WorldWideScience

Sample records for operation fission reactor

  1. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  2. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  3. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  4. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  5. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  6. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  7. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  8. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  9. Computation of fission product distribution in core and primary circuit of a high temperature reactor during normal operation

    International Nuclear Information System (INIS)

    Mattke, U.H.

    1991-08-01

    The fission product release during normal operation from the core of a high temperature reactor is well known to be very low. A HTR-Modul-reactor with a reduced power of 170 MW th is examined under the aspect whether the contamination with Cs-137 as most important nuclide will be so low that a helium turbine in the primary circuit is possible. The program SPTRAN is the tool for the computations and siumlations of fission product transport in HTRs. The program initially developed for computations of accident events has been enlarged for computing the fission product transport under the conditions of normal operation. The theoretical basis, the used programs and data basis are presented followed by the results of the computations. These results are explained and discussed; moreover the consequences and future possibilities of development are shown. (orig./HP) [de

  10. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  11. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  12. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  13. The effect of the greek research reactor operating schedule on its fission product inventory

    International Nuclear Information System (INIS)

    Annousis, J.N., Armyriotis, J.S.

    1987-12-01

    A simple method to convert the fission product inventory of the 'Democritos' uous Greek Research Reactor (GRR) corresponding to its continuous operation over a given time interval, into the inventory corresponting to GRR discontinuous but periodic operation of the same total duration, is presented in this paper. Relevant correction factors for 31 radioecologically significant radionuclides of the inventory are given as a function of the number of hours or operation per day, 5 days per week of the GRR, according to its present of possible future operating schedule

  14. The effect of the Greek Research Reactor operating schedule on its fission product inventory

    International Nuclear Information System (INIS)

    ANOUSSIS, J.N.; ARMYRIOTIS, J.S.

    1987-12-01

    Full text:A simple method to convert the fission product inventory of ''Demokritos'' Greek Research Reactor(GRR) corresponding to its continuous operation over a given time interval, into the inventory corresponding to GRR discontinuous but periodic operation of the same total duration, is presented in this paper. Relevant correction factors for 31 radioecologically significant radionuclides of the inventory are given as a function of the number of hours of operation per day, 5 days per week of the GRR, according to its present or possible future operating schedule. (author)

  15. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  16. Fission product poisoning in KS-150 reactor operation

    International Nuclear Information System (INIS)

    Rana, S.B.

    1978-01-01

    A three-dimensional model of the KS-150 reactor was used to study reactivity changes induced by reactor poisoning with fission products Xe 135 and Sm 149 . A comparison of transients caused by the poisoning showed the following differences: (1) the duration of the transient Xe poisoning (2 days) is shorter by one order of magnitude than the duration of Sm poisoning (20 days); however, the level of Xe poisoning is greater approximately by one order than the level of the Sm poisoning; (2) the level of steady-state Xe poisoning depends on the output level of the reactor; steady-state Sm poisoning does not depend on this level; (3) following reactor shutdown Xe poisoning may increase to the maximum value of up to Δrhosub(Xe)=20% and will then gradually decrease; Sm poisoning may reach maximum values of up to Δrhosub(Sm)=2% and does not decrease. (J.B.)

  17. Conceptual Analysis of Fission Fragment Magnetic Collimator Reactors

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Parish, Theodore A.

    2002-01-01

    As part of the current research work within the US DOE NERI Direct Electricity Conversion (DEC) Project on methods for utilizing direct electricity conversion in nuclear reactors, a detailed study of a Fission Fragment Magnetic Collimator Reactor (FFMCR) has been performed. The FFMCR concept is an advanced DEC system that combines advantageous design solutions proposed for application in both fission and fusion reactors. The present study was focused on determining the electrical efficiency and other important operational aspects of the FFMCR concept. In principle, acceptable characteristics have been demonstrated, and results obtained are presented in the paper. Technological visibility of the FFMCR concept and required further design development are discussed. Preliminary characteristics of the promising design are outlined. (authors)

  18. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  19. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  20. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  1. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  2. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  3. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  4. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  5. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  6. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  7. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  8. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  9. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  10. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity.

  11. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  12. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  13. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  14. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  15. Photofission observations in reactor environments using selected fission-product yields

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.

    1982-01-01

    A new method for the observation of photofission in reactor environments is advanced. It is based on the in-situ observation of fission product yield. In fact, at a given in-situ reactor location, the fission product yield is simply a weighted linear combination of the photofission product yield, Y/sub gamma/, and the neutron induced fission product yield, Y/sub n. The weight factors arising in this linear combination are the photofission fraction and neutron induced fission fraction, respectively. This method can be readily implemented with established techniques for measuring in-situ reactor fission product yield. For example, one can use the method based on simultaneous irradiation of radiometric (RM) and solid state track recorder (SSTR) fission monitors. The sensitivity and accuracy and current knowledge of fission product yields. Unique advantages of this method for reactor applications are emphasized

  16. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  17. Updated comparison of economics of fusion reactors with advanced fission reactors

    International Nuclear Information System (INIS)

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative

  18. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  19. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  20. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  1. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  2. Fission product release from TRIGA-LEU reactor fuels

    International Nuclear Information System (INIS)

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-01-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  3. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  4. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  5. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  6. Preconceptual design and analysis of a solid-breeder blanket test in an existing fission reactor

    International Nuclear Information System (INIS)

    Deis, G.A.; Hsu, P.Y.; Watts, K.D.

    1983-01-01

    Preconceptual design and analysis have been performed to examine the capabilities of a proposed fission-based test of a water-cooled Li 2 O blanket concept. The mechanical configuration of the test piece is designed to simulate a unit cell of a breeder-outside-tube concept. This test piece will be placed in a fission test reactor, which provides an environment similar to that in a fusion reactor. The neutron/gamma flux from the reactor produces prototypical power density, tritium production rates, and operating temperatures and stresses. Steady-state tritium recovery from the test piece can be attained in short-duration (5-to-6-day) tests. The capabilities of this test indicate that fission-based testing can provide important near-term engineering information to support the development of fusion technology

  7. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  8. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  9. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  10. Space Fission Reactor Structural Materials: Choices Past, Present and Future

    International Nuclear Information System (INIS)

    Busby, Jeremy T.; Leonard, Keith J.

    2007-01-01

    Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermal generator and solar technologies. The use of fission reactors for space applications has been considered for over 50 years, although, structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15-20 year reliability with no inspection or preventative maintenance. Many different materials have been proposed as structural materials. While all materials meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for space fission reactors.

  11. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  12. Method of operating water cooled reactor with blanket

    International Nuclear Information System (INIS)

    Suzuki, Katsuo.

    1988-01-01

    Purpose: To increase the production amount of fissionable plutonium by increasing the burnup degree of blanket fuels in a water cooled reactor with blanket. Method: Incore insertion assemblies comprising water elimination rods, fertile material rods or burnable poison rods are inserted to those fuel assemblies at the central portion of the reactor core that are situated at the positions not inserted with control rods in the earlier half of the operation cycle, while the incore reactor insertion assemblies are withdrawn at the latter half of the operation cycle of a nuclear reactor. As a result, it is possible to increase the power share of the blanket fuels and increase the fuel burnup degree to thereby increase the production amount of fissionable plutonium. Furthermore, at the initial stage of the cycle, the excess reactivity of the reactor can be suppressed to decrease the reactivity control share on the control rod. At the final stage of the cycle, the excess reactivity of the reactor core can be increased to improve the cycle life. (Kamimura, M.)

  13. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  14. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  15. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  16. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  17. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  18. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  19. Natural fission reactors - the Oklo phenomenon

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Overview describes the discovery of the site, location of the reactors and site geology and discusses the permanence of fission products, nuclear reaction control mechanisms and trace concentrations of elements that act as poisons. (Author)

  20. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  1. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    Pourcelot, L.

    1997-01-01

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  2. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  3. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  4. Innovative fission reactors for this century

    International Nuclear Information System (INIS)

    Minguez, E.

    2007-01-01

    It is well known that global trends indicate a rebirth of nuclear energy due to several items: the climate change and the use of energies that emits CO 2 , the cost and dependence of gas and oil, the new innovative reactors which are competitive, safer, and sustainable and can support the Kyoto Protocol. The Advanced Reactors have safer systems than those developed in the Generation II, which demonstrates that are sustainable for the present and nuclear industry has also developed new concepts for the future which also will be sustainable. Now the new power plants that have being constructed are classified in the Generation III. Several units of this technology are in operation in Japan and other countries of the Pacific. Europe is now constructing the first unit in Finland (Olkilouto) with European technology: the European Pressurized Reactor (EPR). France has announced the beginning of the construction of an EPR in Flamanville next year. In 2000, several countries with advanced nuclear technology established the Generation IV International Forum (GIF) to develop and demonstrate nuclear energy systems that offer advantages in the following areas: sustainability, economics, safety and reliability and proliferation resistance and physical protection. These new systems will be deployed commercially after 2030. Six innovative concepts are under research, and the aim is not only produce electricity, but also hydrogen using the operational conditions of several concepts. Developed countries with NPPs in operation have strategies for the future of the nuclear energy. For the short term is to extend the operation of the NPPs until 60 years, or alternatively construction of new units of Generation III, to substitute those closed for decommissioning, keeping the percentage of contribution to the electricity generated. Between the period 2030-50, the solution is to operate the new innovative systems of the Generation IV, which uses the passive concept, and in the second part

  5. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix†is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  6. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix†is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  7. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  8. Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bonin, H.W.

    1995-01-01

    An analytical treatment has been used to model the vapour transport of radioactive fission products released into the fuel-to-sheath gap of defective nuclear fuel elements. The model accounts for both diffusive and bulk-convective transport. Convective transport becomes important as a result of a significant release of gaseous fission products into the gap during a high-temperature reactor accident. However, during normal reactor operation, diffusion is shown to be the dominant process of transport. The model is based on an analysis of several in-reactor tests with operating defective fuel elements, and high-temperature annealing experiments with irradiated fuel specimens. ((orig.))

  9. Role of fission-reactor-testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-01-01

    Testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for testing when fusion reactors become available. Fission testing is capable of filling many gaps in fusion reactor design information, and thus should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, we investigated radiation damage to magnet insulators. This work is now continuing with the use of an improved test capsule. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, we explored a conceptual design for a fission-based Integrated Test Facility (ITF), which can accommodate entire First Wall/Blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  10. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1990-01-01

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  11. Annual report 1989 operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1989-01-01

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  12. Fission product behaviour during operation of the second Peach Bottom core

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Nordwall, H.J. de; Dyer, F.F.; Wichner, R.P.; Martin, W.J.; Kolb, J.O.

    1976-01-01

    The Peach Bottom high-temperature, gas-cooled reactor began operation on 1 June 1967 and continued power production until 9 October 1969, accumulating 452 equivalent full power days (EFPD) operation. After reload, power production with Core 2 began 14 July 1970 and terminated 31 October 1974 after 897 EFPD operation. Surveillance of fission product release and behaviour was intensified during Core 2 operation to permit a wider range of measurements to be made. In addition to monitoring the noble gas content of the fuel element purge system and the coolant circuit, the programme was extended to include measurements of radioactive and other condensible species (including dust) entering or exiting the core and steam generator, and of surface concentrations of gamma-emitting nuclides deposited on the primary coolant surfaces. These data, which were obtained over the operating period April 1971 - October 1974, are summarized and discussed. The data demonstrate that caesium behaviour in the coolant circuit during the first two-thirds of Core 2 life was primarily governed by caesium released during Core 1 operation. The data also indicate that whereas the steam generator surfaces attenuate molecular caesium concentrations in the coolant, the dust-borne component is remarkably persistent. Driver fuel elements were removed from the reactor after 385 EFPD, 701 EFPD, and at end-of-life. These fuel elements are at various stages of an intensive post-irradiation examination. Some of the axial and radial concentration profiles of fission products which have been obtained are likewise presented. Although these profiles indicate varied fission product behaviour, the observations can in general be qualitatively described on the basis of the operational histories of the fuel elements. (author)

  13. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  14. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  15. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  16. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  17. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  18. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  19. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  20. Brief review of the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1977-01-01

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  1. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  2. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    Ahlf, J.; Gevers, A.

    1992-01-01

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  3. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  4. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  5. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  6. Calculation of the Fission Product Release for the HTR-10 based on its Operation History

    International Nuclear Information System (INIS)

    Xhonneux, A.; Druska, C.; Struth, S.; Allelein, H.-J.

    2014-01-01

    Since the first criticality of the HTR-10 test reactor in 2000, a rather complex operation history was performed. As the HTR-10 is the only pebble bed reactor in operation today delivering experimental data for HTR simulation codes, an attempt was made to simulate the whole reactor operation up to the presence. Special emphasis was put on the fission product release behaviour as it is an important safety aspect of such a reactor. The operation history has to be simulated with respect to the neutronics, fluid mechanics and depletion to get a detailed knowledge about the time-dependent nuclide inventory. In this paper we report about such a simulation with VSOP 99/11 and our new fission product release code STACY. While STACY (Source Term Analysis Code System) so far was able to calculate the fission product release rates in case of an equilibrium core and during transients, it now can also be applied to running-in-phases. This coupling demonstrates a first step towards an HCP Prototype. Based on the published power histogram of the HTR-10 and additional information about the fuel loading and shuffling, a coupled neutronics, fluid dynamics and depletion calculation was performed. Special emphasis was put on the complex fuel-shuffling scheme within both VSOP and STACY. The simulations have shown that the HTR-10 up to now generated about 2580 MWd while reshuffling the core about 2.3 times. Within this paper, STACY results for the equilibrium core will be compared with FRESCO-II results being published by INET. Compared to these release rates, which are based on a few user defined life histories, in this new approach the fission product release rates of Ag-110m, Cs-137, Sr-90 and I-131 have been simulated for about 4000 tracer pebbles with STACY. For the calculation of the HTR-10 operation history time-dependent release rates are being presented as well. (author)

  7. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  8. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  9. Search for other natural fission reactors

    International Nuclear Information System (INIS)

    Apt, K.E.; Balagna, J.P.; Bryant, E.A.; Cowan, G.A.; Daniels, W.R.; Vidale, R.J.

    1977-01-01

    Precambrian uranium ores have been surveyed for evidence of other natural fission reactors. The requirements for formation of a natural reactor direct investigations to uranium deposits with large, high-grade ore zones. Massive zones with volumes approximately greater than 1 m 3 and concentrations approximately greater than 20 percent uranium are likely places for a fossil reactor if they are approximately greater than 0.6 b.a. old and if they contained sufficient water but lacked neutron-absorbing impurities. While uranium deposits of northern Canada and northern Australia have received most attention, ore samples have been obtained from the following worldwide locations: the Shinkolobwe and Katanga regions of Zaire; Southwest Africa; Rio Grande do Norte, Brazil; the Jabiluka, Nabarlek, Koongarra, Ranger, and El Sharana ore bodies of the Northern Territory, Australia; the Beaverlodge, Maurice Bay, Key Lake, Cluff Lake, and Rabbit Lake ore bodies and the Great Bear Lake region, Canada. The ore samples were tested for isotopic variations in uranium, neodymium, samarium, and ruthenium which would indicate natural fission. Isotopic anomalies were not detected. Criticality was not achieved in these deposits because they did not have sufficient 235 U content (a function of age and total uranium content) and/or because they had significant impurities and insufficient moderation. A uranium mill monitoring technique has been considered where the ''yellowcake'' output from appropriate mills would be monitored for isotopic alterations indicative of the exhumation and processing of a natural reactor

  10. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  11. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  12. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  13. Fission power: a search for a ''second-generation'' reactor

    International Nuclear Information System (INIS)

    Hovingh, J.

    1985-01-01

    This report touches on the history of US fission reactors and explores the current technical status of such reactors around the world, including experimental reactors. Its purpose is to identify, evaluate, and rank the most promising concepts among existing reactors, proposed but unadopted designs, and what can be described as ''new'' concepts. Also discussed are such related concerns as utility requirements and design considerations. The report concludes with some recommendations for possible future LLNL involvement

  14. The geo-reactor. A link between nuclear fission and geothermal energy?

    International Nuclear Information System (INIS)

    Degueldre, Claude; Fiorina, Carlo

    2013-01-01

    Recent high-precision isotope analysis data suggests the potential occurrence of a geo-reactor. Specific gas isotopes that could have been generated by binary and ternary fissions were identified in volcano emanations or as soluble/associated species in crystalline rocks and semi-quantitatively evaluated as isotopic ratio or estimated amounts. Presently if it is evident that according to the actinide inventory on the Earth, local potential criticality of the geo-system may have been reached, several questions remain such as why, where and when did a geo-reactor be operational? Even if the hypothesis of a geo-reactor operation in the proto-Earth period should be acceptable, it could be difficult to anticipate that a geo-reactor is still operating today. This could be tested in the future by assessing and reconstructing the system by antineutrino detection and tomography through the Earth. The present paper focuses on the geo-reactor conditions including history, spatial extension and regimes. The discussion based on recent calculations involves investigations on the limits in term of fissile inventory, size and power, based on stratification through the gravitational field and the various features through the inner mantel, the boundary with the core, the external part and the inner-core. the reconstruction allows to formulating that from the history point of view there are possibilities that the geo-reactor reached criticality in a proto-Earth period as a thorium/uranium reactor triggered by an under-layer with heavier actinides. The geo-reactor should be a key component of geothermal energy sources. (author)

  15. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  16. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  17. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    International Nuclear Information System (INIS)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F.

    2009-01-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U 235 (typically Pu 242 , Np 237 , U 238 , Th 232 ). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  18. Completely automated nuclear reactors for long-term operation

    International Nuclear Information System (INIS)

    Teller, E.; Ishikawa, M.; Wood, L.

