal structure for different noise intensities. Moreover, the effects of the cross-correlation among the three noise sources on the MFPT are also discussed, and the noise-enhanced stability phenomenon and the resonant activation phenomenon are observed. The numerical results are in basic agreement with the theoretical predictions.

  20. Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence.

    Science.gov (United States)

    Xi, Hongguang; Duan, Lixia; Turcotte, Marc

    2013-08-01

    Bacillus subtilis is a very well-studied organism in biology. Recent results show that an evolutionary plausible alternative competence regulation circuit for this bacterium, despite presenting equivalent functionality, exhibits physiologically important differences. Thus, it is not a priori clear why Nature only selects a specific gene regulation circuit other than a plethora of equivalent others. Here, we use simulations to study this question further. Based on the wild-type Bacillus subtilis circuit, we add a positive autoregulation feedback loop to the intermediate gene comS. We use bifurcation theory to study the dynamical features of the hypothetical gene circuit versus the feedback strength of the added loop, and we rely on stochastic simulations to perform in silico experiments. We discover the existence of a bistable system: a stable limit cycle and a stable fixed point separated by an unstable limit cycle with a varying height of underlying stochastic potential. This structure is absent from the wild type. The coexistence of the unstable limit cycle with stochastic noise endows the circuit with an ability to confine, prevent or switch between its two stable attractors.

  1. Fucose-Mediated Transcriptional Activation of the fcs Operon by FcsR in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Manzoor, Irfan; Shafeeq, Sulman; Afzal, Muhammad; Kuipers, Oscar P

    2015-01-01

    In this study, we explore the impact of fucose on the transcriptome of S. pneumoniae D39. The expression of various genes and operons, including the fucose uptake PTS and utilization operon (fcs operon) was altered in the presence of fucose. By means of quantitative RT-PCR and β-galactosidase analys

  2. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  3. Characterization of the Cobalamin and Fep Operons in Methylobium petrolphilum PM1

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, J

    2005-09-06

    The bacterium Methylobium petroleophilum PM1 is economically important due to its ability to degrade methyl tert-butyl ether (MTBE), a fuel additive. Because PM1 is a representative of all MTBE degraders, it is important to understand the transport pathways critical for the organism to survive in its particular environment. In this study, the cobalamin pathway and select iron transport genes will be characterized to help further understand all metabolic pathways in PM1. PM1 contains a total of four cobalamin operons. A single operon is located on the chromosome. Located on the megaplasmid are two tandem repeats of cob operons and a very close representative of the cob operon located on the chromosome. The fep operon, an iron transport mechanism, lies within the multiple copies of the cob operon. The cob operon and the fep operon appear to be unrelated except for a shared need for the T-on-B-dependent energy transduction complex to assist the operons in moving large molecules across the outer membrane of the cell. A genomic study of the cob and the fep operons with that of phylogenetically related organisms helped to confirm the identity of the cob and fep operons and to represent the pathways. More study of the pathways should be done to find the relationship that positions the two seemingly unrelated cob and fep genes together in what appears to be one operon.

  4. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    Wolferen, Marleen van; Ajon, Małgorzata; Driessen, Arnold J.M.; Albers, Sonja-Verena

    2013-01-01

    Upon ultraviolet (UV) stress, hyperthermophilic Sulfolobus species show a highly induced transcription of a gene cluster responsible for pili biogenesis: the UV-inducible pili operon (ups operon). This operon is involved in UV-induced pili assembly, cellular aggregation, and subsequent DNA exchange

  5. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12.

    OpenAIRE

    Stewart, V; Yanofsky, C

    1986-01-01

    We used site-directed mutagenesis to replace the Escherichia coli tryptophanase (tna) operon leader peptide start codon with AUC. This change greatly decreased the uninduced rate of tna operon expression, and it also lowered the response to inducer. We conclude that leader peptide synthesis plays an essential role in tna operon expression.

  6. Differential translation tunes uneven production of operon-encoded proteins

    NARCIS (Netherlands)

    Quax, T.E.F.; Wolf, Y.I.; Koehorst, J.J.; Wurtzel, O.; Oost, van der R.; Ran, W.; Blombach, F.; Makarova, K.S.; Brouns, S.J.J.; Forster, A.C.; Wagner, E.G.H.; Sorek, R.; Koonin, E.V.; Oost, van der J.

    2013-01-01

    Clustering of functionally related genes in operons allows for coregulated gene expression in prokaryotes. This is advantageous when equal amounts of gene products are required. Production of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms to generate subunits in

  7. Sequence analysis of the Legionella micdadei groELS operon

    DEFF Research Database (Denmark)

    Hindersson, P; Høiby, N; Bangsborg, Jette Marie

    1991-01-01

    shock expression signals were identified upstream of the L. micdadei groEL gene. Further upstream, a poly-T region, also a feature of the sigma 32-regulated Escherichia coli groELS heat shock operon, was found. Despite the high degree of homology of the expression signals in E. coli and L. micdadei...

  8. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Science.gov (United States)

    Davies, Mark R; Broadbent, Sarah E; Harris, Simon R; Thomson, Nicholas R; van der Woude, Marjan W

    2013-06-01

    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions.

  9. Stirring effects and bistability in the iodate-arsenous acid reaction: Premixed vs segregated flows

    Science.gov (United States)

    Hannon, L.; Horsthemke, W.

    1987-01-01

    Using a coalescence-dispersion model of the continuous flow-stirred tank reactor (CSTR), we study the effect of premixed vs nonpremixed reactant flows on chemical bistability. The region of bistability is smaller for segregated feed streams than for a fully premixed feed stream. The transition from flow branch to thermodynamic branch is particularly sensitive to the feed stream configuration.

  10. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate

    Science.gov (United States)

    Pan, Diankun; Ma, Benbiao; Dai, Fuhong

    2017-03-01

    In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage–frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s‑2).

  11. Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistors

    Science.gov (United States)

    Ritter, D.; Hamm, R. A.; Feygenson, A.; Temkin, H.; Panish, M. B.; Chandrasekhar, S.

    1992-07-01

    The transport mechanism of electrons across an energy barrier in the collector of a heterojunction bipolar transistor is studied and identified as hot electron thermionic emission. Bistability between tunneling and thermionic emission was observed at 77 K and room temperature. The bistability can be suppressed by n-type doping of the heterointerface vicinity.

  12. Mechanisms generating bistability and oscillations in microRNA-mediated motifs

    Science.gov (United States)

    Zhou, Peipei; Cai, Shuiming; Liu, Zengrong; Wang, Ruiqi

    2012-04-01

    The importance of post-transcriptional regulation by microRNAs (miRNAs) has recently been recognized in almost all cellular processes. When participating in cellular processes, miRNAs mainly mediate mRNA degradation or translational repression. Recently computational and experimental studies have identified an abundance of motifs involving miRNAs and transcriptional factors (TFs). The simplest motif is a two-node miRNA-mediated feedback loop (MFL) in which a TF regulates an miRNA and the TF itself is negatively regulated by the miRNA. In this paper we present a general computational model for the MFL based on biochemical regulations and explore its dynamics by using bifurcation analysis. Our results show that the MFL can behave either as switches or as oscillators, depending on the TF as a repressor or an activator. These functional features are consistent with the widespread appearance of miRNAs in fate decisions such as proliferation, differentiation, and apoptosis during development. We found that under the interplay of a TF and an miRNA, the MFL model can behave as switches for wide ranges of parameters even without cooperative binding of the TF. In addition, oscillations induced by the miRNA in the MFL model require neither an additional positive feedback loop, nor self-activation of the gene, nor cooperative binding of the TF, nor saturated degradation. Therefore, the MFL may provide a general network structure to induce bistability or oscillations. It is hoped that the results presented here will provide a new view on how gene expression is regulated by miRNAs and further guidance for experiments. Moreover, the insight gained from this study is also expected to provide a basis for the investigation of more complex networks assembled by simple building blocks.

  13. Nucleosome switches.

    Science.gov (United States)

    Schwab, David J; Bruinsma, Robijn F; Rudnick, Joseph; Widom, Jonathan

    2008-06-06

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  14. Prediction and Control of the Bi-stable Functionally Graded Composites by Temperature Gradient Field

    Directory of Open Access Journals (Sweden)

    Zheng ZHANG

    2015-11-01

    Full Text Available The bi-stable cylindrical composites, which are composed of the fiber-through-thickness variation functionally graded material (FGM subjected to a temperature gradient field, studied in the paper. The advantages of both of the FGMs’ adaptability for the temperature field variation and the bi-stability of the un-symmetric and anti-symmetric orthogonal lay-ups are combined, the presented bi-stable structure has a potential application in many fields. The thermal-induced bi-stable FGM un-symmetric and anti-symmetric orthogonal shell is studied by the finite element analysis. The different FGM lay-ups are simulated successfully by the commercial finite element software ABAQUS and its subroutines. The curved shapes, the temperature-load history and stress distributions are also given to understand this bi-stable phenomenon.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9566

  15. Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks.

    Science.gov (United States)

    Wagner, Nathaniel; Mukherjee, Rakesh; Maity, Indrajit; Peacock-Lopez, Enrique; Ashkenasy, Gonen

    2017-01-23

    Bistability and bifurcation, found in a wide range of biochemical networks, are central to the proper function of living systems. We investigate herein recent model systems that show bistable behavior based on nonenzymatic self-replication reactions. Such models were used before to investigate catalytic growth, chemical logic operations, and additional processes of self-organization leading to complexification. By solving for their steady-state solutions by using various analytical and numerical methods, we analyze how and when these systems yield bistability and bifurcation and discover specific cases and conditions producing bistability. We demonstrate that the onset of bistability requires at least second-order catalysis and results from a mismatch between the various forward and reverse processes. Our findings may have far-reaching implications in understanding early evolutionary processes of complexification, emergence, and potentially the origin of life.

  16. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

    Science.gov (United States)

    Van Horn, Christopher R.

    2017-01-01

    ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence

  17. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions.

    Science.gov (United States)

    Burbank, Lindsey P; Van Horn, Christopher R

    2017-08-14

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative Type IV secretion system are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies, and frequently differ in host ranges. Using X. fastidiosa strains M23 (subspecies fastidiosa) or Dixon (subspecies multiplex) as the donor strain and Temecula (subspecies fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad host range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains, and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts.IMPORTANCEXylella fastidiosa is an important plant pathogen world-wide, infecting a wide range of different plant species. Emergence of new diseases caused by X. fastidiosa, or host-switching of existing strains is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT and adaptation, and disease emergence in this diverse pathogen. This is a work

  18. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    CERN Document Server

    Dutta, Sourav

    2016-01-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  19. GENERAL: Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    Science.gov (United States)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  20. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  1. Bistability and chaos in the Taylor-Green dynamo.

    Science.gov (United States)

    Yadav, Rakesh K; Verma, Mahendra K; Wahi, Pankaj

    2012-03-01

    Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic, quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green forcing.

  2. Subharmonic transitions in a bistable oscillator with bimodal periodic excitation.

    Science.gov (United States)

    Kovaleva, Agnessa

    2007-03-01

    We analyze the phenomenon of low-frequency signal enhancement in a bistable system excited by a sum of low-frequency and high-frequency harmonic signals. A mechanism alternate to chaotic resonance is discussed. It is shown that a high-frequency signal may generate interwell transitions of subharmonic frequency. If the frequency of the slow signal is equal or close to a subharmonic frequency of the fast signal, then the improvement of the low-frequency constituent in the output spectrum is due to sustained subharmonic resonance.

  3. Bistability of Slow and Fast Traveling Waves in Fluid Mixtures

    CERN Document Server

    Hollinger, S; Lücke, M; Hollinger, St.

    1997-01-01

    The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.Ky

  4. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  5. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    Institute of Scientific and Technical Information of China (English)

    Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.

  6. Fucose-Mediated Transcriptional Activation of the fcs Operon by FcsR in Streptococcus pneumoniae.

    Science.gov (United States)

    Manzoor, Irfan; Shafeeq, Sulman; Afzal, Muhammad; Kuipers, Oscar P

    2015-01-01

    In this study, we explore the impact of fucose on the transcriptome of S. pneumoniae D39. The expression of various genes and operons, including the fucose uptake PTS and utilization operon (fcs operon) was altered in the presence of fucose. By means of quantitative RT-PCR and β-galactosidase analysis, we demonstrate the role of the transcriptional regulator FcsR, present upstream of the fcs operon, as a transcriptional activator of the fcs operon. We also predict a 19-bp putative FcsR regulatory site (5'-ATTTGAACATTATTCAAGT-3') in the promoter region of the fcs operon. The functionality of this predicted FcsR regulatory site was further confirmed by promoter-truncation experiments, where deletion of half of the FscR regulatory site or full deletion led to the abolition of expression of the fcs operon.

  7. A Bistable Gene Switch for Antibiotic Biosynthesis : The Butyrolactone Regulon in Streptomyces coelicolor

    NARCIS (Netherlands)

    Mehra, Sarika; Charaniya, Salim; Takano, Eriko; Hu, Wei-Shou

    2008-01-01

    Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective

  8. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one...

  9. Single motor–variable stiffness actuator using bistable switching mechanisms for independent motion and stiffness control

    NARCIS (Netherlands)

    Groothuis, S.S.; Carloni, R.; Stramigioli, S.

    2016-01-01

    This paper presents a proof of concept of a variable stiffness actuator (VSA) that uses only one (high power) input motor. In general, VSAs use two (high power) motors to be able to control both the output position and the output stiffness, which possibly results in a heavy, and bulky system. In thi

  10. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    NARCIS (Netherlands)

    Pal, Kaushik; Zhan, Bihong; Mohan, M. L. N. Madhu; Schirhagl, Romana; Wang, Guoping

    2015-01-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires

  11. Bistability vs. Metastability in Driven Dissipative Rydberg Gases

    CERN Document Server

    Letscher, Fabian; Niederprüm, Thomas; Fleischhauer, Michael; Ott, Herwig

    2016-01-01

    We investigate the possibility of a bistable phase in an open many-body system. To this end we discuss the microscopic dynamics of a continuously off-resonantly driven Rydberg lattice gas in the regime of strong decoherence. Our experimental results reveal a prolongation of the temporal correlations with respect to the lifetime of a single Rydberg excitation and show strong evidence for the formation of finite-sized Rydberg excitation clusters in the steady state. We simulate our data using a simplified and a full many-body rate-equation model. The results are compatible with the formation of metastable states associated with a bimodal counting distribution as well as dynamic hysteresis. A scaling analysis reveals however, that the correlation times remain finite for all relevant system parameters. This suggest that the Rydberg aggregate is composed of many small clusters and all correlation lengths remain finite. This is a strong indication for the absence of a global bistable phase, previously suggested to ...

  12. Magnetic actuation and transition shapes of a bistable spherical cap

    Directory of Open Access Journals (Sweden)

    E.G. Loukaides

    2014-10-01

    Full Text Available Multistable shells have been proposed for a variety of applications; however, their actuation is almost exclusively addressed through embedded piezoelectric patches. Additional actuation techniques are needed for applications requiring high strains or where remote actuation is desirable. Part of the reason for the lack of research in this area is the absence of appropriate models describing the detailed deformation and energetics of such shells. This work presents a bistable spherical cap made of iron carbonyl-infused polydimethylsiloxane. The magnetizable structure can be actuated remotely through permanent magnets while the transition is recorded with a high-speed camera. Moreover, the experiment is reproduced in a finite element (FE dynamic model for comparison with the physical observations. High-speed footage of the physical cap inversion together with the FE modeling gives valuable insight on preferable intermediate geometries. Both methods return similar values for the magnetic field strength required for the snap-through. High-strain multistable spherical cap transformation is demonstrated, based on informed material selection. We discover that non-axisymmetric transition shapes are preferred in intermediate geometries by bistable spherical caps. We develop the methods for design and analysis of such actuators, including the feasibility of remote actuation methods for multistable shells.

  13. Control and characterization of a bistable laminate generated with piezoelectricity

    Science.gov (United States)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-08-01

    Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.

  14. [UV-inducibility of the LT-toxin operon].

    Science.gov (United States)

    Tiganova, I G; Rusina, O Iu; Andreeva, I V; Demkin, V V; Brukhanskiĭ, G V; Aleshkin, G I; Skavronskaia, A G

    1989-07-01

    The plasmid elt-operon pVZ14 was constructed by fusing of the eltoperon of the plasmid pVZ357 with the lac-gene of the bacteriophage Mud1 (Amp, Lac). lacZ gene has been proven to be fused with an elt-promoter by the loss of toxin production coded by pVZ357 and acquiring of Lac+ phenotype by pVZ14 containing cells, as well as by HindIII fragments hybridization of pVZ357 and pVZ14 with the labelled elt-probe. The kinetics of beta-galactosidase synthesis in E. coli cells harboring pVZ14 shows an elt-operon promoter to have expressed constitutive activity and to be activated by a SOS-inducing agent, UV-light.