    1996-01-01

    The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant's operational and post-operational life. These reactors are proposed to be situated in suitable environments at ∼100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant's heat engine and electrical generator subsystems are located above-ground

  19. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  20. Reactor oscillator project - Theoretical study; operation problems; choice of the ionization chamber

    International Nuclear Information System (INIS)

    Lolic, B.; Markovic, V.

    1961-01-01

    Theoretical study of the reactor operator covers methods of the danger coefficient and the method based on measuring the phase angle. Operation with the reactor oscillator describes measurement of the cross section and resonance integral, measurement of the fissionable materials properties, measurement of impurities in the graphite sample. A separate chapter is devoted to the choice of the appropriate ionization chamber

  1. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  2. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  3. Fission gas release in LWR fuel measured during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Skattum, E.; Osetek, D.J.

    1980-01-01

    A series of fuel behavior experiments are being conducted in the Heavy Boiling Water Reactor in Halden, Norway, to measure the release of Xe, Kr, and I fission products from typical light water reactor design fuel pellets. Helium gas is used to sweep the Xe and Kr fission gases out of two of the Instrumented Fuel Assembly 430 fuel rods and to a gamma spectrometer. The measurements of Xe and Kr are made during nuclear operation at steady state power, and for 135 I following reactor scram. The first experiments were conducted at a burnup of 3000 MWd/t UO 2 , at bulk average fuel temperatures of approx. 850 K and approx. 23 kW/m rod power. The measured release-to-birth ratios (R/B) of Xe and Kr are of the same magnitude as those observed in small UO 2 specimen experiments, when normalized to the estimated fuel surface-to-volume ratio. Preliminary analysis indicates that the release-to-birth ratios can be calculated, using diffusion coefficients determined from small specimen data, to within a factor of approx. 2 for the IFA-430 fuel. The release rate of 135 I is shown to be approximately equal to that of 135 Xe

  4. New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.B., E-mail: maxb@ncepu.edu.cn; Qiu, R.M.; Chen, Y.X.

    2017-02-15

    Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between {sup 235}U and {sup 239}Pu, the covariance coefficient changes from 0.15 to −0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller. - Highlights: • The covariance coefficients between isotopes vs reactor burnup may change its sign because of two opposite effects. • The relation between fission fraction uncertainty and atomic density are first studied. • A new MC-based method of evaluating the covariance coefficients between isotopes was proposed.

  5. Control rod for the operation of nuclear reactor

    International Nuclear Information System (INIS)

    Ishida, Hiromi

    1987-01-01

    Purpose: To conduct spectrum shift operation without complicating the reactor core structures, reducing the probability of failures. Constitution: An operation control rod which is driven while passed vertically in the reactor core comprises a strong absorption portion, moderation portion and weak moderation portion defined orderly from above to below and the length for each of the portions is greater than the effective reactor core height. If the operation control rod is lifted to the maximum limit in the upward direction of the reactor core, the weak moderation portion is corresponded over the effective length of the reactor core. Since the weak moderation portion is filled with zirconium and moderators are not present in the operation control rod, water draining gap is formed, neutron spectral shift is formed, excess reactivity is suppressed, absorption of neutrons to fuel fertile material is increased and the formation of nuclear fission material is increased. From the middle to the final stage of the cycle, the control rod is lowered, by which the moderator/fuel effective volume ratio is increased to increase the reactivity. (Kamimura, M.)

  6. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  7. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-01-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs

  8. Thermochemical data for reactor materials and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1990-01-01

    This volume presents a collection of critically assessed data on inorganic compounds which are of special interest in nuclear reactor safety studies. Thermodynamic equilibrium calculations are an important and widely used instrument in the understanding of the chemical behavior and release of fission products in the course of nuclear reactor accidents. The reliability of such calculations is, nevertheless, limited by the availability of accurate input data for relevant compounds

  9. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∠823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  10. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F. [CEA, DEN, Dosimetry Command Control and Instrumentation Laboratory, F-13109 Saint-Paul-lez-Durance (France)

    2009-07-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U{sup 235} (typically Pu{sup 242}, Np{sup 237}, U{sup 238}, Th{sup 232}). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  11. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  12. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  13. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  14. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  15. Use of dwell time concept in fission product inventory assessment for CANDU reactors

    International Nuclear Information System (INIS)

    Bae, C.J.; Choi, J.H.; Hwang, H.R.; Seo, J.T.

    2003-01-01

    A realistic approach in calculating the initial fission product inventory within the CANFLEX-NU fuel has been assessed for its applicability to the single channel event safety analysis for CANDU reactors. This approach is based on the dwell time concept in which the accident is assumed to occur at the dwell time when the summation of fission product inventory for all isotopes becomes largest. However, in the current conservative analysis, the maximum total inventory and the corresponding gap inventory for each isotope are used as the initial fission product inventories regardless of the accident initiation time. The fission product inventory analysis has been performed using ELESTRES code considering power histories and burnup of the fuel bundles in the limiting channel. The analysis results showed that the total fission product inventory is found to be largest at 20% dwell time. Therefore, the fission product inventory at 20% dwell time can be used as the initial condition for the single channel event for the CANDU 6 reactors. (author)

  16. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  17. Comparison of predicted and measured fission product behaviour in the Fort St. Vrain HTGR during the first three cycles of operation

    International Nuclear Information System (INIS)

    Hanson, D.L.; Jovanovic, V.; Burnette, R.D.

    1985-01-01

    The 330 MW(e) Fort St. Vrain (M) High Temperature Gas-Cooled Reactor (HTGR) is fueled with (Th,U)C 2 /ThC 2 TRISO-coated fuel particles contained in prismatic graphite fuel elements. Fission product release from the reactor core has been monitored during the first three cycles of operation. In order to assess the validity of the design methods used to predict fission product source terms for HTGRs, fission product release from the reactor core has been predicted by the reference design methods and compared with reactor surveillance measurements and with the results of postirradiation examination (PIE) of spent FSV fuel elements. Overall, the predictive methods have been shown to be conservative: the predicted fission gas release at the end of Cycle 3 is about five times higher than observed. The dominant source of fission gas release is as-manufactured, heavy-metal contamination; in-service failure of the coated fuel particles appears to be negligible, which is consistent with the PIE of spent fuel elements removed during the first two refuelings. The predicted releases of fission metals are insignificant compared to the release and subsequent decay of their gaseous precursors, which is consistent with plateout probe measurements. (author)

  18. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  19. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Zhang-cheng; Xie, Heng

    2014-01-01

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  20. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  1. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  2. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  3. Nuclear data in the problem of fission reactor decommissioning

    International Nuclear Information System (INIS)

    Manokhin, V.N.; Kulagin, N.T.

    1993-01-01

    This report presents a review of the works published in Russia during last several years and devoted to the problem of nuclear data and calculations of nuclear facilities activation for fission reactor decommissioning. 6 refs

  4. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  5. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  6. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  7. Needs and accuracy requirements for fission product nuclear data in the physics design of power reactor cores

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1978-01-01

    The fission product nuclear data accuracy requirements for fast and thermal reactor core performance predictions were reviewed by Tyror at the Bologna FPND Meeting. The status of the data was assessed at the Meeting and it was concluded that the requirements of thermal reactors were largely met, and the yield data requirements of fast reactors, but not the cross section requirements, were met. However, the World Request List for Nuclear Data (WRENDA) contains a number of requests for fission product capture cross sections in the energy range of interest for thermal reactors. Recent reports indicate that the fast reactor reactivity requirements might have been met by integral measurements made in zero power critical assemblies. However, there are requests for the differential cross sections of the individual isotopes to be determined in addition to the integral data requirements. The fast reactor requirements are reviewed, taking into account some more recent studies of the effects of fission products. The sodium void reactivity effect depends on the fission product cross sections in a different way to the fission product reactivity effect in a normal core. This requirement might call for different types of measurement. There is currently an interest in high burnup fuel cycles and alternative fuel cycles. These might require more accurate fission product data, data for individual isotopes and data for capture products. Recent calculations of the time dependence of fission product reactivity effects show that this is dependent upon the data set used and there are significant uncertainties. Some recent thermal reactor studies on approximations in the treatment of decay chains and the importance of xenon and samarium poisoning are also summarized. (author)

  8. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  9. Unit mechanisms of fission gas release: Current understanding and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  10. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  11. Can a nuclear reactor operate for 100 years?

    International Nuclear Information System (INIS)

    Hertel, O.

    2010-01-01

    The TWR (Travelling Wave Reactor) concept was invented in the fifties, then forgotten and it reappeared in 2001 but it was considered too immature to be selected for the fourth generation of nuclear reactors, now an American company 'Terrapower' proposes one whose design is given in the article. This TWR operates with depleted uranium, only the lower part of the fuel rod involves uranium fuel with a civil enrichment ratio (less that 20%). The lower part of the fuel will ignite the fission reaction and enrich the part of fuel just above through neutron absorption. The burning part of the fuel will move up progressively. The main advantage of this reactor is that it can operate for decades without maintenance nor fuel loading. The principle is right on the paper but requires huge technological work to select materials and systems that will be able to withstand decades of operation time in harsh conditions. (A.C.)

  12. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  13. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, GĂ¼nter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  14. Investigations of the natural fission reactor program. Progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Cowan, G.A.; Norris, A.E.

    1978-10-01

    The U.S. study of the Oklo natural reactor began in 1973 with the principal objectives of understanding the processes that produced the reactor and that led to the retention of many of its products. Major facets of the program have been the chemical separation and mass spectrometric analysis of the reactor components and products, the petrological and mineralogical examination of samples taken from the reactor zones, and an interdisciplinary modeling of possible processes consistent with reactor physics, geophysics, and geochemistry. Most of the past work has been on samples taken within the reactor zones. Presently, these studies give greater emphasis to the measurement of mobile products in additional suites of samples collected peripherally and ''downstream'' from the reactor zones. This report summarizes the current status of research and the views of U.S. investigators, with particular reference to the extensive work of the French scientists, concerning the main features of the Oklo natural fission reactor. Also mentioned briefly is the U.S. search for natural fission reactors at other locations

  15. The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets

    International Nuclear Information System (INIS)

    Zheng Youqi; Zu Tiejun; Wu Hongchun; Cao Liangzhi; Yang Chao

    2012-01-01

    In this paper, a fusion fission hybrid reactor used for energy producing is proposed based on the situation of nuclear power in China. The pressurized light water is applied as the coolant. The fuel assemblies are loaded in the pressure tubes with a modular type structure. The neutronics analysis is performed to get the suitable design and prove the feasibility. The energy multiplication and tritium self-sustaining are evaluated. The neutron load is also cared. From different candidates, the PWR spent fuel is selected as the feed fuel. The results show that the hybrid reactor can meet the expected reactor core lifetime of 5 years with 1000 MWe power output. Two ways are discussed including burning the discharged PWR spent fuel and burning the reprocessed plutonium. The energy multiplication is big enough and the tritium can be self-sustaining for both of the two ways. The neutron wall load in the operating time is kept smaller than the one of ITER. The way to use the reprocessed plutonium brings low neutron wall load, but also brings additional difficulties in operating the hybrid reactor. The way to use the discharged spent fuel is proposed to be a better choice currently.

  16. Operational experience with Dragon reactor experiment of relevance to commercial reactors

    International Nuclear Information System (INIS)

    Capp, P.D.; Simon, R.A.

    1976-01-01

    An important part of the experience gained during the first ten years of successful power operation of the Dragon Reactor is relevant to the design and operation of future High Temperature Reactors (HTRs). The aspects presented in this paper have been chosen as being particularly applicable to larger HTR systems. Core performance under a variety of conditions is surveyed with particular emphasis on a technique developed for the identification and location of unpurged releasing fuel and the presence of activation and fission products in the core area. The lessons learned during the reflector block replacement are presented. Operating experience with the primary circuit identifies the lack of mixing of gas streams within the hot plenum and the problems of gas streaming in ducts. Helium leakage from the circuit is often greater than the optimum 0.1%/d. Virtually all the leakage problems are associated with the small bore instrument pipework essential for the many experiments associated with the Dragon Reactor Experiment (DRE). Primary circuit maintenance work confirms the generally clean state of the DRE circuit but identifies 137 Cs and 110 Agsup(m) as possible hazards if fuel emitting these isotopes is irradiated. (author)

  17. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  18. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  19. JENDL-4.0 benchmarking for fission reactor applications

    International Nuclear Information System (INIS)

    Chiba, Go; Okumura, Keisuke; Sugino, Kazuteru; Nagaya, Yasunobu; Yokoyama, Kenji; Kugo, Teruhiko; Ishikawa, Makoto; Okajima, Shigeaki

    2011-01-01

    Benchmark testing for the newly developed Japanese evaluated nuclear data library JENDL-4.0 is carried out by using a huge amount of integral data. Benchmark calculations are performed with a continuous-energy Monte Carlo code and with the deterministic procedure, which has been developed for fast reactor analyses in Japan. Through the present benchmark testing using a wide range of benchmark data, significant improvement in the performance of JENDL-4.0 for fission reactor applications is clearly demonstrated in comparison with the former library JENDL-3.3. Much more accurate and reliable prediction for neutronic parameters for both thermal and fast reactors becomes possible by using the library JENDL-4.0. (author)

  20. Safety analysis of RA reactor operation, I-III, Part III - Environmental effect of the maximum credible accident

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-02-01

    Maximum credible accident at the RA reactor would consider release of fission products into the environment. This would result from fuel elements failure or meltdown due to loss of coolant. The analysis presented in this report assumes that the reactor was operating at nominal power at the moment of maximum possible accident. The report includes calculations of fission products activity at the moment of accident, total activity release during the accident, concentration of radioactive material in the air in the reactor neighbourhood, and the analysis of accident environmental effects

  1. Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents

    International Nuclear Information System (INIS)

    Ellison, P.G.; Monson, P.R.; Mitchell, H.A.

    1990-01-01

    This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises

  2. Data sheets of fission product release experiments for light water reactor fuel, (2)

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo; Yamamoto, Katsumune; Nakazaki, Chozaburo.

    1979-07-01

    This is the second data sheets of fission products (FP) release experiments for light water reactor fuel. Results of five FP release experiments from the third to the seventh are presented: results of pre-examinations of UO 2 pellets, photographs of parts of fuel rod assemblies for irradiation and the assemblies, operational conditions of JMTR and OWL-1, variations of radioiodine-131 level in the main loop coolant during experimental periods, and representative results of post-irradiation examinations of respective fuel rods. (author)

  3. A model of fission gas behavior during steady-state operation

    International Nuclear Information System (INIS)

    Villalobos, A.

    1981-01-01

    A model of fission gas behavior during the steady-state operation of a nuclear reactor that uses uranium dioxide as fuel is developed. The basic physical phenomena encountered in analyzing the disposition of fission gas have been retained, but in a simplified form for ease of calculation. The analysis code, includes treatment of intragranular, grain face, and grain edge gas and release to the open spaces. The code is utilized to obtain comparisons with experimental data and to perform fuel behavior sensitivity studies. The results obtained in the sensitivity studies indicate the importance of including grain face and grain edge bubbles treatments in modeling fission gas. It is found that representation of release in different sections of the fuel pin is possible in a simple way by assuming evenly spaced bubbles on the edge, and that grain edge bubble interlinkage is a necessary condition for release to the open spaces. It is also indicated by the sensitivity studies that fission gas swelling is mainly due to grain edge bubbles. Grain face bubbles, although large in size, are few in number and contribute little to swelling. Intragranular swelling is intermediate between these two values. The resulting code can be used in predicting fuel element performance, that is necessary in nuclear fuel design, safety analysis, and interpretation of experimental data on fuel element behavior

  4. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  5. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  6. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  7. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  8. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  9. Proton-fission for the accelerator production of Mo-99

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Jungerman, J.A.; Castaneda, C.M.

    1993-01-01

    The production of Mo-99 (66.0 h) via de U-238(p,f) Mo-99 fission reaction is proposed as a non-reactor source of this essential precursor of 6.6-h Tc-99m, an isotope of wide use of diagnostic nuclear medicine applications. Measurements of the total excitation function for the U-238(p,f) reaction indicated a maximum and fairly constant cross section of 1.4 barns at > 30 MeV. Combining the advances of high-current (mA) H-accelerators with dual beam (dual target) operation, and assuming a 5% fission yield, estimates of Mo-99 reaches 5 to 14 Ci/h at 1 mA. The proton fission production of Mo-99 appears to more advantageous than the reactor produced via evaporation neutron-induced fission. An accelerator method could allow securing ample supply of Mo-99 independently of the current scarce reactor operation, while also simplifying the associated waste management problems as well as some of the environmental concerns

  10. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-07-01

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements

  11. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  12. Application of noise analysis on the operation of the RSG-GAS reactor

    International Nuclear Information System (INIS)

    Surian P, Tukiran S

    1999-01-01

    The RSG-GAS reactor has been operating for radioisotope production and experiments so that it is necessary to perform analysis of the reactor operation. analysis was done based on reactor noise experiment. Neutron noise at low and high power of the RSG-GAS has been analyzed using time and frequency domain with aim to determine the safety of reactor operation. The safety of reactor operation based on two parameters as, prompt neutron decay constant and decay ratio. The parameters are useful for reactor operation, so it is necessary to determine accurately. For determining prompt neutron decay constant, neutron density in the core of reactor which operated at 10 k W, was collected by using Fission Chamber detectors (FC). Based on power spectral density (PSD) was achieved break frequency about 23 Hz, so that the prompt neutron decay constant is about 151 sec -1 . While at at high power 20 MW, neutron density was collected by using Compensated Ionization Chamber (CIC) detector. The result at high power showed that there is reactivity effect in the core because of fluctuation in temperature and density of the coolant, and the decay ratio of 0.20, showed that the reactor is still operation in stable

  13. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  14. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  15. Fission-product burnup chain model for research reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Lee, Jong Tai [Korea Atomic Energy Research Inst., Daeduk (Republic of Korea)

    1990-12-01

    A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the preudo-element and the preudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.(Author).

  16. Transient fission product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.

    1995-01-01

    Sweep gas experiments performed at CRL from 1979 to 1985 have been analysed to determine the fraction of the fission product gas inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the xenon release from companion fuel elements and from a well documented experimental fuel bundle irradiated in the NRU reactor. The measured gas release could be matched to within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. (author)

  17. Direct energy conversion in fission reactors: A U.S. NERI project

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Seidel, David B.; Polansky, Gary F.; Rochau, Gary E.; Lipinski, Ronald J.; Besenbruch, G.; Brown, L.C.; Parish, T.A.; Anghaie, S.; Beller, D.E.

    2000-01-01

    In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented

  18. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  19. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  20. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  1. Target conception for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    1999-01-01

    For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.

  2. AUS, Neutron Transport and Gamma Transport System for Fission Reactors and Fusion Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations. 2 - Method of solution: AUS98 is a modular system in which the modules are complete programs linked by a path given in the input stream. A simple path is simply a sequence of modules, but the path is actually pre-processed and compiled using the Fortran 77 compiler. This provides for complex module linking if required. Some of the modules included in AUS98 are: MIRANDA Cross-section generation in a multi-region resonance subgroup calculation and preliminary group condensation. ANAUSN One-dimensional discrete ordinates calculation. ICPP Isotropic collision probability calculation in one dimension and for rod clusters. POW3D Multi-dimensional neutron diffusion calculation including feedback-free kinetics. AUSIDD One-dimensional diffusion calculation. EDITAR Reaction-rate editing and group collapsing following a transport calculation. CHAR Lattice and global burnup calculation. MICBURN Control of global burnup

  3. Proposal to represent neutron absorption by fission products by a single pseudo-fragment

    International Nuclear Information System (INIS)

    Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.

    1991-01-01

    The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs

  4. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  5. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  6. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  7. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  8. Operation of plant to produce Mo-99 from fission products

    International Nuclear Information System (INIS)

    Marques, R.O.; Cristini, P.R.; Marziale, D.P.; Furnari, E.S.; Fernandez, H.O.

    1987-01-01

    As it is well known, the production of Mo-99/Tc-99m generators has an outstanding place in radioisotope programs of the Argentine National Atomic Energy Commission. The basic raw material is Mo-99 from fission of U-235. In 1985 the production plant of this radionuclide began to operate, according to an adaptation of the method that was developed in Kernforschungszentrum Karlsruhe. The present work describes the target irradiation conditions in the reactor RA-3 (mini plates of U/Al alloy with 90% enriched uranium), the flow diagram and the operative conditions of the production process. The containment, filtration and removal conditions of the generated fission gases and the disposal of liquid and solid wastes are also analyzed. On the basis of the experience achieved in the development of more than twenty production processes, process efficiency is analyzed, taking into account the theoretical evaluation resulting from the application of the computer program 'Origin'(ORML) to the conditions of our case. The purity characteristics of the final product are reported (Zr-95 0,1 ppm; Nb-95 1 ppm; Ru-103 20 ppm; I-131 10 ppm) as well as the chemical characteristics that make it suitable to be used in the production of Mo-99/I c-99m generators. (Author)

  9. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  10. Study of short-lived fission products with the aid of an isotope separator connected to reactor R2-0

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    This report constitutes a final report on project 74-3289 together with a preliminary report for project 75-3332. These projects have been included in the budget years 1974/75 and 1975/76 as a contribution to the operating costs of reactor R2-0 at Studsvik. The reactor was used for experimental studies on short-lived fission products with OSIRIS isotope-separator equipment. The scientific programme is very broad. It comprises, in the first place, characterisation of fission products (a study of their excitation levels, measurement of decay properties such as half-life and emission of delayed neutrons, determination of neutron energy spectrum, determination of total decay energy, etc.). An important application of this field of research is the determination of decay heat in nuclear fuel. The programme thus comprises research of a fundamental character and applied research. (H.E.G.)

  11. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  12. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  13. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  14. Transient fission-product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.; Dickson, L.W.

    1997-12-01

    Sweep-gas experiments performed at AECL's Chalk River Laboratories from 1979 to 1985 have been further analysed to determine the fraction of the gaseous fission-product inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the stable xenon release from companion fuel elements and from a well-documented experimental fuel bundle irradiated in the NRU reactor. The calculated gas release could be matched to the measured values within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. There was also limited information on the fraction of the radioactive iodine that was exposed, but not released, on reactor shutdown. An empirical equation is proposed for calculating this fraction. (author)

  15. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  16. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  17. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  18. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  19. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  20. Modelling and simulation the radioactive source-term of fission products in PWR type reactors

    International Nuclear Information System (INIS)

    Porfirio, Rogilson Nazare da Silva

    1996-01-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  1. Transmutation of long-lived fission product (137Cs, 90Sr) by a reactor-accelerator system

    International Nuclear Information System (INIS)

    Toyama, Shin-ichi; Takashita, Hirofumi; Konashi, Kenji; Sasao, Nobuyuki; Sato, Isamu.

    1990-01-01

    The report discusses the transmutation of long-lived fission products by a reactor and accelerator. It is important to take some criteria into consideration in transmutation disposal. To satisfy the criteria, a combined system of a reactor and an accelerator is proposed for the transmutation. An outline of the transmutation reactor and the accelerator is presented. The transmutation reactor has the ability to transmute a large quantity of fission products. However, it is desirable to have a high transmutation rate as well as a large disposal ability. Besides the transmutation property, it is necessary to investigate the physics of the transmutation reactor such as nuclear characteristics and burnup properties in order to obtain the most suitable, high performance core concept. A study on those properties is also presented. A high power accelerator is required for the transmutation. So a test linac is developed to accelerate high intensity beams. (N.K.)

  2. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  3. On fission product retention in the core of the low powered high temperature reactor under accident conditions

    International Nuclear Information System (INIS)

    Bastek, H.

    1984-01-01

    In the core of the high temperature reactor the fuel element and the coated particles contained herein provide the safest enclosure for fission products. The complex process of fission product transport out of the particle kernel, through the particle coating and within the fuel element graphite is described in a simplified form by the Fick's diffusion. The effective diffusion coefficient is used for calculation. Starting from the existing ideas of fission product transport five burn-up and temperature-dependent diffusion coefficients for Cesium in (Th,U)O 2 -kernels are derived in this study. The results have been gained from several fuel element radiation experiments in recent years, which showed extreme variation in regard to burn-up, temperature cycle, neutron flux and operation time. Cs-137 release measurements from single particle kernels were present from all the experiments. Furthermore, annealing tests of AVR-fuel elements were analyzed. Heat-temperatur and heating-time, the fuel element burn-up in the AVR-reactor, as well as the measured Cs-137 inventory of the fuel elements before and after annealing, are included in the investigation as essential parameters. With the aid of the derived diffusion coeffizients and already present data sets the Cs-137 release of fuel elements into a small reactor core is investigated under unrestricted core heat-up. While the released Cs-137 is derived mainly from defective particles at accident temperatures up to 1600 0 C, the main part diffuses through the particle coating at higher accident temperatures. (orig./HP) [de

  4. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  5. Reaction Rate Benchmark Experiments with Miniature Fission Chambers at the Slovenian TRIGA Mark II Reactor

    Science.gov (United States)

    Å tancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, LoĂ¯c; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )

    2018-01-01

    A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat Ă¡ l'Ă©nergie atomique et auxĂ©nergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.

  6. Survey on the fusion/fission-hybrid-reactors, a literature review

    International Nuclear Information System (INIS)

    A survey, based on existing literature, of the work being pursued worldwide on fusion - fission (hybrid) reactor systems is presented. Six areas are reviewed: Plasma physics parameters; Blankets concepts; Fuel cycles; Reactor conceptual designs; Safety and environmental problems; System studies and economic perspectives. Attention has been restricted to systems using magnetically confined plasmas, mainly to mirror and Tokamak - type concepts. The aim is to provide sufficient information, even if not exhaustive, on hybrid reactor concepts in order to help understand what may be expected from their possible development and the ways in which hybrids could affect the future energy scenario. Some concluding remarks are made which represent the personal view of the authors only

  7. FFTF fission gas monitor computer system

    International Nuclear Information System (INIS)

    Hubbard, J.A.

    1987-01-01

    The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled test reactor located on the Hanford site. A dual computer system has been developed to monitor the reactor cover gas to detect and characterize any fuel or test pin fission gas releases. The system acquires gamma spectra data, identifies isotopes, calculates specific isotope and overall cover gas activity, presents control room alarms and displays, and records and prints data and analysis reports. The fission gas monitor system makes extensive use of commercially available hardware and software, providing a reliable and easily maintained system. The design provides extensive automation of previous manual operations, reducing the need for operator training and minimizing the potential for operator error. The dual nature of the system allows one monitor to be taken out of service for periodic tests or maintenance without interrupting the overall system functions. A built-in calibrated gamma source can be controlled by the computer, allowing the system to provide rapid system self tests and operational performance reports

  8. Role of fission gas release in reactor licensing

    International Nuclear Information System (INIS)

    1975-11-01

    The release of fission gases from oxide pellets to the fuel rod internal voidage (gap) is reviewed with regard to the required safety analysis in reactor licensing. Significant analyzed effects are described, prominent gas release models are reviewed, and various methods used in the licensing process are summarized. The report thus serves as a guide to a large body of literature including company reports and government documents. A discussion of the state of the art of gas release analysis is presented

  9. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  10. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  11. Fusion-fission hybrid as an alternative to the fast breeder reactor

    International Nuclear Information System (INIS)

    Barrett, R.J.; Hardie, R.W.

    1980-09-01

    This report compares the fusion-fission hybrid on the plutonium cycle with the classical fast breeder reactor (FBR) cycle as a long-term nuclear energy source. For the purpose of comparison, the current light-water reactor once-through (LWR-OT) cycle was also analyzed. The methods and models used in this study were developed for use in a comparative analysis of conventional nuclear fuel cycles. Assessment areas considered in this study include economics, energy balance, proliferation resistance, technological status, public safety, and commercial viability. In every case the characteristics of all fuel cycle facilities were accounted for, rather than just those of the reactor

  12. Study on the technical feasibility of Fission-Track dating at two irradiation positions of the RA-6 research reactor

    International Nuclear Information System (INIS)

    Dorval, Eric

    2005-01-01

    The method of Fission-Track dating is based upon the detection of the damage caused by fission fragments from the Uranium contained in geological samples.In order to determine the age of a sample, both the amount of spontaneous fissions occurred and the Uranium concentration must be known.The latter requires the irradiation of the samples inside a reactor with a well-thermalized flux, so that fissions are induced over 235 U targets only. Therefore, the Uranium concentration may be determined.The main inconvenient presented by the irradiation sites at the RA-6 MTR-type reactor is that neutron flux is not completely thermal there, which means that fissions due to epithermal and fast neutrons will not be negligible.In the same way, tracks due to fissions of 238 U and 232 Th will be detected. In order to know the corrections that must be applied to those measurements performed in this reactor, it is necessary to characterize fast flux.Because of it, this laboratory's gamma spectrometry equipment had to be calibrated. After that, several activation detectors were irradiated and results were analyzed. Finally, it was determined that it is feasible to Fission-Track date at the I6 position. However, limitations associated to this method were analyzed for the values of flux measured in the different sites

  13. Inventories of radioactive fission products in the core of thermal nuclear reactor

    International Nuclear Information System (INIS)

    Marinkovic, N.

    1977-01-01

    As a part of the analysis concerning radiological consequences of a major LWR accident, inventories of the most significant radioactive nuclides and stable fission gases in the core of a PWR type reactor have been calculated. Calculations were performed by the DELFIN code using nuclide data and neutron flux data earlier obtained by the METHUSELAH code. Comparison with simplified calculation method show that it is quite rough for certain nuclides but the accuracy may be sufficient for safety analysis purposes recalling the inaccuracies in the later parts of fission product transport process (author)

  14. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  15. The study of two, three and four dimensional nonlinear dynamics of nuclear fission reactors and effective parameters on its behaviour

    International Nuclear Information System (INIS)

    Tajik, M.; Ghasemizad, A.

    2008-01-01

    In this research, new physical fission reactor parameters which have very sensitive effects on the qualitative behavior of a reactor, are introduced. Therefore, the two, the nonlinear dynamics of two, three and four dimensional, considering almost the effective parameters are formulated for describing nuclear fission reactor systems. Using both analytical and numerical methods, the stability and instability of the given dynamical equations and the conditions of stability are studied in these systems. We have shown that the two parameters of the mean energy residence time in fuel and coolant and also their ratios have the most qualitative effects on the dynamical behaviour of a typical nuclear fission reactor. Increasing or decreasing of these parameters from a captain limit can lead to stability or un stability in a given system

  16. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  18. Study of Xenon-poisoning effect on the research reactor power

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    2000-01-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  19. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  20. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    International Nuclear Information System (INIS)

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab

  1. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  2. Home brew technetium : clinical scale desktop plasma fusion neutron source to produce Tc99m as an alternative to industrial scale fission reactor sources

    International Nuclear Information System (INIS)

    Bosi, S.G.; Khachan, J.; Oborn, B.M.

    2011-01-01

    Full text: Tc-99m (decay product of Mo-99) accounts for ∼ 90% of world's production of radiopharmaceuticals. Recent unexpected shutdowns of two fission reactors and routine maintenance closures .e created a global shortage of Tc-99m, hence the large global effort to find alternative sources. This project aims to design and produce a novel prototype Mo-99/Tc-99m source. An operational desktop neutron source is available at the University of Sydney, employing a deuterium fusion-plasma to create 2.45 MeV neutrons. These neutrons will be used to activate Mo-98 thin an activation vessel. In one embodiment, the activation vessel contains an aqueous slurry or gel containing Mo-98 which converts to 0-99 upon activation. The decay product Tc-99m could then be milked, similar to existing Tc-99m generators. Monte Carlo will be :ed to assess yield versus size and geometry for various vessel designs. The neutron source filled with deuterium operating at 250 W, produces 3 x 106 neutrons continuously. The neutron flux can be increased ∼ 100-fold if the fill gas is 50% tritium and by another ∼ 100-1000-fold by increasing the power. This is being designed for local use, perhaps on the scale f one or a few hospitals, so the yield would not need to be industrial ;ale as with fission reactor sources. This device is low cost <$300 K) compared with cyclotrons and fission reactors.

  3. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  4. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  5. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  6. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  7. Tritium control and capture in salt-cooled fission and fusion reactors: Status, challenges, and path forward

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; Whyte, Dennis G.; Scarlat, Raluca

    2017-01-01

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The Fluoride-salt-cooled High-temperature Reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the base-line salts contain lithium where isotopically separated "7Li is proposed to minimize tritium production from neutron interactions with the salt. The Chinese Academy of Science plans to start operation of a 2-MWt molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in "6Li is proposed to maximize tritium generation the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700 °C liquid salt systems. We describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data is the primary constraint for designing efficient cost-effective methods of tritium control.

  8. Assessments of sheath strain and fission gas release data from 20 years of power reactor fuel irradiations

    International Nuclear Information System (INIS)

    Purdy, P.L.; Manzer, A.M.; Hu, R.H.; Gibb, R.A.; Kohn, E.

    1997-01-01

    Over the past 20 years, many fuel elements or bundles discharged from Canadian CANDU power reactors have been examined in the AECL hot cells. The post-irradiation examination (PIE) database covers a wide range of operating conditions, from which fuel performance characteristics can be assessed. In the present analysis, a PIE database was compiled representing elements from a total of 129 fuel bundles, of which 26% (34 bundles) were confirmed to have one or more defective elements. This comprehensive database was assessed in terms of measured sheath strain and fission gas release (FGR) for intact elements, in an attempt to identify any changes in these parameters over the history of CANDU reactor operation. Results from this assessment indicate that, for the data that are typical of normal CANDU operating conditions, tensile sheath strain and FGR have remained within 0.5% and 8%, respectively. Those data beyond these ranges are from fuel operated under abnormal conditions, not representative of normal operation, and thus do not indicate a trend toward unexpected fuel behaviour. The distributions of the PIE measurements indicate that maximum expected sheath strains and FGR for normally operated fuel are 0.7% and 13%, respectively. (author)

  9. FISPRO: a simplified computer program for general fission product formation and decay calculations

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.; Bailey, P.G.

    1979-08-01

    This report describes a computer program that solves a general form of the fission product formation and decay equations over given time steps for arbitrary decay chains composed of up to three nuclides. All fission product data and operational history data are input through user-defined input files. The program is very useful in the calculation of fission product activities of specific nuclides for various reactor operational histories and accident consequence calculations

  10. Qualitative and quantitative characteristics of fission products in spent nuclear fuel from RBMK-type reactor

    International Nuclear Information System (INIS)

    Adlys, G.; Adliene, D.