  15. S6-4: Visual Awareness Modulated by Conditioned Fear during Bistable Perception

    Directory of Open Access Journals (Sweden)

    Chai-Youn Kim

    2012-10-01

    Full Text Available Bistable perception has been considered as a useful means to study visual awareness since it induces spontaneous fluctuation in awareness despite constant physical stimulation. Whether visual awareness during bistable perception is modulated by emotional valence associated with one of the two visual interpretations has been of great interest. This talk will present results from a couple of recent studies in my lab to investigate this issue. By comparing bistable perception prior to and followed by Pavlovian fear conditioning using disambiguated versions of the ambiguous figure, I and my colleagues found that negative emotional valence associated with one of two interpretations significantly influences conscious visual awareness during bistable perception. Specifically after fear conditioning, participants tended to be consciously aware of the interpretation associated with the aversive stimulation (CS+ longer at a time compared to the other (CS-. This influence of fear conditioning on bistable perception occurs only when the fear conditioning was effective indicated by the participant's differential physiological response (heart rate to CS+ and CS-. Changes in bistable perception after fear conditioning were also found to be correlated positively with the State-Anxiety score. I will also discuss results from the follow-up study showing that visual awareness during bistable perception is also modulated “unconsciously” conditioned fear.

  16. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Directory of Open Access Journals (Sweden)

    Mark R Davies

    2013-06-01

    Full Text Available The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions.

  17. Elucidation of operon structures across closely related bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Chuan Zhou

    Full Text Available About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  18. Horizontally Acquired Glycosyltransferase Operons Drive Salmonellae Lipopolysaccharide Diversity

    Science.gov (United States)

    Davies, Mark R.; Broadbent, Sarah E.; Harris, Simon R.; Thomson, Nicholas R.; van der Woude, Marjan W.

    2013-01-01

    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions. PMID:23818865

  19. Elucidation of operon structures across closely related bacterial genomes.

    Science.gov (United States)

    Zhou, Chuan; Ma, Qin; Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  20. Analysis of the gluconate (gnt) operon of Bacillus subtilis.

    Science.gov (United States)

    Reizer, A; Deutscher, J; Saier, M H; Reizer, J

    1991-05-01

    The gluconate (gnt) operon of Bacillus subtilis includes the gntR, gntK, gntP, and gntZ genes, respectively encoding the transcriptional repressor of the operon, gluconate kinase, the gluconate permease, and an unidentified open reading frame (Fujita and Fujita, 1987). We have compared the proteins encoded by the gnt operon of B.subtilis with published sequences and showed that (i) the gluconate repressor is homologous to several putative regulatory proteins in Escherichia coli, (ii) the gluconate kinase of B. subtilis is homologous to xylulose kinase, glycerol kinase and fucose kinase in E. coli (20-26% identity; 12-59 S.D.), (iii) the gluconate permease exhibits a C-terminal domain which is homologous to a hydrophobic protein encoded by an unidentified open reading frame (dsdAp) which precedes the dsdA gene of E. coli (39% identity; 19 S.D.), and (iv) the gntZ gene product is homologous to 6-phosphogluconate dehydrogenases of other bacteria and of animals (48-56%; 82-178 S.D.), thereby suggesting that the B. subtilis gntZ encodes 6-phosphogluconate dehydrogenase. Several conserved regions of the sequenced 6-phosphogluconate dehydrogenases can serve as signature patterns of this protein. Computer analyses have indicated that the previously reported sequences of the porcine and ovine 6-phosphogluconate dehydrogenases, as well as the hypothetical DsdAp protein, are probably erroneous. The probable reasons for the errors are reported along with the proposed revised sequences.

  1. Molecular analysis of the Salmonella typhimurium tdc operon regulation.

    Science.gov (United States)

    Kim, Min-Jeong; Lim, Sangyong; Ryu, Sangryeol

    2008-06-01

    Efficient expression of the Salmonella Typhimurium tdcABCDEG operon involved in the degradation of Lserine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdcCDEG genes were not induced in tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may work for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in Nacetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may play a pivotal role in energy metabolism under a sudden change of oxygen tension.

  2. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon.

    Science.gov (United States)

    Yano, Koichi; Masuda, Kenta; Akanuma, Genki; Wada, Tetsuya; Matsumoto, Takashi; Shiwa, Yuh; Ishige, Taichiro; Yoshikawa, Hirofumi; Niki, Hironori; Inaoka, Takashi; Kawamura, Fujio

    2016-01-01

    The genome of Bacillus subtilis strain 168 encodes ten rRNA (rrn) operons. We previously reported that strains with only a single rrn operon had a decreased growth and sporulation frequency. We report here the isolation and characterization of suppressor mutants from seven strains that each have a single rrn operon (rrnO, A, J, I, E, D or B). The suppressor mutants for strain RIK656 with a single rrnO operon had a higher frequency of larger colonies. These suppressor mutants had not only increased growth rates, but also increased sporulation frequencies and ribosome levels compared to the parental mutant strain RIK656. Quantitative PCR analyses showed that all these suppressor mutants had an increased number of copies of the rrnO operon. Suppressor mutants were also isolated from the six other strains with single rrn operons (rrnA, J, I, E, D or B). Next generation and capillary sequencing showed that all of the suppressor mutants had tandem repeats of the chromosomal locus containing the remaining rrn operon (amplicon). These amplicons varied in size from approximately 9 to 179 kb. The amplifications were likely to be initiated by illegitimate recombination between non- or micro-homologous sequences, followed by unequal crossing-over during DNA replication. These results are consistent with our previous report that rrn operon copy number has a major role in cellular processes such as cell growth and sporulation.

  3. Switching antidepressants

    African Journals Online (AJOL)

    by this time.4. Next-step ... and the side-effects are minimal), switching to an alternative antidepressant (if .... the new SSRI initiated immediately at the former therapeutic equivalent dose ... weeks because of the long half-life of its active metabolite, .... interactions with second-generation antidepressants: an update. Clin Ther.

  4. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials.

    Science.gov (United States)

    Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen

    2008-04-15

    All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

  5. Bistability Analysis of Excitatory-Inhibitory Neural Networks in Limited-Sustained-Activity Regime

    Institute of Scientific and Technical Information of China (English)

    倪赟; 吴亮; 吴丹; 朱士群

    2011-01-01

    Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors. These results may suggest one possible neuronal information processing by only tuning time scales.

  6. Application of bistable optical logic gate arrays to all-optical digital parallel processing

    Science.gov (United States)

    Walker, A. C.

    1986-05-01

    Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.

  7. Comparison of Bistable Systems and Matched Filters in Non-Gaussian Noise

    Science.gov (United States)

    Zhang, Xinming; Yan, Jianfeng; Duan, Fabing

    2016-10-01

    In this paper, we report that for a weak signal buried in the heavy-tailed noise, the bistable system can outperform the matched filter, yielding a higher output signal-to-noise ratio (SNR) or a lower probability of error. Moreover, by adding mutually independent internal noise components to an array of bistable systems, the output SNR or the probability of error can be further improved via the mechanism of stochastic resonance (SR). These comparison results demonstrate the potential capability of bistable systems for detecting weak signals in non-Gaussian noise environments.

  8. Reduced threshold all-optical bistability in etched quantum well microresonators

    Science.gov (United States)

    Rivera, T.; Ladan, F. R.; Izrael, A.; Azoulay, R.; Kuszelewicz, R.; Oudar, J. L.

    1994-02-01

    Etched vertical microresonators made of GaAs/AlGaAs multiple quantum wells produced by reactive ion etching was investigated to study the optical bistability phenomena. Reactive ion etching was preferred because of smooth vertical and minimization of density of surface recombination centers. A high cavity finesse was observed in the microresonators producing an optical bistability with wide hysteresis loops. A low threshold power of 70 microwatts was measured due to carrier confinement and vertical walls. The low bistability threshold power was attributed to self passivation happening during etching process, which produced a small surface recombination rate.

  9. Identification of novel targets for breast cancer by exploring gene switches on a genome scale

    Directory of Open Access Journals (Sweden)

    Wu Ming

    2011-11-01

    Full Text Available Abstract Background An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches. Results We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2 is uncovered. We further suggest a likely transcription factor that regulates TACSTD2. Conclusions Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.

  10. The effect of size on the resistive switching characteristics of NiO nanodots

    Science.gov (United States)

    Ahn, Yoonho; Son, Jong Yeog

    2016-12-01

    NiO nanodots were fabricated via a shattering process using an AFM tip, where an NiO nanodot with a diameter of approximately 90 nm was broken into very small pieces. The pieces showed diverse diameters, including three diameters of approximately 10, 20, and 30 nm. The NiO nanodots exhibited unipolar switching characteristics including bistable resistivity during 200 repeated switching cycles. Significantly, the magnitude of the "ON currents" was observed to depend on the formation of conducting filaments in the NiO nanodots. We suggest that the critical diameter of the RRAM NiO nanodots is approximately 30 nm.

  11. Single electron bipolar conductance switch driven by the molecular Aharonov-Bohm effect.

    Science.gov (United States)

    Lee, Joonhee; Tallarida, Nicholas; Rios, Laura; Perdue, Shawn M; Apkarian, Vartkess Ara

    2014-06-24

    We demonstrate a conductance switch controlled by the spin-vibronic density of an odd electron on a single molecule. The junction current is modulated by the spin-flip bistability of the electron. Functional images are provided as wiring diagrams for control of the switch's frequency, amplitude, polarity, and duty-cycle. The principle of operation relies on the quantum mechanical phase associated with the adiabatic circulation of a spin-aligned electron around a conical intersection. The functional images quantify the governing vibronic Hamiltonian.

  12. Switch of states of a short chain in response to vibrations

    Science.gov (United States)

    Sun, Yu-Cen; Huang, Jung-Ren; Tao, Chiao-Yu; Tsai, Jih-Chiang

    2014-11-01

    We study experimentally the dynamics of a short ball chain confined in a quasi-2D vertical channel under different vibrational strengths(VS). For a substantial range of VS, the chain maintains period-1 bouncing with the channel, but also undergoes transitions from a uniform response to various states of excitations as VS increases. In the transitional zone, we find that the unexcited and excited states exhibit bistability and switch spontaneously at fixed values of VS. This coexistence of different states explains the stocastic switch of ratcheting behaviors we reported previously in Phys. Rev. Lett. 112, 058001 (2014) where a spatial gradient of vibration is imposed.

  13. Cooperativity Leads to Temporally-Correlated Fluctuations in the Bacteriophage Lambda Genetic Switch

    Directory of Open Access Journals (Sweden)

    Jacob Quinn Shenker

    2015-04-01

    Full Text Available Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function—the conditional activity—to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis.

  14. Modification of the rib operon derived from Bacillus subtilis and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Huitu; Meng Kun; Wang Yaru; Luo Huiying; Yuan Tiezheng; Yang Peilong; Bai Yingguo; Yao Bin; Fan Yunliu

    2007-01-01

    A riboflavin operon(rib operon)derived from Bacillus subtilis 368 was modified on structure and the resulting operons were expressed in various strains of Escherichia coli. The results showed that the optimization of the rib operon and the host strain used for expression are two main factors affecting the riboflavin production. Replacing the promoter l and rfn box of the rib operon with a strong constructive promoter spo l drastically increased the expression of the rib genes. When E. Coli JMl09 was used as the host strain, the highest riboflavin production reached 95.3μg/mL(about eight times higher than that 0f the unmodified rib operon). In addition, when tetracycline(20 μg/mL)was used as the selective pressure, compared with the ampicillin resistant transformants, a higher riboflavin yield Was obtained in tetracycline resistant host strain.

  15. Effect of Riboflavin Operon Dosage on Riboflavin Productivity in Bacillus Subtilis

    Institute of Scientific and Technical Information of China (English)

    CHEN Tao; CHEN Xun; WANG Jingyu; ZHAO Xueming

    2005-01-01

    After deregulating the purine and riboflavin synthesis in the Gram-positive bacterium Bacillus subtilis,it is critical to amplify riboflavin operon with appropriate dosage in the host strain for remarkable increase of riboflavin production.Bacillus subtilis RH13, a riboflavin-producing strain, was selected as host strain in the construction of engineering strains by protoplast fusion. The integrative plasmid pRB63 and autonomous plasmid pRB49, pRB62 containing riboflavin operon of B.subtilis 24 were constructed and transformed into the host strain respectively. Increasing one operon copy in B.subtilis RH13 results in about 0.4 g/L improvement in riboflavin yield and the appropriate number of operon copies was about 7-8. Amplifying more riboflavin operons is of no use for further improvement of yield of riboflavin. Furthermore, excessive operon dosage results in metabolic unbalance and is fatal to the host cells producing riboflavin.

  16. Innovative Energy Harvester Design Using Bistable Mechanism With Compensational Springs In Gravity Field

    Science.gov (United States)

    Vysotskyi, Bogdan; Parrain, Fabien; Aubry, Denis; Gaucher, Philippe; Lefeuvre, Elie

    2016-11-01

    The purpose of the presented work is to introduce the novel design of electrostatic energy harvester using bistable mechanism with compensational springs in gravity field capable of providing the output of several μW under the excitation of extremely small amplitude (up to 0.2g) and low frequency (10-100Hz). Presented energy harvester uses the bistable hysteresis modification to achieve low-frequency low-amplitude sensibility. It was demonstrated with finite element modelling (FEM) that hysteresis width produced by bistability is changing with a constant linear coefficient as a function of a compensational spring stiffness and thus a device sensitivity could be adjusted to the minimum point for the amplitude of external excitation. Further, highly non-linear bistable double curved beam mechanism assures the high sensitivity in frequencial domain due to the non-defined bandwidth. The equivalent circuit technique is used for simulating the device performance.

  17. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

    Science.gov (United States)

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

  18. Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour.

    Directory of Open Access Journals (Sweden)

    Daniel Stockholm

    Full Text Available BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.

  19. Evidence for dynamo bistability among very low mass stars

    CERN Document Server

    Morin, J; Donati, J -F; Dormy, E; Forveille, T; Jardine, M; Petit, P; Schrinner, M

    2012-01-01

    Dynamo action in fully convective stars is a debated issue that also questions our understanding of magnetic field generation in partly convective Sun-like stars. During the past few years, spectropolari- metric observations have demonstrated that fully convective objects are able to trigger strong large-scale and long-lived magnetic fields. We present here the first spectropolarimetric study of a sample of active late M dwarfs (M5-M8) carried out with ESPaDOnS@CFHT. It reveals the co-existence of two distinct types of magnetism among stars having similar masses and rotation rates. A possible explanation for this unexpected discovery is the existence of two dynamo branches in this parameter regime, we discuss here the possible identification with the weak vs strong field bistability predicted for the geodynamo.

  20. Bistability in the Chemical Master Equation for Dual Phosphorylation Cycles

    CERN Document Server

    Bazzani, A; Giampieri, E; Remondini, D; Cooper, L N

    2011-01-01

    Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates, are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed to elucidate the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional Chemical Master Equation for a well known model of a two step phospho/dephosphorylation cycle using the quasi steady state approximation of the enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the ...

  1. Bistable mode of THG for femtosecond laser pulse

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.; Kuchik, Igor E.

    2016-09-01

    We develop an analytical solution for the THG problem with taking into account self- and cross- modulation of interacting waves. Consideration is made in the framework of long pulse duration approximation and plane wave approximation. Using the original approach, we obtain the explicit solution of Schrödinger equations describing the THG in the framework under consideration both for zero-value amplitude of a wave with triple frequency and for its non-zero value. It should be stressed that the main feature of our approach consists in conservation laws using, which correspond to wave interaction process. We found various regimes of frequency trebling and showed that the THG process possesses a bistable feature under certain condition. We found out also the THG mode, at which the intensities of interacting waves do not change along their propagation coordinate. This leads to existence of soliton solution for THG of femtosecond laser pulses.

  2. Stochastic Resonance in a Bistable System Subject to Dichotomous Noise

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Rong; PAN Hui-Mei; GUO Feng; PANG Xiao-Feng

    2008-01-01

    The stochastic resonance phenomenon in a bistable system subject to Markov dichotomous noise (DN) is investigated. Based on the adiabatic elimination and the two-state theories, the explicit expressions for the signal-to-noise ratio (SNR) and the spectral power amplification (SPA) have been obtained. It is shown that two peaks can occur on the curve of SNR versus the intensity of the DN. Moreover, the SNR is a non-monotonic function of the correlation time of the DN. The SPA varies non-monotonously with the strength of the DN. The dependence of the SNR on the frequency and the amplitude of the external periodic signal are discussed. The effect of the external frequency and the correlation time of the DN on the SPA are analyzed.

  3. First-Order-Like Transition for Dispersive Optical Bistability

    Institute of Scientific and Technical Information of China (English)

    HE Ying; ZHU Shi-Qun

    2003-01-01

    The first-order-like phase transition (FOLT) in the dispersive optical bistability is investigated when the fluctuation in the incident light field is considered as colored noise. A unified colored-noise approximation is applied to obtain the steady state distribution (SSD) when either the intensity or phase fluctuations of the incident field are included in the system. For intensity fluctuations only, the curve of SSD is changed from single extreme to two extremes, and then to three extremes. The colored nature of the noise can reduce the fluctuation in the system. However, for phase fluctuations only, the FOLT is mainly induced by the colored nature of the noise. The curve of SSD is changed from single extreme to three extremes directly. There is no FOLT existing for white noise.

  4. Sector Switching

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    Much of the literature on industry evolution has found firm dynamics to be an important source of sector-level productivity growth. In this paper, we ask whether the delineation of entry and exit firms matters in assessing the impact of firm turnover. Using detailed firm level data from Vietnam......-level determinants of firm exit and switching, which need to be carefully considered in the search for effective policy...