    2002-01-01

    Well-known empirical models or experimental instruments and methods for the estimation of fission product yields do not allow prediction of the behavior and evaluation of the time-dependent qualitative and quantitative characteristics of all fission products in spent nuclear fuel during long-term storage. Several computer codes were developed in different countries to solve this problem. French codes APOLLO1 and PEPIN were used in this work for modeling the characteristics of spent nuclear fuel in the RBMK reactor. The modeling results of qualitative and quantitative characteristics of long-lived fission products for different cooling periods of spent nuclear fuel, including 50-year cooling period, are presented in this paper. The 50-year cooling period conforms to the foreseen time of storage of spent nuclear fuel in CONSTOR and CASTOR casks at the Ignalina NPP. These results correlate well with evaluated quantities for the well-known yields of the nuclides and could be used for the compilation of the database for long-lived fission products in spent nuclear fuel from the RBMK-type reactor. They allow one to predict and to solve effectively safety problems concerning with long-term spent nuclear fuel storage in casks. (author)

  11. Thermodynamic cycle calculations for a pumped gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.

    1991-01-01

    Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)

  12. The electronuclear cycle: from fission to new reactor systems

    International Nuclear Information System (INIS)

    Belier, G.; Cugnon, J.; Lapoux, V.; Liatard, E.; Porquet, Marie-Genevieve; Rudolf, G.

    2006-09-01

    The Joliot Curie School trains each year, and since 1981, PhD students, post-Doctorates and researchers on scientific breakthroughs performed in a topic related to nuclear physics, in a broad range. These proceedings brings together the 11 lectures given at the 2006 session of Joliot Curie School on the topic of the electronuclear cycle: - Fission: from phenomenology to theory (Berger, J.F.); - Physics of nuclear reactors (Baeten, P.); - Data modeling and evaluation (Bauge, E.; Hilaire, S.); - Measurement of cross sections of interest for minor actinides incineration (Jurado, B.); - Spallation data and modelling for hybrid reactors (Boudard, A.); - Nuclear wastes: overview (Billard, I.); - Long living nuclear wastes transmutation processes and feasibility (Varaine, F.); - Hybrid reactors: recent advances for a demonstrator (Billebaud, A.); - Systems of the future and strategy (David, S.); - Non-nuclear energies (Nifenecker, H.); - Fundamental physics with ultracold neutrons (Protasov, K). The last section is a compilation of abstracts of presentations given by Young searchers' (Young searchers' seminars)

  13. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  14. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-01-01

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to 7 Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing

  15. Release of radioactive fission products from BN-600 reactor untight fuel elements

    International Nuclear Information System (INIS)

    Osipov, S.L.; Tsikunov, A.G.; Lisitsin, E.C.

    1996-01-01

    The experimental data on the release of radioactive fission products from BN-600 reactor untight fuel elements are given in the report. Various groups of radionuclides: inert gases Xe, Kr, volatile Cs, J, non-volatile Nb, and La are considered. The results of calculation-experimental study of transfer and distribution of radionuclides in the reactor primary circuit, gas system and sodium coolant are considered. It is shown that some complex radioactivity transfer processes can be described by simple mathematical models. (author)

  16. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  17. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-05-01

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  18. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    International Nuclear Information System (INIS)

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  19. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Lee, J.D.; Moir, R.W.; Barr, W.L.

    1982-04-01

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  20. Reactor oscillator project - Theoretical study; operation problems; choice of the ionization chamber; Projekat reaktorskog oscilatora - Teorijska razmatranja; Problematika rada, Izbor jonizacione komore

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Theoretical study of the reactor operator covers methods of the danger coefficient and the method based on measuring the phase angle. Operation with the reactor oscillator describes measurement of the cross section and resonance integral, measurement of the fissionable materials properties, measurement of impurities in the graphite sample. A separate chapter is devoted to the choice of the appropriate ionization chamber.

  1. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  2. Feasibility study on fission moly target development

    International Nuclear Information System (INIS)

    Kim, Byung Ku; Kim, Seong Nyun; Shon, Dong Seong; Choi, Chang Beom; Lee, Jae Kuk; Park, Jin Ho; Jeong, Won Myung; Jeon, Kwan Sik; You, Jae Hyung; Kang, Kyung Chul; Ahn, Jong Hwan; Ju, Po Kuk

    1996-01-01

    A multi-purpose research reactor, HANARO has been operated on the beginning of 1995 and can be utilized for production of various radioisotopes. And a R and D program for fission Mo production was established, and the technical and economical feasibility study has been performed for fission Mo production in Korea. In this study the process for fission Mo production was recommended as follows; 1. Target : UO 2 of annulus type. 2. Separation and purification : Nitric acid dissolution → Alumina adsorption → Benzoin oxime precipitation → Alumina adsorption. And more desirable plan for steady supply of fission Mo were suggested in following viewpoints; 1. Technical collaboration with foreign company. 2. Backup supply system. 3. Marketing arrangement. (Author)

  3. Nuclear data requirements for fission reactor neutronics calculations

    International Nuclear Information System (INIS)

    Finck, P.

    1998-01-01

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data

  4. Tracking of fission products release during refueling operations

    International Nuclear Information System (INIS)

    Agarwal, Sharad; Prajapat, M.K.; Vyas, Shyam; Hussain, S.A.

    2001-01-01

    It has been always observed that the release of fission products increase during refueling operations. At RAPP-3 and 4 an attempt has been made to follow-up the change in fission products activity release at each stage of refueling operation and quantification of concentrations of various radionuclides. This exercise was also extended to refueling operation of the channels containing suspected failed fuel. A level of FPNG ( 133 Xe) was observed to increase by a factor of about 10-40 during refueling of failed channel as compared to healthy channel. It can be concluded that by monitoring FPNG levels in exhaust status of the healthiness of spent fuel can be found out. This report discusses in detail the experiment conducted for this purpose. (author)

  5. Behaviour of short-lived fission products within operating UO2 fuel elements

    International Nuclear Information System (INIS)

    Hastings, I.J.; Hunt, C.E.L.; Lipsett, J.J.

    1983-01-01

    We have carried out experiments using a ''sweep gas'' technique to determine the behaviour of short-lived fission products within operating, intact UO 2 fuel elements. The Zircaloy-4-clad elements were 500 mm long and contained fuel of density 10.65-10.71 Mg/m 3 . A He-2% H 2 carrier gas swept gaseous or volatile fission products out of the operating fuel element past a gamma spectrometer for measurement. In tests at linear powers of 45 and 60 kW/m to maximum burnups of 70 MW.h/kg U, the species measured directly at the spectrometer were generally the short-lived xenons and kryptons. We did not observe iodine or bromine during normal operation. However, we have deduced the behaviour of I-133 and I-135 from the decay of Xe-133 and Xe-135 during reactor shutdowns. Plots of R/B (released/born) against lambda (decay constant) or effective lambda for all isotopes observed at 45 and 60 kW/m show that a line of slope -0.5, corresponding with diffusion kinetics, is a good fit to the measured xenon and krypton data. Our inferred release of iodine fits the same line. From this we can extrapolate to an R/B for I-131 of about 5x10 -3 . The ANS 5.4 release correlation gives calculated results in good agreement with our measurements. (author)

  6. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  7. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  8. Highlights from the IAEA coordinated research programme on fuel performance and fission product data

    International Nuclear Information System (INIS)

    Nabielek, H.; Schenk, W.; Verfondern, K.

    1996-01-01

    Seven countries are cooperating with the objectives (i) to document the status of the experimental data base and of the predictive methods for Gas-Cooled Reactor fuel performance and fission product behaviour; (ii) to verify and validate methods in fuel performance and fission product retention prediction. These countries are China, France, Germany, Japan, Russia, USA and the UK. Duration of the programme is 1993-96. The technology areas addressed in this IAEA Coordinated Research Programme are: Fuel design and manufacture, Normal operation fuel performance and fission product behaviour, Accident condition fuel performance and fission product behaviour, -core heatup, -fast transients, -oxidising conditions (water and air ingress), Plateout, re-entrainment of plateout, fission product behaviour in the reactor building, and Performance of advanced fuels. Work performed so far has generated a 300-page draft document with important information for normal operations (Germany, Japan, China, Russia) and accident conditions (USA, Japan, Germany, Russia) and, additionally, a special chapter on advanced fuels (Japan). (author)

  9. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  10. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  11. Considerations in modeling fission gas release during normal operation

    International Nuclear Information System (INIS)

    Rumble, E.T.; Lim, E.Y.; Stuart, R.G.

    1977-01-01

    The EPRI LWR fuel rod modeling code evaluation program analyzed seven fuel rods with experimental fission gas release data. In these cases, rod-averged burnups are less than 20,000 MWD/MTM, while the fission gas release fractions range roughly from 2 to 27%. Code results demonstrate the complexities in calculating fission gas release in certain operating regimes. Beyond this work, the behavior of a pre-pressurized PWR rod is simulated to average burnups of 40,000 MWD/MTM using GAPCON-THERMAL-2. Analysis of the sensitivity of fission gas release to power histories and release correlations indicate the strong impact that LMFBR type release correlations induce at high burnup. 15 refs

  12. Irradiation positions for fission-track dating in the University of Pavia TRIGA Mark II nuclear reactor

    International Nuclear Information System (INIS)

    Oddone, Massimo; Meloni, Sandro; Balestrieri, Maria Laura; Bigazzi, Giulio

    2002-01-01

    An irradiation position arranged is described in the present paper for fission-track dating in the Triga Mark II reactor of the University of Pavia. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively good neutron thermalization (φ th /φ f = 0.956) and lack of significant fluence spatial gradients are good factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author)

  13. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  14. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  15. Japanese list of requests for neutron nuclear data for fission reactors

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Asami, Tetsuo

    1977-05-01

    Requests for neutron nuclear data for fission reactors are presented. These are screened by a WRENDA Working Group of Japanese Nuclear Data Committee and submitted to WRENDA 76/77. This report includes 163 requests of which 55 requests are newly registered in the WRENDA. Three requests of the previous list are withdrawn. This activity is a part of the international cooperation with CCDN, NEANDC and INDC. (auth.)

  16. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    Blanc-De-Lanaute, N.

    2012-01-01

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values [fr

  17. In-core fuel management for the course on operational physics of power reactors

    International Nuclear Information System (INIS)

    Levine, S.H.

    1982-01-01

    The heart of a nuclear power station is the reactor core producing power from the fissioning of uranium or plutonium fuel. Expertise in many different technical fields is required to provide fuel for continuous economical operation of a nuclear power plant. In general, these various technical disciplines can be dichotomized into ''Out-of-core'' and ''In-core'' fuel management. In-core fuel management is concerned, as the name implies, with the reactor core itself. It entails calculating the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. In addition, the selection of reloading schemes is made to minimize energy costs

  18. Experimental verification of the fission chamber gamma signal suppression by the Campbelling mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Weber, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C. [CEA, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Normand, S.; Lescop, B. [CEA, Centre de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2009-07-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on {sup 242}Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of {sup 242}Pu fission chambers operating in current mode showed that in typical MTR (Materials Test Reactors) conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a {sup 242}Pu and a {sup 235}U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the {sup 235}U fission chamber and more than 80 for the {sup 242}Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  19. Neutron induced fission of 237Np – status, challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Ruskov Ivan

    2018-01-01

    Full Text Available Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel (“wasteâ€, the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ, has not been updated for decades.

  20. Study of advanced fission power reactor development for the United States. Volume II

    International Nuclear Information System (INIS)

    1976-01-01

    This report presents the results of a multi-phase research study which had as its objective the comparative study of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. By direction from NSF, ''advanced'' reactors were defined as those which met the dual requirements of (1) offering a significant improvement in fissile fuel utilization as compared to light-water reactors and (2) currently receiving U.S. Government funding. (A detailed study of the LMFBR was specifically excluded, but cursory baseline data were obtained from ERDA sources.) Included initially were the High-Temperature Gas-Cooled Reactor (HTGR), Gas-Cooled Fast Reactor (GCFR), Molten Salt Reactor (MSR), and Light-Water Breeder Reactor (LWBR). Subsequently, the CANDU Heavy Water Reactor (HWR) was included for comparison due to increased interest in its potential. This volume presents the reasoning process and analytical methods utilized to arrive at the conclusions for the overall study

  1. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  2. Fission track dating method: I. Study of neutron flux uniformity in some irradiation positions of IEA-R1 reactor

    International Nuclear Information System (INIS)

    Osorio, A.M.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R. de

    1993-06-01

    In order to use the fission track dating method the flux gradient was verified within the sample holder, in some irradiation positions of the IEA-R1 reactor at IPEN/CNEN, Sao Paulo. The fission track dating method considers only the thermal neutron fission tracks, to subtract the other contributions sample irradiations with a cadmium cover was performed. The neutron flux cadmium influence was studied. (author)

  3. Release of fission products in transients

    International Nuclear Information System (INIS)

    Christensen, H.; Lundqwist, R.

    1979-07-01

    A station for automatic sampling of coolant has been put in operation at the Oskarshamn-1 reactor. The release of 131 J and other fission products in spikes in connection with reactor trips and scheduled shutdowns has been measured. A model developed at General Electric has been used to predict the spike release in Oskarshamn-1 and the predicted values have been compared with experimental values. Literature data of iodine spikes in BWR and PWR have been reviewed. (author)

  4. Journey from discovery of nuclear fission to accelerator-driven sub-critical reactor systems (ADS)

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2005-01-01

    The epoch making discovery of nuclear fission in 1939, which resulted purely from the curiosity driven basic research to understand the atomic and nuclear structure has changed the world forever with the onset of a new era in the history of human civilization. The basic nuclear physics research pursued after the discovery of fission has also been of much relevance in the harnessing of nuclear energy. In the recent years, there is considerable interest towards developing accelerator driven sub-critical reactor systems (ADS) for the incineration of the long-lived spent fuel radioactive waste and for the utilization of thorium fuel for nuclear power generation. In this talk, we discuss important milestones in the journey from discovery of nuclear fission to ADS. (author)

  5. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  6. Migration of U-series radionuclides around the Bangombe natural fission reactor (Gabon)

    International Nuclear Information System (INIS)

    Bros, R.; Yanase, N.; Isobe, H.; Sato, T.; Iida, Y.; Ohnuki, T.; Roos, P.; Holm, E.

    1999-01-01

    The Bangombe natural fission reactors has undergone extensive weathering phenomena and continues to be affected by the penetration of meteoric waters. Hence this system provides a model for studying the stability of spent fuel uraninite and the influence of various rock matrices on the mobilization/retardation of various actinides and fission products. The Bangombe uranium deposit has been investigated by drilling on a grid. Radiochemical analysis by alpha- and gamma-spectroscopy of the obtained rocks show significant disequilibria of the 234 U/ 238 U, 230 Th/ 234 U, and 226 Ra/ 230 Th parent-daughter pairs. In this paper, a conceptual model for spatio/temporal evolution of the Bangombe system is proposed. (J.P.N.)

  7. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  8. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  9. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  10. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1994-01-01

    I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and a transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the large subcriticality k=0.9-0.95 which we originally proposed for such transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyze the power drop that occurred in Phenix reactor, and show that the operating this reactor in subcritical conditions improves safety. (author). 13 refs., 5 figs

  11. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1994-01-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety

  12. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  13. Gas dynamics models for an oscillating gaseous core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1991-01-01

    Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).

  14. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  15. Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor

    NARCIS (Netherlands)

    Capelli, E.; Beneš, O.; Konings, R.J.M.

    2018-01-01

    The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all

  16. Thirty years of nuclear fission in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1989-07-01

    Experimental nuclear reactor 'RB' in Boris Kidric Institute in Vinca is the first nuclear facility built in Yugoslavia in which the first Yugoslav controlled nuclear fission was achieved thirty years ago on April 26, 1958. Designed by Yugoslav scientist as a bare, natural uranium-heavy water critical assembly, the 'RB' reactor has survived a series of modifications trying to follow directions of contemporary nuclear research. The actual 'RB' reactor technical characteristics and experimental possibilities are described. The modifications are underlined, the experience gained and plans for future are presented. A brief review of reactor operation and experiments performed is shown. (author)

  17. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  18. Demonstrated operational and inherent safety of the prototype fast reactor (PFR)

    International Nuclear Information System (INIS)

    Smedley, J.A.; Gregory, C.V.; Judd, A.M.

    1983-01-01

    The Prototype Fast Reactor (PFR) is sited at Dounreay, on the north coast of Scotland in the United Kingdom, and has been in operation since 1974. Three aspects of the safety of the reactor are described, including the all-important practical consideration of operational safety, a demonstration of the limited consequences of a sodium/water reaction in a steam generator and the ability of the reactor to protect itself against highly improbable incidents. Attention is drawn to the low radiation levels in the plant and the correspondingly low dose rate to personnel. A feature of PFR operation has been the stable and predictable behaviour of its core together with the high degree of reliability exhibited by the engineered safety system. No failures have occurred within the standard driver charge but two experimental fuel pins suffered cladding failure, which was detected easily by the fission gas and delayed neutron detection systems. In the steam generating units sodium and water are separated by the single steel wall of the steam tubes. Although no under-sodium leak has occurred, an experimental programme is continuing and demonstrates that were any such leak to occur its consequences would be containable and would not result in the release of sodium to the environment or any breach of the reactor containment. The final section describes the inherent safety features of the reactor which enable it to survive a range of very improbable incidents even when the engineered safeguards fail. The features considered are natural circulation, which has been demonstrated by reactor experiment; the reactor's negative power coefficient, which, for example, enables the reactor to survive a complete loss of heat sink; and the durability of the fuel pins, demonstrated by a series of boiling experiments in the Dounreay Fast Reactor (DFR). (author)

  19. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  20. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Siddique, Muhammad Tariq; Kim, Myung Hyun

    2014-01-01

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  1. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  2. Analysis of Environmental Data During TRIGA 2000 Reactor Operation in PTNBR-BATAN Bandung

    International Nuclear Information System (INIS)

    Zulfakhri

    2009-01-01

    The radioactivity data of grass and soil obtained from environmental monitoring during 2000-2008 have been quantitatively and qualitatively analyzed. The data were analyzed using statistical method of the population homogeneity varians test and the average equality test, whereas qualitative analysis have been carried out by gamma spectrometry. From the data analysis, using homogeneity varians test (X 2 test) and average equality test (F test) it was obtained that X 2 calculation , F calculation > X 2 table , F table , so it can be assumed that operation of TRIGA 2000 reactor has no effect to the radioactivity of the environment. The qualitative analysis of grass and soil samples shows no visible peak of gamma ray from fission or activation products from the reactor, but the natural radionuclide such as 214 Bi, 228 Ac, 212 Bi, and 40 K were detected. It can be concluded that reactor operation have no effect to the environmental radioactivity. (author)

  3. An assessment of fission product data for decay power calculation in fast reactors

    International Nuclear Information System (INIS)

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  4. Poison 1 - a programme for calculation of reactivity transients due to fission product poisoning and its application in continuous determination of xenon and samarium poisoning in reactor KS-150

    International Nuclear Information System (INIS)

    Rana, S.B.

    1973-12-01

    The report contains a user's description of the 3-dimensional programme POISON 1 for calculating reactivity transients due to fission-product poisoning during changes of reactor power. The chapter dealing with Xe poisoning contains a description of Xe tables, the method of operational determination of Xe poisoning, use of Xe transients for calibrating control rods and means of shutting down the reactor without being overriden by Xe poisoning. Sm poisoning is determined continuously on the basis of the power diagram of reactor operation. In conclusion a possibility of using the programme in a process computer in combination with self-powered detectors as local power sensors is indicated. (author)

  5. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    International Nuclear Information System (INIS)

    Pomorski, Michal; Mer-Calfati, Christine; Foulon, Francois; Sklenka, Lubomir; Rataj, Jan; Bily, Tomas

    2015-01-01

    Training Reactor VR-1 is a pool type (light water) reactor based on UO 2 low enriched uranium. It has a nominal power of 1 kW, and can be operated for a short period up to 5 kW. The arrangement of the reactor pool reactor facilitates access to the core, setting and removal of various experimental samples and detectors, and safe and easy handling of fuel assemblies. The reactor is equipped with two horizontal channels (radial and tangential) and 10 vertical channels, of varying diameters, which can be loaded into various core positions, and one pneumatic transfer system. It is also equipped with several specifically designed educational instrumentation systems that can be used to supply complementary measurements and characterization around the reactor. The reactor is operated by the Department of Nuclear Reactors of the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague. The two detectors were placed in-core through one of the vertical insertion channel. They were coupled to remote placed (5 m BNC cable) classical nuclear charge sensitive electronics. Detection properties of both sensors, including: pulse height spectra of U-235 fission fragments (response linearity with neutron flux, count rate, gamma background, were evaluated varying the power of the reactor from 0.005 W to 500 W. The evolution of the counting rate of the thinned optical grade detector as a function of counting rate of a gas ionization chamber used currently for reactor monitoring shows the very good linearity of the detector over the 5 decades. Similar results were obtained with the PIM detector. Additionally fast transient current signals of the detectors were recorded on a digital storage oscilloscope (DSO) using broad-band amplifier and with a simple bias-T, showing potential use of such sensors for neutron counting with no need of an amplification stage, since non-amplified signals from fission fragments exceeded 4 mV in amplitude. Therefore, one can

  6. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  7. Review of the neutron capture process in fission reactors

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1981-07-01

    The importance of the neutron capture process and the status of the more important cross section data are reviewed. The capture in fertile and fissile nuclei is considered. For thermal reactors the thermal to epithermal capture ratio for 238 U and 232 Th remains a problem though some improvements were made with more recent measurements. The capture cross section of 238 U in the fast energy range remains quite uncertain and a long standing discrepancy for the calculated versus experimental central reaction rate ratio C28/F49 persists. Capture in structural materials, fission product nuclei and the higher actinides is also considered

  8. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  9. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  10. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  11. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  12. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  13. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  14. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  15. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  16. Studying the effect of xenon poisoning on the power of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-07-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  17. Regulations for RA reactor operation

    International Nuclear Information System (INIS)

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  18. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    International Nuclear Information System (INIS)

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant

  19. Experimental Verification of the Fission Chamber Gamma Signal Suppression by the Campbelling Mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Weber, M.; Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C.; Normand, S.; Lescop, B.

    2011-01-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on 242 Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of 242 Pu fission chambers operating in current mode showed that in typical MTR conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a 242 Pu and a 235 U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the 235 U fission chamber and more than 80 for the 242 Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  20. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  1. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  2. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  3. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  4. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  5. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  6. Resuspension of fission products during severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    Borkowski, R.; Bunz, H.; Schoeck, W.

    1986-05-01

    This report investigates the influence of resuspension phenomena on the overall radiological source term of core melt accidents in a pressurized water reactor. A review of the existing literature is given and the literature data are applied to calculations of the source term. A large scatter in the existing data was found. Depending on the scenario and on the data set chosen for the calculations the relative influence of resuspended fission products on the source term ranges from dominant to negligible. (orig.) [de

  7. Transfer parameters of fission and activation products present in effluents of nuclear power reactors

    International Nuclear Information System (INIS)

    Cancio, D.; Menossi, C.A.; Ciallella, N.R.

    1978-01-01

    The paper presents results of research carried out in Argentina on transfer parameters of fission and activation products which may be present in the effluents of nuclear power reactors. For some nuclides, as Sr-90, Co-137 and I-131, the parameters were obtained by studies of the fallout, from measurements of integrated levels in the environment and in the food chains. Other values are concentration factors derived from laboratory and field experiments. They refer to fish, molluscs, crustaces and fresh water plants, for several fission and activation nuclides. Transfer parameters obtained have been of significant importance for environmental assessments, relating to nuclear installations in Argentina. (author)

  8. Fission gas release of MOX with heterogeneous structure

    International Nuclear Information System (INIS)

    Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.

    2015-01-01

    It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior

  9. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  10. A proposed standard on medical isotope production in fission reactors

    International Nuclear Information System (INIS)

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-01-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  11. Fission product release from UO2 during irradiation. Diffusion data and their application to reactor fuel pins

    International Nuclear Information System (INIS)

    Findlay, J.R.; Johnson, F.A.; Turnbull, J.A.; Friskney, C.A.

    1980-01-01

    Release of fission product species from UO 2 , and to a limited extent from (U, Pu)0 2 was studied using small scale in-reactor experiments in which these interacting variables may be separated, as far as is possible, and their influences assessed. Experiments were at fuel ratings appropriate to water reactor fuel elements and both single crystal and poly-crystalline specimens were used. They employed highly enriched uranium such that the relative number of fissions occurring in plutonium formed by neutron capture was small. The surface to volume ratio (S/V) of the specimens was well defined thus reducing the uncertainties in the derivation of diffusion coefficients. These experiments demonstrate many of the important characteristics of fission product behaviour in UO 2 during irradiation. The samples used for these experiments were small being always less than 1g with a fissile content usually between 2 and 5mg. Polycrystalline materials were taken from batches of production fuel prepared by conventional pressing and sintering techniques. The enriched single crystals were grown from a melt of sodium and potassium chloride doped with UO 2 powder 20% 235 U content. The irradiations were performed in the DIDO reactor at Harwell. The neutron flux at the specimen was 4x10 16 neutrons m -2 s -1 providing a heat rating within the samples of 34.5 MW/teU

  12. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  13. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  14. R and D in Ciemat Nuclear Fission Department

    International Nuclear Information System (INIS)

    Diaz, J. L.; Diaz Arocas, P.; Gomez Briceno, D.; Gonzalez de la Huebra Gordo, A.; Gonzalez Romero, E.; Herranz Puebla, L. E.; Sola Farre, R.

    2000-01-01

    The technologically developed countries count on nuclear fission as a durable energy resource to produce electricity, facing the future by establishing research programmes to enhance the safety and extend the lifetime of the current power plants and to achieve the adequate management of radioactive waste. At the same time, the progress in the development of a new generation of reactors based in innovative safety concepts. The Nuclear fission Department has the ultimate objective of providing technical support to the Spanish nuclear reactors through applied research and development focused on improving the safety and performance of the operating power plants, and cooperating in the activities related to radioactive waste. In this context, the Departament has been organised in four R and D project covering the areas of Safety, Materials, Radioactive. (Author)

  15. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  16. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Schulte, S.C.

    1979-04-01

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  17. Measurement of fission product release during LWR fuel failure

    International Nuclear Information System (INIS)

    Osetek, D.J.; King, J.J.

    1979-01-01

    The PBF is a specialized test reactor consisting of an annular core and a central test space 21 cm in diameter and 91 cm high. A test loop circulates coolant through the central experimental section at typical power reactor conditions. Light-water-reactor-type fuel rods are exposed to power bursts simulating reactivity insertion transients, and to power-cooling-mismatch conditions during which the rods are allowed to operate in film boiling. Fission product concentrations in the test loop coolant are continuously monitored during these transients by a Ge(Li) detector based gamma spectrometer. Automatic batch processing of pulse height spectra results in a list of radionuclide concentrations present in the loop coolant as a function of time during the test. Fission product behavior is then correlated to test parameters and posttest examination of the fuel rods. Data are presented from Test PCM-1

  18. Criticality accident in uranium fuel processing plant. The estimation of the total number of fissions with related reactor physics parameters

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Oyamatsu, Kazuhiro; Kondo, Shunsuke; Sekimoto, Hiroshi; Ishitani, Kazuki; Yamane, Yoshihiro; Miyoshi, Yoshinori

    2000-01-01

    This accident occurred when workers were pouring a uranium solution into a precipitation tank with handy operation against the established procedure and both the cylindrical diameter and the total mass exceeded the limited values. As a result, nuclear fission chain reactor in the solution reached not only a 'criticality' state continuing it independently but also an instantly forming criticality state exceed the criticality and increasing further nuclear fission number. The place occurring the accident at this time was not reactor but a place having not to form 'criticality' called by a processing process of uranium fuel. In such place, as because of relating to mechanism of chain reaction, it is required naturally for knowledge on the reactor physics, it is also necessary to understand chemical reaction in chemical process, and functions of tanks, valves and pumps mounted at the processes. For this purpose, some information on uranium concentration ratio, atomic density of nuclides largely affecting to chain reaction such as uranium, hydrogen, and so forth in the solution, shape, inner structure and size of container for the solution, and its temperature and total volume, were necessary for determining criticality volume of the accident uranium solution by using nuclear physics procedures. Here were described on estimation of energy emission in the JCO accident, estimation from analytical results on neutron and solution, calculation of various nuclear physics property estimation on the JCO precipitation tank at JAERI. (G.K.)

  19. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  20. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  1. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  2. Savannah River Site production reactor safety analysis report

    International Nuclear Information System (INIS)

    1996-01-01

    The process water system (PWS) is designed to remove heat produced in the reactor from the fission process, gamma radiation absorption, and fission product decay. Heat removal is accomplished by circulating heavy water through the reactor. Cooling is provided for fuel assemblies, target assemblies, control rods, bulk moderator, deflector plate, reactor tank, and reactor structural components. Approximately 90% of the heat load is generated in the fuel and target assemblies, 5% in the moderator, and 5% in the shielding. In addition to serving as the-heat transfer medium, the process water moderates neutrons produced by fission in the fuel. D 2 O is used in this application because of its favorable moderating and neutron capture properties, which result in high neutron efficiency and reactor productivity. The PWS piping and components also provide a high-integrity leak barrier against loss of moderator and the radioactive fission and corrosion products. Components of the PWS are located in the reactor building between the -40-foot elevation and the 0-foot elevation. Specific locations include the process room, heat exchanger bay, motor rooms, and pump rooms. The system diagram is shown in Figure 5.1-2. PWS design data are presented in Table 5.1-1. The PWS consists of six parallel heat transfer loops. In each loop, approximately 25,000 gpm of D 2 O is circulated from one of six outlet nozzles in the bottom of the reactor tank through a motor-operated valve (MOV) to the suction side of the process water pump. Each pump is driven by an AC motor and a DC motor through a gear reducer unit. A 3-ton flywheel on the drive shaft of the AC motor provides gradual flow coastdown when power is lost. During reactor operation, the DC motors are operated continuously from the diesel generator sets as backup to the AC motors. Following shutdown, the DC motors are operated to provide adequate circulation and core cooling

  3. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  4. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal; Mer-Calfati, Christine [CEA-LIST, Diamond Sensors Laboratory, 91191, Gif-sur-Yvette (France); Foulon, Francois [CEA, National Institute for Nuclear Science and Technology, 91191, Gif-sur-Yvette (France); Sklenka, Lubomir; Rataj, Jan; Bily, Tomas [Department of Nuclear Reactors,Faculty of Nuclear Science and Physical Engineering, Czech Technical University, V. Holesovickach 2, 180 00 PRAHA 8 (Czech Republic)

    2015-07-01

    Prague. The Training Reactor VR-1 is a pool type (light water) reactor based on UO{sub 2} low enriched uranium. It has a nominal power of 1 kW, and can be operated for a short period up to 5 kW. The arrangement of the reactor pool reactor facilitates access to the core, setting and removal of various experimental samples and detectors, and safe and easy handling of fuel assemblies. The reactor is equipped with two horizontal channels (radial and tangential) and 10 vertical channels, of varying diameters, which can be loaded into various core positions, and one pneumatic transfer system. It is also equipped with several specifically designed educational instrumentation systems that can be used to supply complementary measurements and characterization around the reactor. The reactor is operated by the Department of Nuclear Reactors of the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague. The two detectors were placed in-core through one of the vertical insertion channel. They were coupled to remote placed (5 m BNC cable) classical nuclear charge sensitive electronics. Detection properties of both sensors, including: pulse height spectra of U-235 fission fragments (response linearity with neutron flux, count rate, gamma background, were evaluated varying the power of the reactor from 0.005 W to 500 W. The evolution of the counting rate of the thinned optical grade detector as a function of counting rate of a gas ionization chamber used currently for reactor monitoring shows the very good linearity of the detector over the 5 decades. Similar results were obtained with the PIM detector. Additionally fast transient current signals of the detectors were recorded on a digital storage oscilloscope (DSO) using broad-band amplifier and with a simple bias-T, showing potential use of such sensors for neutron counting with no need of an amplification stage, since non-amplified signals from fission fragments exceeded 4 mV in amplitude

  5. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  6. Assessment of the high temperature fission chamber technology for the French fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l' Energie Atomique, CEA (France)

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  7. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  8. Specialists' meeting on role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  9. Specialists' meeting on role of fission products in whole core accidents

    International Nuclear Information System (INIS)

    1977-01-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability

  10. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  11. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  12. Safety analysis of RA reactor operation, I-III, Part III - Environmental effect of the maximum credible accident; Analiza sigurnosti rada reaktora RA - I-III, III deo - Posledica maksimalno moguceg akcidenta na okolinu reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    Maximum credible accident at the RA reactor would consider release of fission products into the environment. This would result from fuel elements failure or meltdown due to loss of coolant. The analysis presented in this report assumes that the reactor was operating at nominal power at the moment of maximum possible accident. The report includes calculations of fission products activity at the moment of accident, total activity release during the accident, concentration of radioactive material in the air in the reactor neighbourhood, and the analysis of accident environmental effects.

  13. Characteristics of irradiation creep in the first wall of a fusion reactor

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Mansur, L.K.

    1981-01-01

    A number of significant differences in the irradiation environment of a fusion reactor are expected with respect to the fission reactor irradiation environment. These differences are expected to affect the characteristics of irradiation creep in the fusion reactor. Special conditions of importance are identified as the (1) large number of defects produced per pka, (2) high helium production rate, (3) cyclic operation, (4) unique stress histories, and (5) low temperature operations. Existing experimental data from the fission reactor environment is analyzed to shed light on irradiation creep under fusion conditions. Theoretical considerations are used to deduce additional characteristics of irradiation creep in the fusion reactor environment for which no experimental data are available

  14. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  15. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  16. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  17. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  18. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  19. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  20. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  1. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  2. In-reactor measurements of thermo mechanical behaviour and fission gas release of water reactor fuel

    International Nuclear Information System (INIS)

    Kolstad, E.; Vitanza, C.

    1983-01-01

    the fuel performance during and after a power ramp can be investigated by direct in-pile measurements related to the thermal, mechanical and fission gas release behaviour. The thermal response is examined by thermocouples placed at the centre of the fuel. Such measurements allow the determination of thermal feedback effects induced by the simultaneous liberation of fission gases. The thermal feedback effect is also being separately studied out-of-pile in a specially designed rod where the fission gas release is simulated by injecting xenon in known quantities at different axial positions within the rod. Investigations on the mechanical behaviour are based on axial and diametral cladding deformation measurements. This enables the determination of the amount of local cladding strain and ridging during ramping, the extent of relaxation during the holding time and the amount of residual (plastic) deformation. Gap width measurements are also performed in operating fuel rods using a cladding deflection technique. Fission gas release data are obtained, besides from post-irradiation puncturing, by continuous measurements of the rod internal pressure. This type of measurement leads to the description of the kinetics of the fission gas release process at different powers. The data tend to indicate that the time-dependent release can be reasonably well described by simple diffusion. The paper describes measuring techniques developed and currently in use in Halden, and presents and discusses selected experimental results obtained during various power ramps and transients. (author)

  3. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  4. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  5. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  6. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  7. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  8. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  9. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  10. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  11. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  12. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  13. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  14. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  15. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-06-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  16. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-01

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  17. Fission reactor recycling pump handling device

    International Nuclear Information System (INIS)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru.

    1991-01-01

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.)

  18. Fission reactor recycling pump handling device

    Energy Technology Data Exchange (ETDEWEB)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru

    1991-06-24

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.).