  5. Sector Switching

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    Much of the literature on industry evolution has found firm dynamics to be an important source of sector-level productivity growth. In this paper, we ask whether the delineation of entry and exit firms matters in assessing the impact of firm turnover. Using detailed firm level data from Vietnam, ......-level determinants of firm exit and switching, which need to be carefully considered in the search for effective policy...

  6. Characterization of relationships between transcriptional units and operon structures in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2007-02-01

    Full Text Available Abstract Background Operon structures play an important role in transcriptional regulation in prokaryotes. However, there have been fewer studies on complicated operon structures in which the transcriptional units vary with changing environmental conditions. Information about such complicated operons is helpful for predicting and analyzing operon structures, as well as understanding gene functions and transcriptional regulation. Results We systematically analyzed the experimentally verified transcriptional units (TUs in Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the relationships between TUs and operons, we defined a new classification system for adjacent gene pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP belong to the same TU, sub-operon pairs (SOP that are at the transcriptional boundaries within an operon, and non-operon pairs (NOP belonging to different operons. Consequently, we found that the levels of gene co-regulation was correlated to intergenic distances and gene expression levels. Additional analysis revealed that they were also correlated to the levels of conservation across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in SOPs were more observed in the environmental and genetic information processes. Conclusion Complicated operon strucutures were correlated with genome organization and gene expression profiles. Such intricately regulated operons allow functional differences depending on environmental conditions. These regulatory mechanisms are helpful in accommodating the variety of changes that happen around the cell. In addition, such differences may play an important role in the evolution of gene order across genomes.

  7. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  8. Bistability in an uncatalyzed bromate oscillator in a continuously fed stirred tank reactor

    Science.gov (United States)

    Dutt, Arun K.; Müller, S. C.

    1996-01-01

    Uncatalyzed gallic acid oscillating system has been investigated in a continuously fed stirred tank reactor (CSTR). In the [Bromate]0-[Bromide]0 concentration space, a region has been located where a bistability is observed between an oscillatory branch and a flow branch. To our knowledge this is the first evidence of bistability in an uncatalyzed bromate oscillator. Some observations have been explained in terms of the skeleton mechanism proposed in the past.

  9. Coupled chaotic attractors and driving-induced bistability: A brief review

    Indian Academy of Sciences (India)

    Manish Agrawal

    2015-02-01

    We investigate the effects of symmetry-preserving and symmetry-breaking interactions n a drive–response system with the driving-induced bistability. The basins of attraction on the initial conditions plane are observed for the driving-induced bistability. The basins are dependent on the interaction between the driven and the driving system. The coexisting attractors display both in-phase as well as antiphase synchrony.

  10. Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Indicators of Arctic Sea Ice Bistability in Climate...possibility that the climate system supports multiple Arctic sea ice states that are relevant for the evolution of sea ice during the next several...the most relevant scalar quantities related to the hemisphere-scale Arctic sea ice cover that indicate the presence of bistability, as well as the

  11. Interplay of Noisy Gene Expression and Dynamics Explains Patterns of Bacterial Operon Organization

    Science.gov (United States)

    Igoshin, Oleg

    2011-03-01

    Bacterial chromosomes are organized into operons -- sets of genes co-transcribed into polycistronic messenger RNA. Hypotheses explaining the emergence and maintenance of operons include proportional co-regulation, horizontal transfer of intact ``selfish'' operons, emergence via gene duplication, and co-production of physically interacting proteins to speed their association. We hypothesized an alternative: operons can reduce or increase intrinsic gene expression noise in a manner dependent on the post-translational interactions, thereby resulting in selection for or against operons in depending on the network architecture. We devised five classes of two-gene network modules and show that the effects of operons on intrinsic noise depend on class membership. Two classes exhibit decreased noise with co-transcription, two others reveal increased noise, and the remaining one does not show a significant difference. To test our modeling predictions we employed bioinformatic analysis to determine the relationship gene expression noise and operon organization. The results confirm the overrepresentation of noise-minimizing operon architectures and provide evidence against other hypotheses. Our results thereby suggest a central role for gene expression noise in selecting for or maintaining operons in bacterial chromosomes. This demonstrates how post-translational network dynamics may provide selective pressure for organizing bacterial chromosomes, and has practical consequences for designing synthetic gene networks. This work is supported by National Institutes of Health grant 1R01GM096189-01.

  12. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number.

    Science.gov (United States)

    Gyorfy, Zsuzsanna; Draskovits, Gabor; Vernyik, Viktor; Blattner, Frederick F; Gaal, Tamas; Posfai, Gyorgy

    2015-02-18

    Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5-10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7-8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, 'feast and famine' life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology.

  13. Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

    Science.gov (United States)

    Yang, Ding-Xin; Gu, Feng-Shou; Feng, Guo-Jin; Yang, Yong-Min; Ball, Andrew

    2015-11-01

    The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications. Project supported by the National Natural Science Foundation of China (Grant No. 51379526).

  14. Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

    Institute of Scientific and Technical Information of China (English)

    杨定新; 谷丰收; 冯国金; 杨拥民

    2015-01-01

    The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications.

  15. Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime.

    Science.gov (United States)

    Li, Jiahua; Yu, Rong; Ding, Chunling; Wu, Ying

    2014-06-16

    We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.

  16. Dynamic behavior in mathematical models of the tryptophan operon

    Science.gov (United States)

    Santillán, Moisés; Mackey, Michael C.

    2001-03-01

    This paper surveys the general theory of operon regulation as first formulated by Goodwin and Griffith, and then goes on to consider in detail models of regulation of tryptophan production by Bliss, Sinha, and Santillán and Mackey, and the interrelationships between them. We further give a linear stability analysis of the Santillán and Mackey model for wild type E. coli as well as three different mutant strains that have been previously studied in the literature. This stability analysis indicates that the tryptophan production systems should be stable, which is in accord with our numerical results.

  17. Bistability of optical response of an ultra thin layer consisting of two-level atoms: account of the local field

    Science.gov (United States)

    Shuval-Sergeeva, E. V.; Zaitsev, A. I.

    2008-03-01

    When describing the phenomenon of bistability of optical response of an ultra thin layer consisting of two-level atoms it is important to take into account the local field correction. The account of the correction results in the improvement of existence conditions of bistability. One more bistable region is formed starting with certain value of local field parameter. Both effects are induced by the dynamical frequency shift.

  18. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.

    Science.gov (United States)

    Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L

    2014-07-08

    We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are

  19. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction

    CERN Document Server

    Sodagar, Majid; Eftekhar, Ali A; Adibi, Ali

    2014-01-01

    Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~ 8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

  20. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    Science.gov (United States)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  1. Optical bistability in a one-dimensional photonic crystal resonator using a reverse-biased pn-junction.

    Science.gov (United States)

    Sodagar, Majid; Miri, Mehdi; Eftekhar, Ali A; Adibi, Ali

    2015-02-01

    Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

  2. Transcriptional Regulation of the Streptococcus salivarius 57.I Urease Operon

    Science.gov (United States)

    Chen, Yi-Ywan M.; Weaver, Cheryl A.; Mendelsohn, David R.; Burne, Robert A.

    1998-01-01

    The Streptococcus salivarius 57.I ure cluster was organized as an operon, beginning with ureI, followed by ureABC (structural genes) and ureEFGD (accessory genes). Northern analyses revealed transcripts encompassing structural genes and transcripts containing the entire operon. A ς70-like promoter could be mapped 5′ to ureI (PureI) by primer extension analysis. The intensity of the signal increased when cells were grown at an acidic pH and was further enhanced by excess carbohydrate. To determine the function(s) of two inverted repeats located 5′ to PureI, transcriptional fusions of the full-length promoter region (PureI), or a deletion derivative (PureIΔ100), and a promoterless chloramphenicol acetyltransferase (CAT) gene were constructed and integrated into the chromosome to generate strains PureICAT and PureIΔ100CAT, respectively. CAT specific activities of PureICAT were repressed at pH 7.0 and induced at pH 5.5 and by excess carbohydrate. In PureIΔ100CAT, CAT activity was 60-fold higher than in PureICAT at pH 7.0 and pH induction was nearly eliminated, indicating that expression was negatively regulated. Thus, it was concluded that PureI was the predominant, regulated promoter and that regulation was governed by a mechanism differing markedly from other known mechanisms for bacterial urease expression. PMID:9791132

  3. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  4. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase

    DEFF Research Database (Denmark)

    Danielsen, S; Kilstrup, M; Barilla, K;

    1992-01-01

    . A two-codon overlap between the two reading frames indicates that they constitute an operon. Transcription of the operon was found to be regulated by exogenous purines. Polypeptides specified by each of the two reading frames were expressed in minicells, and the codB gene product was found to be highly...

  5. Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector.

    Science.gov (United States)

    Cao, Ling; Lim, Timothy; Jun, SangMu; Thornburg, Theresa; Avci, Recep; Yang, Xinghong

    2012-01-01

    During infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this detrimental effect under proper control, Y. pestis expresses the caf operon (encoding the F1 capsule) in a temperature-dependent manner. However, additional properties of the caf operon limit its expression. By overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent promoter, virulence of Salmonella was greatly attenuated both in vitro and in vivo. In contrast, expression of the caf operon under the regulation of its native promoter exhibited negligible impairment of Salmonellae virulence. In-depth investigation revealed all individual genes in the caf operon attenuated Salmonella when overexpressed. The deleterious effects of caf operon and the caf individual genes were further confirmed when they were overexpressed in Y. pestis KIM6+. This study suggests that by using a weak inducible promoter, the detrimental effects of the caf operon are minimally manifested in Y. pestis. Thus, through tight regulation of the caf operon, Y. pestis precisely balances its capsular anti-phagocytic properties with the detrimental effects of caf during interaction with mammalian host.

  6. The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae.

    Science.gov (United States)

    Carrión, Víctor J; Arrebola, Eva; Cazorla, Francisco M; Murillo, Jesús; de Vicente, Antonio

    2012-01-01

    Mangotoxin is an antimetabolite toxin produced by certain Pseudomonas syringae pv. syringae strains. This toxin is an oligopeptide that inhibits ornithine N-acetyl transferase, a key enzyme in the biosynthesis of ornithine and arginine. Previous studies have reported the involvement of the putative nonribosomal peptide synthetase MgoA in virulence and mangotoxin production. In this study, we analyse a new chromosomal region of P. syringae pv. syringae UMAF0158, which contains six coding sequences arranged as an operon (mbo operon). The mbo operon was detected in only mangotoxin-producing strains, and it was shown to be essential for the biosynthesis of this toxin. Mutants in each of the six ORFs of the mbo operon were partially or completely impaired in the production of the toxin. In addition, Pseudomonas spp. mangotoxin non-producer strains transformed with the mbo operon gained the ability to produce mangotoxin, indicating that this operon contains all the genetic information necessary for mangotoxin biosynthesis. The generation of a single transcript for the mbo operon was confirmed and supported by the allocation of a unique promoter and Rho-independent terminator. The phylogenetic analysis of the P. syringae strains harbouring the mbo operon revealed that these strains clustered together.

  7. Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector.

    Directory of Open Access Journals (Sweden)

    Ling Cao

    Full Text Available During infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this detrimental effect under proper control, Y. pestis expresses the caf operon (encoding the F1 capsule in a temperature-dependent manner. However, additional properties of the caf operon limit its expression. By overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent promoter, virulence of Salmonella was greatly attenuated both in vitro and in vivo. In contrast, expression of the caf operon under the regulation of its native promoter exhibited negligible impairment of Salmonellae virulence. In-depth investigation revealed all individual genes in the caf operon attenuated Salmonella when overexpressed. The deleterious effects of caf operon and the caf individual genes were further confirmed when they were overexpressed in Y. pestis KIM6+. This study suggests that by using a weak inducible promoter, the detrimental effects of the caf operon are minimally manifested in Y. pestis. Thus, through tight regulation of the caf operon, Y. pestis precisely balances its capsular anti-phagocytic properties with the detrimental effects of caf during interaction with mammalian host.

  8. The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli.

    Science.gov (United States)

    Nasrallah, Gheyath K; Gagnon, Elizabeth; Orton, Dennis J; Garduño, Rafael A

    2011-11-01

    HtpB, the chaperonin of the intracellular bacterial pathogen Legionella pneumophila , displays several virulence-related functions in vitro. To confirm HtpB's role in vivo, host infections with an htpB deletion mutant would be required. However, we previously reported that the htpAB operon (encoding co-chaperonin and chaperonin) is essential. We attempted here to delete htpAB in a L. pneumophila strain carrying the groE operon (encoding the Escherichia coli co-chaperonin and chaperonin). The groE operon was inserted into the chromosome of L. pneumophila Lp02, and then allelic replacement of htpAB with a gentamicin resistance cassette was attempted. Although numerous potential postallelic replacement transformants showed a correct selection phenotype, we still detected htpAB by PCR and full-size HtpB by immunoblot. Southern blot and PCR analysis indicated that the gentamicin resistance cassette had apparently integrated in a duplicated htpAB region. However, we showed by Southern blot that strain Lp02, and the Lp02 derivative carrying the groE operon, have only one copy of htpAB. These results confirmed that the htpAB operon cannot be deleted, not even in the presence of the groE operon, and suggested that attempts to delete htpAB under strong phenotypic selection result in aberrant genetic recombinations that could involve duplication of the htpAB locus.

  9. A Paleogenomic Algorithm for Reconstruction of Ancient Operons from Complete Microbial Genome Sequences

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-hong; LI Wei; FANG Xue-xun; John P. Rose; WANG Bi-Cheng; LIN Da-wei

    2004-01-01

    Operons, or co-transcribed and co-regulated contiguous sets of genes, in microbial genomes are poorly conserved across different genomes due to gene fusion, deletion, duplication and other genome shuffling processes. The currently available genomes are the results of numerous reshuffling and acceptance iterations. We hypothesized that in ancient times, when life was more primitive, functionally related genes existed in close proximity and operated together as an operon to simplify regulation. As more sophisticated regulation mechanisms became available during evolution the genes forming an operon could be separated by the above mentioned processes. If gene shuffling is a random event, neighbor gene pairs are more likely to be preserved than distant gene pairs. Thus, if enough gene pairs can be identified, the original operon could be reconstructed by assembling the pairs. Here we propose a novel paleogenomic method to reconstruct present neighbor gene pairs into "ancient" operons that possibly existed at some point during evolution.

  10. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    Science.gov (United States)

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.

  11. Magnetic switching

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.; Cook, E.; Hawkins, S.; Poor, S.; Reginato, L.; Schmidt, J.; Smith, M.

    1983-06-01

    The paper discusses the development program in magnetic switching which was aimed at solving the rep-rate and reliability limitations of the ATA spark gaps. The end result has been a prototype physically very similar to the present Advanced Test Accelerator (ATA) pulse power unit but vastly superior in performance. This prototype, which is easily adaptable to the existing systems, has achieved a burst rep-rate of 20 kHz and an output voltage of 500 kV. A one-on-one substitution of the existing pulse power module would result in a 100 MeV accelerator. Furthermore, the high efficiency of the magnetic pulse compression stages has allowed CW operation of the prototype at one kilohertz opening up other applications for the pulse power. Performance and design details will be described.

  12. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    Science.gov (United States)

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; Yang, Suping

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III)) concentrations (up to 1.0 mM) while transcript of ars1 operon was not detected in the middle log-phase (55 h). ars2 operon was actively expressed even at the low concentration of As(III) (0.01 μM), whereas the ars3 operon was expressed at 1.0 μM of As(III), indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase). Arsenic speciation analysis demonstrated that R. palustris could reduce As(V) to As(III). Collectively, strain CGA009 detoxified arsenic by using arsenic reduction and methylating arsenic mechanism, while the latter might occur with the presence of higher concentrations of arsenic. PMID:26441915

  13. Bistable dynamics of an insect–pathogen model

    Indian Academy of Sciences (India)

    Nayana Mukherjee; Swarup Poria

    2015-07-01

    We consider a model for insect–pathogen interaction where the insect population is divided into two groups, one group susceptible to disease and other resistant to disease. An individual born susceptible to or resistant to disease depends on the local population levels at the start of each generation. Here we consider density-dependent models of transmission because we characterize diseases that spread through environmental propagules or through random contact among individuals. We consider the case where the fraction of resistant individuals increases as the total population increases. White and Wilson (Theor. Popul. Biol. 56, 163 (1999)) have reported the results of density-dependent monotonic increase of resistance class by choosing a particular type of function. In this paper, we have chosen a class of monotonic density-dependent resistance functions and studied their effects on insect–pathogen dynamics. In particular, we have investigated the effects of different types of monotonic density-dependent resistance on the bistable nature of the model. Numerical simulation results are presented and interpreted.

  14. Morphing of Bistable Composite Laminates Using Distributed Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Marie-Laure Dano

    2012-01-01

    Full Text Available The use of bistable unsymmetric cross-ply laminates for morphing application has received growing attention in the last few years. So far, most studies use large rectangular piezoelectric Macro Fiber Composite (MFC patches bonded at the center of the laminate to induce snap-through. However, the use of large rectangular MFC patches bonded in the center of the laminates significantly influences the shape of the laminate by greatly reducing the curvature at the midsection of the laminate where the MFC patches are bonded. This paper presents a study where narrow cocured MFC strips distributed over the entire surface are used to induce snap-through of unsymmetric cross-ply laminates. This MFC configuration allows having a more uniform curvature in the laminate. Since the strips are bonded on both sides, reverse snap-through should be obtained. The study was both theoretical and experimental. A finite element nonlinear analysis was used to predict the two stable cylindrical configurations and the snap-through induced by MFC actuation. For the experimental study, a laminate-MFC structure was manufactured and tested. The shapes were measured using a 3D image correlation system as a function of applied voltage. Good correlations for the cylindrical shape and displacement field were observed.