  19. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stevenson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsai, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat Ă  l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. â

  20. Experiments to determine the rate of beta energy release following fission of Pu239 andU235 in a fast reactor

    International Nuclear Information System (INIS)

    Murphy, M.F.; Taylor, W.H.; Sweet, D.W.; March, M.R.

    1979-02-01

    Measurements have been made of the rate of beta energy release from Pu239 and U235 fission fragments over a period of 107 seconds following a 105 second irradiation in the zero-power fast reactor Zebra. Results are compared with predictions using the UKFPDD-1 decay data file and two different sets of fission product yield data. (author)

  1. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  2. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The Workshop on Sub-critical Neutron Production held at the University of Maryland and the Eisenhower Institute on 11-13 October 2004 brought together members of fusion, fission and accelerator technical communities to discuss issues of spent fuel, nonproliferation, reactor safety and the use of neutrons for sub-critical operation of nuclear reactors. The Workshop strongly recommended that the fusion community work closely with other technical communities to ensure that a wider range of technical solutions is available to solve the spent fuel problem and to utilize the current actinide inventories. Participants of the Workshop recommended that a follow-on Workshop, possibly under the aegis of the IAEA, should be held in the first half of the year 2005. The Consultancy Meeting is the response to this recommendation. The objectives of the Consultancy meeting were to hold discussions on the role of fusion/fission systems in sub-critical operations of nuclear reactors. The participants agreed that development of innovative (fourth generation) fission reactors, advanced fuel cycle options, and disposition of existing spent nuclear fuel inventories in various Member Sates can significantly benefit from including sub-critical systems, which are driven by external neutron sources. Spallation neutrons produced by accelerators have been accepted in the past as the means of driving sub-critical reactors. The accelerator community deserves credit in pioneering this novel approach to reactor design. Progress in the design and operation of fusion devices now offers additional innovative means, broadening the range of sub-critical operations of fission reactors. Participants felt that fusion should participate with accelerators in providing a range of technical options in reactor design. Participants discussed concrete steps to set up a small fusion/fission system to demonstrate actinide burning in the laboratory and what advice should be given to the Agency on its role in

  3. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kröhnert, H., E-mail: hanna.kroehnert@ensi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Perret, G.; Murphy, M.F. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-01-11

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO{sub 2} fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7–3.4%. The comparisons with calculated predictions show an agreement within 1–3σ, although there appears to be a slight bias (∼3%).

  4. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  5. The containment safety of the Dragon Reactor

    International Nuclear Information System (INIS)

    Cullington, G.R.

    1967-08-01

    The original design of the Dragon Reactor was based upon the assumption that fission product emitting fuel elements would be used, leading to two significant considerations. First, a highly active primary circuit would result in normal operation, and second, under accident conditions involving massive core damage and corrosion following a major pressure vessel failure, the bulk of the core burden of fission products would be released. The adoption of coated particle fuel able to retain fission products has changed significantly the philosophy behind the design of the containment. The new philosophy is described and its effect on operating principles is discussed. (UK)

  6. Licensed operating reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  7. Licensed operating reactors

    International Nuclear Information System (INIS)

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  8. Licensed operating reactors

    International Nuclear Information System (INIS)

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  9. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  10. Power reactors operational diagnosis

    International Nuclear Information System (INIS)

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  11. Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors

    International Nuclear Information System (INIS)

    Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.

    1979-01-01

    Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made

  12. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  13. Preliminary estimation of the dose rates of the operation room of the RPR radioisotope cell

    International Nuclear Information System (INIS)

    Rocha, A.C.S.; Silva, J.J.G.; Pina, J.L.S. de; Fajardo, P.W.

    1986-07-01

    During the preliminary studies, about the installations layout of a radioisotope production reactor, the possibility of construction of a radioisotope cell at the reactor building has been investigated. The decisions about that construction has considered mainly the level of the radiation dose over the cell operator. The dose rate has been calculated based on: neutron flux and gamma radiation from fission products and activation materials inside the reactor; volatile fission products such as noble gases and iodides; tritium form ternary fission. The objective was calculate the radiation dose over the cell operator during a journey of 8 hours of work per day. For those calculations some data have been obtained from the Angra-3 reactor. (author)

  14. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  15. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  16. Pressure due to fission gases in a fuel element circulating in a reactor

    International Nuclear Information System (INIS)

    Fonteray, Jean

    1965-01-01

    This document states calculation hypotheses and methods used to assess pressures due to fission gases in a fuel element moving in a reactor channel in the reverse direction with respect to the cooling fluid. The calculation comprises the calculation of the temperature in the fuel rod, of the reduced diffusion coefficient, of the diffused gas fraction, of the pressure. The appendix describes the use of the SPM 076 software: input data, output results, computing time [fr

  17. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  18. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-05-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  19. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-01-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  20. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1983-03-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  1. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-11-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  2. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-10-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  3. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  4. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-09-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  5. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  6. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  7. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  8. Growth of optical transmission loss at 850 nm in silica core optical fibers during fission reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, T.; Narui, M.; Sagawa, T.

    1998-01-01

    Pure, OH-doped and F-doped silica core optical fibers were irradiated in a fission reactor at 400±10 K using an electric heater at a reactor power greater than 10 MW (20% of the full power). The temperature was not controlled well at the early stage of the reactor startup, when the temperature was about 320-340 K. The optical fibers were irradiated with a fast neutron (E>1 MeV) flux of 3.2 x 10 17 n/cm 2 s and a gamma dose rate of 3 x 10 3 Gy/s for 527 h. Optical transmission loss at 850 nm was measured in situ during irradiation. A prompt increase in optical transmission loss was observed as irradiation started, which was probably due to dynamic irradiation effects caused by short-lived and transient defects and is probably recoverable when irradiation ceases. After the prompt increase in optical transmission loss, a so-called radiation hardening was observed in fibers containing OH. Radiation hardening was also observed in 900 ppm OH-doped fiber at the second startup. The optical transmission loss increased linearly with irradiation dose, denoted as the accumulated loss, which we believe is due to irradiation-induced long-lived defects. Accumulated loss dominates radiation-induced optical transmission loss in a fission reactor irradiation. (orig.)

  9. EBR-II operating experience

    International Nuclear Information System (INIS)

    Smith, C.R.F.

    1978-07-01

    Operation of the EBR-2 reactor is presented concerning the performance of the heat removal system; reactor materials; fuel handling system; sodium purification and sampling system; cover-gas purification; plant diagnostics and instrumentation; recent improvements in identifying fission product sources in EBR-2; and EBR-2 safety

  10. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  11. Recent U.S. reactor operating experience

    International Nuclear Information System (INIS)

    Stello, V. Jr.

    1977-01-01

    A qualitative assessment of U.S. and foreign reactor operating experience is provided. Recent operating occurrences having potentially significant safety impacts on power operation are described. An evaluation of the seriousness of each of these issues and the plans for resolution is discussed. A quantitative report on U.S. reactor operational experience is included. The details of the NRC program for evaluating and applying operating reactor experience in the regulatory process is discussed. A review is made of the adequacy of operating reactor safety and environmental margins based on actual operating experience. The Regulatory response philosophy to operating reactor experiences is detailed. This discussion indicates the NRC emphasis on the importance of a balanced action plan to provide for the protection of public safety in the national interest

  12. Diagnostic measurement on research reactors

    International Nuclear Information System (INIS)

    Dach, K.; Zbytovsky, A.

    A comparison is made of noise experiments on zero power and power reactors. The general characteristics of noise experiments on power reactors is their ''passivity'', i.e., the experiment does not require any interruption of the normal operating regime of the reactor system. On zero power research reactors where the fission reaction constitutes the dominant noise source such conditions have to be created in the study of noise components as to make the investigated noise dominant and the noise of the fission reaction the background. The simultaneous use of both methods makes it possible to determine the spectral composition of reactivity fluctuations, which facilitates the identification of noise sources. The conditions are described of the recordability of noise components. The possibilities are listed provided for research work in Czechoslovakia and the possibility is studied of setting up an expert team to organize the respective experimental programme on an international scale. Power reactors manufactured in the GDR are considered as the suitable experimental base. (J.P.)

  13. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  14. Reactor operational transient analysis

    International Nuclear Information System (INIS)

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  15. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    Moons, F.

    2007-01-01

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3 He, 6 Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  16. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  17. EPR (European Pressurized Reactor)

    International Nuclear Information System (INIS)

    2015-01-01

    This document presents the EPR (European Pressurized Reactor), a modernised version of PWRs which uses nuclear fission. It indicates to which category it belongs (third generation). It briefly describes its operation: recalls on nuclear fission, electricity production in a nuclear reactor. It presents and comments its characteristics: power, thermal efficiency, redundant systems for safety control, double protective enclosure, expected lifetime, use of MOX fuel, modular design. It discusses economic stakes (expected higher nuclear electricity competitiveness, but high construction costs), and safety challenges (design characteristics, critics by nuclear safety authorities about the safety data processing system). It presents the main involved actors (Areva, EDF) and competitors in the field of advanced reactors (Rosatom with its VVER 1200, General Electric with its ABWR and its ESBWR, Mitsubishi with its APWR, Westinghouse with its AP100) while outlining the importance of certifications and delays to obtain them. After having evoked key data on EPR fuel consumption, it indicates reactors under construction, evokes potential markets and perspectives

  18. Linguistic Formalism for Semi-Autonomous Reactor Operation

    International Nuclear Information System (INIS)

    Joo, Sungmoon; Seo, Sang Mun; Suh, Yong-Suk; Park, Cheol

    2017-01-01

    The ultimate goal of our work is to develop a novel, integrated system for semi-autonomous reactor operation by introducing an interfacing language shared by human reactor operators and artificially intelligent service agents (e.g., robots). We envision that human operators and artificially intelligent service agents operate the reactor cooperatively in the future. For example, an artificially intelligent service agent carries out a human reactor operator's command or reports the result of a task commanded by the human reactor operator. This work presents preliminary work towards a unified linguistic formalism for cooperative, semiautonomous reactor operation. Application of the proposed formalism to reactor operator communication domain shows that the formalism effectively captures the syntax and semantics of the domain-specific language defined by the communication protocol.

  19. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  20. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  1. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  2. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  3. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  4. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  5. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  6. Reactor core operation management system

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1992-01-01

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.)

  7. Reactor core operation management system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomomi.

    1992-05-28

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.).

  8. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  9. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1981-08-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  10. Operating reactors licensing actions summary

    International Nuclear Information System (INIS)

    1982-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  11. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  12. Operating US power reactors

    International Nuclear Information System (INIS)

    Silver, E.G.

    1988-01-01

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the US which have been issued operating licenses. Table 1 shows the number of such reactors and their net capacities as of September 30, 1987, the end of the three-month period covered in this report. Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three months (July, August, and September 1987) covered in this report and the cumulative values of these parameters since the beginning of commercial operation. In addition to the tabular data, this article discusses other significant occurrences and developments that affected licensed US power reactors during this reporting period. Status changes at Braidwood Unit 1, Nine Mile Point 2, and Beaver Valley 2 are discussed. Other occurrences discussed are: retraining of control-room operators at Peach Bottom; a request for 25% power for Shoreham, problems at Fermi 2 which delayed the request to go to 75% power; the results of a safety study of the N Reactor at Hanford; a proposed merger of Pacific Gas and Electric with Sacramento Municipal Utility District which would result in the decommissioning of Rancho Seco; the ordered shutdown of Oyster Creek; a minor radioactivity release caused by a steam generator tube rupture at North Anna 1; and 13 fines levied by the NRC on reactor licensees

  13. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  14. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  15. A gamma heating calculation methodology for research reactor application

    International Nuclear Information System (INIS)

    Lee, Y.K.; David, J.C.; Carcreff, H.

    2001-01-01

    Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)

  16. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Science.gov (United States)

    Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie

    2018-01-01

    The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8Ă—6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor

  17. Modelling of the anti-neutrino production and spectra from a Magnox reactor

    Directory of Open Access Journals (Sweden)

    Mills Robert W

    2018-01-01

    Full Text Available The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8Ă—6152 during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of

  18. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    International Nuclear Information System (INIS)

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed

  19. Nuclear reactor can detonate like an atomic bomb: yes or no

    International Nuclear Information System (INIS)

    Martin, D.

    1974-01-01

    The fission process in a nuclear weapon and in power reactor are compared. The operation of a power reactor is described and the various protective systems and shielding devices are mentioned. It is shown that it is not possible for a nuclear explosion to occur in a power reactor

  20. Technology of nuclear reactors

    International Nuclear Information System (INIS)

    Ravelet, F.

    2016-01-01

    This academic report for graduation in engineering first presents operation principles of a nuclear reactor core. It presents core components, atomic nuclei, the notions of transmutation and radioactivity, quantities used to characterize ionizing radiations, the nuclear fission, statistical aspects of fission and differences between fast and slow neutrons, a comparison between various heat transfer fluids, the uranium enrichment process, and different types of reactor (boiling water, natural uranium and heavy water, pressurized water, and fourth generation). Then, after having recalled the French installed power, the author proposes an analysis of a typical 900 MWe nuclear power plant: primary circuit, reactor, fuel, spent fuel, pressurizer and primary pump, secondary circuit, aspects related to control-command, regulation, safety and exploitation. The last part proposes a modelling of the thermodynamic cycle of a pressurized water plant by using an equivalent Carnot cycle, a Rankine cycle, and a two-phase expansion cycle with drying-overheating

  1. Comparison of xenon-135 and samarium-149 poisoning in the Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-05-01

    The Xe-135 equilibrium reactivity was calculated previously using the WIMSD4 and CITATION codes to estimate the fission product poisoning factor in the Syrian Miniature Neutron Source Reactor (MNSR). The fission product poisoning factor was used to calculate the Xe-135 concentrations and reactivities during the reactor operation, at saturation, and after shutdown. The fission product poisoning factor is used in this study to calculate the Sm-149 concentrations and reactivities during the reactor operation, at saturation, and after shutdown. The results are compared with Xe-135 concentrations and reactivities which were calculated before. The Xe-135 concentration increases versus the reactor operation time and reaches 2.836*10 13 atoms/cm 3 after 6 hours, where the Sm-149 concentration reaches 0.745*10 12 atoms/cm 3 . The Xe-135 and Sm-149 reactivities reach -0.451 and -0.256*10 -3 mk respectively after 6 hours of the reactor operation time. It is found that the Xe-135 and Sm-149 reactivities do not reach the equilibrium reactivities during typical reactor daily operating time. The Xe-235 concentration and reactivity are increased and reach to maximum values after 30000 second from the reactor shut down. Its maximum reactivity is -0.903 mk. Hence, the Xe-235 generates -0.452 mk extra reactivity after the reactor shutdown. The Sm-149 concentration and reactivates are increased after the reactor shut down. The Sm-149 reactivity reaches -0.249*10 -2 mk after 100000 second from the reactor shut down, and the Sm-149 introduces -2.231*10 -3 mk extra reactivity after the reactor shut down. Finally, the amount of Sm-149 accumulated in the reactor core after 1, 2, 5, and 10 years of the reactor operation time are: 3.995*10 -3 , 7.694*10 -3 , 17.226*10 -3 , and 2.892*10 -2 grams respectively. (Author)

  2. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  3. Reactor operations at SAFARI-1

    International Nuclear Information System (INIS)

    Vlok, J.W.H.

    2003-01-01

    A vigorous commercial programme of isotope production and other radiation services has been followed by the SAFARI-1 research reactor over the past ten years - superimposed on the original purpose of the reactor to provide a basic tool for nuclear research, development and education to the country at an institutional level. A combination of the binding nature of the resulting contractual obligations and tighter regulatory control has demanded an equally vigorous programme of upgrading, replacement and renovation of many systems in order to improve the safety and reliability of the reactor. Not least among these changes is the more effective training and deployment of operations personnel that has been necessitated as the operational demands on the reactor evolved from five days per week to twenty four hours per day, seven days per week, with more than 300 days per year at full power. This paper briefly sketches the operational history of SAFARI-1 and then focuses on the training and structuring currently in place to meet the operational needs. There is a detailed step-by-step look at the operator?s career plan and pre-defined milestones. Shift work, especially the shift cycle, has a negative influence on the operator's career path development, especially due to his unavailability for training. Methods utilised to minimise this influence are presented. The increase of responsibilities regarding the operation of the reactor, ancillaries and experimental facilities as the operator progresses with his career are discussed. (author)

  4. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  5. Description of the blowdown test facility COG program on in-reactor fission product release, transport, and deposition under severe accident conditions

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Wood, J.C.

    1987-06-01

    Loss-of-coolant accidents with additional impairment of emergency cooling would probably result in high fuel temperatures leading to severe fuel damage (SFD) and significant fission product activity would then be transported along the PHTS to the break where a fraction of it would be released and transport under such conditions, there are many interacting and sometimes competing phenomena to consider. Laboratory simulations are being used to provide data on these individual phenomena, such as UO 2 oxidation and Zr-UO 2 interaction, from which mathematical models can be constructed. These are then combined into computer codes to include the interaction effects and assess the overall releases. In addition, in-reactor tests are the only source of data on release and transport of short-lived fission product nuclides, which are important in the consequence analysis of CANDU reactor accidents. Post-test decontamination of an in-reactor test facility also provides a unique opportunity to demonstrate techniques and obtain decontamination data relevant to post-accident rehabilitation of CANDU power reactors. Specialized facilities are required for in-reactor testing because of the extensive release of radioactive fission products and the high temperatures involved (up to 2500 degrees Celsius). To meet this need for the Canadian program, the Blowdown Test Facility (BTF) has been built in the NRU reactor at Chalk River. Between completion of construction in mid-1987 and the first Zircaloy-sheathed fuel test in fiscal year 1987/88, several commissioning tests are being performed. Similarly, extensive development work has been completed to permit application of instrumentation to irradiated fuel elements, and in support of post-test fuel assembly examination. A program of decontamination studies has also been developed to generate information relevant to post-accident decontamination of power reactors. The BTF shared cost test program funded by the COG High Temperature

  6. Development of fission micro-chambers for nuclear waste incineration studies

    CERN Document Server

    Fadil, M; Christophe, S; Deruelle, O; Fioni, G; Marie, F; Mounier, C; Ridikas, D; Trapp, J P

    2002-01-01

    The Incineration by Accelerator (INCA) project of the Directorate for Science of Matter of the French Atomic Energy Authority (CEA/DSM) aims to outline the ideal physical conditions to transmute minor actinides in a high intensity neutron flux obtained either by hybrid systems or innovative critical reactors. To measure on-line the incineration rates of minor actinides, we are developing an innovative Double Deposit Fission Chamber (DDFC) working in current mode. Our method is based on a comparison between the isotope under study and a reference material whose nuclear parameters are well known, as sup 2 sup 3 sup 5 U and sup 2 sup 3 sup 9 Pu. This new fission chamber will be used in the High Flux Reactor in Grenoble/France in a neutron flux of 1.2x10 sup 1 sup 5 n cm sup - sup 2 s sup - sup 1 for 50 days, the operating cycle of the reactor. These specific experimental conditions require substantial modifications of the existing chambers. The first experiment will be carried out in fall 2000.

  7. Multipurpose research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Report of the reactor Operators Service - Annex F

    International Nuclear Information System (INIS)

    Zivotic, Z.

    1992-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. For continuous training of the existing operator staff the Service has prepared and published eleven booklets: Nuclear reactor; RA reactor primary coolant loop; System for purification of heavy water; reactor helium system; system for technical water; electric power system; control and operation; ventilation system in the reactor building; special sewage system; construction properties of the reactor core; reactor building and installations. During the reporting period there have been no accidents nor incidents that could affect the reactor personnel [sr

  9. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  10. Mechanistic prediction of fission product release under normal and accident conditions: key uncertainties that need better resolution

    International Nuclear Information System (INIS)

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO 2 -base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles

  11. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  12. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  13. 99Tc, Pb and Ru migration around the Oklo natural fission reactors

    International Nuclear Information System (INIS)

    Gancarz, A.; Cowan, G.; Curtis, D.; Maeck, W.

    1980-01-01

    This work demonstrates the utility of the Oklo uranium ore deposit and natural fission reactors as a long time scale analogue for man-made radioactive waste repositories. It has been shown that the ores and nearby rocks were open to the loss and gain of 99 Tc, ruthenium, and lead relative to uranium. Identified regions of element deficiencies and those which are correspondingly enriched are separated by less than 10 meters. However, more extensive sampling is required to define the overall extent of the element migration. Element fractionation took place on at least two vastly different time scales; 99 Tc was fractionated from ruthenium within one million years of the end of reactor criticality. Lead-uranium fractionation has been ongoing for most of the two billion years since the ores were formed. Diffusion loss of lead from host uraninite appears to be an important process in the fractionation of lead from uranium

  14. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs

  15. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs.

  16. Validity limits of fuel rod performance calculations from radiochemical data at operating LWRs

    International Nuclear Information System (INIS)

    Zaenker, H.; Nebel, D.

    1986-01-01

    There are various calculational models for the assessment of the fuel rod performance on the basis of the activities of gaseous and volatile fission products in the reactor coolant. The most important condition for the applicability of the calculational models is that a steady state release of the fission products into the reactor coolant takes place. It is well known that the models are not applicable during or shortly after reactor transients. The fact that 'unsteady states' caused by the fuel defection processes themselves can also occur in rare cases at steady reactor operation has not been taken into account so far. A test of validity is suggested with the aid of which the applicability of the calculational models can be checked in any concrete case, and the misleading of the reactor operators by gross misinterpretation of the radiochemical data can be avoided. The criteria of applicability are the fission product total activity, the slope tan α in the relationship lg (R/sub i//B/sub i/) proportional to lg lambda/sub i/ for the gaseous and volatile fission products, and the activity of the nonvolatile isotope 239 Np. (author)

  17. Fission Product Release from Spent Nuclear Fuel During Melting

    International Nuclear Information System (INIS)

    Howell, J.P.; Zino, J.F.

    1998-09-01

    The Melt-Dilute process consolidates aluminum-clad spent nuclear fuel by melting the fuel assemblies and diluting the 235U content with depleted uranium to lower the enrichment. During the process, radioactive fission products whose boiling points are near the proposed 850 degrees C melting temperature can be released. This paper presents a review of fission product release data from uranium-aluminum alloy fuel developed from Severe Accident studies. In addition, scoping calculations using the ORIGEN-S computer code were made to estimate the radioactive inventories in typical research reactor fuel as a function of burnup, initial enrichment, and reactor operating history and shutdown time.Ten elements were identified from the inventory with boiling points below or near the 850 degrees C reference melting temperature. The isotopes 137Cs and 85Kr were considered most important. This review serves as basic data to the design and development of a furnace off-gas system for containment of the volatile species

  18. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  19. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  20. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  1. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Ruffenach, J.-C.

    1979-09-01

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years [fr

  2. Operational and safety characteristics of reactors with materials having remarkable indeterminateness in data

    International Nuclear Information System (INIS)

    Lelek, V.; Szatmary, Z.

    1999-01-01

    High Pu isotopes and minor actinides occur in contemporary reactors only in the very small amount and that is why we have not needed their data with high precise and it was also practically excluded to test them on the standard reactors measurements. On the contrary in the trans mutational technologies reactors consist of only such fissionable materials. Taking into account how hard was in the past to have good uranium libraries we can hardly rely that there will be such in our disposal before the start up the first experimental reactor for transmutation. (Authors)

  3. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  4. Safety operation of training reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    2001-01-01

    There are three nuclear research reactors in the Czech Republic in operation now: light water reactor LVR-15, maximum reactor power 10 MW t , owner and operator Nuclear Research Institute Rez; light water zero power reactor LR-0, maximum reactor power 5 kW t , owner and operator Nuclear Research Institute Rez and training reactor VR-1 Sparrow, maximum reactor power 5 kW t , owner and operate Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. The training reactor VR-1 Vrabec 'Sparrow', operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly it is designed for training the students of Czech universities, preparing the experts for the Czech nuclear programme, as well as for certain research work, and for information programmes in the nuclear programme, as well as for certain research work, and for information programmes in sphere of using the nuclear energy (public relations). (author)

  5. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  6. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  7. Mathematical game type optimization of powerful fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    To obtain maximum speed of putting into operation fast breeders it is recommended on the initial stage of putting into operation these reactors to apply lower power which needs less fission materials. That is why there is an attempt to find a configuration of a high-power reactor providing maximum power for minimum mass of fission material. This problem has a structure of the mathematical game with two partners of non-zero-order total and is solved by means of specific aids of theory of games. Optimal distribution of fission and breeding materials in a multizone reactor first is determined by solution of competitive game and then, on its base, by solution of the cooperation game. The second problem the solution for which is searched is developed from remark on the fact that a reactor with minimum coefficient of flux heterogenity has a configuration different from the reactor with power coefficient heterogenity. Maximum burn-up of fuel needs minimum heterogenity of the flux coefficient and the highest power level needs minimum coefficient of power heterogenity. That is why it is possible to put a problem of finding of the reactor configuration having both coefficients with minimum value. This problem has a structure of a mathematical game with two partners of non-zero-order total and is solved analogously giving optimal distribution of fuel from the new point of view. In the report is shown that both these solutions are independent which is a result of the aim put in the problem of optimization. (author)

  8. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  9. Regulatory simplification of fission product chemistry

    International Nuclear Information System (INIS)

    Read, J.B.J.; Soffer, L.

    1986-01-01

    The requirements for design provisions intended to limit fission product escape during reactor accidents have been based since 1962 upon a small number of simply-stated assumptions. These assumptions permeate current reactor regulation, but are too simple to deal with the complex processes that can reasonably be expected to occur during real accidents. Potential chemical processes of fission products in severe accidents are compared with existing plant safety features designed to minimize off-site consequences, and the possibility of a new set of simply-stated assumptions to replace the 1982 set is discussed

  10. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  11. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  12. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  13. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  14. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  15. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  16. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  17. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  18. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  19. Netherlands Reactor Centre

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Briefly reviews the last year's work of the twenty year old Netherlands Reactor Centre (RCN) in the fields of reactor safety, fissile material, nuclear fission, non-nuclear energy systems and overseas co-operation. The annual report thus summarised is the last one to appear under the name of RCN. The terms of reference of the organisation having been broadened to include research into energy supply in general, it is to be known in future as the Netherlands Energy Research Centre (ECN). (D.J.B.)

  20. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  1. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  2. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  3. The programme 'fission product deposition' at the IRB of Juelich nuclear research centre

    International Nuclear Information System (INIS)

    Gottaut, H.; Iniotakis, N.; Malinowski, J.; Muenchow, K.H.; Sackmann, B.

    1976-01-01

    The transport and deposition behaviour of the non-gaseous fission and activation products in the primary circuit of HTR-type reactors determines the possibility of inspection and maintenance of single components of the primary circuit as well as the safety of the reactor in normal operation and during accidents. For the investigation of these problems, the programme 'fission product deposition' was started at Juelich nuclear research centre in 1969 in cooperation with a number of industrial firms. The programme covers in-pile and out-of-pile experiments, in which the HTR conditions are simulated as realistically as possible, as well as various laboratory experiments and extensive theoretical studies. It is the objective of this work to establish a realistic physical model and computer programme with which the transport and deposition of nuclides in the primary circuit of HTR reactors can be calculated in advance. A report is given on the experimental and theoretical studies carried out at the IRB of Juelich nuclear research centre. (orig./AK) [de

  4. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  5. Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a open-quotes critical eventclose quotes in a geologic system

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.L.

    1996-01-01

    Natural nuclear fission reactors are only known in two uranium deposits in the world, the Oklo and Bangombe deposits of the Franceville basin: Gabon. Since 1982, five new reactor zones have been discovered in these deposits and studied since 1989 in a cooperative European program. New geological, mineralogical, and geochemical studies have been carried out in order to understand the behavior of the actinides and fission products which have been stored in a geological environment for more than 2.0 Ga years. The Franceville basin and the uranium deposits remained geologically stable over a long period of time. Therefore, the sites of Oklo and Bangombe are well preserved. For the reactors, two main periods of actinide and radionuclides migration have been observed: during the criticality, under P-T conditions of 300 bars and 400-500 degrees C, respectively, and during a distention event which affected the Franceville basin 800 to 900 Ma ago and which was responsible for the intrusion of dolerite dikes close to the reactors. New isotopic analyses on uranium dioxides, clays, and phosphates allow us to determine their respective importance for the retention of fission products. The UO 2 matrix appears to be efficient at retaining most actinides and fission products such as REEs, Y, and Zr but not the volatile fission products (Cd, Cs, Xe, and Kr) nor Rb, Sr, and Ba. Some fissiogenic elements such as Mo, Tc, Ru, Rh, Pd, and Te could have formed metallic and oxide inclusion in the UO 2 matrix which are similar to those observed in artificial spent fuel. Clays and phosphate minerals also appear to have played a role in the retention of fissiogenic REEs and also of Pu. 82 refs., 21 figs., 12 tabs

  6. Dosimetry of fission neutrons in a 1-W reactor, UTR-KINKI

    CERN Document Server

    Endo, S; Yoshitake, Y

    2002-01-01

    The energy spectrum of fission neutrons in the biological irradiation field of the Kinki University reactor, UTR-KINKI, has been determined by a multi-foil activation analysis coupled with artificial neural network techniques and a Au-foil activation method. The mean neutron energy was estimated to be 1.26+-0.05 MeV from the experimentally determined spectrum. Based on this energy value and other information, the neutron dose rate was estimated to be 19.7+-1.4 cGy/hr. Since this dose rate agrees with that measured by a pair of ionizing chambers (21.4 cGy/hr), we conclude that the mean neutron energy could be estimated with reasonable accuracy in the irradiation field of UTR-KINKI. (author)

  7. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  8. Design a computational program to calculate the composition variations of nuclear materials in the reactor operations

    International Nuclear Information System (INIS)

    Mohmmadnia, Meysam; Pazirandeh, Ali; Sedighi, Mostafa; Bahabadi, Mohammad Hassan Jalili; Tayefi, Shima

    2013-01-01

    Highlights: ► The atomic densities of light and heavy materials are calculated. ► The solution is obtained using Runge–Kutta–Fehlberg method. ► The material depletion is calculated for constant flux and constant power condition. - Abstract: The present work investigates an appropriate way to calculate the variations of nuclides composition in the reactor core during operations. Specific Software has been designed for this purpose using C#. The mathematical approach is based on the solution of Bateman differential equations using a Runge–Kutta–Fehlberg method. Material depletion at constant flux and constant power can be calculated with this software. The inputs include reactor power, time step, initial and final times, order of Taylor Series to calculate time dependent flux, time unit, core material composition at initial condition (consists of light and heavy radioactive materials), acceptable error criterion, decay constants library, cross sections database and calculation type (constant flux or constant power). The atomic density of light and heavy fission products during reactor operation is obtained with high accuracy as the program outputs. The results from this method compared with analytical solution show good agreements

  9. The effect of stimulated fission products on the structure and the mechanical properties of zircaloy

    International Nuclear Information System (INIS)

    Holub, F.

    1982-01-01

    The objective of investigation was to study the long-term effects of individual simulated fission products on the mechanical properties and the structure of Zircaloy. Tensile Test specimens of Zircaloy were annealed with important simulated fission products at 350 0 C up to 10,000 hours and at higher temperatures (500, 700 0 C) up to 2,000 hours. The principal methods of investigation on annealed Zircaloy specimens were tension tests at room temperature and at 400 0 C, scanning electron microscopy and microprobe technique, X-ray diffraction, X-ray fluorescence, optical metallography. The action of fission products at normal temperatures of reactor operation will give rise to a small enhancement of strength and a small drop of ductility of the fuel cladding material only. At high fuel pin temperatures which may be realized under abnormal operation conditions, some of the fission products potentially will produce detrimental consequences on the integrity of fuel pins. The most effective fission products will be: lanthanum oxide, followed by the earth alkaline oxides and the other rare earth oxides, molybdenum, iodine and cadmium

  10. Systematics of criticality properties of actinide nuclides and its bearing on the long lived fission waste problem

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Garg, S.B.; Iyengar, P.K.

    1989-01-01

    This paper reports on a systematic analysis of the criticality parameters of over twenty fissile and fertile isotopes of eight transthorium actinide elements that has been carried out by us. It is observed that K ∠increases and critical mass decreases monotonically with the fissility parameter (Z 2 /A) of the nuclides. This implies that each and every isotope of transuranic elements such as Np, Am, Cm etc. which are produced as by-products during reactor operation is a more valuable nuclear fuel than the corresponding fissile/fissible isotopes of plutonium. This finding has a profound bearing on the long lived fission waste problem and supports the view that the byproduct actinide elements should be separated from the high level waste stream and recycled back into fission reactors, thereby eliminating one of the commonly voiced concerns regarding the acceptability of nuclear fission power

  11. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  12. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  13. Simulating fission product transients via the history-based local-parameter methodology

    International Nuclear Information System (INIS)

    Jenkins, D.A.; Rouben, B.; Salvatore, M.

    1993-01-01

    This paper describes the fission-product-calculation capacity of the history-based local-parameter methodology for evaluating lattice properties for use in core-tracking calculations in CANDU reactors. In addition to taking into account the individual past history of each bundles flux/power level, fuel temperature, and coolant density and temperature that the bundle has seen during its stay in the core, the latest refinement of the history-based method provides the capability of fission-product-drivers. It allows the bundle-specific concentrations of the three basic groups of saturating fission products to be calculated in steady state or following a power transient, including long shutdowns. The new capability is illustrated by simulating the startup period following a typical long-shutdown, starting from a snapshot in the Point Lepreau operating history. 9 refs., 7 tabs

  14. TMI-2 [Three Mile Island] fission product inventory program: FY-85 status report

    International Nuclear Information System (INIS)

    Langer, S.; Croney, S.T.; Akers, D.W.; Russell, M.L.

    1986-11-01

    This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core

  15. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2009

    International Nuclear Information System (INIS)

    2014-02-01

    JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. In the fiscal year 2009, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 6 cycles (daily operation : 24 days). The volume contains 138 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, prompt gamma-ray analyses, neutron activation analyses, RI productions, and others submitted by the users in JAEA and from other organizations. (author)

  16. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2005

    International Nuclear Information System (INIS)

    2007-03-01

    In the fiscal year 2005, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 37 cycles (daily operation : 137 days). JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography. Irradiation for activation analyses, radioisotope (RI) productions, fission tracks. Irradiation test of reactor materials etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT). Prompt gamma-ray analyses. Sensitivity measurement of radiation detectors. Experiment in the nuclear reactor training. Practice of Reactor operation. Irradiation for activation analyses, RI productions, fission tracks etc. The volume contains 100 activity reports, which are categorized into the fields of neutron scattering (9 subcategories), neutron radiography, neutron activation analyses, RI productions, prompt gamma-ray analyses, and others submitted by the users in JAEA and from other organizations. (author)

  17. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2006

    International Nuclear Information System (INIS)

    2009-01-01

    In the fiscal year 2006, the research reactor JRR-3 was operated 7 cycles (cycle operation: 26 days/cycle) for utilization sharing of the facility. And JRR-4 was operated 37 cycles (daily operation: 151 days). JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. The volume contains 294 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, neutron activation analyses, RI productions, prompt gamma-ray analyses, and others submitted by the users in JAEA and from other organizations. (author)

  18. Activity report on the utilization of research reactors (JRR-3 and JRR-4). Japanese fiscal year, 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    JRR-3 is used for the purposes below; Experimental studies such as neutron scattering, prompt gamma-ray analyses, neutron radiography, Irradiation for activation analyses, radioisotope (RI) productions, fission tracks, Irradiation test of reactor materials, etc. JRR-4 is used for the purposes below; Medical irradiation (Boron Neutron Capture Therapy : BNCT), Prompt gamma-ray analyses, Sensitivity measurement of radiation detectors, Experiment in the nuclear reactor training, Practice of Reactor operation, Irradiation for activation analyses, RI productions, fission tracks, etc. In the fiscal year 2009, The research reactor JRR-3 was operated 7 cycles (cycle operation : 26days/cycle) for utilization sharing of the facility. And JRR-4 was operated 6 cycles (daily operation : 24 days). The volume contains 138 activity reports, which are categorized into the fields of neutron scattering (11 subcategories), neutron radiography, prompt gamma-ray analyses, neutron activation analyses, RI productions, and others submitted by the users in JAEA and from other organizations. (author)

  19. Safety device for nuclear fission reactors

    International Nuclear Information System (INIS)

    Brownlee, M.L.