  15. Emergent equilibrium in many-body optical bistability

    Science.gov (United States)

    Foss-Feig, M.; Niroula, P.; Young, J. T.; Hafezi, M.; Gorshkov, A. V.; Wilson, R. M.; Maghrebi, M. F.

    2017-04-01

    Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion—organized around the experimentally relevant limit of weak interactions—the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.

  16. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    Science.gov (United States)

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.

  17. Resonant Phenomenon in a Stochastic Delayed Bistable Chemical System

    Science.gov (United States)

    Li, Chunxuan; Yang, Tao

    2015-06-01

    In this paper, the resonant phenomenon for a bistable chemical system in the presence of noises and delayed feedback is investigated. The signal-to-noise ratio (SNR) is calculated when periodic signal is introduced additively (or multiplicatively). The impacts of the parameter μ of the reaction, time delay τ, strength K of the feedback loop, multiplicative ( D) and additive ( Q) noise strengths and cross-correlation strength λ between two noises on the SNR are discussed. When the periodic signal is introduced additively, our results show (i) the SNR as a function of the parameter μ exhibits a maximum, the existence of the maximum is a characteristic of the parametric resonance (PR) phenomenon; (ii) the SNR as a function of D exhibits only a maximum, however, for the case of SNR as a function of Q exhibits not only a maximum, but also a minimum. The existence of the maximum and minimum in the SNR is the identifying characteristics of the stochastic resonance (SR) and reverse-resonance (RR); and (iii) the increases of τ, K and λ enhance the SR and weaken the RR. Finally, we compare the resonant phenomenon for the additive periodic signal with that for multiplicative one in the chemical system.

  18. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  19. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Mohammad A.

    2012-11-21

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF-TrFE) matrix. Highly conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/I off ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (Ïμr ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The rise of operon-like gene clusters in plants.

    Science.gov (United States)

    Boycheva, Svetlana; Daviet, Laurent; Wolfender, Jean-Luc; Fitzpatrick, Teresa B

    2014-07-01

    Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.

  1. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2008-01-01

    Full Text Available Abstract Background The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry. Results We demonstrate that the two maltose ATP binding cassette (ABC transporter operons now found in Tc. litoralis and P. furiosus (termed mal and mdx genes, respectively are not closely related to one another. The Tc. litoralis and P. furiosus mal genes are most closely related to bacterial mal genes while their respective mdx genes are archaeal. The genes of the two mal operons in Tt. maritima are not related to genes in either of these archaeal operons. They are highly similar to one another and belong to a phylogenetic lineage that includes mal genes from the enteric bacteria. A unique domain of the enteric MalF membrane spanning proteins found also in these Thermotogales MalF homologs supports their relatively close relationship with these enteric proteins. Analyses of genome sequence data from other Thermotogales species, Fervidobacterium nodosum, Thermosipho melanesiensis, Thermotoga petrophila, Thermotoga lettingae, and Thermotoga neapolitana, revealed a third apparent mal operon, absent from the published genome sequence of Tt. maritima strain MSB8. This third operon, mal3, is more closely related to the Thermococcales' bacteria-derived mal genes than are mal1 and mal2. F. nodosum, Ts. melanesiensis, and Tt. lettingae have only one of the mal1-mal2 paralogs. The mal2 operon from an unknown species of Thermotoga appears to

  2. Characterization of the cyn operon in Escherichia coli K12.

    Science.gov (United States)

    Sung, Y C; Fuchs, J A

    1988-10-15

    Escherichia coli can overcome the toxicity of environmental cyanate by hydrolysis of cyanate to ammonia and bicarbonate. This reaction is catalyzed by the enzyme cyanase, encoded by the cynS gene. The nucleotide sequence of cynS has been reported (Sung, Y.-c., Anderson, P. M., and Fuchs, J. A. (1987) J. Bacteriol. 169, 5224-5230). The nucleotide sequence of the complete cyn operon has now been determined. The cyn operon is approximately 2600 base pairs and includes cynT, cynS, and cynX, which encode cyanate permease, cyanase, and a protein of unknown function, respectively. Two cyanate-inducible transcripts of 1500 and 2500 nucleotides, respectively, were detected by Northern blot analysis. S1 nuclease mapping experiments indicated that two different cyn mRNAs have a common 5'-end and two different 3'-ends. One 3'-end was located within the coding region of cynX, whereas the other 3'-end includes the entire DNA sequence of cynX. The longer transcript contained 98 nucleotides complementary to lac mRNA produced by the predominant lac transcription termination sequence. Termination vectors were used to show that both 3'-ends were generated by sequences that caused transcriptional termination in vivo. Expression vectors were used to demonstrate that a protein corresponding to the expected size was synthesized from the DNA fragment containing the open reading frame designated cynX. The predicted amino acid sequence of cynX indicates that it is a very hydrophobic protein. The level of cynX expression was significantly less than that of cynT or cynS expression.

  3. Switched on!

    CERN Multimedia

    2008-01-01

    Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...

  4. Evolution of the capsular operon of Streptococcus iniae in response to vaccination.

    Science.gov (United States)

    Millard, Candice M; Baiano, Justice C F; Chan, Candy; Yuen, Benedict; Aviles, Fabian; Landos, Matt; Chong, Roger S M; Benedict, Suresh; Barnes, Andrew C

    2012-12-01

    Streptococcus iniae causes severe septicemia and meningitis in farmed fish and is also occasionally zoonotic. Vaccination against S. iniae is problematic, with frequent breakdown of protection in vaccinated fish. The major protective antigens in S. iniae are the polysaccharides of the capsule, which are essential for virulence. Capsular biosynthesis is driven and regulated by a 21-kb operon comprising up to 20 genes. In a long-term study, we have sequenced the capsular operon of strains that have been used in autogenous vaccines across Australia and compared it with the capsular operon sequences of strains subsequently isolated from infected vaccinated fish. Intriguingly, strains isolated from vaccinated fish that subsequently become infected have coding mutations that are confined to a limited number of genes in the cps operon, with the remainder of the genes in the operon remaining stable. Mutations in strains in diseased vaccinated fish occur in key genes in the capsular operon that are associated with polysaccharide configuration (cpsG) and with regulation of biosynthesis (cpsD and cpsE). This, along with high ratios of nonsynonymous to synonymous mutations within the cps genes, suggests that immune response directed predominantly against capsular polysaccharide may be driving evolution in a very specific set of genes in the operon. From these data, it may be possible to design a simple polyvalent vaccine with a greater operational life span than the current monovalent killed bacterins.

  5. An insight into the regulation of mce4 operon of Mycobacterium tuberculosis.

    Science.gov (United States)

    Rathor, Nisha; Chandolia, Amita; Saini, Neeraj Kumar; Sinha, Rajesh; Pathak, Rakesh; Garima, Kushal; Singh, Satendra; Varma-Basil, Mandira; Bose, Mridula

    2013-07-01

    The mce4 operon is reported to be involved in cholesterol utilization and intracellular survival of Mycobacterium tuberculosis (M. tuberculosis). The regulatory mechanism of this important operon was unknown so far. Here we report detection of the promoter region and regulatory factors of the mce4 operon. The in silico analyzed putative promoter region was cloned in promoter selection vector and promoter strength was measured by O-Nitrophenyl-β-D-galactopyranosidase (ONPG) assay. The transcription start site was determined by 5' Rapid amplification of C terminal end (5'RACE). Surface stress, hypoxia and presence of cholesterol, were found to be stimulatory for mce4 operon promoter induction. Pull down assay coupled with 2D gel electrophoresis resolved many proteins; few prominent spots were processed for identification. MALDI TOF-TOF identified proteins of M. tuberculosis which supported the regulatory function of the identified promoter region and cholesterol utilization of mce4 operon. Since mce4 operon is involved in cholesterol utilization and intracellular survival of M. tuberculosis in the later phase of infection, identification of the promoter sequence as reported in the present communication may facilitate development of effective inhibitors to regulate expression of mce4 operon which may prove to be a good drug target to prevent latency in tuberculosis.

  6. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.

    Science.gov (United States)

    Harwani, Dharmesh

    2014-01-01

    Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl(+) cells and exerts its regulation on at least twelve downstream target genes.

  7. Regulation of gene expression: Cryptic β-glucoside (bgl operon of Escherichia coli as a paradigm

    Directory of Open Access Journals (Sweden)

    Dharmesh Harwani

    2014-12-01

    Full Text Available Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.

  8. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks

    Science.gov (United States)

    Kazantsev, V. B.; Asatryan, S. Yu.

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  9. Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.

    Science.gov (United States)

    Jiang, Leyong; Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang

    2015-11-30

    We investigate theoretically the optical bistability from a Fabry-Perot cavity with graphene in the terahertz (THz) frequency. It is demonstrated that the optical bistablility in this cavity can be realized due to the electric field enhancement and the giant third-order nonlinear conductivity of graphene. The optical bistable behavior is strongly dependent on the transmission amplitude of the mirror and the position of the graphene in the cavity. It is especially important that the hysterical behaviors of the transmitted light rely on the optical conductivity of graphene, making the Fabry-Perot cavity to be a good candidate for dynamic tunable optical bistable device in the THz frequencies, owing to the possibility of high tunability of graphene conductivity by means of external electrostatic or magnetostatic field.

  10. Integrated bistable generator for wideband energy harvesting with optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Wu, Yipeng; Agbossou, Amen

    2013-12-01

    Bistable generators have been proposed as potential solutions to the challenge of variable vibration frequencies. In the authors' previous works, a specific BSM (Buckled-Spring-Mass) harvester architecture has been suggested. It presents some properties of interests: simplicity, compactness and wide bandwidth. Using a normalized model of the BSM generator for design and optimization at different scales, this paper presents a new integrated BSM bistable generator design with the OSECE (Optimized Synchronous Electric Charge Extraction) technique which is used for broadband energy harvesting. The experimental results obtained from an initial prototype device show that the BSM generator with the OSECE circuit exhibits better performance for low coupling cases or reverse sweep excitations. This is also confirmed by simulations for the proposed integrated generator. Good applications prospective is expected for the bistable generator with the nonlinear OSECE circuit.

  11. On the control of bistability in non-contact mode AFM using modulated time delay

    Directory of Open Access Journals (Sweden)

    Kirrou I.

    2014-01-01

    Full Text Available We study the control of bistability in non-contact mode AFM using time delay with modulated feedback gain. We consider that the tip-sample interaction force is described by Lennard-Jones potential and the equation of motion is modeled by single degree of freedom system. Perturbation analysis is performed to obtain the modulation equations of the slow dynamic. The influence of the modulated time delay on the nonlinear characteristic of the frequency response is analyzed and the evolution of the bistability region in the modulated time delay parameter plan is examined. Results show that modulation of the feedback gain can be used to reduce the amplitude of the microcanteliver response and to suppress the bistability regime in large region of the modulated delay parameter space. The analytical predictions are compared to numerical simulations for validation.

  12. Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity.

    Science.gov (United States)

    Qian, Hong; Shi, Pei-Zhe; Xing, Jianhua

    2009-06-28

    We present a simple, unifying theory for stochastic biochemical systems with multiple time-scale dynamics that exhibit noise-induced bistability in an open-chemical environment, while the corresponding macroscopic reaction is unistable. Nonlinear stochastic biochemical systems like these are fundamentally different from classical systems in equilibrium or near-equilibrium steady state whose fluctuations are unimodal following Einstein-Onsager-Lax-Keizer theory. We show that noise-induced bistability in general arises from slow fluctuations, and a pitchfork bifurcation occurs as the rate of fluctuations decreases. Since an equilibrium distribution, due to detailed balance, has to be independent of changes in time-scale, the bifurcation is necessarily a driven phenomenon. As examples, we analyze three biochemical networks of currently interest: self-regulating gene, stochastic binary decision, and phosphorylation-dephosphorylation cycle with fluctuating kinase. The implications of bistability to biochemical complexity are discussed.

  13. The Genomic Pattern of tDNA Operon Expression in E. coli.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available In fast-growing microorganisms, a tRNA concentration profile enriched in major isoacceptors selects for the biased usage of cognate codons. This optimizes translational rate for the least mass invested in the translational apparatus. Such translational streamlining is thought to be growth-regulated, but its genetic basis is poorly understood. First, we found in reanalysis of the E. coli tRNA profile that the degree to which it is translationally streamlined is nearly invariant with growth rate. Then, using least squares multiple regression, we partitioned tRNA isoacceptor pools to predicted tDNA operons from the E. coli K12 genome. Co-expression of tDNAs in operons explains the tRNA profile significantly better than tDNA gene dosage alone. Also, operon expression increases significantly with proximity to the origin of replication, oriC, at all growth rates. Genome location explains about 15% of expression variation in a form, at a given growth rate, that is consistent with replication-dependent gene concentration effects. Yet the change in the tRNA profile with growth rate is less than would be expected from such effects. We estimated per-copy expression rates for all tDNA operons that were consistent with independent estimates for rDNA operons. We also found that tDNA operon location, and the location dependence of expression, were significantly different in the leading and lagging strands. The operonic organization and genomic location of tDNA operons are significant factors influencing their expression. Nonrandom patterns of location and strandedness shown by tDNA operons in E. coli suggest that their genomic architecture may be under selection to satisfy physiological demand for tRNA expression at high growth rates.

  14. Ancient Origin of the Tryptophan Operon and the Dynamics of Evolutionary Change†

    Science.gov (United States)

    Xie, Gary; Keyhani, Nemat O.; Bonner; Jensen, Roy A.

    2003-01-01

    The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting

  15. vanO, a new glycopeptide resistance operon in environmental Rhodococcus equi isolates

    DEFF Research Database (Denmark)

    Gudeta, Dereje Dadi; Moodley, Arshnee; Bortolaia, Valeria

    2014-01-01

    We describe sequence and gene organization of a new glycopeptide resistance operon (vanO) in Rhodococcus equi from soil. The vanO operon has low homology to enterococccal van operons and harbors a vanHOX cluster transcribed in opposite direction to the vanS-vanR regulatory system and comprised...... between three open reading frames with unknown function. This finding has clinical interest since glycopeptides are used to treat R. equi infections and resistance has been reported in clinical isolates....

  16. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  17. Perceptual memory drives learning of retinotopic biases for bistable stimuli.

    Directory of Open Access Journals (Sweden)

    Aidan Peter Murphy

    2014-02-01

    Full Text Available The visual system exploits past experience at multiple timescales to resolve perceptual ambiguity in the retinal image. For example, perception of a bistable stimulus can be biased towards one interpretation over another when preceded by a brief presentation of a disambiguated version of the stimulus (positive priming or through intermittent presentations of the ambiguous stimulus (stabilization. Similarly, prior presentations of unambiguous stimuli can be used to explicitly train a long-lasting association between a percept and a retinal location (perceptual association. These phenonema have typically been regarded as independent processes, with short-term biases attributed to perceptual memory and longer-term biases described as associative learning. Here we tested for interactions between these two forms of experience-dependent perceptual bias and demonstrate that short-term processes strongly influence long-term outcomes. We first demonstrate that the establishment of long-term perceptual contingencies does not require explicit training by unambiguous stimuli, but can arise spontaneously during the periodic presentation of brief, ambiguous stimuli. Using rotating Necker cube stimuli, we observed enduring, retinotopically specific perceptual biases that were expressed from the outset and remained stable for up to forty minutes, consistent with the known phenomenon of perceptual stabilization. Further, bias was undiminished after a break period of five minutes, but was readily reset by interposed periods of continuous, as opposed to periodic, ambiguous presentation. Taken together, the results demonstrate that perceptual biases can arise naturally and may principally reflect the brain’s tendency to favor recent perceptual interpretation at a given retinal location. Further, they suggest that an association between retinal location and perceptual state, rather than a physical stimulus, is sufficient to generate long-term biases in perceptual

  18. Bistabilities in 1,3,2-dithiazolyl radicals.

    Science.gov (United States)

    Brusso, Jaclyn L; Clements, Owen P; Haddon, Robert C; Itkis, Mikhail E; Leitch, Alicea A; Oakley, Richard T; Reed, Robert W; Richardson, John F

    2004-07-07

    New synthetic methods for heterocyclic 1,3,2-dithiazolyl (DTA) radicals have been developed, and trends in the molecular spin distributions and electrochemical properties of a series of DTA radicals are reported. The crystal structures of [1,2,5]thiadiazolo[3,4-f][1,3,2]benzodithiazol-2-yl (TBDTA) and [1,3,2]pyrazinodithiazol-2-yl (PDTA) have been determined. The structure of TBDTA (at 293 and 95 K) contains two molecules in the asymmetric unit, each of which generates pi-stacked arrays, one consisting of antiparallel chains of centrosymmetrically associated dimers, the other comprising parallel chains of unassociated radicals. The structure of PDTA (at 293 and 95 K) is simpler, consisting of slipped stacks of pi-dimers. Variable-temperature magnetic susceptibility (chi(P)) measurements on TBDTA indicate essentially paramagnetic behavior for the unassociated radical pi-stacks over the range 5-400 K. By contrast PDTA is diamagnetic at all temperatures below 300 K, but between 300 and 350 K the value of chi(P) follows a sharp and well-defined hysteresis loop, with T(C) downward arrow = 297 K and T(C) upward arrow = 343 K. These features are symptomatic of a regime of bistability involving the observed low temperature pi-dimer structure and a putative high-temperature radical pi-stack. A mechanism for the interconversion of the two phases of PDTA and related structures is proposed in which hysteretic behavior arises from cooperative effects associated with the breaking and making of a lattice-wide network of intermolecular S- - -N' and/or S- - -S' interactions.

  19. The Pressure Distribution in Thermally Bistable Turbulent Flows

    Science.gov (United States)

    Gazol, Adriana; Vázquez-Semadeni, Enrique; Kim, Jongsoo

    2005-09-01

    We present a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal pressure distribution in thermally bistable flows. The turbulent fluctuations are characterized by their rms Mach number M (with respect to the warm medium) and the energy injection (forcing) wavenumber kfor=1/l, where l is the injection size scale in units of the box size L=100 pc. The numerical simulations employ random turbulent driving generated in Fourier space rather than starlike heating, in order to allow for precise control of the parameters. Our range of parameters is 0.5kfor7.1 cm-3) with P>104 cm-3 K increases from roughly 0.1% at kfor=2 and M=0.5 to roughly 70% for kfor=16 and M=1.25. A preliminary comparison with the recent pressure measurements of Jenkins in C I favors our case with M=0.5 and kfor=2. In all cases, the dynamic range of the pressure in any given density interval is larger than one order of magnitude, and the total dynamic range, summed over the entire density range, typically spans 3-4 orders of magnitude. The total pressure histogram widens as the Mach number is increased, and moreover develops near-power-law tails at high (low) pressures when γe~1), which occurs at kfor=2 (kfor=16) in our simulations. The opposite side of the pressure histogram decays rapidly, in an approximately lognormal form. This behavior resembles that of the corresponding density histograms, in spite of the large scatter of the pressure in any given density interval. Our results show that turbulent advection alone can generate large pressure scatters, with power-law high-P tails for large-scale driving, and provide validation for approaches attempting to derive the shape of the pressure histogram through a change of variable from the known form of the density histogram, such as that performed by Mac Low et al.

  20. Thermal and Magnetic Pressure in a Turbulent Bistable Medium

    Science.gov (United States)

    Gazol, A.; Kim, J.; Vazquez-Semadeni, E.; Luis, L.

    2006-06-01

    We present results from a systematic numerical study of the effect of turbulent velocity fluctuations on the thermal and magnetic pressure distributions in thermally bistable flows. The turbulent fluctuations are characterized by their rms Mach number M (with respect to the warm medium) and the energy injection wavenumber, kfor. The behavior of the thermal pressure is consistent with the picture that as either of these parameters is increased, the local ratio of turbulent crossing time to cooling time decreases, causing transient structures in which the effective behavior is intermediate between the thermal-equilibrium and adiabatic regimes. As a result, the effective polytropic exponent of the simulations ranges between ˜ 0.2 to ˜ 1.1, and the mean pressure of the diffuse gas is generally reduced below the thermal equilibrium pressure Peq, while that of the dense gas is increased with respect to Peq. For the magnetic and for the non-magnetic cases, a preliminary comparison of the fraction of high-density zones (n > 7.1cm-3) with P > 104 K cm-3 with the recent pressure measurements of Jenkins (2004) in CI favors our case with M=0.5 and kfor=2. The presence of the magnetic field has an important effect on the thermal pressure distribution, which does not longer show a power-law shape and develops a low pressure tail due to the presence of magnetically dominated regions.The magnetic pressure distribution shows a large dynamical range and a large spread for a given density, indicating that the magnetic field intensity is determined by turbulent motions.We do not observe any correlation between the density and the magnetic field for low densities (n< 80cm-3 ) but the denser gas in our simulations is however over-pressurized thermally and magnetically, indicating that the formation of dense regions by TI, which do not involve strong compressions, prevents this correlation as long as the density is low enough.

  1. Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    Science.gov (United States)

    Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.

    2017-05-01

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  2. Cutoff solitons and bistability of the discrete inductance-capacitance electrical line: theory and experiments.

    Science.gov (United States)

    Ve Koon, K Tse; Leon, J; Marquié, P; Tchofo-Dinda, P

    2007-06-01

    A discrete nonlinear system driven at one end by a periodic excitation of frequency above the upper band edge (the discreteness induced cutoff) is shown to be a means to (1) generate propagating breather excitations in a long chain and (2) reveal the bistable property of a short chain. After detailed numerical verifications, the bistability prediction is demonstrated experimentally on an electrical transmission line made of 18 inductance-capacitance (LC) cells. The numerical simulations of the LC -line model allow us also to verify the breather generation prediction with a striking accuracy.

  3. Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability

    Science.gov (United States)

    Yasuda, H.; Yang, J.

    2015-05-01

    We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable negative Poisson's ratio and structural bistability simultaneously. We show analytically and experimentally that the Poisson's ratio changes from positive to negative and vice versa during its folding motion. In addition, we verify the bistable mechanism of the reentrant 3D TMP under rigid origami configurations without relying on the buckling motions of planar origami surfaces. This study forms a foundation in designing and constructing TMP-based metamaterials in the form of bellowslike structures for engineering applications.

  4. Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides.

    Science.gov (United States)

    Jin, Li; Fu, Xin; Yang, Bo; Shi, Yaocheng; Dai, Daoxin

    2013-06-15

    A racetrack resonator with a high Q value (~34,000) is demonstrated experimentally based on small SU-8 optical ridge waveguides, which were fabricated with an improved etchless process. Optical bistability is observed in the present racetrack resonator even with a low input optical power (5.6-7.3 mW), which is attributed to the significant thermal nonlinear optical effect due to the high Q value and the large negative thermo-optical coefficient of SU-8. Theoretical modeling for the optical bistability is also given, and it agrees well with the experimental result.

  5. Bistability and squeezing of the librational mode of an optically trapped nanoparticle

    Science.gov (United States)

    Xiao, Ke-Wen; Zhao, Nan; Yin, Zhang-qi

    2017-07-01

    We systematically investigate the bistable behavior and squeezing property of the librational mode of a levitated nonspherical nanoparticle trapped by laser beams. By expanding the librational potential to the fourth order of the librational angle θ , we find that the nonlinear coefficient of this mode is dependent only on the size and material of nanoparticle, but independent of trapping potential shape. The bistability and hysteresis are displayed when the driving frequency is red detuned to the librational mode. In the blue-detuned region, we have studied squeezing of the variance of librational mode in detail, which has potential application for measurement of angle and angular momentum.

  6. A silicon-nanowire memory driven by optical gradient force induced bistability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, B. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Cai, H., E-mail: caih@ime.a-star.edu.sg; Gu, Y. D.; Kwong, D. L. [Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Chin, L. K.; Ng, G. I.; Ser, W. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, J. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, Z. C. [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Liu, A. Q., E-mail: eaqliu@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  7. Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions

    Directory of Open Access Journals (Sweden)

    Lee Vincent D

    2006-01-01

    Full Text Available Abstract Background In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC and the benzoate operon (benABCD. Results The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR. Conclusion We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (

  8. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...

  9. The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover

    Directory of Open Access Journals (Sweden)

    Miller Paul

    2005-01-01

    Full Text Available Molecular switches have been implicated in the storage of information in biological systems. For small structures such as synapses, these switches are composed of only a few molecules and stochastic fluctuations are therefore of importance. Such fluctuations could potentially lead to spontaneous switch reset that would limit the lifetime of information storage. We have analyzed a model of the calcium/calmodulin-dependent protein kinase II (CaMKII switch implicated in long-term memory in the nervous system. The bistability of this switch arises from autocatalytic autophosphorylation of CaMKII, a reaction that is countered by a saturable phosphatase-1-mediated dephosphorylation. We sought to understand the factors that control switch stability and to determine the functional relationship between stability and the number of molecules involved. Using Monte Carlo simulations, we found that the lifetime of states of the switch increase exponentially with the number of CaMKII holoenzymes. Switch stability requires a balance between the kinase and phosphatase rates, and the kinase rate must remain high relative to the rate of protein turnover. Thus, a critical limit on switch stability is set by the observed turnover rate (one per 30 h on average. Our computational results show that, depending on the timescale of fluctuations in enzyme numbers, for a switch composed of about 15 CaMKII holoenzymes, the stable persistent activation can span from a few years to a human lifetime.

  10. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover.

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2005-04-01

    Full Text Available Molecular switches have been implicated in the storage of information in biological systems. For small structures such as synapses, these switches are composed of only a few molecules and stochastic fluctuations are therefore of importance. Such fluctuations could potentially lead to spontaneous switch reset that would limit the lifetime of information storage. We have analyzed a model of the calcium/calmodulin-dependent protein kinase II (CaMKII switch implicated in long-term memory in the nervous system. The bistability of this switch arises from autocatalytic autophosphorylation of CaMKII, a reaction that is countered by a saturable phosphatase-1-mediated dephosphorylation. We sought to understand the factors that control switch stability and to determine the functional relationship between stability and the number of molecules involved. Using Monte Carlo simulations, we found that the lifetime of states of the switch increase exponentially with the number of CaMKII holoenzymes. Switch stability requires a balance between the kinase and phosphatase rates, and the kinase rate must remain high relative to the rate of protein turnover. Thus, a critical limit on switch stability is set by the observed turnover rate (one per 30 h on average. Our computational results show that, depending on the timescale of fluctuations in enzyme numbers, for a switch composed of about 15 CaMKII holoenzymes, the stable persistent activation can span from a few years to a human lifetime.

  11. Asymmetric bipolar resistive switching in solution-processed Pt/TiO{sub 2}/W devices

    Energy Technology Data Exchange (ETDEWEB)

    Biju, Kuyyadi P; Bourim, El Mostafa; Hwang, Hyunsang [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Liu, XinJun; Kim, Insung; Jung, Seungjae; Siddik, Manzar; Lee, Joonmyoung, E-mail: biju@gist.ac.k, E-mail: hwanghs@gist.ac.k [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-12-15

    The resistive switching characteristics of Pt/TiO{sub 2}/W devices in a submicrometre via-hole structure are investigated. TiO{sub 2} film is grown by the sol-gel spin coating technique. The device exhibits reversible and reproducible bistable resistive switching with a rectifying effect. The Schottky contact at the Pt/TiO{sub 2} interface limits electron injection under reverse bias resulting in a rectification ratio of >60 at 2 V in the low-resistance state. The switching mechanism in our device can be interpreted as an anion migration-induced redox reaction at the tungsten bottom electrode (W). The rectifying effect can significantly reduce the sneak path current in a crossbar array and provide a feasible way to achieve high memory density.

  12. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Directory of Open Access Journals (Sweden)

    Alejandra Moreno-Letelier

    2011-01-01

    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  13. The pyrimidine operon pyrRPB-carA from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Schallert, J.; Andersen, Birgit;

    2001-01-01

    The four genes pyrR, pyrP, pyrB, and carA were found to constitute an operon in Lactococcus lactis subsp, lactis MG1363. The functions of the different genes were established by mutational analysis. The first gene in the operon is the pyrimidine regulatory gene, pyrR, which is responsible...... for the regulation of the expression of the pyrimidine biosynthetic genes leading to UMP formation. The second gene encodes a membrane-bound high-affinity uracil permease, required for utilization of exogenous uracil. The last two genes in the operon, pyrB and carA, encode pyrimidine biosynthetic enzymes; aspartate....... The expression of the pyrimidine biosynthetic genes including the pyrRPB-carA operon is subject to control at the transcriptional level, most probably by an attenuator mechanism in which PyrR acts as the regulatory protein....

  14. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Directory of Open Access Journals (Sweden)

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  15. [Proteolytic control of expression of Vibrio fischeri lux-operon genes in Escherichia coli cells].

    Science.gov (United States)

    Mel'kina, O E; Manukhov, I V; Zavil'gel'skiĭ, G B

    2010-08-01

    The key elements of the regulatory system activating expression of the lux-operon genes in the sea bacteria Vibrio fischeri are the LuxR protein (an activator oftranscription) and N-(3-oxohexanoyl) L-homoserine lactone (an autoinducer, AI). It is shown that the ATP-dependent proteases ClpXP and Lon take part in the negative control of expression of the lux-operon genes and that AI protects the LuxR protein from proteolysis.

  16. Breaking an epigenetic chromatin switch: curious features of hysteresis in Saccharomyces cerevisiae telomeric silencing.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi H Nagaraj

    Full Text Available In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the 'off' state merges with the 'on' state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the 'off' to the 'on' state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond.

  17. Recurring cluster and operon assembly for Phenylacetate degradation genes

    Directory of Open Access Journals (Sweden)

    McInerney James O

    2009-02-01

    Full Text Available Abstract Background A large number of theories have been advanced to explain why genes involved in the same biochemical processes are often co-located in genomes. Most of these theories have been dismissed because empirical data do not match the expectations of the models. In this work we test the hypothesis that cluster formation is most likely due to a selective pressure to gradually co-localise protein products and that operon formation is not an inevitable conclusion of the process. Results We have selected an exemplar well-characterised biochemical pathway, the phenylacetate degradation pathway, and we show that its complex history is only compatible with a model where a selective advantage accrues from moving genes closer together. This selective pressure is likely to be reasonably weak and only twice in our dataset of 102 genomes do we see independent formation of a complete cluster containing all the catabolic genes in the pathway. Additionally, de novo clustering of genes clearly occurs repeatedly, even though recombination should result in the random dispersal of such genes in their respective genomes. Interspecies gene transfer has frequently replaced in situ copies of genes resulting in clusters that have similar content but very different evolutionary histories. Conclusion Our model for cluster formation in prokaryotes, therefore, consists of a two-stage selection process. The first stage is selection to move genes closer together, either because of macromolecular crowding, chromatin relaxation or transcriptional regulation pressure. This proximity opportunity sets up a separate selection for co-transcription.

  18. Analysis of the puc Operon Promoter from Rhodobacter capsulatus

    Science.gov (United States)

    Nickens, David G.; Bauer, Carl E.

    1998-01-01

    Expression of the Rhodobacter capsulatus puc operon, which codes for structural polypeptides of the light-harvesting-II peripheral antenna complex, is highly regulated in response to alterations in oxygen tension and light intensity. To obtain an understanding of the puc promoter region we report the high-resolution 5′ mapping of the puc mRNA transcriptional start site and DNA sequence analysis of the puc upstream regulatory sequence (pucURS). A ς70-type promoter sequence was identified (pucP1) which has a high degree of sequence similarity with carotenoid and bacteriochlorophyll biosynthesis promoters. Inspection of the DNA sequence also indicated the presence of two CrtJ and four integration host factor (IHF) binding sites. Transcriptional fusions of the pucURS fused to lacZ also confirmed that puc promoter activity is regulated by the transcriptional regulators IHF, CrtJ, and RegA. Gel retardation analysis using cell extracts indicates that mutations in IHF and RegA disrupt protein binding to DNA fragments containing the pucURS. PMID:9696778

  19. Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon.

    Science.gov (United States)

    Yagur-Kroll, Sharon; Belkin, Shimshon

    2011-05-01

    Bioluminescent bacterial bioreporters harbor a fusion of bacterial bioluminescence genes (luxCDABE), acting as the reporting element, to a stress-response promoter, serving as the sensing element. Upon exposure to conditions that activate the promoter, such as an environmental stress or the presence of an inducing chemical, the promoter::reporter fusion generates a dose-dependent bioluminescent signal. In order to improve bioluminescent bioreporter performance we have split the luxCDABE genes of Photorhabdus luminescens into two smaller functional units: luxAB, that encode for the luciferase enzyme, which catalyzes the luminescence reaction, and luxCDE that encode for the enzymatic complex responsible for synthesis of the reaction's substrate, a long-chain aldehyde. The expression of each subunit was put under the control of either an inducible stress-responsive promoter or a synthetic constitutive promoter, and different combinations of the two units were tested for their response to selected chemicals in Escherichia coli. In all cases tested, the split combinations proved to be superior to the native luxCDABE configuration, suggesting an improved efficiency in the transcription and/or translation of two small gene units instead of a larger one with the same genes. The best combination was that of an inducible luxAB and a constitutive luxCDE, indicating that aldehyde availability is limited when the five genes are expressed together in E. coli, and demonstrating that improved biosensor performance may be achieved by rearrangement of the lux operon genes.

  20. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    Science.gov (United States)

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps.

  1. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

    Directory of Open Access Journals (Sweden)

    Andrea Pigorini

    2015-04-01

    These results point to bistability as the underlying critical mechanism that prevents the emergence of complex interactions in human thalamocortical networks during NREM sleep. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions(Casali et al., 2013; Rosanova et al., 2012 where cortico-cortical communication and consciousness are impaired in spite of preserved neuronal activity.

  2. Interplay of Multisensory Processing, Attention, and Consciousness as Revealed by Bistable Figures

    Directory of Open Access Journals (Sweden)

    Su-Ling Yeh

    2011-10-01

    Full Text Available We examined the novel crossmodal semantic congruency effect on bistable figures in which a static stimulus gives rise to two competing percepts that alternate over time. Participants viewed the bistable figure “my wife or my mother-in-law” while listening to the voice of an old woman or a young lady speaking in an unfamiliar language. They had to report whether they saw the old woman, the young lady, or a mixed percept. Robust crossmodal semantic congruency effects in the measures of the first percept and the predominance duration were observed. The possibilities that the participants simply responded to, and/or that they fixed at the location in favor of, the percept congruent with the sound that they happened to hear were ruled out. When the participants were instructed to maintain their attention to a specific view, a strong top-down modulation on the perception of bistable figure was observed, although the audiovisual semantic congruency effect still remained. These results thus demonstrate that top-down attention (ie,, selection and/or voluntary control modulates the audiovisual semantic congruency effect. As the alternating percepts in bistable figures indicate competition for conscious perception, this study has important implications for the multifaceted interactions between multisensory processing, attention, and consciousness.

  3. First-passage time in a bistable potential with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Piscina, L.; Maria Sancho, J.; Javier de la Rubia, F.; Lindenberg, K.; Tsironis, G. P.

    1989-08-15

    A precise digital simulation of a bistable system under the effect of colored noise is carried out. A set of data for the mean first-passage time is obtained. The results are interpreted and compared with presently available theories, which are revisited following a new insight. Discrepancies that have been discussed in the literature are understood within our framework.

  4. Flexible Bistable Smectic-A Liquid Crystal Device Using Photolithography and Photoinduced Phase Separation

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2012-01-01

    Full Text Available A flexible bistable smectic-A liquid crystal (SmA LC device using pixel-isolated mode was demonstrated, in which SmA LC molecules were isolated in pixels by vertical polymer wall and horizontal polymer layer. The above microstructure was achieved by using ultraviolet (UV photolithography and photoinduced phase separation. The polymer wall was fabricated by photolithography, and then the SmA LC was encapsulated in pixels between polymer wall through UV-induced phase separation, in which the polymer wall acts as supporting structure from mechanical pressure and maintains the cell gap from bending, and the polymer layer acts as adhesive for tight attachment of two substrates. The results demonstrated that all the intrinsic bistable properties of the SmA LC are preserved, and good electrooptical characteristics such as high contrast ratio and excellent stability of the bistable states were characterized. This kind of SmA bistable flexible display has high potential to be used as electronic paper, smart switchable reflective windows, and so forth.

  5. Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer

    NARCIS (Netherlands)

    Malyshev, A. V.; Malyshev, V. A.

    2011-01-01

    Optical response of an artificial composite nanodimer comprising a semiconductor quantum dot and a metal nanosphere is analyzed theoretically. We show that internal degrees of freedom of the system can manifest bistability and optical hysteresis as functions of the incident field intensity. We argue

  6. Evaluation of an Asymmetric Bistable System for Signal Detection under LévyStable Noise

    Institute of Scientific and Technical Information of China (English)

    HUANG Jia-Min; TAO Wei-Ming; XU Bo-Hou

    2012-01-01

    We evaluate the performance of a typical asymmetric bistable system for detecting aperiodic signal under Lévy stable noise.A Grünwald-Letnikov implicit finite difference method is employed to solve the fractional FokkerPlanck equation numerically.The noise-induced stochastic resonance (SR) and the parameter-induced SR both exist in the asymmetric bistable systems.The increase of the skewness parameter γ may deteriorate the system performance.However,by tuning the system parameters,the effects of asymmetry on the system performance can be reduced.%We evaluate the performance of a typical asymmetric bistable system for detecting aperiodic signal under Levy stable noise. A Griinwald-Letnikov implicit finite difference method is employed to solve the fractional Fokker-Planck equation numerically. The noise-induced stochastic resonance (SR) and the parameter-induced SR both exist in the asymmetric bistable systems. The increase of the skewness parameter 7 may deteriorate the system performance. However, by tuning the system parameters, the effects of asymmetry on the system performance can be reduced.

  7. Early Top-Down Influences on Bistable Perception Revealed by Event-Related Potentials

    Science.gov (United States)

    Pitts, Michael A.; Gavin, William J.; Nerger, Janice L.

    2008-01-01

    A longstanding debate exists in the literature concerning bottom-up vs. top-down influences on bistable perception. Recently, a technique has been developed to measure early changes in brain activity (via ERPs) related to perceptual reversals (Kornmeier & Bach, 2004). An ERP component, the reversal negativity (RN) has been identified, and is…

  8. Optical Stabilizer Based on Optical Bistable Devices with All-Fibre Construction

    Institute of Scientific and Technical Information of China (English)

    LI Cheng; YE Hong-An; ZHAO Xue-Zeng; YANG Jiu-Ru; ZHANG Xin-Ming; LU Guo-Hui

    2004-01-01

    @@ We propose a fibre optical stabilizer constituted by a photoelectric-hybrid optical bistable device in which fibre Bragg grating is used as a light intensity modulator. The intensity noise-reducing ability is well improved through the method by employing two feed signals. As a result, the light intensity variation can be reduced to ~ 1/64.

  9. Organization and expression of photosynthesis genes and operons in anoxygenic photosynthetic proteobacteria.

    Science.gov (United States)

    Liotenberg, Sylviane; Steunou, Anne-Soisig; Picaud, Martine; Reiss-Husson, Françoise; Astier, Chantal; Ouchane, Soufian

    2008-09-01

    Genes belonging to the same metabolic route are usually organized in operons in microbial genomes. For instance, most genes involved in photosynthesis were found clustered and organized in operons in photosynthetic Alpha- and Betaproteobacteria. The discovery of Gammaproteobacteria with a conserved photosynthetic gene cluster revives the questions on the role and the maintenance of such organization in proteobacteria. In this paper, we report the analysis of the structure and expression of the 14 kb cluster (crtEF-bchCXYZ-pufBALMC-crtADC) in the photosynthetic betaproteobacterium Rubrivivax gelatinosus, with the purpose of understanding the reasons and the biological constraints that might have led to the clustering of photosynthesis genes. The genetic analyses are substantiated by reverse transcription-PCR data which reveal the presence of a transcript encompassing the 14 genes and provide evidence of a polycistronic 'super-operon' organization starting at crtE and ending 14 kb downstream at the crtC gene. Furthermore, genetic analyses suggest that one of the selection pressures that may have driven and maintained the photosynthesis operons/super-operons in proteobacteria could very likely be the coexpression and regulation of the clustered genes/operon.

  10. A Novel Method for Accurate Operon Predictions in All SequencedProkaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Alm, Eric J.; Arkin, Adam P.

    2004-12-01

    We combine comparative genomic measures and the distance separating adjacent genes to predict operons in 124 completely sequenced prokaryotic genomes. Our method automatically tailors itself to each genome using sequence information alone, and thus can be applied to any prokaryote. For Escherichia coli K12 and Bacillus subtilis, our method is 85 and 83% accurate, respectively, which is similar to the accuracy of methods that use the same features but are trained on experimentally characterized transcripts. In Halobacterium NRC-1 and in Helicobacterpylori, our method correctly infers that genes in operons are separated by shorter distances than they are in E.coli, and its predictions using distance alone are more accurate than distance-only predictions trained on a database of E.coli transcripts. We use microarray data from sixphylogenetically diverse prokaryotes to show that combining intergenic distance with comparative genomic measures further improves accuracy and that our method is broadly effective. Finally, we survey operon structure across 124 genomes, and find several surprises: H.pylori has many operons, contrary to previous reports; Bacillus anthracis has an unusual number of pseudogenes within conserved operons; and Synechocystis PCC6803 has many operons even though it has unusually wide spacings between conserved adjacent genes.

  11. Solving a discrete model of the lac operon using Z3

    Science.gov (United States)

    Gutierrez, Natalia A.

    2014-05-01

    A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.

  12. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing.

    Science.gov (United States)

    Gandolfi, Claudio; Morgan, Grace G; Albrecht, Martin

    2012-04-01

    Spin crossover requires cooperative behavior of the metal centers in order to become useful for devices. While cooperativity is barely predictable in solids, we show here that solution processing and the covalent introduction of molecular recognition sites allows the spin crossover of iron(III) sal(2)trien complexes to be rationally tuned. A simple correlation between the number of molecular recognition sites and the spin crossover temperature enabled the fabrication of materials that are magnetically bistable at room temperature. The predictable behavior relies on combining function (spin switching) and structure (supramolecular assembly) through covalent interactions in a single molecular building block.

  13. All-optical switching in an open V-type atomic system

    Science.gov (United States)

    Jafarzadeh, H.

    2017-02-01

    In this paper, the optical bistability (OB) and absorption properties of a weak probe field in an open V-type three-level atomic system have been investigated. We found that the OB threshold could be reduced via spontaneously generated coherence (SGC), coherent and incoherent pump fields, atomic injection, and exit rates. We also found that the threshold intensity of OB in an open system was less than that in the closed system. The all-optical switching due to the OB has also been discussed.

  14. Experimental characterization of the unsteady natural wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis

    Science.gov (United States)

    Volpe, Raffaele; Devinant, Philippe; Kourta, Azeddine

    2015-05-01

    In recent years, the increasing interest in reducing the aerodynamic drag of vehicles, such as station wagons, minivans or buses, has led research to focus on the characterization of square back bluff geometries. In this paper, the results of an extensive experimental campaign on the full-scale well-known body of Ahmed et al. (1984) are presented, for two height-based Reynolds numbers, and . Eighty-one measurement points were used to map the base pressure field, while the wake topology was investigated by means of a series of ten 2D Particle Image Velocimetry planes. These measurements clearly show that the wake presents a bi-stable behavior, characterized by a random succession of switches between two well-defined mutually symmetric configurations, confirming the results from Grandemange et al. (J Fluid Mech 722:51-84, 2013b. doi: 10.1017/jfm.2013.83) for the same model. For the presented results, the timescale of this phenomenon is of the order of . The sensitivity of the bi-stability to the yaw angle was also investigated, and considerations on how to take such a behavior into account in post-processing this kind of field are given. High-frequency measurements were also carried out with four piezoelectric transducers and a synchronized two-component hot-wire. The results show a low-frequency spectral activity: peaks at and 0.19, corresponding to vortex shedding modes, were found on the lateral base pressures and in the far wake, whereas a signature at was visible on the vertical base centerline and in the recirculation bubble shear layer. Correlation analysis and proper orthogonal decomposition confirm the interpretation of the latter mode as the pumping of the recirculation bubble.

  15. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  16. Stochastic analysis of a miRNA-protein toggle switch.

    Science.gov (United States)

    Giampieri, E; Remondini, D; de Oliveira, L; Castellani, G; Lió, P

    2011-10-01

    Within systems biology there is an increasing interest in the stochastic behavior of genetic and biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous time Markov chain (CTMC). In this paper we consider the stochastic properties of a toggle switch, involving a protein compound (E2Fs and Myc) and a miRNA cluster (miR-17-92), known to control the eukaryotic cell cycle and possibly involved in oncogenesis, recently proposed in the literature within a deterministic framework. Due to the inherent stochasticity of biochemical processes and the small number of molecules involved, the stochastic approach should be more correct in describing the real system: we study the agreement between the two approaches by exploring the system parameter space. We address the problem by proposing a simplified version of the model that allows analytical treatment, and by performing numerical simulations for the full model. We observed optimal agreement between the stochastic and the deterministic description of the circuit in a large range of parameters, but some substantial differences arise in at least two cases: (1) when the deterministic system is in the proximity of a transition from a monostable to a bistable configuration, and (2) when bistability (in the deterministic system) is "masked" in the stochastic system by the distribution tails. The approach provides interesting estimates of the optimal number of molecules involved in the toggle switch. Our discussion of the points of strengths, potentiality and weakness of the chemical master equation in systems biology and the differences with respect to deterministic modeling are leveraged in order to provide useful advice for both the bioinformatician and the theoretical scientist.

  17. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... between the electrical switched layer and the WDM transport layer. Analytical models are implemented to determine the signal quality ghrough the switch blocks in terms of power penalty and to assess the traffic performance of different switch block architectures. Further, a computer simulation model...... is used to investigate the influence on the traffic performance of asynchronous operation of the switch blocks. The signal quality investigation illustrates some of the component requirements in respect to gain saturation in SOA gates and crosstalk in order to obtain high cascadability of the switch...

  18. Ultrafast quantum spin-state switching in the Co-octaethylporphyrin molecular magnet with a terahertz pulsed magnetic field

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.

    2016-05-01

    Molecular spin crossover switches are the objects of intense theoretical and experimental studies in recent years. This interest is due to the fact that these systems allow one to control their spin state by applying an external photo-, thermo-, piezo-, or magnetic stimuli. The greatest amount of research is currently devoted to the study of the effect of the photoexcitation on the bi-stable states of spin crossover single molecular magnets (SMMs). The main limitation of photo-induced bi-stable states is their short lifetime. In this paper we present the results of a study of the spin dynamics of the Co-octaethylporphyrin (CoOEP) molecule in the Low Spin (LS) state and the High Spin (HS) state induced by applying the magnetic pulse of 36.8 T. We show that the spin switching in case of the HS state of the CoOEP molecule is characterized by a long lifetime and is dependent on the magnitude and duration of the applied field. Thus, after applying an external stimuli the system in the LS state after the spin switching reverts to its ground state, whereas the system in the HS state remains in the excited state for a long time. We found that the temperature dependency of magnetic susceptibility shows an abrupt thermal spin transition between two spin states at 40 K. Here the proposed theoretical approach opens the way to create modern devices for spintronics with the controllable spin switching process.

  19. Energetic methods to study bifunctional biotin operon repressor.

    Science.gov (United States)

    Beckett, D

    1998-01-01

    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  20. The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis

    Science.gov (United States)

    Kessler, Peter S.; Blank, Carrine; Leigh, John A.

    1998-01-01

    Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920

  1. Remote switch actuator

    Science.gov (United States)

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  2. Perancangan Switch Matrik Besar Menggunakan Array Switch Analog Zarlink

    OpenAIRE

    2009-01-01

    Secara tradisional, perancangan sebuah switch matrik yang besar dilakukan dengan menggunakan switch-switch elektromekanik. Dengan demikian, banyak bagian yang bergerak yang digunakan untuk membangun switch matrik ini. Dengan kemajuan bidang elektronik, switch elektromekanik saat ini dapat digantikan dengan switch-switch semikonduktor yang ekivalen yang menawarkan solusi yang lebih ekonomis dan memiliki keandalan yang lebih baik. Rumpun switch crosspoint analog Zarlink dapat disusun dengan mud...

  3. Ribosomal multi-operon diversity: an original perspective on the genus Aeromonas.

    Directory of Open Access Journals (Sweden)

    Frédéric Roger

    Full Text Available 16S rRNA gene (rrs is considered of low taxonomic interest in the genus Aeromonas. Here, 195 Aeromonas strains belonging to populations structured by multilocus phylogeny were studied using an original approach that considered Ribosomal Multi-Operon Diversity. This approach associated pulsed-field gel electrophoresis (PFGE to assess rrn operon number and distribution across the chromosome and PCR-temporal temperature gel electrophoresis (TTGE to assess rrs V3 region heterogeneity. Aeromonads harbored 8 to 11 rrn operons, 10 operons being observed in more than 92% of the strains. Intraspecific variability was low or nul except for A. salmonicida and A. aquariorum suggesting that large chromosomic rearrangements might occur in these two species while being extremely rarely encountered in the evolution of other taxa. rrn operon number at 8 as well as PFGE patterns were shown valuable for taxonomic purpose allowing resolution of species complexes. PCR-TTGE revealed a high rate of strains (41.5% displaying intragenomic rrs heterogeneity. Strains isolated from human samples more frequently displayed intragenomic heterogeneity than strains recovered from non-human and environmental specimens. Intraspecific variability ranged from 0 to 76.5% of the strains. The observation of species-specific TTGE bands, the recovery of identical V3 regions in different species and the variability of intragenomic heterogeneity (1-13 divergent nucleotides supported the occurrence of mutations and horizontal transfer in aeromonad rrs evolution. Altogether, the presence of a high number of rrn operon, the high proportion of strains harboring divergent rrs V3 region and the previously demonstrated high level of genetic diversity argued in favor of highly adaptative capabilities of aeromonads. Outstanding features observed for A. caviae supported the ongoing process of adaptation to a specialized niche represented by the gut, previously hypothesized. 16S rRNA gene is an

  4. The alr-groEL1 operon in Mycobacterium tuberculosis: an interplay of multiple regulatory elements

    Science.gov (United States)

    Bhat, Aadil H.; Pathak, Deepika; Rao, Alka

    2017-01-01

    Threonylcarbamoyladenosine is a universally conserved essential modification of tRNA that ensures translational fidelity in cellular milieu. TsaD, TsaB and TsaE are identified as tRNA-A37-threonylcarbamoyl (t6A)-transferase enzymes that have been reconstituted in vitro, in few bacteria recently. However, transcriptional organization and regulation of these genes are not known in any of these organisms. This study describes the intricate architecture of a complex multicistronic alr-groEL1 operon, harboring essential genes, namely tsaD, tsaB, tsaE, groES, groEL1, and alr (required for cell wall synthesis), and rimI encoding an N-α- acetyltransferase in Mycobacterium tuberculosis. Using northern blotting, RT-PCR and in vivo fluorescence assays, genes alr to groEL1 were found to constitute an ~6.3 kb heptacistronic operon with multiple internal promoters and an I-shaped intrinsic hairpin-like cis-regulatory element. A strong promoter PtsaD within the coding sequence of rimI gene is identified in M. tuberculosis, in addition. The study further proposes an amendment in the known bicistronic groESL1 operon annotation by providing evidence that groESL1 is co-transcribed as sub-operon of alr-groEL1 operon. The architecture of alr-groEL1 operon, conservation of the genetic context and a mosaic transcriptional profile displayed under various stress conditions convincingly suggest the involvement of this operon in stress adaptation in M. tuberculosis. PMID:28256563

  5. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.

    Science.gov (United States)

    Desai, Stuti K; Nandimath, Krithi; Mahadevan, S

    2010-10-01

    Utilization of the aryl-β-glucosides salicin or arbutin in most wild-type strains of E. coli is achieved by a single-step mutational activation of the bgl operon. Shigella sonnei, a branch of the diverse E. coli strain tree, requires two sequential mutational steps for achieving salicin utilization as the bglB gene, encoding the phospho-β-glucosidase B, harbors an inactivating insertion. We show that in a natural isolate of S. sonnei, transcriptional activation of the gene SSO1595, encoding a phospho-β-glucosidase, enables salicin utilization with the permease function being provided by the activated bgl operon. SSO1595 is absent in most commensal strains of E. coli, but is present in extra-intestinal pathogens as bgcA, a component of the bgc operon that enables β-glucoside utilization at low temperature. Salicin utilization in an E. coli bglB laboratory strain also requires a two-step activation process leading to expression of BglF, the PTS-associated permease encoded by the bgl operon and AscB, the phospho-β-glucosidase B encoded by the silent asc operon. BglF function is needed since AscF is unable to transport β-glucosides as it lacks the IIA domain involved in phopho-relay. Activation of the asc operon in the Sal(+) mutant is by a promoter-up mutation and the activated operon is subject to induction. The pathway to achieve salicin utilization is therefore diverse in these two evolutionarily related organisms; however, both show cooperation between two silent genetic systems to achieve a new metabolic capability under selection.

  6. UV durable colour pigment doped SmA liquid crystal composites for outdoor trans-reflective bi-stable displays

    Science.gov (United States)

    Xu, H.; Davey, A. B.; Crossland, W. A.; Chu, D. P.

    2012-10-01

    High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (~101Hz) to a scattered state to exhibit colour while by a high frequency waveform (~103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least dye composition (~2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work.

  7. Charge switching of donor ensembles in a semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Karen; Wenderoth, Martin; Loth, Sebastian; Ulbrich, Rainer G. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany); Garleff, Jens K.; Wijnheijmer, A.P.; Koenraad, Paul M. [PSN, Eindhoven University of Technology (Netherlands)

    2010-07-01

    We investigated the charge state switching behaviour of interacting donors near the GaAs (110) surface, by Scanning Tunnelling Microscopy (STM). Silicon doped (n{approx}6.10{sup 18} cm{sup -3}) GaAs is cleaved in UHV to obtain a clean and atomically flat surface, directly afterwards the sample is transferred into a home build STM, working at 5 Kelvin. Using the STM tip as a movable gate the charge state of each donor can be switched from the neutral to the ionized state. The charge configuration of a single isolated donor is unambiguously determined by the position of the tip and the applied voltage. In contrast, even a two donor system with inter donor distances smaller than 5 nm shows a more complex behavior. The electrostatic interaction of two donors close together can result in ionization gaps. In certain geometrical configurations the modified electronic properties of donors close to the surface can result in bistable and time dependent charge switching behavior.

  8. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.

    Science.gov (United States)

    Bordoy, Antoni E; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  9. Origin of optical bistability and hysteretic reflectivity on account of nonlinearity at optically induced gallium silica interface

    Science.gov (United States)

    Sharma, Arvind; Nagar, A. K.

    2016-05-01

    The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.

  10. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    Science.gov (United States)

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  11. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers

    CERN Document Server

    Lin, Guoping; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J

    2015-01-01

    A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.

  12. Intrinsic Bistability and Critical Slowing in Tm3+/Yb3+ Codoped Laser Crystal with the Photon Avalanche Mechanism

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHANG Xin-Lu; CHEN Li-Xue

    2009-01-01

    We present theoretically a novel intrinsic optical bistability (IOB) in the Tm3+/Yb3+ codoped system with a photon avalanche mechanism.Numerical simulations based on the rate equation model demonstrate distinct IOB hysteresis and critical slowing dynamics around the avalanche thresholds.Such an IOB characteristic in Tm3+/Yb3+ codoped crystal has potential applications in solid-state bistable optical displays and luminescence switchers in visible-infrared spectra.

  13. Contribution of disparity to the perception of 3D shape as revealed by bistability of stereoscopic Necker cubes.

    Science.gov (United States)

    Erkelens, C J

    2012-01-01

    The Necker cube is a famous demonstration of ambiguity in visual perception of 3D shape. Its bistability is attributed to indecisiveness because monocular cues do not allow the observer to infer one particular 3D shape from the 2D image. A remarkable but not appreciated observation is that Necker cubes are bistable during binocular viewing. One would expect disparity information to veto bistability. To investigate the effect of zero and non-zero disparity on perceptual bistability in detail, perceptual dominance durations were measured for luminance- and disparity-defined Necker cubes. Luminance-defined Necker cubes were bistable for all tested disparities between the front and back faces of the cubes. Absence of an effect of disparity on dominance durations suggested the suppression of disparity information. Judgments of depth between the front and back sides of the Necker cubes, however, showed that disparity affected perceived depth. Disparity-defined Necker cubes were also bistable but dominance durations showed different distributions. I propose a framework for 3D shape perception in which 3D shape is inferred from pictorial cues acting on luminance- and disparity-defined 2D shapes.

  14. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  15. Frequency of pap and pil operons in Escherichia coli strains associated with urinary infections.

    Science.gov (United States)

    Perugini, M R; Vidotto, M C

    1996-03-01

    Strains of E. coli isolated from patients with urinary tract infection were examined for P and type 1 adhesin production by colony hybridization with pap and pil operons. The P pili probe detected 45 (46.4%) of the total of 97 strains studied and the type 1 pili probe detected 83 (85.6%). The pap operon was detected in 39 (53.4%) of 73 strains isolated from urine of patients with urinary disease and in 6 (25.0%) of 24 strains isolated from feces of healthy individuals employed as controls (P = 0.029), and the pil operon was detected in 67 (91.8%) of the urinary strains and in 16 (66.6%) of the fecal strains (P = 0.007). Our data did not show significant differences in frequency of P pili among isolates from pyelonephritis (78.5%), cystitis (45.8%) and asymptomatic bacteriuria (54.5%). Type 1 pili were not associated with the different types of infection; the frequency of these pili was 100% in pyelonephritis and in asymptomatic bacteriuria, and 87.5% in cystitis. The incidence of pap operon in strains isolated from pyelonephritis and from asymptomatic bacteriuria was higher in 11- to 40-year old women. These data show a high frequency of pap and pil operons among uropathogenic strains of E. coli, which seems to be an important factor in the development of urinary infection.

  16. Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa.

    Science.gov (United States)

    Williams, Bryan J; Du, Rui-Hong; Calcutt, M Wade; Abdolrasulnia, Rasul; Christman, Brian W; Blackwell, Timothy S

    2010-04-01

    Agmatine is the decarboxylation product of arginine and a number of bacteria have devoted enzymatic pathways for its metabolism. Pseudomonas aeruginosa harbours the aguBA operon that metabolizes agmatine to putrescine, which can be subsequently converted into other polyamines or shunted into the TCA cycle for energy production. We discovered an alternate agmatine operon in the P. aeruginosa strain PA14 named agu2ABCA' that contains two genes for agmatine deiminases (agu2A and agu2A'). This operon was found to be present in 25% of clinical P. aeruginosa isolates. Agu2A' contains a twin-arginine translocation signal at its N-terminus and site-directed mutagenesis and cell fractionation experiments confirmed this protein is secreted to the periplasm. Analysis of the agu2ABCA' promoter demonstrates that agmatine induces expression of the operon during the stationary phase of growth and during biofilm growth and agu2ABCA' provides only weak complementation of aguBA, which is induced during log phase. Biofilm assays of mutants of all three agmatine deiminase genes in PA14 revealed that deletion of agu2ABCA', specifically its secreted product Agu2A', reduces biofilm production of PA14 following addition of exogenous agmatine. Together, these findings reveal a novel role for the agu2ABCA' operon in the biofilm development of P. aeruginosa.

  17. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes

    Science.gov (United States)

    Semenov, Andrey N.; Gintsburg, Alexandr L.

    2016-01-01

    Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A “lacking biofilm production” (LBP) strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR) gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg) has a key role in biofilm formation. The relative location (i.e., by being separated by another gene) of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents. PMID:28070515

  18. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes

    Directory of Open Access Journals (Sweden)

    Olga L. Voronina

    2016-01-01

    Full Text Available Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A “lacking biofilm production” (LBP strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg has a key role in biofilm formation. The relative location (i.e., by being separated by another gene of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  19. Burkholderia contaminans Biofilm Regulating Operon and Its Distribution in Bacterial Genomes.

    Science.gov (United States)

    Voronina, Olga L; Kunda, Marina S; Ryzhova, Natalia N; Aksenova, Ekaterina I; Semenov, Andrey N; Romanova, Yulia M; Gintsburg, Alexandr L

    2016-01-01

    Biofilm formation by Burkholderia spp. is a principal cause of lung chronic infections in cystic fibrosis patients. A "lacking biofilm production" (LBP) strain B. contaminans GIMC4587:Bct370-19 has been obtained by insertion modification of clinical strain with plasposon mutagenesis. It has an interrupted transcriptional response regulator (RR) gene. The focus of our investigation was a two-component signal transduction system determination, including this RR. B. contaminans clinical and LBP strains were analyzed by whole genome sequencing and bioinformatics resources. A four-component operon (BiofilmReg) has a key role in biofilm formation. The relative location (i.e., by being separated by another gene) of RR and histidine kinase genes is unique in BiofilmReg. Orthologs were found in other members of the Burkholderiales order. Phylogenetic analysis of strains containing BiofilmReg operons demonstrated evidence for earlier inheritance of a three-component operon. During further evolution one lineage acquired a fourth gene, whereas others lost the third component of the operon. Mutations in sensor domains have created biodiversity which is advantageous for adaptation to various ecological niches. Different species Burkholderia and Achromobacter strains all demonstrated similar BiofilmReg operon structure. Therefore, there may be an opportunity to develop a common drug which is effective for treating all these causative agents.

  20. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    Science.gov (United States)

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  1. A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis.

    Science.gov (United States)

    Zhang, Haiwei; Gao, Long; Zhang, Jiaoling; Li, Weihui; Yang, Min; Zhang, Hua; Gao, Chunhui; He, Zheng-Guo

    2014-01-01

    The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509-6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509-Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.

  2. Design of two-layer switching rule for stabilization of switched linear systems with mismatched switching

    Institute of Scientific and Technical Information of China (English)

    Dan MA

    2014-01-01

    A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given;in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.

  3. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    Science.gov (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  4. Feedback-induced Bistability of an Optically Levitated Nanoparticle: A Fokker-Planck Treatment

    CERN Document Server

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Optically levitated nanoparticles have recently emerged as versatile platforms for investigating macroscopic quantum mechanics and enabling ultrasensitive metrology. In this article we theoretically consider two damping regimes of an optically levitated nanoparticle cooled by cavityless parametric feedback. Our treatment is based on a generalized Fokker-Planck equation derived from the quantum master equation presented recently and shown to agree very well with experiment [1]. For low damping, we find that the resulting Wigner function yields the single-peaked oscillator position distribution and recovers the appropriate energy distribution derived earlier using a classical theory and verified experimentally [2]. For high damping, in contrast, we predict a double-peaked position distribution, which we trace to an underlying bistability induced by feedback. Unlike in cavity-based optomechanics, stochastic processes play a major role in determining the bistable behavior. To support our conclusions, we present a...

  5. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.

    Science.gov (United States)

    Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  6. Bistability and steady-state spin squeezing in diamond nanostructures controlled by a nanomechanical resonator

    Science.gov (United States)

    Ma, Yong-Hong; Zhang, Xue-Feng; Song, Jie; Wu, E.

    2016-06-01

    As the quantum states of nitrogen vacancy (NV) center can be coherently manipulated and obtained at room temperature, it is important to generate steady-state spin squeezing in spin qubits associated with NV impurities in diamond. With this task we consider a new type of a hybrid magneto-nano-electromechanical resonator, the functionality of which is based on a magnetic-field induced deflection of an appropriate cantilever that oscillates between NV spins in diamond. We show that there is bistability and spin squeezing state due to the presence of the microwave field, despite the damping from mechanical damping. Moreover, we find that bistability and spin squeezing can be controlled by the microwave field and the parameter Vz. Our scheme may have the potential application on spin clocks, magnetometers, and other measurements based on spin-spin system in diamond nanostructures.

  7. Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes

    Science.gov (United States)

    Seffen, Keith A.; Vidoli, Stefano

    2016-06-01

    We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.

  8. Electrical bistable characteristics of poly (phenylene sulfide) thin film deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    GUO XiaoChun; DONG GuiFang; QIU Yong

    2007-01-01

    Poly(phenylene sulfide) (PPS) is a well-known organic insulator. However, the PPS thin film, deposited by thermal evaporation in vacuum, showed electrical bistable characteristics. The structure of the PPS thin-film device was glass/ITO/PPS (300 nm)/Au. The thin film can be converted to a high conductance state by applying a pulse of 80 V (5 s), and brought back to a low conductance state by applying a pulse of 100 V (5 s). This kind of thin film is potential for active layer of a memory device. The critical voltage of the device is about 40 V, while the read-out voltage is 5 V. We tentatively ascribe the bistable phenomenon to the charge transfer from S to C atoms in the PPS molecule chains.

  9. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhongkui, E-mail: sunzk2008@gmail.com; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Yang, Xiaoli [College of Mathematics and Information Science, Shaan' xi Normal University, Xi' an 710062 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  10. Signal modulating noise effect in bistable stochastic resonance systems and its analog simulation

    Institute of Scientific and Technical Information of China (English)

    XIAO Fang-hong; YAN Gui-rong; XIE Shi-cheng

    2006-01-01

    The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.

  11. Packing induced bistable phenomenon in granular flow:analysis from complex network perspective

    Institute of Scientific and Technical Information of China (English)

    胡茂彬; 刘启一; 孙王平; 姜锐; 吴清松

    2014-01-01

    The effects of packing configurations on the phase transition of straight granular chute flow with two bottlenecks are studied. The granular flow shows a dilute-to-dense flow transition when the channel width is varied, accompanied with a peculiar bistable phenomenon. The bistable phenomenon is induced by the initial packing config-uration of particles. When the packing is dense, the initial flux is small and will induce a dense flow. When the packing is loose, the initial flux is large and will induce a di-lute flow. The fabric network of granular packing is analyzed from a complex network perspective. The degree distribution shows quantitatively different characteristics for the configurations. A two-dimensional (2D) packing clustering coefficient is defined to better quantify the fabric network.

  12. Bistable aggregate of all-trans-astaxanthin in an aqueous solution

    Science.gov (United States)

    Mori, Yuso; Yamano, Kuniko; Hashimoto, Hideki

    1996-05-01

    The temperature dependence of the optical absorption spectra for astaxanthin aggregate has been studied between 2 and 32°C. Red-shifted absorption bands as compared to the monomer absorption band are found above 21°C in addition to the blue-shifted band of the aggregate. The spectra suggest that the molecular arrangement in the aggregate is a bistable one consisting of head-to-tail and card-packed arrangements. A diagram describing the bistability together with the monomer state is proposed in the space defined by the free energy and the quantity of Σi = 1 N< θ12 + < σθ12 for the ith molecule in the N-molecule aggregate.

  13. Analysis of noise-induced bistability in Michaelis Menten single-step enzymatic cycle

    CERN Document Server

    Remondini, Daniel; Bazzani, Armando; Castellani, Gastone; Maritan, Amos

    2011-01-01

    In this paper we study noise-induced bistability in a specific circuit with many biological implications, namely a single-step enzymatic cycle described by Michaelis Menten equations with quasi-steady state assumption. We study the system both with a Master Equation formalism, and with the Fokker-Planck continuous approximation, characterizing the conditions in which the continuous approach is a good approximation of the exact discrete model. An analysis of the stationary distribution in both cases shows that bimodality can not occur in such a system. We discuss which additional requirements can generate stochastic bimodality, by coupling the system with a chemical reaction involving enzyme production and turnover. This extended system shows a bistable behaviour only in specific parameter windows depending on the number of molecules involved, providing hints about which should be a feasible system size in order that such a phenomenon could be exploited in real biological systems.

  14. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  15. Control of stochastic resonance in bistable systems by using periodic signals

    Institute of Scientific and Technical Information of China (English)

    Lin Min; Fang Li-Min; Zheng Yong-Jun

    2009-01-01

    According to the characteristic structure of double wells in bistable systems, this paper analyses stochastic fluctu-ations in the single potential well and probability transitions between the two potential wells and proposes a method of controlling stochastic resonance by using a periodic signal. Results of theoretical analysis and numerical simulation show that the phenomenon of stochastic resonance happens when the time scales of the periodic signal and the noise-induced probability transitions between the two potential wells achieve stochastic synchronization. By adding a bistable system with a controllable periodic signal, fluctuations in the single potential well can be effectively controlled, thus affecting the probability transitions between the two potential wells. In this way, an effective control can be achieved which allows one to either enhance or realize stochastic resonance.

  16. Optimal Size for Maximal Energy Efficiency in Information Processing of Biological Systems Due to Bistability

    CERN Document Server

    Zhang, Chi; Wang, Long-Fei; Yue, Yuan; Yu, Lian-Chun

    2015-01-01

    Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.

  17. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    Science.gov (United States)

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention.

  18. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria.

    Science.gov (United States)

    Diorio, C; Cai, J; Marmor, J; Shinder, R; DuBow, M S

    1995-04-01

    Arsenic is a known toxic metalloid, whose trivalent and pentavalent ions can inhibit many biochemical processes. Operons which encode arsenic resistance have been found in multicopy plasmids from both gram-positive and gram-negative bacteria. The resistance mechanism is encoded from a single operon which typically consists of an arsenite ion-inducible repressor that regulates expression of an arsenate reductase and inner membrane-associated arsenite export system. Using a lacZ transcriptional gene fusion library, we have identified an Escherichia coli operon whose expression is induced by cellular exposure to sodium arsenite at concentrations as low as 5 micrograms/liter. This chromosomal operon was cloned, sequenced, and found to consist of three cistrons which we named arsR, arsB, and arsC because of their strong homology to plasmid-borne ars operons. Mutants in the chromosomal ars operon were found to be approximately 10- to 100-fold more sensitive to sodium arsenate and arsenite exposure than wild-type E. coli, while wild-type E. coli that contained the operon cloned on a ColE1-based plasmid was found to be at least 2- to 10-fold more resistant to sodium arsenate and arsenite. Moreover, Southern blotting and high-stringency hybridization of this operon with chromosomal DNAs from a number of bacterial species showed homologous sequences among members of the family Enterobacteriaceae, and hybridization was detectable even in Pseudomonas aeruginosa. These results suggest that the chromosomal ars operon may be the evolutionary precursor of the plasmid-borne operon, as a multicopy plasmid location would allow the operon to be amplified and its products to confer increased resistance to this toxic metalloid.

  19. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Jensen, Peter Ruhdal

    2005-01-01

    In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon and we here apply Metabolic Control Analysis to study the role of this organisation. Earlier work showed that LDH at wildtype level has zero...... control on glycolysis and growth rate but high negative control on formate production. We find that PFK and PK have zero control on glycolysis and growth rate at the wildtype enzyme level but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK has high positive...... control on formate and acetate production, whereas PFK has no control on these fluxes. Decreased expression of the entire las operon resulted in a strong decrease in growth rate and the glycolytic flux; at 53% expression of the las operon the glycolytic flux was reduced to 44% and the flux control...

  20. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Jensen, Peter Ruhdal

    2005-01-01

    In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon and we here apply Metabolic Control Analysis to study the role of this organisation. Earlier work showed that LDH at wildtype level has zero...... control on glycolysis and growth rate but high negative control on formate production. We find that PFK and PK have zero control on glycolysis and growth rate at the wildtype enzyme level but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK has high positive...... control on formate and acetate production, whereas PFK has no control on these fluxes. Decreased expression of the entire las operon resulted in a strong decrease in growth rate and the glycolytic flux; at 53% expression of the las operon the glycolytic flux was reduced to 44% and the flux control...

  1. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius.

    Science.gov (United States)

    van Wolferen, Marleen; Ajon, Małgorzata; Driessen, Arnold J M; Albers, Sonja-Verena

    2013-12-01

    Upon ultraviolet (UV) stress, hyperthermophilic Sulfolobus species show a highly induced transcription of a gene cluster responsible for pili biogenesis: the UV-inducible pili operon (ups operon). This operon is involved in UV-induced pili assembly, cellular aggregation, and subsequent DNA exchange between cells. As the system increases the fitness of Sulfolobus cells after UV light exposure, we assume that transfer of DNA takes place in order to repair UV-induced DNA damages via homologous recombination. Here, we studied all genes present in the ups cluster via gene deletion analysis with a focus on UpsX, a protein that shows no identifiable functional domains. UspX does not seem to be structurally essential for UV-induced pili formation and cellular aggregation, but appears to be important for efficient DNA transfer. In addition, we could show that pilin subunits UpsA and UpsB probably both function as major pilin subunits in the ups pili.

  2. Footprints of Optimal Protein Assembly Strategies in the Operonic Structure of Prokaryotes

    Directory of Open Access Journals (Sweden)

    Jan Ewald

    2015-04-01

    Full Text Available In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

  3. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  4. Resonance phenomena of a solitonlike extended object in a bistable potential

    CERN Document Server

    González, J A; Reyes, L I; Guerrero, L E

    1998-01-01

    We investigate the dynamics of a soliton that behaves as an extended particle. The soliton motion in an effective bistable potential can be chaotic in a similar way as the Duffing oscillator. We generalize the concept of geometrical resonance to spatiotemporal systems and apply it to design a nonfeedback mechanism of chaos control using localized perturbations.We show the existence of solitonic stochastic resonance.

  5. Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback

    Science.gov (United States)

    Misono, Masatoshi; Miyakawa, Kenji

    2011-11-01

    The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.

  6. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  7. Optical bistability in artificial composite nanoscale molecules: Towards all optical processing at the nanoscale

    CERN Document Server

    Malyshev, A V

    2010-01-01

    Optical response of artificial composite nanoscale molecules comprising a closely spaced noble metal nanoparticle and a semiconductor quantum dot have been studied theoretically. We consider a system composed of an Au particle and CdSe or CdSe/ZnSe quantum dot and predict optical bistability and hysteresis in its response, which suggests various applications, in particular, all-optical processing and optical memory.

  8. Demonstration of brain noise on human EEG signals in perception of bistable images

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  9. Transient behavior in absorptive optical bistability by the Hamilton-Jacobi method

    Science.gov (United States)

    Sarkar, S.; Satchell, J. S.

    1986-04-01

    One-, two-, and five-dimensional Fokker-Planck equations for absorptive bistability are solved with use of small-noise asymptotic expansions, which are different from Gaussian linearized analysis. The cases studied are the bifurcation point for the start of hysteresis, where there is critical slowing down and the fluctuations are large, and the evolution of a steady-state distribution when the input field has a step change. The time evolution of the probability distribution is calculated.

  10. Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species.

    Science.gov (United States)

    Peters, M; Heinaru, E; Talpsep, E; Wand, H; Stottmeister, U; Heinaru, A; Nurk, A

    1997-12-01

    Horizontal transfer of genes of selective value in an environment 6 years after their introduction into a watershed has been observed. Expression of the gene pheA, which encodes phenol monooxygenase and is linked to the pheBA operon (A. Nurk, L. Kasak, and M. Kivisaar, Gene 102:13-18, 1991), allows pseudomonads to use phenol as a growth substrate. Pseudomonas putida strains carrying this operon on a plasmid were used for bioremediation after an accidental fire in the Estonia oil shale mine in Estonia in 1988. The water samples used for studying the fate of the genes introduced were collected in 1994. The same gene cluster was also detected in Pseudomonas strains isolated from water samples of a nearby watershed which has been continuously polluted with phenols due to oil shale industry leachate. Together with the more frequently existing counterparts of the dmp genes (V. Shingler, J. Powlowski, and U. Marklund, J. Bacteriol. 174:711-724, 1992), the pheA gene was also represented in the phenol-degrading strains. The area where the strains containing the pheA gene were found was restricted to the regular route of phenolic leachate to the Baltic Sea. Nine Pseudomonas strains belonging to four different species (P. corrugata, P. fragi, P. stutzeri, and P. fluorescens biotypes B, C, and F) and harboring horizontally transferred pheBA operons were investigated. The phe genes were clustered in the same manner in these nine phe operons and were connected to the same promoter as in the case of the original pheBA operon. One 10.6-kb plasmid carrying a pheBA gene cluster was sequenced, and the structure of the rearranged pheBA operon was described. This data indicates that introduced genetic material could, if it encodes a beneficial capability, enrich the natural genetic variety for biodegradation.

  11. Expression and regulation of the ery operon of Brucella melitensis in human trophoblast cells

    Science.gov (United States)

    Zhang, Hui; Dou, Xiaoxia; Li, Zhiqiang; Zhang, Yu; Zhang, Jing; Guo, Fei; Wang, Yuanzhi; Wang, Zhen; Li, Tiansen; Gu, Xinli; Chen, Chuangfu

    2016-01-01

    Brucellosis is primarily a disease of domestic animals in which the bacteria localizes to fetal tissues such as embryonic trophoblast cells and fluids containing erythritol, which stimulates Brucella spp. growth. The utilization of erythritol is a characteristic of the genus Brucella. The ery operon contains four genes (eryA, eryB, eryC and eryD) for the utilization of erythritol, and plays a major role in the survival and multiplication of Brucella spp. The objective of the present study was to conduct a preliminary characterization of differential genes expression of the ery operon at several time points after Brucella infected embryonic trophoblast cells (HPT-8 cells). The result showed that the ery operon expression was higher in HPT-8 cells compared with the medium. The relative expression of eryA, eryB and eryC peaked at 2 h post-infection in HPT-8 cells, and eryD expression peaked at 3 h post-infection. The expression of eryA, eryB and eryC may be inhibited by increased eryD expression. However, the expression of the ery operon was stable in the presence of erythritol in cells. 2308Δery and 027Δery mutants of the ery operon were successfully constructed by homologous recombination, which were attenuated in RAW 264.7 murine macrophages. The characterization of the ery operon genes and their expression profiles in response to Brucella infection further contributes to our understanding of the molecular mechanisms of infection and the pathogenesis of brucellosis. PMID:27698777

  12. Convergent Transcription in the Butyrolactone Regulon in Streptomyces coelicolor Confers a Bistable Genetic Switch for Antibiotic Biosynthesis

    NARCIS (Netherlands)

    Chatterjee, Anushree; Drews, Laurie; Mehra, Sarika; Takano, Eriko; Kaznessis, Yiannis N.; Hu, Wei-Shou; Khodursky, Arkady B.

    2011-01-01

    cis-encoded antisense RNAs (cis asRNA) have been reported to participate in gene expression regulation in both eukaryotic and prokaryotic organisms. Its presence in Streptomyces coelicolor has also been reported recently; however, its role has yet to be fully investigated. Using mathematical modelin

  13. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    Directory of Open Access Journals (Sweden)

    Dongxu Su

    2014-11-01

    Full Text Available Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  14. Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system

    Science.gov (United States)

    Li, Hai-Tao; Qin, Wei-Yang

    2016-11-01

    In order to improve the transform efficiency of bi-stable energy harvester (BEH), this paper proposes an advanced bi-stable energy harvester (ABEH), which is composed of two bi-stable beams coupling through their magnets. Theoretical analyzes and simulations for the ABEH are carried out. First, the mathematical model is established and its dynamical equations are derived. The formulas of magnetic force in two directions are given. The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells. To demonstrate the ABEH’s advantage in harvesting energy, comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations. Our results reveal that the ABEH’s inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations. Thus, it can generate a higher output power. The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance. Project supported by the National Natural Science Foundation of China (Grant No. 11172234) and the Scholarship from China Scholarship Council (Grant No. 201506290092).

  15. Bistable light shutter using dye-doped liquid crystals for a see-through display

    Science.gov (United States)

    Huh, Jae-Won; Heo, Joon; Yu, Byeong-Huh; Yoon, Tae-Hoon

    2016-03-01

    See-through displays have got high attention as one of the next generation display devices. Especially, see-through displays that use organic light-emitting diodes (OLEDs) and liquid crystal displays (LCDs) have been actively studied. However, a see-through display using OLEDs cannot provide black color because of their see-through area. Although a see-through display using LCDs can provide black color with crossed polarizers, it cannot block the background. This inevitable problem can be solved by placing a light shutter at the back of a see-through display. To maintain the transparent or opaque state, an electric field must be applied to a light shutter. To achieve low power consumption, a bistable light shutter using polymer-stabilized cholesteric liquid crystals (CLC) has been proposed. It is switchable between the translucent and transparent states only. Therefore, it cannot provide black color. Moreover, it cannot block the background perfectly because of poor performance in the translucent state. In this work we will introduce a bistable light shutter using dye-doped CLCs. To improve the electro-optic characteristics in the opaque state, we employed a crossed electrode structure instead of a parallel one. We will demonstrate that the light shutter can exhibit stable bistable operation between the transparent homeotropic and opaque focal-conic states thanks to polymer stabilization.

  16. A simple photometric factor in perceived depth order of bistable transparency patterns.

    Science.gov (United States)

    Fukiage, Taiki; Oishi, Takeshi; Ikeuchi, Katsushi

    2014-05-05

    Previous studies on perceptual transparency defined the photometric condition in which perceived depth ordering between two surfaces becomes ambiguous. Even under this bistable transparency condition, it is known that depth-order perceptions are often biased toward one specific interpretation (Beck, Prazdny, & Ivry, 1984; Delogu, Fedorov, Belardinelli, & van Leeuwen, 2010; Kitaoka, 2005; Oyama & Nakahara, 1960). In this study, we examined what determines the perceived depth ordering for bistable transparency patterns using stimuli that simulated two partially overlapping disks resulting in four regions: a (background), b (portion of right disk), p (portion of left disk), and q (shared region). In contrast to the previous theory that proposed contributions of contrast against the background region (i.e., contrast at contour b/a and contrast at contour p/a) to perceived depth order in bistable transparency patterns, the present study demonstrated that contrast against the background region has little influence on perceived depth order compared with contrast against the shared region (i.e., contrast at contour b/q and contrast at contour p/q). In addition, we found that the perceived depth ordering is well predicted by a simpler model that takes into consideration only relative size of lightness difference against the shared region. Specifically, the probability that the left disk is perceived as being in front is proportional to (|b - q| - |p - q|) / (|b - q| + |p - q|) calculated based on lightness.

  17. Modelling and Feedback Control of Bistability in a Turbulent Bluff Body Wake

    Science.gov (United States)

    Brackston, Rowan; Wynn, Andrew; Garcia de La Cruz, Juan Marcos; Rigas, Georgios; Morrison, Jonathan

    2016-11-01

    The turbulent wake behind many three-dimensional bluff bodies exhibits a bistable behaviour, the properties of which has been the subject of significant recent interest. This feature of the wake is known to contribute to the pressure drag on the body and is relevant for geometries representative of many road vehicles. Furthermore, due to its high visibility from surface mounted pressure measurements, it is a feature that may be observed and controlled in real-time. In Brackston et al. we have recently demonstrated such a feedback control strategy that aims to suppress the bistable feature of the wake. Starting from a stochastic modelling approach, we identify a linearised model for this mode of the flow, obtaining parameters via a system identification. The identified model is then used to design the feedback controller, with the aim of restoring the flow to the unstable, symmetric state. The controller is implemented experimentally at Re 2 . 3 ×105 and is found to both suppress the bistability of the flow and reduce the drag on the body. Furthermore, the control system is found to have a positive energy balance, providing a key demonstration of efficient feedback control applied to a 3D bluff body wake at turbulent Reynolds numbers.

  18. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dongxu, E-mail: sudx@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 1538505 (Japan); Zheng, Rencheng; Nakano, Kimihiko [Institute of Industrial Science, The University of Tokyo, Tokyo 1538505 (Japan); Cartmell, Matthew P [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  19. Numerical and Experimental Studies on Nonlinear Dynamics and Performance of a Bistable Piezoelectric Cantilever Generator

    Directory of Open Access Journals (Sweden)

    Kangkang Guo

    2015-01-01

    Full Text Available A piezo-magneto-elastically coupled distributed-parameter model of a bistable piezoelectric cantilever generator is developed by using the generalized Hamilton principle. The influence of the spacing between two adjacent magnets on the static bifurcation characteristics of the system is studied and the range of magnet spacing corresponding to the bistable states is obtained. Numerical and experimental studies are carried out to analyze the bifurcation, response characteristics, and their impact on the electrical output performance under varying external excitations. Results indicate that interwell limit cycle motion of the beam around the two centers corresponds to optimum power output; interwell chaotic motion and multiperiodic motion including intrawell oscillations are less effective. At a given frequency, the phenomena of symmetric-breaking and amplitude-phase modulation are observed with increase of base excitation. Both period-doubling bifurcation and intermittency routes to chaotic motion in the bistable system are found. It can be observed that the power output is not proportional to the excitation level because of the bifurcation behaviours.

  20. The cia Operon of Streptococcus mutans Encodes a Unique Component Required for Calcium-Mediated Autoregulation

    OpenAIRE

    He, Xuesong; Wu, Chenggang; Yarbrough, Daniel; Sim, Lucy; Niu, Guoqing; Merritt, Justin; Shi, Wenyuan; Qi, Fengxia

    2008-01-01

    Streptococcus mutans is a primary pathogen for dental caries in humans. CiaR and CiaH of S. mutans comprise a two-component signal transduction system (TCS) involved in regulating various virulent factors. However, the signal that triggers the CiaRH response remains unknown. In this study, we show that calcium is a signal for regulation of the ciaRH operon, and that a double-glycine-containing small peptide encoded within the ciaRH operon (renamed ciaX) mediates this regulation. CiaX contains...