    1982-01-01

    A plurality of radially arranged and neutron absorbing baffles are stacked in vertical sets under the fuel core assemblies, and the whole enclosed in a bottle shaped containment vessel. The radially arranged baffles of each set extend vertically, and each set has double the number of baffles as the set above it in the stack. A melt-down of a fuel core assembly drops the fissioning nuclear fuel into the stacked sets of baffles, there, as it passes through, to be progressively divided, redivided and dispersed in smaller and smaller masses between the doubling number of baffles in safe fuel pellet size. Neutron absorbing containment prevents contamination of the environment and together with cooling means stops fissioning of fuel

  20. Nuclear power plant with improved arrangements for the removal of post fission and emergency heating

    International Nuclear Information System (INIS)

    Buescher, E.; Vinzens, K.

    1977-01-01

    This is concerned with additional equipment for emergency heat removal in a sodium cooled reactor, which operates on failure of the post fission heat removal system. The space for pressure relieving spaces and concrete masses as heat sinks within the reactor cell is no longer required. In this nuclear power plant, a heat exchanger chain transmits heat and power: There is a first sodium circuit between pressure vessel and the first heat exchanger, a second one between the first and second heat excahngers, and a third (Steam) circuit with turbine, condenser and return pump. A fourth circuit connects the secondary side of the condenser with a cooling tower. There is a threee component heat excahgner in the primary circuit after the first heat exchanger, which is built around the first heat exchanger, and is sealed into an unloading space. This space is situated next to the reactor cell and is above the operating level of the sodium in the pressure vessel. It is connected to the cell by an upper duct, normally closed by a bursting disc, and by a lower duct. In the three comopnent heat exchanger, a liquid lead-bismuth eutectic mixture transmits the heat from sodium pipes to water pipes. In normal operation it is used for steam superheating or feedwater preheating. The three component heat exchanger bridges the first and second heat exchangers as an emergency heat exchanger. If in such a case the post fission heat removal has failed, the sodium evaporating in the pressure vessel flows into the unloading space and condenses on the ribs of the emergency heat exchanger. The post fission heat is fed by the water secondary medium directly into the tertiary circuit. The sodium condensate flows back from the unloading space via the lower duct into the reactor cell and maintains the emergency level there. (RW) 891 RW [de

  1. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  2. Fission product release mechanisms and groupings

    International Nuclear Information System (INIS)

    Iglesia, F.C.; Brito, A.C.; Liu, Y.

    1995-01-01

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author)

  3. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  4. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  5. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  6. Fission product behavior in the Peach Bottom and Fort St. Vrain HTGRs

    International Nuclear Information System (INIS)

    Hanson, D.L.; Baldwin, N.L.; Strong, D.E.

    1980-11-01

    Actual operating data from Peach Bottom and Fort St. Vrain were compared with code predictions to assess the validity of the methods used to predict the behavior of fission products in the primary coolant circuit. For both reactors the measured circuit activities were significantly below design values, and the observations generally verify the codes used for large HTGR design

  7. A study of fission product transport from failed fuel during N reactor postulated accidents

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1989-09-01

    This report presents a study of fission product transport behavior in N Reactor during a severe accident. More detail about fission product behavior than has previously been available is provided and key parameters that control this behavior are identified. The current report is an extension to a previous interum study that has added an aerosol formation model, replaced an older aerosol deposition model with an improved correlation, and incorporated results of a revised analysis of the process tubes. The LACE LA1 and LA3 tests are used to assess the revised model applied to determine aerosol deposition. The study concludes that a cesium iodide aerosol is likely to form near the downstream end of the process tubes. Transport of most of the released cesium and iodine as well as less volatile material depends on the behavior of this aerosol and the behavior is sensitive to several parameters that are not well known. If the environment is very clean and effluent flow is sufficient to support oxidation of the zircaloy and uranium of the process tubes, almost none of the aerosol deposits in the riser. Reduction of the effluent flow or the presence of high concentrations of aerosols of very low volatile material like zirconium, uranium, or their oxides causes deposition of the fission products in the riser piping. 24 refs., 18 figs., 11 tabs

  8. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  9. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  10. Digital computer operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Colley, R.W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state

  11. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  12. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  13. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  14. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  15. SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

    Directory of Open Access Journals (Sweden)

    WOLFGANG HARTMANN

    2013-10-01

    Full Text Available This paper deals with the Safety Analysis for CANDU® 6 nuclear reactors as affected by main Heat Transport System (HTS aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermalhydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermalhydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermalhydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.

  16. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  17. Fission and activation of uranium by fashion-plasma neutrons

    International Nuclear Information System (INIS)

    Lee, J.H.; Hochl, F.; McFarland, D.R.

    1978-01-01

    Disks of enriched and depleted uranium were irradiated by neutrons from the D-D fusions in a dense plasma-focus. A fission yield of 10 6 fissions-cm -3 in U 235 per pulse was determined with Ge(Li) gamme-ray spectrometry. Activation of U 238 caused increased beta activity after the plasma-neutron irradiation but alpha-particle spectrometry showed Pu 239 production was negligible. In addition, with a disk of lithium in the apparatus, 13.3 MeV neutrons from 7 Li(d,n) 8 Be was observed with a 80-m time-of-flight neutron detector. Dense plasma focuses are now operated not only in a single coaxial gun, but also in improved geometries, such as the hypocycloidal pinch and the staged plasma focus, from which a multiple plasma-focus array suitable for experimental verification of, and eventuel development into a fusion-fission hybrid reactor could be produced. (orig.) [de

  18. Development of evaluation method of fuel failure fraction during the High Temperature Engineering Test Reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Yoshimuta, Shigeharu; Tobita, Tsutomu; Sato, Masashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-05-01

    The High Temperature Engineering Test Reactor (HTTR) uses coated particles as fuel. During normal operation, short-lived noble gases are mainly released by diffusion from fuel particles with defects in their coating layers (i.e., failed particle). Since noble gases do not plate out on the inner surfaces of primary cooling system, their activities in primary coolant reflect fuel failure fraction in the core. An evaluation method was developed to predict failure fraction of coated fuel particles during normal operation of the HTTR. The method predicts core-average and hot plenum regionwise failure fractions based on the fractional releases, (R/B)s, of noble gases. The (R/B)s are calculated by fission gas concentration measurements in the primary cooling system of the HTTR. Recent fabrication data show that through-coatings failure fraction is extremely low. Then, fractional release from matrix contamination uranium, which is background for accurate evaluation of the fuel failure fraction, should be precisely predicted. This report describes an evaluation method of fuel failure fraction from measurements in the HTTR together with a fission gas release model from fuel compact containing failed particles and matrix contamination uranium. (author)

  19. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  20. TRIGA 14 MW Research Reactor Status and Utilization

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  1. Improved inherent safety in liquid fuel reactors

    International Nuclear Information System (INIS)

    Taube, M.

    1982-01-01

    The molten salt reactor system divided into core (thermal and fast) and breeding zone (fission breeder reactor, fusion hybrid system, accelerator-spallation system) has some unique inherent safety properties: a) reduced inventory of fission products during normal operation due to on-line chemical reprocessing and in-core gas purging; b) fast removal of freshly bred fissile nuclides and fission products from the breeding zone (the so called suppressed fission system); c) pressureless fuel and primary coolant system; d) elimination of the possibility of a violent exoenergetic chemical reaction with air, water or metals; e) elimination of the possibility of gaseous hydrogen production during an accident; f) provides a non-engineered feature of dumping of fuel from the core and heat exchanger to a safe drain tank; g) presence of a large heat sink in the form of an inactive diluent salt; h) possibility of natural convection heat removal during an accident and even normal operation (by means of gas lifting); i) dissipation of the remaining decayheat by spraying water on the containment from outside, which allows to manage the worst accident; i) Even in the case of the destruction in the war by conventional or nuclear weapon the contaminated land is significantly reduced. The world-wide present activity in the field of molten salt technology is reviewed. (orig.)

  2. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  3. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    Science.gov (United States)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite

  4. Fission product release mechanisms and groupings

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, F C; Brito, A C; Liu, Y [Ontario Hydro, Toronto, ON (Canada); and others

    1996-12-31

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author) 92 refs., 6 tabs.

  5. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  6. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs

  7. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  8. Reactor operation monitor

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1982-01-01

    Purpose: To improve the working performance of a reactor by extending the range for the power conditioning due to the control rod operation and flow rate control. Constitution: The results of calculations for the power distribution and the burn-up degree distribution of the reactor core from a reactor performance computer that processes each of measuring signals in a nuclear power plant are used as the inputs for a computing device of the fuel rod power hysteresis to form the power hysteresis for each of the fuel rods up to the present time. The data are used as the inputs for the computing device of the fuel rod performance index, and the fuel rod performance index representing the critical values for the stresses in the fuel rod cladding tubes and the critical values for the duration of the stresses determined from the power hysteresis and the burn-up degree of the fuel rod are calculated for each of the fuel rods. Accordingly, the power conditioning can be carried out upon power-up in the reactor while monitoring the fuel rod performance index f(t) for each of the fuel assemblies, whereby the range for the power conditioning due to the control rod operation and the flow rate control can be extended relative to fuel assemblies in which f(t) is smaller than 1. (Yoshino, Y.)

  9. Technical measurement of small fission gas inventory in fuel rod with laser puncturing system

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Kim, Sung Ryul; Lee, Byoung Oon; Yang, Yong Sik; Baek, Sang Ryul; Song, Ung Sup

    2012-01-01

    The fission gas release cause degradation of fuel rod. It influences fuel temperature and internal pressure due to low thermal conductivity. Therefore, fission gas released to internal void of fuel rod must be measured with burnup. To measure amount of fission gas, fuel rod must be punctured by a steel needle in a closed chamber. Ideal gas law(PV=nRT) is applied to obtain atomic concentration(mole). Steel needle type is good for large amount of fission gas such as commercial spent fuel rod. But, some cases with small fuel rig in research reactor for R/D program are not available to use needle type because of large chamber volume. The laser puncturing technique was developed to solve measurement of small amount of fission gas. This system was very rare equipment in other countries. Fine pressure gage and strong vacuum system were installed, and the chamber volume was reduced at least. Fiber laser was used for easy operation

  10. Reactor operation feed-back in France

    International Nuclear Information System (INIS)

    Feltin, C.; Fourest, B.; Libmann, J.

    1982-09-01

    The Nuclear Safety Department (DSN), technical support of French Safety Authorities, is, in particular, in charge of the analysis of reactor operation and of measures taken consequently to incidents. It proposed the criteria used to select significant incidents; it analyzes such incidents. DSN also analyzes the operating experience of each plant, several years after starting. It examines foreign incidents to assess in what extent lessons learned can be applied to french reactors. The examples presented show that to improve the safety of units operation, the experience feed-back leads to make arrangements, or modifications concerning not only circuits or materials but often procedures. Moreover they show the importance of procedures concerning the operations carried out during reactor shutdown

  11. Method of reactor operation

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1982-01-01

    Purpose: To prevent stress corrosion cracks in stainless steels caused from hydrogen peroxide in reactor operation in which the density of hydrogen peroxide in the reactor water is controlled upon reactor start-up. Method: A heat exchanger equipped with a heat source for applying external heat is disposed into the recycling system for reactor coolants. Upon reactor start-up, the coolants are heated by the heat exchanger till arriving at a temperature at which the dissolving rate is faster than the forming rate of hydrogen peroxide in the coolants, and nuclear heating is started after reaching the above temperature. The temperature of the reactor water is increased in such a manner and, when it arrives at 140 0 C, extraction of control elements is started and the heat source for the heat exchanger is interrupted simultaneously. In this way spikes in the density of hydrogen peroxide are suppressed upon reactor start-up to thereby decrease the stress corrosion cracks in stainless steels. (Horiuchi, T.)

  12. Safety related considerations for operation with defected elements in EBR-II

    International Nuclear Information System (INIS)

    Fryer, R.M.; Sackett, J.I.; Lambert, J.D.B.

    1976-01-01

    Traditionally, EBR-II has employed the 'shutdown and remove' philosophy when breached fuel elements are encountered. This mode of operation maintained in-plant inventories of fission products at low levels and allowed certain fission product detection systems to be employed as automatic plant shutdown devices. Information from fuel failure propagation studies and fast reactor operation indicates that shutdown under these conditions is unwarranted. Analytical studies, as well as fast reactor experience, further indicate that failure propagation, if it occurs at all, will not cross adjacent subassembly boundaries. Therefore, the 'shutdown and remove' philosophy can be liberalized to allow the demonstration of safety during a run-beyond-clad-breach mode of operation. This mode of operation is essential to the demonstration of the economics of commercial LMFBR systems

  13. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  14. Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimentersa

    Directory of Open Access Journals (Sweden)

    Coburn Jonathan

    2016-01-01

    Full Text Available When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time.

  15. Regulation for installation and operation of marine reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  16. Inherent safety phenomenon of fission-gas induced axial extrusion in oxide and metal fueled LMFBRs

    International Nuclear Information System (INIS)

    Miles, K.J.; Kalimullah.

    1985-01-01

    The current emphasis in LMFBR design is to develop reactor systems that contain as many features as possible to limit the severity of hypothetical accidents and provide the maximum time before corrective action is required while maintaining low capital costs. One feature is the possibility of fission-gas induced axial extrusion of the fuel within the intact cladding. The potential exists for this phenomenon to enable the reactor to withstand most accidents of the TOP variety, or at least provide an extended time for corrective action to be taken. Under transient conditions which produce a heating of the fuel above its nominal operating temperature, thermal expansion of the material axially produces a negative reactivity effect. This effect is presently considered in most accident analysis codes. The phenomenon of fission-gas induced axial extrusion has received renewed interest because of the consideration of metal alloys of uranium and plutonium for the fuel in some current reactor designs

  17. Progress in Establishment of Fission Mo Production Technology in Korea

    International Nuclear Information System (INIS)

    Lee, Jun Sig

    2013-01-01

    Research activities have been made in both the development of the fission Mo production process and the designing of the production facility that will be established at Kijang, Korea including a new research reactor in 2017. Progress in the process development for target preparation, target dissolution, Mo extraction, and purification has been made. It is also a great concern to minimize the radioactive wastes or at least to generate the wastes in readily treatable forms in the project. After series of cold experiments, the target dissolution and solution formulation for a column operation are optimized. Progress in the design of the production facility has been made. Two trains of hot cells including the waste storages have been proposed for the alternative operation of the facility. A radioisotope production facility is designed to locate next to the fission Mo production building to provide a simpler and easier handling pathway of the products

  18. Fission product data for thermal reactors. Final report. Part 2. Users manual for EPRI-CINDER code and data

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product absorption chain library using ENDF/B-IV decay data and cross sections processed with a typical light water reactor spectrum for a modified version of the original CINDER code has been developed as described in Part 1. CINDER is a general point-depletion and fission product code based on an analytical solution of the equations describing nuclides coupled in any linear sequence of radioactive decays and neutron absorptions. The basic code has been in wide use for a number of years. Previously, the user was required to specify all physical data. This report describes the chain library in detail and a modified version of the basic CINDER code (EPRI-CINDER) that is still compatible with existing libraries

  19. Legal and Regulatroy Obstacles to Nuclear Fission Technology in Space

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    In forecasting the prospective use of small nuclear reactors for spacecraft and space-based power stations, the U.S. Air Force describes space as "the ultimate high ground," providing access to every part of the globe. But is it? A report titled "Energy Horizons: United States Air Force Energy Science &Technology Vision 2011-2026," focuses on core Air Force missions in space energy generation, operations and propulsion and recognizes that investments into small modular nuclear fission reactors can be leveraged for space-based systems. However, the report mentions, as an aside, that "potential catastrophic outcomes" are an element to be weighed and provides no insight into the monumental political and legal will required to overcome the mere stigma of nuclear energy, even when referring only to the most benign nuclear power generation systems - RTGs. On the heels of that report, a joint Department of Energy and NASA team published positive results from the demonstration of a uranium- powered fission reactor. The experiment was perhaps most notable for exemplifying just how effective the powerful anti-nuclear lobby has been in the United States: It was the first such demonstration of its kind in nearly fifty years. Space visionaries must anticipate a difficult war, consisting of multiple battles that must be waged in order to obtain a license to fly any but the feeblest of nuclear power sources in space. This paper aims to guide the reader through the obstacles to be overcome before nuclear fission technology can be put to use in space.

  20. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs