WorldWideScience

Sample records for operating nuclear power

  1. Operate a Nuclear Power Plant.

    Science.gov (United States)

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  2. Nuclear power plant operation 2016. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  3. Nuclear power plant operation and training

    Energy Technology Data Exchange (ETDEWEB)

    Sanae, Katsushige [Tokyo Electric Power Co., Inc. (Japan); Mitsumori, Kojiro

    1997-07-01

    In this report, the system for operation of a nuclear power plant and the qualities required for its operators were summarized. In Kashiwazaki-Kariwa Atomic Power Plant of the Tokyo Electric Power Co., Inc. operation is continuously made by 6 groups containing each 10 workers on three shifts. A group including the person in charge participates in the operation through cooperation of the control center and the respective spots. The group leaders are chosen from those approved as a person responsible to its operation. The conditions for the person responsible were as follows: to receive simulator training for senior operator, to have more than 7 years experience of operating a nuclear power plant, to pass a practical examination on the ordinary operation and the emergency one, to receive a training course to master the knowledge and techniques for operating an atomic reactor and to success the oral examination on practical knowledge required to perform the duty. Further, the simulators for ABWR training produced by Toshiba Corp. and Hitachi Ltd. were introduced as an example. And the practical training procedures to manipulate the simulator were presented. (M.N.)

  4. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Science.gov (United States)

    2010-03-26

    ... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Perry Nuclear Power Plant... Manager, Plant Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear...

  5. Operating experience with nuclear power plants 2015. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2016-07-01

    The VGB Technical Committee ''Nuclear Plant Operation'' has been exchanging operating experience about nuclear power plants for more than 30 years. Plant operators from several European countries are participating in the exchange. A report is given on the operating results achieved in 2015, events important to plant safety, special and relevant repair, and retrofit measures from Germany. The second part of this report will focus on nuclear power plant in Belgium, Finland, the Netherlands, Switzerland, and Spain.

  6. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Science.gov (United States)

    2013-08-19

    ... COMMISSION Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear... petitioners'') has requested that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant... with regard to James A. Fitzpatrick Nuclear Power Plant (Fitzpatrick), Vermont Yankee Nuclear...

  7. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background First.... NFP-58, which authorizes operation of the Perry Nuclear Power Plant, Unit 1 (PNPP). The license... rule's compliance date for all operating nuclear power plants, but noted that the...

  8. China’s Nuclear Power Plants in Operation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Qinshan Plant Phase I Located in Haiyan,Zhejiang Province,Qinshan Nuclear Power Plant Phase I is t he first 300-megawatt pressurized water reactor (PWR) nuclear power plant independently designed,constructed,operated and managed by China.The plant came into commercial operation in April 1994.

  9. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  10. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  11. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is...

  12. U.S. Forward Operating Base Applications of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  13. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  14. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  15. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  16. A methodology for nuclear power plant operational events evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jeferson, E-mail: jeferson@cnen.gov.br [Comissao Nacional de Energia Nuclear (CGRC/CNEN), Rio de janeiro, RJ (Brazil). Coordenacao Geral de Reatores e do Ciclo de Combustivel; Costa, Sergio Dias, E-mail: sergiodiascosta@hotmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  17. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  18. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S. (ed.)

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  19. 77 FR 35080 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

    Science.gov (United States)

    2012-06-12

    ... fossil fuel generation, renewable energy sources, demand-side measures such as energy conservation, and... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

  20. Operational considerations for a crewed nuclear powered space transportation vehicle

    Science.gov (United States)

    Borrer, Jerry L.; Hoffman, Stephen J.

    1993-01-01

    Applying nuclear propulsion technology to human space travel will require new approaches to conducting human operations in space. Due to the remoteness of these types of missions, the crew and their vehicle must be capable of operating independent from Earth-based support. This paper discusses current operational studies which address methods for performing these types of remote and autonomous missions. Methods of managing the hazards to humans who will operate these high-energy nuclear-powered transportation vehicles also is reviewed. Crew training for both normal and contingency operations is considered. Options are evaluated on how best to train crews to operate and maintain the systems associated with a nuclear engine. Methods of maintaining crew proficiency during the long months of space travel are discussed. Vehicle health maintenance also will be a primary concern during these long missions. A discussion is presented on how on-board vehicle health maintenance systems will monitor system trends, identified system weaknesses, and either isolate critical failures or provide the crew with adequate warning of impending problems.

  1. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  2. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Science.gov (United States)

    2011-11-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized..., NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant...

  3. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  4. The training of operating personnel at Spanish nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Antonio Burgos, E-mail: aburgos@tecnatom.es [TECNATOM S.A.. Escuela de Formacion Almaraz y Trillo, Madrid (Spain)

    2011-07-01

    An essential condition in order to ensure that nuclear power plants are operated reliably and safely is the availability in the Control Room of duly qualified persons capable both of preventing accidents and of responding to them should they occur. Training of the Control Room operating crews is accomplished in two major stages: a lengthy process of initial training in which the knowledge acquired at high school and university is built upon, leading to the specialisation required to appropriately carry out the tasks to be performed in the Control Room, and a continuous training program aimed at maintaining and improving the knowledge and skills required to operate the plant, with feedback of the lessons learned from the industry's operating experience. The use of full-scope simulators replicating the physical conditions and environment of the Control Room allows the period of initial training to be reduced and is the most appropriate method for the continuous training program of the control room personnel, since these simulators increase the realism of the training scenarios, help to better understand the response of the plant and provide an accurate idea of transient response times. Tecnatom is the Training Centre for Spanish Operators; it is the 'Operator Training Factory' and its mission is to train the nuclear power plant operating personnel in both technological fundamentals and the development of diagnostic skills through practical scenarios on the simulator and on-the-job training. Our training programmes are based on a SAT (Systematic Approach to Training) methodology that has been implemented at both Spanish and overseas plants. (author)

  5. Cognitive skill training for nuclear power plant operational decision making

    Energy Technology Data Exchange (ETDEWEB)

    Mumaw, R.J.; Swatzler, D.; Roth, E.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Thomas, W.A. [Quantum Technologies, Inc., Oak Brook, IL (United States)

    1994-06-01

    Training for operator and other technical positions in the commercial nuclear power industry traditionally has focused on mastery of the formal procedures used to control plant systems and processes. However, decisionmaking tasks required of nuclear power plant operators involve cognitive skills (e.g., situation assessment, planning). Cognitive skills are needed in situations where formal procedures may not exist or may not be as prescriptive, as is the case in severe accident management (SAM). The Westinghouse research team investigated the potential cognitive demands of SAM on the control room operators and Technical Support Center staff who would be most involved in the selection and execution of severe accident control actions. A model of decision making, organized around six general cognitive processes, was developed to identify the types of cognitive skills that may be needed for effective performance. Also, twelve SAM scenarios were developed to reveal specific decision-making difficulties. Following the identification of relevant cognitive skills, 19 approaches for training individual and team cognitive skills were identified. A review of these approaches resulted in the identification of general characteristics that are important in effective training of cognitive skills.

  6. Operating experience from Swedish nuclear power plants, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The total generation of electricity from Swedish nuclear power plants was 70.1 TWh during 1999, which is slightly more than the mean value for the last five years. The total electricity consumption decreased by one percent, compared with 1998, to a total of 142.3 TWh, due to an unusually warm summer and autumn. The abundant supply of hydroelectric power resulted in comparatively extensive load-following operation by the nuclear plants during the year. Production losses due to low demand totalled 3.0 TWh. The closure of Barsebaeck 1 will result in a capacity reduction exceeding 4 TWh per year. The hydroelectric power production was 70 TWh, which was 6 TWh more than during a normal year, i.e. a year with average rainfall. The remaining production sources, mainly from solid fuel plants combined with district heating contributed 9 TWh. Electricity generation by means of wind power is still increasing. There are now about 470 wind power stations, which produced 0.3 TWh during the year. The total electricity generation totalled 149.8 TWh, a three percent decrease compared with 1998. The preliminary figures for export were 15.9 TWh and for import 8.4 TWh. The figures above are calculated from the preliminary production result. A comprehensive report on electric power supply and consumption in Sweden is provided in the 1999 Annual Report from the Swedish Power Association. The unit capability factor for the PWRs at Ringhals averaged 91%, while the BWRs averaged 82% mainly due to the extended outages. The BWR reactors at Forsmark averaged as much as 93%. Forsmark 1 experienced the shortest refuelling outage ever in Sweden, only 9 days and 20 hours. In May, Oskarshamn 2 passed a historical milestone - the unit produced 100 TWh since connection to the grid in 1974. The final production day for Barsebaeck 1, which had been in commercial operation since 1975, was on November 30 when a decision by the Swedish Government revoked the operating licence. Three safety-related events

  7. Operating results 2015. Nuclear power plants. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2016-05-15

    A report is given on the opening results achieved in 2015, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in further issue.

  8. 77 FR 1743 - Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear...

    Science.gov (United States)

    2012-01-11

    ... COMMISSION Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear... Florida Power Corporation for operation of the Crystal River Nuclear Generating Plant, Unit 3. The proposed amendment would increase the licensed core power level for Crystal River Nuclear Generating Plant...

  9. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E.

    2014-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  10. Operating experience from Swedish nuclear power plants, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4.

  11. Operating experience from Swedish nuclear power plants 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year.

  12. Operating experience 1993 in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    For many years, the Swedish nuclear power plants had a very good track record, compared with the international average. This trend was broken in 1993. During the year, six power plants were shut down for extended periods of time, for different safety-related reasons. During the autumn, a reactor containment leak was detected during scheduled containment leak rate testing at Barsebaeck 2. The unit was shut down for extensive investigation and corrective action for the rest of the year. Ringhals 2 was shut down last six months of the year as crack indications were found in a weld next to a control rod penetration in the reactor vessel head. Extensive tests and analyses revealed that the crack originated from the manufacturing of the vessel head and was of minor importance to safety. Oskarshamn 1 was shut down the whole year. Cracks in cold bent pipes in the residual heat removal system and cracks in the feedwater riser pipes lead to extensive replacement of piping, including pipes inside the reactor vessel. Decontamination of the reactor vessel was successful and attracted world wide interest. A programme for plant status verification was started in order to establish long-term operating conditions. Replacement of the pipe insulation and the inlet strainers in the core and containment spray systems solved the problems with clogging at certain failures in Barsebaeck, Ringhals 1 and Oskarshamn 1 and 2. Six of the reactors had an extremely high availability, of about 90 per cent and more. By year end, eleven of the twelve reactors were in full power operation.

  13. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Science.gov (United States)

    2013-07-31

    ... COMMISSION 10 CFR Part 51 RIN 3150-AI42 Revisions to Environmental Review for Renewal of Nuclear Power Plant... environmental effect of renewing the operating license of a nuclear power plant. Compliance with the provisions... nuclear power plant. This document is necessary to clarify and correct the revisions made to the......

  14. Tritium release during nuclear power operation in China.

    Science.gov (United States)

    Yang, D J; Chen, X Q; Li, B

    2012-06-01

    Overviews were evaluated of tritium releases and related doses to the public from airborne and liquid effluents from nuclear power plants on the mainland of China before 2009. The differences between tritium releases from various nuclear power plants were also evaluated. The tritium releases are mainly from liquid pathways for pressurised water reactors, but tritium releases between airborne and liquid effluents are comparable for heavy water reactors. The airborne release from a heavy water reactor is obviously higher than that from a pressurised water reactor.

  15. Analysis of Pending Problems for a Technology Demand of Domestic Operational Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Park, Won Seok; Wi, Myung Hwan; Ha, Jae Joo

    2008-01-15

    Eleven technology fields were chosen, which have a relation with the solution of the pending problems of domestic operational nuclear power plants to manage an efficient operation and safe regulation for domestic nuclear power plants. The progressive background, requirements, and performance on the pending problems, 34, of an operation and regulation for domestic nuclear power plants were analyzed with regard to a risk information application, severe accident, PSR of structural materials, underwater monitoring, operation inspection and a fire protection, an instrument aging, metal integrity and steam generator, human technology and a digital I and C, quality assurance, secondary system and a user reliance and mass communications. KAERI's role is to provide a solution to these pending problems of domestic nuclear power plants. KAERI's technology is to be applicable to the pending problems for domestic nuclear power plants to raise an operational efficiency and an application frequency of nuclear power plants. In the future, a technology treaty between KAERI and KHNP is to be established to solve the pending problems for domestic nuclear power plants. Operation rate of nuclear power plants will also be raised and contribute to the supply of national energy due to this technology treaty.

  16. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Science.gov (United States)

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for... this Demand for Information, the following information, in writing, and under oath or affirmation: 1...

  17. Nuclear power plant simulators: their use in operator training and requalification

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  18. Efficient ways for setting up the operation of nuclear power stations in power systems in the base load mode

    Science.gov (United States)

    Aminov, R. Z.; Shkret, A. F.; Burdenkova, E. Yu.; Garievskii, M. V.

    2011-05-01

    The results obtained from studies of efficient ways and methods for organizing the operation of developing nuclear power stations in the base load mode are presented. We also show comparative efficiency of different scenarios for unloading condensing thermal power stations, cogeneration stations, combined-cycle power plants, nuclear power stations, and using off-peak electric energy for electricity-intensive loads: pumped-hydroelectric storage, electric-powered heat supply, and electrolysis of water for producing hydrogen and oxygen.

  19. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  20. Operation of Finnish nuclear power plants. Quarterly report 3rd quarter, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1995-03-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe nuclear and radiation safety related events and observations which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and of the environment, and tabulated data on the plants` production and load factors are also given. (4 figs., 4 tabs.).

  1. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... a Combined License) of New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY... a COL intending to construct and operate new nuclear power plants (NPPs) on multi-unit sites to... Impacts of Construction (under a Combined License) of New Nuclear Power Plants on Operating Units at...

  2. A study on risk perception toward nuclear power operation in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee Ciao-tzu; Hu Shiang-ling; Chang, Wushou P. [National Yang-Ming University, Taiwan (China)

    2000-05-01

    Currently, more conflicts appear between the public and government over the establishment of the 4th nuclear power plant in Taiwan. In order to improve risk management by the Society, understanding the risk perception of the public will be essential. A pilot study on the risk perception toward nuclear power operation and other current risks was conducted in summer of 1999. In addition to perception towards nuclear power operation, the survey evaluated several dimensions of health-related risks including smoking, chemical wastes, nuclear wastes, air transportation, AIDS, and food intoxication. The questionnaire was designed to be proceeded under systemic instruction and followed with self-filling. 57 (85.1%) of 67 respondents worked at the Taipei Metropolitan Rapid Transportation, including 62 male subjects (92.5%). 44 (69.8%) respondents favored building the 4th nuclear power plant in Taiwan. The acceptable distance between their houses and the nuclear power plant was 145.13 km in average, as compared with 400 km that of North and South of Taiwan. The mean expenses they are willing to pay to reduce the risk of the NPP is about US $7.73, 0.56% of their average income. However, the levels of risks toward nuclear power operation is significant higher than these for air transportation, smoking, and food intoxication. Government's spending is assumed more effective to reduce the threats from risks of nuclear power operation, rather than professional's or experts' effects. Besides, other related factors include levels of involuntary exposure to NP operation (p<0.001) and number of people potentially in danger (p<0.001). These 2 altitudes are positively correlated with the respondents' perceived risks. Different attitudes toward NP operation within these engineers, and those evaluated by others, are of great interest. Further evaluation will be conducted to compare the mechanism involved. We gratefully acknowledge financial support from the National

  3. Modeling and analyzing of nuclear power peer review on enterprise operational efficiency

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the practice and analysis of peer review in nuclear power plants, the models on the Pareto improvement of peer review, governance entropy decrease of peer review are set up and discussed. The result shows that the peer review of nuclear power is actually a process of Pareto improvement, and of governance entropy decrease. It's a process of improvement of the enterprise operational efficiency accordingly.

  4. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, H.; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...... for the Japanese fast breeder reactor plant MONJU....

  5. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...

  6. Modeling Operating Modes for the Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2012-01-01

    The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition...... of the process plant, its function and its structural elements. The paper explains how the means-end concepts of MFM can be used to provide formalized definitions of plant operation modes. The paper will introduce the mode types defined by MFM and show how selected operation modes can be represented...

  7. Dynamic Operations Wayfinding System (DOWS) for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Ulrich, Thomas Anthony [Idaho National Laboratory; Lew, Roger Thomas [Idaho National Laboratory

    2015-08-01

    A novel software tool is proposed to aid reactor operators in respond- ing to upset plant conditions. The purpose of the Dynamic Operations Wayfind- ing System (DOWS) is to diagnose faults, prioritize those faults, identify paths to resolve those faults, and deconflict the optimal path for the operator to fol- low. The objective of DOWS is to take the guesswork out of the best way to combine procedures to resolve compound faults, mitigate low threshold events, or respond to severe accidents. DOWS represents a uniquely flexible and dy- namic computer-based procedure system for operators.

  8. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  9. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Science.gov (United States)

    2010-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...

  10. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants` production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.).

  11. Lesson Learned from the Recent Operating Experience of Domestic Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Ju; Kim, Min-Chull; Koo, Bon-Hyun; Kim, Sang-Jae; Lee, Kyung-Won; Kim, Ji-Tae; Lee, Durk-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-10-15

    According to the public concerns, it seems that one of the main missions of a nuclear regulatory body is to collect operational experiences from various nuclear facilities, and to analyze their follow-up information. The extensive use of lessons learned from operating experiences to back fit safety systems, improve operator training and emergency procedures, and to focus more attention on human factors, safety culture and quality management systems are also desired. Collecting operational experiences has been mainly done regarding the incidents and major failures of components (so called 'event'), which usually demands lots of regulatory resources. This paper concentrates on new information, i.e. lesson learned from recent investigation results of domestic events which contain 5 years' experience. This information can induce many insights for improving operational safety of nuclear power plants (NPPs)

  12. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Reid, RL

    2003-09-18

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  13. User centered design of a digital procedure guidance component for nuclear power plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo V.R. de; Santos, Isaac L. dos; Oliveira, Mauro V. de; Grecco, Claudio H.S.; Mol, Antonio C. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: paulov@ien.gov.br; luquetti@ien.gov.br; mvitor@ien.gov.br; grecco@ien.gov.br; mol@ien.gov.br

    2007-07-01

    The use of nuclear power plants to produce electric energy is a safety-critical process where ultimate operational decisions still relies with the control room operators. Thus it is important to provide the best possible decision support through effective supervisory control interfaces. A user centered design approach, based on cognitive task analysis methods, was used to observe the operators training on the nuclear power plant simulator of the Human System Interface Laboratory (LABIHS). We noted deficiencies in the integration between the computerized interfaces and the hardcopy (paper) procedures. An new prototype of digital procedures - the digital procedure component guidance (PCG) - was designed in PowerPoint as an alternative to the current hardcopy procedure manuals. The design improves upon the graphical layout of system information and provides better integration of procedures, automation, and alarm systems. The design was validated by expert opinion and a scenario-based comparison. Future implementation and testing of the redesign is suggested for further validation. (author)

  14. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.H. [Duke Power Co., Seneca, SC (United States)

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  15. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  16. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaeae, T. [ed.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants` production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy`s plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.).

  17. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Science.gov (United States)

    2010-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...

  18. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures.

  19. Fuzzy logics acquisition and simulation modules for expert systems to assist operator`s decision for nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Averkin, A.A. [Russian Academy of Sciences, Moscow (Russian Federation). Computer centre

    1994-12-31

    A new type of fuzzy expert system for assisting the operator`s decisions in nuclear power plant system in non-standard situations is proposed. This expert system is based on new approaches to fuzzy logics acquisition and to fuzzy logics testing. Fuzzy logics can be generated by a T-norms axiomatic system to choose the most suitable to operator`s way of thinking. Then the chosen fuzzy logic is tested by simulation of inference process in expert system. The designed logic is the input of inference module of expert system.

  20. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  1. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  2. In situ monitoring of animal micronuclei before the operation of Daya Bay Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Y.N. Cai; H.Y. He; L.M. Qian; G.C. Sun; J.Y. Zhao [Guangzhou College of Education, Guangzhou (China)

    1994-12-31

    Daya Bay Nuclear Power Station, a newly-built nuclear power station in southern mainland China, started its operation in 1993. We examined micro-nucleated cells of Invertibrate (Bivalves) and Vertibrate (Fish and Amphibia) in different spots within the 50km surroundings of the Power Station during 1986-1993. This paper reports the results of the investigation carried out in Dong Shan, a place 4.7km to the Power Station:Bivalves; Pteria martensil 5.1(1986),4.8(1988),4.8(1991),5,0(1993),Mytilus smardinus 4.7(1987),4.6(1988); Chamys nobilis 4.9(1987);4.9(1991),4.5(1992),4.5(1993). Fish; Therapon jarbua 0.48(1991),0.67(1992),0.47(1993). Amphibia; Bufo melanostictus 0.29 (1987), 0.34(1988),0.39(1992),0.39(1993). These results showed that the environmental situation, estimated by using the frequencies of micronucleated cells, was stable-there was no obvious chromosome damage in the animals studied. It was found that the incidence of micronucleated cells of Bivalves was higher than that of Fish and Amphibia, suggesting the epithelial cells to be more sensitive than peripheral erythrocytes to environmental genotoxic effects. The results of our studies for other spots will be reported afterward. These data can be used as the original background information to monitor the environment when the Nuclear Power Station is in operation.

  3. Total simulation of operator team behavior in emergencies at nuclear power plants.

    Science.gov (United States)

    Takano, K; Sunaoshi, W; Suzuki, K

    2000-09-01

    In a large and complex system (i.e., a space aeronautics and nuclear power plant) it would be valuable to conduct operator training and support to demonstrate standard operators' behavior in coping with an anomaly caused by multiple malfunctions in which procedures would not have been stipulated previously. A system simulating operator team behavior including individual operator's cognitive behavior, his operations and physical behavior, and even verbal communication among team members, has been developed for a typical commercial nuclear power plant. This simulation model is not a scenario-based system but a complete knowledge-based system, based on the mental model that was envisaged by detailed analyses of experimental results obtained in the full-scope plant simulator. This mental model is composed of a set of knowledge bases and rules able to generate both diagnosis and prognosis depending on the observed situation even for multiple malfunctions. Simulation results of operator team behavior and plant dynamics were compared with corresponding experiments in several anomalies of multiple malfunctions. The comparison showed a reasonable agreement, so the simulation conditions were varied on cognitive task processing speed of individual operators, on team role sharing scheme, and on human machine interface (1st generation to 2nd generation control panel) to assess the sensitivity of this simulation model. Finally, it was shown that this simulation model has applications for the use of training standards and computer aided operator support systems.

  4. A study of air-operated valves in U.S. nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, O. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Khericha, S. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Watkins, J. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Holbrook, M. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2000-02-01

    A study of air-operated valves in nuclear power plant applications was conducted for the NRC Office of Research (the project was initiated by NRC/AEOD). The results of the study were based on visits to seven nuclear power plant sites, literature studies, and examinations of event records in databases available to the NRC. The purpose is to provide information to the NRC staff concerning capabilities and performance of air-operated valves (AOVs). Descriptions of air systems and AOVs were studied along with the support systems and equipment. Systems and equipment that contain AOVs and SOVs were studied to determine their dependencies. Applications of AOVs and SOVs were listed along with current NRC requirements.

  5. A technical system to improve the operational monitoring of the Zaporozhye nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Carl, H.; Nowak, K. [Technischer Ueberwachungsverein Rheinland, Koeln (Germany). Inst. for Nuclear Engineering and Radiation Protection; Schumann, P.; Seidel, A.; Weiss, F.P.; Zschau, J.

    1998-10-01

    As part of the programme implemented by the German Ministry of Environment, Nature Conservation and Reactor Safety to cooperate with the Central and Eastern European States (CEES) and the Commonwealth of Independent States (CIS) in the area of nuclear safety, a technical system to improve operational monitoring has been designed, specified and established since 1992 as a pilot project in the Zaporozhye/Ukraine nuclear power plant by Forschungszentrum Rossendorf and Technischer Ueberwachungsverein Rheinland with a significant contribution from the State Scientific and Technical Centre of the Ukrainian supervisory authority. The technical system complements existing operational checking and monitoring facilities by including modern means of information technology. It enables a continuous monitoring of the state of unit 5 in normal operation and in cases of anomalies or incidents so that when recognisable deviations from the regular plant operation occur, the Ukrainian supervisory authority can immediately inquire and if necessary impose conditions on the operator. The radiological and meteorological parameters at the nuclear power plant location are monitored to the extent necessary to assess the current radiation situation and to implement efficient emergency management measures. (orig.)

  6. Towards maintenance-free SOVs (solenoid operated valves). [For nuclear power plant use

    Energy Technology Data Exchange (ETDEWEB)

    Rustagi, R. (Valcor Engineering Corp., Springfield, NJ (USA))

    1991-05-01

    Because most solenoid operated valves (SOVs) are being used in vital safety related systems in nuclear power plants, they must be shown to perform satisfactorily over 40 years of normal service plus one year into post-LOCA. Current practice in SOV design and manufacture, as described here, aims to minimize the need for maintenance and to make it simpler when it is necessary. (author).

  7. Analysis of the cognitive strategies used by nuclear power plant operators during micro incidents

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo Victor R. de; Santos, Isaac L. dos; Mol, Antonio Carlos de A.; Grecco, Claudio H.; Oliveira, Mauro Vitor de; Augusto, Silas Cordeiro; Carvalho, Eduardo F. de [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: paulov@ien.gov.br

    2005-07-01

    This paper focuses on the analysis and modeling of the nuclear power operators' actual work in the control room and simulator training. The modeling of the operators work deals with the use of operational procedures, the constant changes in the focus of attention and the dynamics of the conflicting activities. The paper explores the relationships between the courses of action of the different operators and the constraints imposed by their working environment. It shows that the safety implications of the control room operators' cognitive and cultural issues go far beyond the formal organizational constructs usually implied. Our findings indicate that the competence required for the operators are concerned with developing the possibility of constructing situation awareness, managing conflicts, gaps and time problems created by ongoing task procedures, and dealing with distractions, developing skills for collaborative work. (author)

  8. Nuclear Theory - Nuclear Power

    Science.gov (United States)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  9. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  10. Development of a Leading Performance Indicator from Operational Experience and Resilience in a Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Pamela F. Nelson

    2016-02-01

    Full Text Available The development of operational performance indicators is of utmost importance for nuclear power plants, since they measure, track, and trend plant operation. Leading indicators are ideal for reducing the likelihood of consequential events. This paper describes the operational data analysis of the information contained in the Corrective Action Program. The methodology considers human error and organizational factors because of their large contribution to consequential events. The results include a tool developed from the data to be used for the identification, prediction, and reduction of the likelihood of significant consequential events. This tool is based on the resilience curve that was built from the plant's operational data. The stress is described by the number of unresolved condition reports. The strain is represented by the number of preventive maintenance tasks and other periodic work activities (i.e., baseline activities, as well as, closing open corrective actions assigned to different departments to resolve the condition reports (i.e., corrective action workload. Beyond the identified resilience threshold, the stress exceeds the station's ability to operate successfully and there is an increased likelihood that a consequential event will occur. A performance indicator is proposed to reduce the likelihood of consequential events at nuclear power plants.

  11. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Xinliang Chen; Jiangang Qu; Minqi Shi [Shanghai Nuclear Engineering Research and Design Institute (China)] [and others

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  12. Information management system for design, construction and operation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, M.C. (Duke Power Co. (US)); Jones, C.R. (S. Levy Inc. (US))

    1990-01-01

    This paper describes the principal requirements and features of a computerized information management system (IMS) believed to be a necessary part of the program to design, build and operate the next generation of nuclear power plants in the United States. This way a result of extensive review and input from an industry group studying future nuclear power plant construction improvements. The needs of the power plant constructor, owner and operator for such a computerized technical data base are described in terms of applications and scope and timing of turnover of the IMS by the plant designer. The applications cover the full life cycle of the plant including project control, construction activities, quality control, maintenance and operation. The scope of the IMS is also described in terms of the technical data to be included, hardware and software capabilities and training. The responsibilities of the plant designer for developing the IMS and generating the technical data base is defined as part of the plant process. The requirements to be met include a comprehensive plant data model and computer system hardware and software.

  13. Development of a Nuclear Plant Analyzer for Education and Operation Guide of the CANDU Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Su Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Oh, S. K.; Kim, H. D.; Cho, U. Y.; Lim, J. C.; Kim, S. B.; Kim, H. J.; Park, J. W.; Yeom, C. S.; Suh, J. S.; Park, K. S.; Jung, J. B.; Lee, K. M.; Ahn, H. J.; Lee, I. K. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    1997-09-01

    Operator training through the utilization of the NPA can improve efficiently the operator`s capability to cope with plant abnormal behaviors and enhance the safety and operability of nuclear power plants (NPP). Recent trend toward the computing automation and integrated design approach in NPP design analysis recognizes importance of the utilization of NPA technology. Major efforts are made into the expansion of functional capability of the CANDU plant simulation/analysis program obtained through the previous CANDU engineering R and D activities at IAE and into the development of configuration design technology for visualization through graphic display network. Through the simulation tests on the predictive capability of the plant simulation/analysis program and the examination of behavior of the plant operation parameters in typical operational and upset transients, the validation and improvement of the models for the major plant systems have been made. The reactor kinetics model has been improved for 3-D neutronic transient problems. Reactor burnup calculation and on-power fuelling capability have been modelled for the CANDU in-core fuel management practice. Furthermore, the graphic display of simulation results and control panels is user-interactively visualized, and the establishment of basic distributed computing network system through server/client concept with multimedia technique are tried for real time simulation and computational efficiency. The present simulation program has a limitation on the analysis for fast transient problems because of the lack of the explicit two-phase flow model, however, a CANDU NPA which has been developed as the mid-term part of our long term goal constructing `Simulation Based CANDU Design and Analysis System` is anticipated to be used as an assistant tool for nuclear system engineers and plant operators, and as a basic tool for the development of an advanced integrated engineering analyzer. 29 refs., 9 tabs., 110 figs

  14. The NRC staff evaluation of shutdown and low-power operation at nuclear power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Holahan, G.M.; Caruso, M.A. (Nuclear Regulatory Commission, Washington, DC (United States))

    1992-01-01

    The results of the US Nuclear Regulatory Commission (NRC) staff's recent evaluation of shutdown and low-power operations at US commercial nuclear power plants are summarized in this paper. The NRC staff's evaluation was initiated following their investigation of the loss during shutdown of all vital alternating current power on March 20, 1990, at the Alvin W. Vogtle nuclear plant. The objective of the evaluation has been to assess risk broadly during shutdown, refueling, and startup, addressing not only issues raised by the Vogtle event, but also a number of other shutdown-related issues that had been identified by foreign regulatory organizations as well as the NRC and any new issues uncovered in the evaluation process. The key issues concerning shutdown risk identified in the integration process described earlier and subsequently addressed by the staff include the following: (1) outage planning and control; (2) stress on personnel and programs; (3) the need to improve training and procedures; (4) technical specifications; and (5) PWR safety during midloop operation. Other technical topics identified for further study by the staff included loss of RHR, containment capability, rapid boron dilution, fire protection, instrumentation, emergency core cooling system recirculation capability, effect of PWR upper internals, on-site emergency planning, fuel handling and heavy loads, potential for draining the BWR reactor vessel, reporting requirements for shutdown events, and need to strengthen inspection program.

  15. Safety significance of inadvertent operation of motor operated valves in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ruger, C.J.; Higgins, J.C.; Carbonaro, J.F.; Hall, R.E.

    1994-05-01

    This report addresses concerns about the consequences of valve mispositioning which were brought to the forefront following an event at Davis Besse in 1985 (NRC, 1985a). The concern related to the ability to reposition ``position changeable`` motor operated valves (MOVs) in the event of their inadvertent operation from the control room and was documented in Nuclear Regulatory Commission (NRC) Bulletin 85-03 (NRC, 1985b) and Generic Letter (GL) 89-10 (NRC, 1989). The mispositioned MOVs may not be able to be returned to their required position due to high differential pressure (dP) or high flow conditions across the valves. The inability to reposition such valves may have significant safety consequences as in the Davis Besse event. However, full consideration of such mispositioning in safety analyses and in MOV test programs can be labor intensive and expensive. Industry raised concerns that consideration of position changeable valves under GL 89-10 would not decrease the probability of core damage to an extent which would justify licensee costs. As a response, Brookhaven National Laboratory (BNL) has conducted separate scoping studies for both Boiling Water Reactors (BWRS) and Pressurized Water Reactors (PWRs) using Probabilistic Risk Assessment (PRA) techniques to determine if such valve mispositioning by itself is significant to safety. The approach utilized internal events PRA models to survey the order of magnitude of the risk significance of valve mispositioning by considering the failure of selected position changeable MOVS. The change in core damage frequency (CDF) was determined for each valve considered and the results were presented as a risk increase ratio for each of four assumed MOV failure rates. The risk increase ratios resulting from this failure rate sensitivity study can be used as a basis for a judgement determination of the risk significance of the MOV mispositioning issue for BWRs and PWRS.

  16. Treatment of operational experience of nuclear power plants in WANO; Tratamiento de la experiencia operativa de las centrales nucleares en WANO

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, M.

    2013-09-01

    The article describes the activities associated to the Operating Experience Programme of the World Association of Nuclear Operators. The programme manages the event reports submitted by the nuclear power plants to the WANO database for the preparation by the Operating Experience Central Team of some documents like the significant Operating Experience Reports and Significant Event Reports that help the stations to avoid similar events. (Author)

  17. Psychological factors of professional success of nuclear power plant main control room operators

    Directory of Open Access Journals (Sweden)

    Kosenkov A.A.

    2014-12-01

    Full Text Available Aim: to conduct a comparative analysis of the psychological characteristics of the most and least successful main control room operators. Material and Methods. Two NPP staff groups: the most and least successful main control room operators, who worked in routine operating conditions, were surveyed. Expert evaluation method has been applied to identify the groups. The subjects were administered the Minnesota Multiphasic Personality Inventory (MMPI, Cattell's Sixteen Personality Factor Questionnaire (16PF form A and Raven's Progressive Matrices test. Results. Numerous significant psychological differences between the groups of most and least successful control room operators were obtained: the best operators were significantly more introverted and correctly solved more logical tasks with smaller percentage of mistakes under time pressure than worst ones. Conclusions: 1. The psychodiagnostic methods used in the study were adequate to meet research objective 2. Tendency to introversion, as well as developed the ability to solve logic problems undertime pressure, apparently, are important professional qualities for control room operators. These indicators should be considered in the process of psychological selection and professional guidance of nuclear power plant operators.

  18. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Science.gov (United States)

    2010-12-08

    ..., including anticipated operational occurrences and system hydrostatic tests, to which the pressure boundary... application dated April 15, 2009, as supplemented by letters dated December 18, 2009, August 26 and October 8... action (i.e., the ``no-action'' alternative). Denial of the application would result in no change...

  19. Concept of development of nuclear power based on LMFBR operation in open nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

    1996-08-01

    The preliminary assessments performed show that it is reasonable to investigate in the future the possibilities of FBR efficient operation with the open NFC. To improve its safety it is expedient to use the lead-bismuth alloy as a coolant. In order to operate with depleted uranium make-up it is necessary to meet a number of requirements providing the reactor criticality due to plutonium build-up and BR > 1. These requirements are as follows: a large core (20--25 m{sup 3}); a high fuel volume fraction (> 60%); utilization of dense metallic fuel; a high fuel burn-up--at a level of 20% of h.a. Making use of these reactors should allow the NP fuel base to be extended more than 10 times without making NFC closed. It provides improving NP safety during a sufficiently long stage of its development.

  20. Integration of computerized operation support systems on a nuclear power plant environment

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Almeida, Jose C.S.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.br, E-mail: jcsa@ien.gov.br, E-mail: mvitor@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Sistemas Complexos. Divisao de Engenharia Nuclear

    2015-07-01

    Automation of certain tasks in a Nuclear Power Plant (NPP) control room is expected to result in reduced operators' mental workload, which may induce other benefits such as enhanced situation awareness and improved system performance. The final goal should be higher level of operational safety. Thus, recent works are increasingly assessing automation. The LABIHS compact NPP simulator, though, still operates under strictly manual printed hard-copy procedures, despite of the fact that the simulator incorporates several advancements in design of digitalized Human-Interfaces (HSIs). This work presents the development, implementation and integration of selected components to achieve increased level of computerized/automated operation of the LABIHS compact NPP simulator. Specifically, we discuss three components: (I) Automatic Plant Mode Detection, (II) Automatic Alarm Filtering, and (III) Computerized Procedures. Each one of these components has to be carefully designed/integrated so that one can avoid the undesired effects of some known implementations of automated systems on NPP, such as the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills, which could lead to automation-induced system failures. (author)

  1. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  2. A Study on the Construct Validity of Safety Culture Oversight Model for Nuclear Power Operating Organization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Su Jin; Choi, Young Sung; Oh, Jang Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea, the safety policy statement declared in 1994 by government stressed the importance of safety culture and licensees were encouraged to manage and conduct their self-assessments. A change in regulatory position about safety culture oversight was made after the event of SBO cover-up in Kori unit 1 and several subsequent falsification events. Since then KINS has been developing licensee's safety culture oversight system including conceptual framework of oversight, prime focus area for oversight, and specific details on regulatory expectations, all of which are based on defence-in-depth (DiD) safety enhancement approach. Development and gathering of performance data which is related to actual 'safety' of nuclear power plant are needed to identify the relationship between safety culture and safety performance. Authors consider this study as pilot which has a contribution on verifying the construct validity of the model and the effectiveness of survey based research. This is the first attempt that the validity of safety culture oversight model has been investigated with empirical data obtained from Korean nuclear power operating organization.

  3. LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Dr Leonard S [Pacific Northwest National Laboratory (PNNL); Duckworth, Robert C [ORNL; Glass III, Dr. Samuel W. [Pacific Northwest National Laboratory (PNNL)

    2016-01-01

    conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.

  4. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  5. Verification of electromagnetic effects from wireless devices in operating nuclear power plants

    Directory of Open Access Journals (Sweden)

    Song-Hae Ye

    2015-10-01

    Full Text Available Wireless communication technologies, especially smartphones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smartphones (Wi-Fi standard, Internet Protocol (IP phones, personal digital assistant (PDA for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.

  6. Verification of electromagnetic effects from wireless devices in operating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Kim, Young Sik; Lyou, Ho Sun; Kim, Min Suk [Korea Hydro and Nuclear Power Co. (KHNP), Central Research Institute, Daejeon (Korea, Republic of); Lyou, Joon [Dept. of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Wireless communication technologies, especially smart phones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs) because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smart phones (Wi-Fi standard), Internet Protocol (IP) phones, personal digital assistant (PDA) for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI) from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.

  7. 78 FR 37281 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses

    Science.gov (United States)

    2013-06-20

    ... public controversy have made this an issue that the NRC believes needs a ``hard look,'' as required by...-art study on cancer risk for populations surrounding nuclear power facilities (ADAMS Accession...

  8. Reinforcement course 2013. Challenges at the operation end of nuclear power plants; Vertiefungskurs 2013. Herausforderungen am Betriebsende von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Matthias [Nuklearforum Schweiz/Forum nucleaire suisse, Bern (Switzerland)

    2014-03-15

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas

  9. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; An, Kung Il; Hong, Suk Young; Lee, Jeong Soo; Jung, Duk Jin; Shin, Sun Hee; Son, So Hee [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-02-15

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following. Development of H/W that is necessary to acquire operating real time data of heating and hydraulic power. Selection of a safety variable about major system by each type (the four NPP, all unit). Communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server. Development of connecting database for controlling and storing of heating and hydraulic power operating data. Real time monitoring system development based on Web using JAVA.

  10. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  11. A thesis of design air operated value actuator in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. K.; Hwang, J. H.; Kim, Y. B.; Son, K. Ch. [System Design and Development, Daejeon (Korea, Republic of)

    2008-07-01

    AOV used fluid capacity and fluid pressure control in nuclear power plant with heating power plant. AOV structures safely must be secured the reliability and a safety of the atomic power plant. But, AOV where is used from domestic is using the product of the overseas enterprise. The AOV design and maintenance technique is insufficient. Therefore according to ASME designed AOV, the performance test resultant fluid leakage did not occur and AOV design was satisfactory.

  12. Nuclear power plant maintainability.

    Science.gov (United States)

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  13. The Establishment of Object Selection Criteria for Effect Analysis of Electromagnetic Pulse (EMP) in Operating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Ryu, Hosun; Kim, Minyi; Lee, Euijong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The electromagnetic pulse (EMP) can be used as a strategic weapon by inducing damaging voltage and currents that the electrical circuits are not designed to withstand. EMPs are lethal to electronic systems. All EMP events have three common components: a source, coupling path, and receptor. It can also travel across power grids, destroying electronics as it passes in less than a second. There have been no research studies on the effect analysis for EMP in domestic nuclear power plants and power grids. To ensure the safety of operating nuclear power plants in this environment, the emission of EMP is needed for the effect analysis and safety measures against EMPs. Actually, it is difficult and inefficient to conduct the effect analysis of EMP with all the equipment and systems in nuclear power plants (NPPs). Therefore, this paper presents the results of establishing the object selection criteria for the effect analysis of EMP in operating nuclear power plants through reviewing previous research in the US and the safety related design concepts in domestic NPPs. It is not necessary to ensure the continued operation of the plant in intense multiple EMP environments. The most probable effect of EMP on a modern nuclear power plant is an unscheduled shutdown. EMP may also cause an extended shutdown by the unnecessary activation of some safety related systems. In general, EMP can be considered a nuisance to nuclear plants, but it is not considered a serious threat to plant safety. The results of EMP effect analysis show less possibility of failure in the tested individual equipment. It was also confirmed that there is no possibility of simultaneous failure for devices in charge of the safety shutdown in the NPP.

  14. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  15. Addressing Obsolescence in Operating Power Stations by Implementation of Safety Related Digital Upgrades Paper for Spanish Nuclear Society

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, R.

    2014-07-01

    Obsolescence of Instrumentation and Controls is a major problem facing operating Nuclear Power Stations globally. AREVA is the only supplier that has supported the successful licensing, engineering, procurement, installation and commissioning of a full-scope digital Instrumentation and Control (I and C) Protection System in the United States. (Author)

  16. Presentation of Fukushima Analyses to U.S. Nuclear Power Plant Simulator Operators and Vendors

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinich, Donald A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This document provides Sandia National Laboratories’ meeting notes and presentations at the Society for Modeling and Simulation Power Plant Simulator conference in Jacksonville, FL. The conference was held January 26-28, 2015, and SNL was invited by the U.S. nuclear industry to present Fukushima modeling insights and lessons learned.

  17. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  18. Results of the first year of operation at Embalse Nuclear Power Station in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A.; Pizarro, L.; Higa, Z. [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina); Dupree, S.A.; Schoeneman, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1996-07-16

    As a part of the International Remote Monitoring Project, during March 1995, a Remote Monitoring System (RMS) was installed at the Embalse Nuclear Power Station in Embalse, Argentina. This system monitors the status of four typical Candu spent fuel dry storage silos. The monitoring equipment for each silo consists of analog sensors for temperature and gamma radiation measurement; digital sensors for motion detection; and electronic fiber-optic seals. The monitoring system for each silo is connected to a wireless Authenticate Item Monitoring System (AIMS). This paper describes the operation of the RMS during the first year of the trial and presents the results of the signals reported by the system compared with the on site inspections conducted by the regulatory bodies, ABACC, IAEA, ENREN. As an additional security feature, each sensor periodically transmits authenticated State-of-Health (SOH) messages. This feature provides assurance that all sensors are operational and have not been tampered with. The details of the transmitted information and the incidents of loss of SOH, referred to as Missing SOH Event, and the possible causes which produced the MSOHE are described. The RMS at the embalse facility uses gamma radiation detectors in a strong radiation field of spent fuel dry storage silos. The detectors are Geiger Muller tubes and Silicon solid state diodes. The study of the thermal drift of electronics in GM detectors and the possible radiation damage in silicon detectors is shown. Since the initial installation, the system has been successfully interrogated from Buenos Aires and Albuquerque. The experience gained, and the small changes made in the hardware in order to improve the performance of the system is presented.

  19. Nuclear Power in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China’s vigorous efforts to propel development of nuclear power are paying off as the country’s nuclear power sector advances at an amazing pace. At present, China has set up three enormous nuclear power bases, one each in Qinshan of Zhejiang Province, Dayawan of Guangdong

  20. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  1. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  2. Application of an expert system for real time diagnosis of the limiting conditions for operation in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Gustavo Varanda; Schirru, Roberto, E-mail: gustavopaiva@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (brazil). Programa de Engenharia Nuclear

    2015-07-01

    In the history of nuclear power plants operation safety is an important factor to be considered and for this, the use of resistant materials and the application of redundant systems are used to make a plant with high reliability. Through the acquisition of experience with time and accidents that happened in the area, it was observed that the importance of creating methods that simplify the operator work in making decisions in accidents scenarios is an important factor in ensuring the safety of nuclear power plants. This work aims to create a program made with the Python language, which with the use of an expert systems be able to apply, in real time, the rules contained in the Limiting Conditions for Operation (LCO) and tell to the operator the occurrence of any limiting conditions and the occurrence of failure to perform the require actions in the time to completion. The generic structure used to represent the knowledge of the expert system was a fault tree where the events of this tree are objects in program. To test the accuracy of the program a simplified model of a fault tree was used that represents the LCO of the nuclear power station named Central Nuclear Almirante Alvaro Alberto 1. With the results obtained in the analysis of the simplified model it was observed a significant reduction in the time to identify the LCO, showing that the implementation of this program to more complex models of fault tree would be viable.(author)

  3. Report to the US Nuclear Regulatory Commission on analysis and evaluation of operational data - 1987: Power reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-10-01

    This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1987. The report is published in two volumes. NUREG-1272, Vol. 2, No. 1, covers Power Reactors and presents an overview of the operating experience of the nuclear power industry, with comments regarding the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year, and summarizes information from Licensee Event Reports, the NRC's Operations Center, and Diagnostic Evaluations. NUREG-1272, Vol. 2, No. 2, covers Nonreactors and presents a review of the nonreactors events and misadministration reports that were reported in 1987 and a brief synopsis of AEOD studies published in 1987. Each volume contains a list of the AEOD Reports issued for 1980-1987.

  4. Strengthening safety compliance in nuclear power operations: a role-based approach.

    Science.gov (United States)

    Martínez-Córcoles, Mario; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2014-07-01

    Safety compliance is of paramount importance in guaranteeing the safe running of nuclear power plants. However, it depends mostly on procedures that do not always involve the safest outcomes. This article introduces an empirical model based on the organizational role theory to analyze the influence of legitimate sources of expectations (procedures formalization and leadership) on workers' compliance behaviors. The sample was composed of 495 employees from two Spanish nuclear power plants. Structural equation analysis showed that, in spite of some problematic effects of proceduralization (such as role conflict and role ambiguity), procedure formalization along with an empowering leadership style lead to safety compliance by clarifying a worker's role in safety. Implications of these findings for safety research are outlined, as well as their practical implications.

  5. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    Science.gov (United States)

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  6. RETHINKING NUCLEAR POWER SAFETY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident sounds alarm bells in China’s nuclear power industry In the wake of the Fukushima nucleara ccident caused by the earthquake andt sunami in Japan,the safety of nuclearp ower plants and the development of nuclear power have raised concerns,

  7. Post licensing case study of community effects at two operating nuclear power plants. Final report, March 1975--March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, B.J.; Peelle, E.; Bjornstad, D.J.; Mattingly, T.J. Jr.; Soderstrom, J.; DeVault, R.C.

    1976-06-01

    The social, economic, and political/institutional impacts of two operating nuclear power complexes on two New England communities are studied. The report includes discussions of the study design and objectives, profiles of the towns of Plymouth, Massachusetts, and Waterford, Connecticut, and analysis of the social, economic, and political impacts as observed by members of the ORNL staff. Results are presented from an attitude survey as well as a social impact classification schema devised as a methodological tool.

  8. Full scope simulator of a nuclear power plant control room using 3D stereo virtual reality techniques for operators training

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio A.C.; Mol, Antonio Carlos A.; Almeida, Adino Americo A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN-CNEN/RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: mag@ien.gov.br; mol@ien.gov.br; adino@ien.gov.br; cmnap@ien.gov.br; Varela, Thiago F.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Eletrica]. E-mail: phillips.rj@terra.com.br; Cunha, Gerson G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)]. E-mail: gerson@lance.ufrj.br

    2007-07-01

    Practical training of nuclear power plants operators are partially performed by means of simulators. Usually these simulators are physical copies of the original control roam, needing a large space on a facility being also very expensive. In this way, the proposal of this paper is to implement the use of Virtual Reality techniques to design a full scope control room simulator, in a manner to reduce costs and physical space usage. (author)

  9. Development of Work Verification System for Cooperation between MCR Operators and Field Workers in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Hyun Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this work, as an application of digital devices to NPPs, a cooperation support system to aid communication between MCR operators and field workers in Nuclear Power Plants (NPPs), NUclear COoperation Support and MObile document System (Nu-COSMOS), is suggested. It is not easy for MCR operators to estimate whether field workers conduct their work correctly because MCR operators cannot monitor field workers at a real time, and records on paper procedure written by field workers do not contain the detailed information about work process and results. Thus, for safety operation without any events induced by misunderstand and miscommunication between MCR operators and field workers, the Nu-COSMOS is developed and it will be useful from the supporting cooperation point of view. To support the cooperation between MCR operators and field workers in NPPs, the cooperation support and mobile documentation system Nu-COSMOS is suggested in this work. To improve usability and applicability of the suggested system, the results of using existed digital device based support systems were analyzed. Through the analysis, the disincentive elements of using digital device-based developments and the recommendations for developing new mobile based system were derived. Based on derived recommendations, two sub systems, the mobile device based in-formation storing system and the large screen based information sharing system were suggested. The usability of the suggested system will be conducted by a survey with questionnaires. Field workers and operators, and nuclear-related person who had experiences as an operator, graduate students affiliated in nuclear engineering department will use and test the functions of the suggested system. It is expected that the mobile based information storing system can reduce the field workers' work load and enhance the understanding of MCR operators about field operators work process by monitoring all work results and work processes stored in devices.

  10. Nuclear Power Feasibility 2007

    OpenAIRE

    Aragonés Beltrán, José María; Hill, Barrie Frederick; Kadak, Andrew C.; Shultz, Donald F.; Spitalnik, Jorge

    2008-01-01

    Nuclear power is a proven technology and has the potential to generate virtually limitless energy with no significant greenhouse gas emissions. Nuclear power can become one of the main options to contribute to substantial cuts in global greenhouse gas emissions. Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues -high capital costs, the risks posed by ...

  11. Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gutierrez, J.M., E-mail: lguti@us.es [Centro Nacional de Aceleradores (CNA), c/Thomas Alva Edison n Degree-Sign 7, 41092 Sevilla (Spain); University of Sevilla, Departamento de Fisica Aplicada I, c/Virgen de Africa, n Degree-Sign 7, 41011 Sevilla (Spain); Gomez-Guzman, J.M.; Chamizo, E.; Peruchena, J.I. [Centro Nacional de Aceleradores (CNA), c/Thomas Alva Edison n Degree-Sign 7, 41092 Sevilla (Spain); Garcia-Leon, M. [University of Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Apdo. 1065, 41080 Sevilla (Spain)

    2013-01-15

    Radioactive residues, in order to be classified as Low-Level Waste (LLW), need to fulfil certain conditions; the limitation of the maximum activity from long-lived radionuclides is one of these requirements. In order to verify compliance to this limitation, the abundance of these radionuclides in the residue must be determined. However, performing this determination through radiometric methods constitutes a laborious task. In this work, {sup 129}I concentrations, {sup 239+240}Pu activities, and {sup 240}Pu/{sup 239}Pu ratios are determined in low-level radioactive residues, including resins and dry sludge, from nuclear power plants in Spain. The use of Accelerator Mass Spectrometry (AMS) enables high sensitivities to be achieved, and hence these magnitudes can be re determined with good precision. Results present a high dispersion between the {sup 129}I and {sup 239+240}Pu activities found in various aliquots of the same sample, which suggests the existence of a mixture of resins with a variety of histories in the same container. As a conclusion, it is shown that activities and isotopic ratios can provide information on the processes that occur in power plants throughout the history of the residues. Furthermore, wipes from the monitoring of surface contamination of the Jose Cabrera decommissioning process have been analyzed for {sup 129}I determination. The wide range of measured activities indicates an effective dispersal of {sup 129}I throughout the various locations within a nuclear power plant. Not only could these measurements be employed in the contamination monitoring of the decommissioning process, but also in the modelling of the presence of other iodine isotopes.

  12. Development of Real Time Operating System for Safety Grade PLC (POSAFE-Q) for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Han Seong [ENESYS, Taejon (Korea, Republic of); Hwang, Sung Jae [POSCON, Seoul (Korea, Republic of); Lee, Young Joon; Kim, Chang Hwoi; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    POSAFE-Q is a newly developed programmable logic controller (PLC) in order to apply to digital safety system of nuclear power plants (NPP) according to Nuclear Power Plant safety requirements. POSAFE-Q hardware and software development process, including design, review, verification and validation, and configuration control and quality assurance, satisfies the requirements imposed by 10CFR50, Appendix B. This article introduces a real time operating system pCOS, which is the core of POSAFE-Q. Section 2 describes the structure of pCOS. Section 3 describes a few important features of pCOS, which are necessary to the application for the digital safety system of NPP.0.

  13. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  14. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W. [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  15. Automation inflicted differences on operator performance in nuclear power plant control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Osvalder, A.L. [Chalmers Univ. of Technology, Dept. of Product and Producton Development (Sweden)

    2007-03-15

    Today it is possible to automate almost any function in a human-machine system. Therefore it is important to find a balance between automation level and the prerequisites for the operator to maintain safe operation. Different human factors evaluation methods can be used to find differences between automatic and manual operations that have an effect on operator performance; e.g. Predictive Human Error Analysis (PHEA), NASA Task Load Index (NASA-TLX), Halden Questionnaire, and Human Error Assessment and Reduction Technique (HEART). Results from an empirical study concerning automation levels, made at Ringhals power plant, showed that factors as time pressure and criticality of the work situation influenced the operator's performance and mental workload more than differences in level of automation. The results indicate that the operator's attention strategies differ between the manual and automatic sequences. Independently of level of automation, it is essential that the operator retains control and situational understanding. When performing a manual task, the operator is 'closer' to the process and in control with sufficient situational understanding. When the level of automation increases, the demands on information presentation increase to ensure safe plant operation. The need for control can be met by introducing 'control gates' where the operator has to accept that the automatic procedures are continuing as expected. Situational understanding can be established by clear information about process status and by continuous feedback. A conclusion of the study was that a collaborative control room environment is important. Rather than allocating functions to either the operator or the system, a complementary strategy should be used. Key parameters to consider when planning the work in the control room are time constraints and task criticality and how they affect the performance of the joint cognitive system.However, the examined working

  16. Annual report, August 1976--July 1977 Radiation dose to construction workers at operating nuclear power plant sites.

    Energy Technology Data Exchange (ETDEWEB)

    Endres, G.W.R.

    1978-01-01

    Radiation exposures received by most construction workers at nuclear power plant sites have not been measured routinely because field surveys have indicated exposure levels below the point for which monitoring is required. As a consequence, the dose to individuals and groups of workers is not known to the degree desired for adequate environmental impact assessment. This study was developed to measure and evaluate radiation exposure and exposure rates received by construction workers at various reactor sites where one or more reactors are operating while construction is proceeding on one or more additional reactors. This study is providing a data base from which a realistic assessment of radiological impact can be made for the construction workers of proposed multiunit nuclear power plants and to help arrive at a decision as to whether increased control of the radiation exposure of these workers is warranted. Four nuclear sites were included in this study after receiving approval of the operating utilities. Data from thermoluminescent personnel dosimeters and environmental dosimeters showed that the construction workers receive very little exposure above background.

  17. Assessment of the feasibility of an improvement programme enabling operation of units 3 and 4 of Kozloduy nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Amri, A.; Aronov, J.; Bonino, F.; Cortes, P.; Gorbatchev, A.; Kanev, K.; Mattei, J.M.; Milhem, J.L.; Rollinger, F.; Sabotinov, L.; Samier, L. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (FR). Inst. de Protection et de Securete Nucleaire (IPSN)

    2001-07-01

    Since ten years, different western assessments have been made of the safety of VVER 440/230 units, including those of the KOZLODUY Nuclear Power Plant located in Bulgaria. Concerning the latter, reference can be made to the work of an European Consortium (GRS/Germany, IPSN/France, AEA/England, AVN/ Belgium), in 1992 and 1993, during examination of restart conditions for Units 1 and 2. The objective of these assessments was the improvement of the overall level of safety with a view to maintain these units in service with satisfactory safety level for a limited period. The work identified their main deficiencies. At the present time, all the modifications decided upon for Units 1 and 2 of the KOZLODUY Nuclear Power Plant in 1992 and 1993 have been adopted and implemented for Units 3 and 4. In 1999, considering that these units would probably not be definitively shutdown before about ten years, IPSN decided to perform an internal assessment of the feasibility of an improvement programme enabling continued operation of units 3 and 4 of KOZLODUY Nuclear Power Plant during this delay. (orig.)

  18. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  19. Nuclear power in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J. (British Nuclear Forum, London (UK))

    1991-04-01

    The 1990s are turning out to be a most crucial phase for the nuclear industries of Europe. A time of uncertainty, as well as considerable opportunity, lies ahead. Despite a measure of public and political opposition to nuclear power, many are beginning to realise that, as a method of generating electricity that produces only 1% of greenhouse gases compared to coal per unit of electricity, nuclear energy may be the best alternative to the burning of fossil fuels. Although advances have been made in renewable energy, nuclear power is still the main non-fossil fuel source that can cope with today's energy demands. (author).

  20. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  1. Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiong; Guo, RuiPing; Zhang, ChunMing; Chen, XiaoQiu; Wang, Bo, E-mail: wangbo@chinansc.cn

    2014-12-15

    Highlights: • Typical radionuclides dispersion from CAP1400 under normal operation was simulated. • Modified Gaussian model considered radioactive decay, dry and wet deposition and so on. • The radioactive impact pathways on the public through atmosphere were compared. • The maximum individual effective dose was lower than the public irradiation limit. - Abstract: China Advanced Passive nuclear power plant with installed capacity reaching to 1400 MW (CAP1400) is independently designed as the China's state-of-the-art third generation nuclear power brand based on AP1000 technology digestion and absorption. The concentration of typical radionuclides dispersed from CAP1400 under normal operation was calculated with modified Gaussian model, considering mixed layer height, dry deposition, wet deposition, radioactive decay and so on. The atmospheric dispersion factors, ground deposition rate, individual dose and public dose were also investigated to estimate the radioactive effects of CAP1400 under normal operation on surrounding environment and human beings. The radioactive impact pathways on the public through atmosphere, such as immersion irradiation in the smoke plume, internal irradiation from ingestion and inhalation and external irradiation from surface deposition were briefly introduced with focus on the comparison of the maximum individual effective dose to different group from atmospheric dispersion. All computation results show that the maximum individual irradiation dose happened to children with total effective irradiation dose of 4.52E−03 mSv/y, which was lower than the public irradiation limit of 0.25 mSv/y.

  2. An analysis of the impacts of economic incentive programs on commercial nuclear power plant operations and maintenance costs

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, D.C.; Monroe, W.H. [Pacific Northwest Lab., Richland, WA (United States); Wood, R.S. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-02-01

    Operations and Maintenance (O and M) expenditures by nuclear power plant owner/operators possess a very logical and vital link in considerations relating to plant safety and reliability. Since the determinants of O and M outlays are considerable and varied, the potential linkages to plant safety, both directly and indirectly, can likewise be substantial. One significant issue before the US Nuclear Regulatory Commission is the impact, if any, on O and M spending from state programs that attempt to improve plant operating performance, and how and to what extent these programs may affect plant safety and pose public health risks. The purpose of this study is to examine the role and degree of impacts from state promulgated economic incentive programs (EIPs) on plant O and M spending. A multivariate regression framework is specified, and the model is estimated on industry data over a five-year period, 1986--1990. Explanatory variables for the O and M spending model include plant characteristics, regulatory effects, financial strength factors, replacement power costs, and the performance incentive programs. EIPs are found to have statistically significant effects on plant O and M outlays, albeit small in relation to other factors. Moreover, the results indicate that the relatively financially weaker firms are more sensitive in their O and M spending to the presence of such programs. Formulations for linking spending behavior and EIPs with plant safety performance remains for future analysis.

  3. Nuclear material operations manual

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  4. Safety and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, John; Gunning, Angela.

    1988-05-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.).

  5. Main corrective measures in an early phase of nuclear power plants’ preparation for safe long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Robert, E-mail: r.krivanek@iaea.org [International Atomic Energy Agency (IAEA), Department of Nuclear Safety and Security, Operational Safety Section, Vienna 1400 (Austria); Fiedler, Jan, E-mail: fiedler@fme.vutbr.cz [University of Technology Brno, Faculty of Mechanical Engineering, Energy Institute, Technická 2896/2, 616 69 Brno (Czech Republic)

    2017-05-15

    Highlights: • Results of SALTO missions provide the most important issues for safe long term operation (LTO) of nuclear power plants. • The most important technical corrective measures in an early phase of preparation for safe LTO are described. • Their satisfactory resolution creates a basis for further activities to demonstrate preparedness for safe LTO. - Abstract: This paper presents the analysis of main technical deficiencies of nuclear power plants (NPPs) in preparedness for safe long term operation (LTO) and the main corrective measures in an early phase of preparation for safe LTO of NPPs. It focuses on technical aspects connected with management of physical ageing of NPP structures, systems and components (SSCs). It uses as a basis results of IAEA SALTO missions performed between 2005 and 2016 (see also paper NED8805 in Nuclear Engineering and Design in May 2016) and the personal experiences of the authors with preparation of NPPs for safe LTO. This paper does not discuss other important aspects of safe LTO of NPPs, e.g. national nuclear energy policies, compliance of NPPs with the latest international requirements on design, obsolescence, environmental impact and economic aspects of LTO. Chapter 1 provides a brief introduction of the current status of the NPP’ fleet in connection with LTO. Chapter 2 provides an overview of SALTO peer review service results with a focus on deficiencies related to physical ageing of safety SSCs and a demonstration that SSCs will perform their safety function during the intended period of LTO. Chapter 3 discusses the main corrective measures which NPPs typically face during the preparation for demonstration of safe LTO. Chapter 4 summarizes the current status of the NPP’ fleet in connection with LTO and outlines further steps needed in preparation for safe LTO.

  6. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  7. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  8. Human Resources Development and Preparation for Operations Braka Nuclear Power Plant, ENEC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Rae [ENEC, Abu Dhabi (United Arab Emirates)

    2012-03-15

    The purpose of the Human Resources Development Strategy is to identify needed capabilities, assess the ability of the current market to provide those capabilities and then develop skills and abilities in the UAE so that they are available when needed and certainly for the start of operations in the spring of 2017. The goal of the strategy is to provide enough well-qualified people to meet the staffing needs of ENEC, the Prime Contractor, FANR, and UAE industry. These strategies require engaging with key players in Abu Dhabi early in the process so that they contribute to development and implementation of the strategies and become 'owners' who play a part to achieve the ENEC vision and the goal of building a talent pool to support the newborn nuclear industry. Educational programs are designed to support ENEC's long range staffing plan and support national capacity building goals. Strong partnerships are in place with UAE Education Institutions and future collaborations are underway. The potential risks to the success of this strategy include the ability to attract sufficient numbers of people to the program. We believe that these risks can be overcome by implementing intelligent initiatives and leveraging UAE resources.

  9. Determination of the Optimized Automation Rate considering Effects of Automation on Human Operators in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of); Kim, Jong Hyun [KEPCO International Nuclear Graduate School, Seosaeng (Korea, Republic of); Kim, Man Cheol [Chung-Ang University, Seoul (Korea, Republic of)

    2015-05-15

    Automation refers to the use of a device or a system to perform a function previously performed by a human operator. It is introduced to reduce the human errors and to enhance the performance in various industrial fields, including the nuclear industry. However, these positive effects are not always achieved in complex systems such as nuclear power plants (NPPs). An excessive introduction of automation can generate new roles for human operators and change activities in unexpected ways. As more automation systems are accepted, the ability of human operators to detect automation failures and resume manual control is diminished. This disadvantage of automation is called the Out-of-the- Loop (OOTL) problem. We should consider the positive and negative effects of automation at the same time to determine the appropriate level of the introduction of automation. Thus, in this paper, we suggest an estimation method to consider the positive and negative effects of automation at the same time to determine the appropriate introduction of automation. This concept is limited in that it does not consider the effects of automation on human operators. Thus, a new estimation method for automation rate was suggested to overcome this problem.

  10. A study on the human reliability analysis in probabilistic safety assessment during low power/shutdown operation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D. I.; Sung, T. Y.; Jung, W. D.; Yang, J. E.; Park, J. H.; Lee, Y. H.; Hwang, M. J.; Kim, K. Y.; Jin, Y. H

    1997-02-01

    This report describes the review results of human reliability analysis (HRA) in the probabilistic safety assessment (PSA) during low power/shutdown operation of nuclear power plants (NPPs). We select four NPP PSA reports to review. These are System 80+ using THERP, Surry using SLIM, Grand Gulf using ASEP, Electric de France using simulator experiments. This report also describe the method, the procedure, the quantification example, the critical review and the insights of HRA which were used in the process of PSA of NPPs mentioned above. It is expected that this study results will be effectively used in HRA of domestic PSA during low power/shutdown operation of NPPs. (author). 18 refs., 1 tab.

  11. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  12. Nuclear power plants of ENDESA: strategical and operational fields. Research and Development. Centrales Nucleares de ENDESA Campos de actuacion estrategica y operativa. Investigacion y desarrollo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. (Empresa Nacional de Electricidad. ENDESA. (Spain))

    1994-01-01

    The total nuclear power installed at ENDESA plants amounts 1467 Mw. Environmental management is focused onto waste management, emissions management and safety during operation. The strategy of ENDESA is related with actions to improve research and development in advanced power reactors and passive power plants like AP-600 and SBWR. There is also a collaboration with EPRI to define the specifications for future reactors. ENDESA participates within the European NPI program for evolutive reactors to develop the French EPRI reactor. R+D in materials is organized in: steam generators projects, analysis of neutronic irradiation of the vessel in Light Water Reactors, analysis of cladding and fuel rods subjected to high burning, inspection of cracks in vessel PWR.

  13. Program for the thermal design and simulation of the operation of a steam condenser for thermal and nuclear power stations and its application to the condenser at the Cofrentes nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bartual, R.; Pallares Huici, E.

    A program is being developed for an IBM-PC or AT computer based on a calculation system which synthesises the heat transfer process which takes place in the steam condensors at conventional thermal power stations. The program incorporates a useful tool capable of representing characteristic operating curves for a given condensor. Describes its application to the steam condenser at the Cofrentes nuclear power station. 4 refs., 5 tabs., 8 figs.

  14. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  15. A computational model for knowledge-driven monitoring of nuclear power plant operators based on information theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Cheol [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)]. E-mail: charleskim@kaist.ac.kr; Seong, Poong Hyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2006-03-15

    To develop operator behavior models such as IDAC, quantitative models for the cognitive activities of nuclear power plant (NPP) operators in abnormal situations are essential. Among them, only few quantitative models for the monitoring and detection have been developed. In this paper, we propose a computational model for the knowledge-driven monitoring, which is also known as model-driven monitoring, of NPP operators in abnormal situations, based on the information theory. The basic assumption of the proposed model is that the probability that an operator shifts his or her attention to an information source is proportional to the expected information from the information source. A small experiment performed to evaluate the feasibility of the proposed model shows that the predictions made by the proposed model have high correlations with the experimental results. Even though it has been argued that heuristics might play an important role on human reasoning, we believe that the proposed model can provide part of the mathematical basis for developing quantitative models for knowledge-driven monitoring of NPP operators when NPP operators are assumed to behave very logically.

  16. A computational model for knowledge-driven monitoring of nuclear power plant operators based on information theory

    Energy Technology Data Exchange (ETDEWEB)

    Man Cheol Kim; Poong Hyun Seong [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Department of Nuclear and Quantum Engineering

    2006-03-15

    To develop operator behavior models such as IDAC, quantitative models for the cognitive activities of nuclear power plant (NPP) operators in abnormal situations are essential. Among them, only few quantitative models for the monitoring and detection have been developed. In this paper, we propose a computational model for the knowledge-driven monitoring, which is also known as model-driven monitoring, of NPP operators in abnormal situations, based on the information theory. The basic assumption of the proposed model is that the probability that an operator shifts his or her attention to an information source is proportional to the expected information from the information source. A small experiment performed to evaluate the feasibility of the proposed model show that the predictions made by the proposed model have high correlations with the experimental results. Even though it has been argued that heuristics might play an important role on human reasoning, we believe that the proposed model can provide part of the mathematical basis for developing quantitative models for knowledge-driven monitoring of NPP operators when NPP operators are assumed to behave very logically. (author)

  17. Nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-28

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people`s republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  18. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Cliffs Nuclear Power Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant..., Calvert Cliffs Nuclear Power Plant (NUREG-1437, Supplement 1), dated......

  19. Getting More Out Of Nuclear Power

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China’s first nuclear power plant generated 31 billion kw/h electricity from 1991 to 2007 Major repair work on the first phase of the Qinshan nuclear power plant,which began operation in 1991 as China’s first nuclear power plant,was completed on January 13,2008.The overhaul has improved the reliability and safety of the reactors and given the oper- ators experience for running,repairing

  20. Some questions on nuclear safety of heavy-water power reactor operating in self-sufficient thorium cycle

    Directory of Open Access Journals (Sweden)

    Bergelson Boris R.

    2008-01-01

    Full Text Available In this paper the comparative calculations of the void coefficient have been made for different types of channel reactors for the coolant density interval 0.8-0.01 g/cm3. These results demonstrate the following. In heavy-water channel reactors, the replacement of D2O coolant by H2O, ensuring significant economic advantage, leads to the essential reducing of nuclear safety of an installation. The comparison of different reactors by the void coefficient demonstrates that at the dehydration of channels the reactivity increase is minimal for HWPR(Th, operating in the self-sufficient mode. The reduction of coolant density in channels in most cases is accompanied by the increase of power and temperatures of fuel assemblies. The calculations show that the reduction of reactivity due to Doppler effect can compensate the effect of dehydration of a channel. However, the result depends on the time dependency of heat-hydraulic processes, occurring in reactor channels in the specific accident. The result obtained in the paper confirms that nuclear safety of HWPR(Th lies on the same level as nuclear safety of CANDU type reactors approved in practice.

  1. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  2. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    Energy Technology Data Exchange (ETDEWEB)

    Ura, Tamaki [Tokyo Univ., Tokyo (Japan); Takamasa, Tomoji [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (JP)] [and others

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  3. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  4. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  5. Procedures for using expert judgment to estimate human-error probabilities in nuclear power plant operations. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, D.A.; Stillwell, W.G.

    1983-03-01

    This report describes and evaluates several procedures for using expert judgment to estimate human-error probabilities (HEPs) in nuclear power plant operations. These HEPs are currently needed for several purposes, particularly for probabilistic risk assessments. Data do not exist for estimating these HEPs, so expert judgment can provide these estimates in a timely manner. Five judgmental procedures are described here: paired comparisons, ranking and rating, direct numerical estimation, indirect numerical estimation and multiattribute utility measurement. These procedures are evaluated in terms of several criteria: quality of judgments, difficulty of data collection, empirical support, acceptability, theoretical justification, and data processing. Situational constraints such as the number of experts available, the number of HEPs to be estimated, the time available, the location of the experts, and the resources available are discussed in regard to their implications for selecting a procedure for use.

  6. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  7. Design and evaluation of computerized operating procedures in nuclear power plants.

    Science.gov (United States)

    Hwang, Fei-Hui; Hwang, Sheue-Ling

    2003-01-15

    A small-scale virtual system has been developed in this study to enhance operators' understanding and operating performance. For this, a computerized graphical interface based on Dynamic Work Causality Equation (DWCE) has been designed to transform the operating procedure into a flowchart. Furthermore, the Programmable Logic Controller (PLC) was installed to connect the signboard (proposed system) with the computerized graphical interface. An experiment was conducted to verify the effect of computerized graphic interface, indicating that the computerized system significantly decreases learning time and improves operational performance.

  8. An overview of acceptance and knowledge of Angra dos Reis city about the operation of the nuclear power plants considering the associated risks and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson Borges, E-mail: jeferson@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN/CGRC), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Reatores e do Ciclo Combustivel; Ribeiro, Katia Maria Bruno; Medice Junior, Fabio, E-mail: Katiapsi.67@gmail.com [Universidade Estacio de Sa (UNESA), Angra dos Reis, RJ (Brazil); Delcourt, Jules H., E-mail: juleshd@gmail.com [Colegio Naval, Angra dos Reis, RJ (Brazil)

    2015-07-01

    The use of nuclear power plants for electricity supply is presently considered as an important factor to be considered in any energy matrix to ensure the diversification and availability criteria. Currently several countries resumed or started programs for the construction of nuclear power plants of new projects, with extremely improved security levels. Additionally, events and accidents in nuclear power plants have contributed substantially to the occurrence of design modifications and/or update the regulatory requirements to further enhance operational safety of these plants. Nowadays, one of the regulatory requirements necessary for the selection of a site for construction and operation of nuclear installations is the public hearing and discussion. The city of Angra dos Reis has two nuclear power plants in operation and a third one under construction. There are also, plans for the construction of more nuclear power plants in the country, to meet the growing demand for electricity. The first nuclear power plant in Brazil went into operation in 1983 and the second in 2000. The selection of the site for construction of these plants was due to political, economic and strategic factors, present in Brazil, in the decade of 70. The licensing process in de 70's decade did not involve an extensive participation of the society as a whole and of the local population, such as the occurrence of public hearings and the wide possibility for discussion and debate about the acceptance of the location of the plant. In the initial years of operation of the Angra 1 nuclear power plant, the level of knowledge of the local population was practically null, occurring mainly in local clarifications, made through seminars and lectures on special occasions, such as at the time of the annual exercises of the external emergency plan, specific information Programs or technical visits of educational institutions and the Government to Angra dos Reis Nuclear power plant. Since the

  9. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... which a news release is planned or notification to other government agencies has been or will be made... not understood. (3) Maintain an open, continuous communication channel with the NRC Operations...

  10. Classification of emotions by multivariate analysis and individual differences of nuclear power plant operators` emotion

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Naoko; Yoshimura, Seiichi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1999-03-01

    The purpose of this study is the development of a simulation model which expresses operators` emotion under plant emergency. This report shows the classification of emotions by multivariate analysis and investigation results conducted to clarify individual differences of activated emotion influenced by personal traits. Although a former investigation was conducted to classify emotions into five basic emotions proposed by Johnson-Laird, the basic emotions was not based on real data. For the development of more realistic and accurate simulation model, it is necessary to recognize basic emotion and to classify emotions into them. As a result of analysis by qualification method 3 and cluster analysis, four basic clusters were clarified, i.e., Emotion expressed towards objects, Emotion affected by objects, Pleasant emotion, and Surprise. Moreover, 51 emotions were ranked in the order according to their similarities in each cluster. An investigation was conducted to clarify individual differences in emotion process using 87 plant operators. The results showed the differences of emotion depending on the existence of operators` foresight, cognitive style, experience in operation, and consciousness of attribution to an operating team. For example, operators with low self-efficacy, short experience or low consciousness of attribution to a team, feel more intensive emotion under plant emergency and more affected by severe plant conditions. The model which can express individual differences will be developed utilizing and converting these data hereafter. (author)

  11. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.

  12. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-12-31

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary.

  13. The UK nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Collier, J. G. [Nuclear Electric plc, Barnwood (United Kingdom)

    1995-08-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [Deutsch] In Grossbritannien werden Kernkraftwerke von drei Gesellschaften betrieben: Nuclear Electric (NE), Scottish Nuclear (SN) und British Nuclear Fuels plc. (BNFL). Die staatliche Energieversorgung wurde im Jahre 1989 bis auf die Kernaktivitaeten privatisiert; diese wurden in die neu

  14. Nuclear power world report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2014-07-15

    At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year's number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units - 2 more than at the end of 2012 - were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. (orig.)

  15. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  16. Management, administrative and operational causes of the accident: Chernobyl nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G. [California State Univ., Sacramento, CA (United States)

    1996-10-01

    The Chernobyl accident, which occurred in April 1986, was the result of management, administrative, operational, technical and design flaws. The accident released millions of curies of mixed fission products including 70-100 PBq of {sup 137}Cs. At the time of the accident, science, engineering and safety in the former Soviet Union were dominated by an atmosphere of politics, group think and `dingoes tending the sheep`. This corrupted safety culture exacerbated the poor design of the reactor. The results of this study strongly suggest that the cultural, political, managerial and operational attributes of the Soviet `system` performed in a synergistic manner to significantly contribute to the initiation of the accident. (authors). 16 refs.

  17. A method for risk informing procedures at operating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. F.; Martin del Campo, C., E-mail: pnelson_007@yahoo.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)

    2012-10-15

    The technical approach presented establishes a framework intended to provide the necessary elements for a deployable human performance monitoring program that incorporates insights from plant specific probabilistic risk assessments, human reliability analysis, as well as the development of plant specific human failure data. A human performance monitoring program of this structure would be used to provide the ability to risk inform procedures (e.g., operations or maintenance) to determine the operational risk significance of procedural performance (i.e., precautions, prerequisites, procedure steps), the likelihood of consequential human error dur the performance of the procedure, and the identification of procedure specific barriers to reduce or eliminate consequential human errors. The program would provide the means to assess procedures prior to execution and the means to record and trend human failure events leading to a plant specific human failure database for human activities characterized as pre-initiator. The technical methods and data processing for each of these areas are developed and presented, as well as an example application of an operational procedure error leading to a plant level event (i.e, plant trip). (Author)

  18. A New Framework to Minimize Insider Threats in Nuclear Power Operations

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Young A; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    In a 2008 report, IAEA presented preventive and protective measures against such threat. These are summarized as : (1) Exclude potential insiders by identifying undesirable behavior or characteristics, which may indicate motivation, prior to allowing them access; (2) Exclude further potential insiders by identifying undesirable behavior or characteristics, which may indicate motivation, after they have access; (3) Minimize opportunities for malicious acts by limiting access, authority and knowledge, and by other measures; (4) Detect, delay and respond to malicious acts. The nuclear security risk, i.e. insider threat, has concerned continuously because the existing physical protection system is only for outsider threats. In addition, with high possibility of use of multicultural workforce in newcomers' NPPs, the detection and prediction of insider threat is a hot potato. Thus, this paper suggested a new framework for predicting and detecting the insider threat. This framework integrates the behavioral indicators, stimulus monitoring and cognitive monitoring. This framework open a chance to detect and predict the insider before commits a crime accurately. This model can be direct application to reduce the security risks in multicultural environment.

  19. Topics in nuclear power

    Science.gov (United States)

    Budnitz, Robert J.

    2015-03-01

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of "significant events" since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its "lessons learned" have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  20. Improved and safer nuclear power.

    Science.gov (United States)

    Taylor, J J

    1989-04-21

    Recent progress in advanced nuclear power development in the United States is revealing high potential for nuclear reactor systems that are smaller and easier to operate than the present generation. Passive, or intrinsic, characteristics are applied not only to provide inherent stability of the chain reaction but also to ensure continued cooling of the fuel and its containment systems even if a major breakdown of the normal cooling and control functions were to occur. The chance of a severe accident is thereby substantially reduced. The plant designs that are emerging are simpler and more rugged, have a longer life span, and place less burden on equipment and operating personnel. Modular design concepts and design standardization are also used to reduce construction time and engineering costs, giving promise that the cost of generating power from these systems will be competitive with alternative methods.

  1. The experience in the Cernavoda Unit 1 operation - a stimulating argument for future nuclear power development in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, I. [S.N. Nuclearelectrica, S.A., Romanian Nuclear Power Company (Romania); Bucur, I. [CNE - PROD, Cernavoda Unit 1 (Romania); Galeriu, A.C. [FCN, Pitesti, Nuclear Fuel Plant (Romania); Budan, O. [S.N. Nuclearelectrica, S.A., Romanian Nuclear Power Company (Romania)

    1999-07-01

    The Romanian nuclear program has been developed based on the option for CANDU type reactors. At the beginning, this program was unrealistically conceived and its management was inappropriate. The program was reconsidered in 1990 and the management policy and organization structure were also adapted accordingly. The paper presents, in the first part, the actual organization structure, adapted for the execution of the current and future activities, related to the nuclear power program. The performance achieved by Cernavoda Unit 1 constitutes the main part of the paper. The performances described demonstrate that the Cernavoda Unit 1 is a success and the Romania's electricity needs are satisfied in a proportion of about 12% by the nuclear power. The paper also presents a general view on Cernavoda Unit 2 perspectives. The essential conclusion of the paper is that the continuation of the nuclear program appears to be a logical option, generally accepted in Romania, limited only by financial restraints. (author)

  2. Operational readiness decisions at nuclear power plants. Which factors influence the decisions?; Driftklarhetsbeslut i kaernkraftanlaeggningar. Vilka faktorer paaverkar beslutsfattandet?

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena; Petterson, Sara (MTO Psykologi, Stockholm (SE))

    2007-11-15

    The purpose of this project has been to propose a model for how operational readiness decisions are made and to identify important factors influencing these decisions. The project has also studied the support from the management system for decision making, and made a comparison to how decisions are made in practice. This is mainly an explorative study, but it also deals with relevant research and theories about decision making. The project consists of several parts. The first part is composed of descriptions of important notations and terms, and a summary of relevant research about decision making and its relation to the management system. The project proposes a model for the decision making process. The second part consists of analyses of reports from SKI about operational readiness decisions. The last part is a case study at a nuclear power plant. The case study describes the support from work method theories at the nuclear power plant to the decision maker. Decision makers with different roles in the safety management system were interviewed to give a description of the decision making process and of factors influencing the decisions made in practice. The case study also consists of an analysis of decisions in some real events at the nuclear power plant, as well as of making interviews in connection with these. To sum up, this report presents a model for the decision process and describes the work method theories that support the different parts in the process, how the different parts are applied in practice and circumstances that influence the decision process. The results of the project give an understanding for decision making in operational readiness decisions and the factors that influence the decision. The results are meant to be used as a basis for further studies in other nuclear power plants. The results indicate that the decision process is facilitated if there are clear criteria and work methods, if the work methods are well established and if the

  3. Overview paper on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  4. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-25

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear...

  5. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  6. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  7. Nuclear Engineering Technologists in the Nuclear Power Era

    Science.gov (United States)

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  8. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit......

  9. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 (3 rd quarter report)

    Energy Technology Data Exchange (ETDEWEB)

    Zee Sung Kyun; Song, Jae Woong; Ha, Young Joon; Kim, Kyu Tae [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-04-01

    In this report, described are results of the feasibility study on applying for the 18-month cycle in Korean Standard Nuclear Power Plants (KSNPs). This report contains results of safety and economic evaluations, radiation source analysis, an effect on changing the calibration period for each component of NSSS, and review on the related regulating codes. 12 refs., 34 tabs., 28 figs. (author)

  10. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 (3 rd quarter report)

    Energy Technology Data Exchange (ETDEWEB)

    Zee Sung Kyun; Song, Jae Woong; Ha, Young Joon; Kim, Kyu Tae [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-04-01

    In this report, described are results of the feasibility study on applying for the 18-month cycle in Korean Standard Nuclear Power Plants (KSNPs). This report contains results of safety and economic evaluations, radiation source analysis, an effect on changing the calibration period for each component of NSSS, and review on the related regulating codes. 12 refs., 34 tabs., 28 figs. (author)

  11. Let us learn nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wan Sang

    2006-08-15

    This book teach us nuclear power through nine chapters with recommendation and a prolog. The contents of this book are how did Formi become a scientist? what does atom look like? discover of neutron, what is an isotope?, power in the nuclear, various radiation, artificial nuclear transformation, nuclear fission and clinging atomic nucleus. It also has an appendix on SF story ; an atom bomb war. It explains basic nuclear physic in easy way with pictures.

  12. Nuclear electric power sources

    Science.gov (United States)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  13. The economics of nuclear power

    Science.gov (United States)

    Horst, Ronald L.

    We extend economic analysis of the nuclear power industry by developing and employing three tools. They are (1) compilation and unification of operating and accounting data sets for plants and sites, (2) an abstract industry model with major economic agents and features, and (3) a model of nuclear power plant operators. We build a matched data set to combine dissimilar but mutually dependant bodies of information. We match detailed information on the activities and conditions of individual plants to slightly more aggregated financial data. Others have exploited the data separately, but we extend the sets and pool available data sets. The data reveal dramatic changes in the industry over the past thirty years. The 1980s proved unprofitable for the industry. This is evident both in the cost data and in the operator activity data. Productivity then improved dramatically while cost growth stabilized to the point of industry profitability. Relative electricity prices may be rising after nearly two decades of decline. Such demand side trends, together with supply side improvements, suggest a healthy industry. Our microeconomic model of nuclear power plant operators employs a forward-looking component to capture the information set available to decision makers and to model the decision-making process. Our model includes features often overlooked elsewhere, including electricity price equations and liability. Failure to account for changes in electricity price trends perhaps misled earlier scholars, and they attributed to other causes the effects on profits of changing price structures. The model includes potential losses resulting from catastrophic nuclear accidents. Applications include historical simulations and forecasts. Nuclear power involves risk, and accident costs are borne both by plant owners and the public. Authorities regulate the industry and balance conflicting desires for economic gain and safety. We construct an extensible model with regulators, plant

  14. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  15. Operational readiness verification, phase 1: A study on safety during outage and restart of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hollnagel, E. [Linkoeping Univ. (Sweden). Dept. of Computer and Information Science; Gauthereau, V. [Linkoeping Univ. (Sweden). Dept. of Industrial Engineering

    2001-06-01

    This report contains the findings from the first phase of a study on safety during outage and restart of nuclear power plants. Operational Readiness Verification (ORV) - in Swedish called Driftklarhetsverifiering (DKV) - refers to the test and verification activities that are necessary to ensure that plant systems are able to provide their required functions when needed - more concretely that all plant systems are in their correct functional state when the plant is restarted after an outage period. The concrete background for this work is that nine ORV related incidents were reported in Sweden between July 1995 and October 1998. The work reported here comprised a literature survey of research relevant for ORV issues, and an assessment of the present situation at Swedish NPPs with respect to ORV. The literature survey was primarily aimed at research related to NPPs, but also looked at domains where similar problems have occurred, such as maintenance in commercial aviation. The survey looked specifically for organisational and MTO aspects relevant to the present situation in Swedish NPPs. One finding was that ORV should be seen as an integral part of maintenance, rather than as a separate activity. Another, that there is a characteristic distribution of error modes for maintenance and ORV, with many sequence errors and omissions, rather than a set of unique error modes. An international study further showed that there are important differences in how procedures are used, and in the balance between decentralisation and centralisation. Several studies also suggested that ORV could usefully be described as a barrier system in relation to the flow of work, for instance using the following five stages: (1) preventive actions during maintenance/outage, (2) post-test after completion of work, (3) pre-test before start-up, (4) the start-up sequence itself, and (5) preventive actions during power operation - possibly including automatic safety systems. In the field survey

  16. Preservation of competence and cooperation with universities. Initiatives of German nuclear power plant operators to further know-how and competence preservation; Kompetenzerhaltung und Hochschulkooperation. Initiativen der deutschen Kernkraftwerksbetreiber fuer Know-how und Kompetenzerhaltung

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Andre; Mohrbach, Ludger [VGB PowerTech e.V., Essen (Germany)

    2009-06-15

    Nuclear power plants and nuclear technology offer graduates of technical and scientific university disciplines ambitious challenges in an attractive working environment. Irrespective of the politically motivated opt-out of the peaceful use of nuclear power in Germany, nuclear industry will continue to need motivated and committed young scientists and engineers for the next few decades. They contribute to the success of nuclear power plant operators, manufacturers, and consulting institutions. German nuclear power plant operators promote institutions of learning and research focusing on nuclear topics by means of a coordinated initiative. In this way, they contribute to preserving competence, attracting young scientists and engineers, and expanding research and development in Germany beyond the confines of specific topics. VGB PowerTech e.V. (VGB) supports operators in organizing these activities also by establishing subject-related working parties as a platform for exchanging information and harmonizing specific measures. (orig.)

  17. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  18. ALARA at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  19. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  20. Operational safety of turbine-generators at Loviisa nuclear power plant; Turbiini-generaattoreiden kaeyttoeturvallisuus Loviisan ydinvoimalaitoksella

    Energy Technology Data Exchange (ETDEWEB)

    Virolainen, T.

    1997-06-01

    The goal of the study is to assess the operational safety of the turbine-generators at the Loviisa NPP. The lay-out, operation, control, monitoring and testing of turbine-generators have been studied. Taking these findings into consideration and by using operational data of Loviisa and other power plants, the most significant safety issues of the turbine-generator system have been identified. The frequencies for initiating events and possible consequences have been determined based on plant operational experience and related literature. (58 refs.).

  1. Stochastic power system operation

    OpenAIRE

    Power, Michael

    2010-01-01

    This paper outlines how to economically and reliably operate a power system with high levels of renewable generation which are stochastic in nature. It outlines the challenges for system operators, and suggests tools and methods for meeting this challenge, which is one of the most fundamental since large scale power networks were instituted. The Ireland power system, due to its nature and level of renewable generation, is considered as an example in this paper.

  2. Nuclear power demonstrating

    Energy Technology Data Exchange (ETDEWEB)

    Basmajian, V. V.; Haldeman, C. W.

    1980-08-12

    Apparatus for demonstrating the operation of a closed loop nuclear steam electric generating plant includes a transparent boiler assembly having immersion heating elements, which may be quartz lamps or stainless steel encased resistive immersion heating units with a quartz iodide lamp providing a source of visible radiation when using the encased immersion heating units. A variable voltage autotransformer is geared to a support rod for simulated reactor control rods for controlling the energy delivered to the heating elements and arranged so that when the voltage is high, the rods are withdrawn from the boiler to produce increased heating and illumination proportional to rod position, thereby simulating nuclear reaction. A relief valve, steam outlet pipe and water inlet pipe are connected to the boiler with a small stainless steel resistive heating element in the steam outlet pipe providing superheat. This heater is connected in series with a rheostat mounted on the front panel to provide superheat adjustments and an interlock switch that prevents the superheater from being energized when the steam valve is off with with no flow through the superheater. A heavy blue plastic radiation shield surrounds the boiler inside a bell jar.

  3. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0... License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1... request to generically extend the rule's compliance date for all operating nuclear power plants, but...

  4. Reliability of emergency ac power systems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  5. Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study

    Energy Technology Data Exchange (ETDEWEB)

    Katya Le Blanc; Johanna Oxstrand

    2012-05-01

    Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

  6. How operational Advanced-DInSAR Analysis can improve knowledge on natural and anthropogenic deformations for Nuclear Power Plant areas

    Science.gov (United States)

    Vollrath, Andreas; Zucca, Francesco; Stramondo, Salvatore; Bignami, Christian; Roeder, Johannes

    2015-04-01

    The application of Advanced Differential Interferometric Synthetic Aperture Radar (A-DINSAR) techniques has strongly emerged in the last two decades and became an important part in georelated fields. State-of-the-art A-DInSAR methods, such as Persistent Scatterer Interferometry (PSI) or the Small BASeline (SBAS) approach have demonstrated their usefulness in monitoring urban areas and single buildings, up to critical infrastructures. Combined with additional data from GPS networks or levelling, it could prove its large potential for an operational, cost-effective mapping of surface deformations. Given a reasonable amount of images, changes in surface deformation can be detected down to 1 mm/y. Compared to point-wise field measurements it offers a spatially consistent mapping approach from local to regional scales. In this review we want to provide a synopsis how A-DInSAR can be utilized in the framework of Nuclear Power Plant safety. Indeed, A-DInSAR is able to provide a detailed spatial analysis of slow movements occurring at NPP structures directly, as well as within the surrounding areas of the NPPs. Different phenomena of surface motion can be subject of such a monitoring. Natural causes, like active tectonics and terrain instability of slope which lead to landslides, as well as human-induced subsidence phenomena due to heavy construction or water pumping can be detected. We start by presenting techniques to determine the feasibility of the analysis for a given area and show its limitations. Then we propose a short insight into state-of-the-art studies where landslides, interseismic and human-induced deformation of the surface were mapped by A-DInSAR, to point out the relevance of a consequent analysis over an area of a NPP. Furthermore we present results of case studies from international projects (TERRAFIRMA) as well as preliminary results from the Krsko NPP in Slovenia. Finally, we provide a outlook into present and future trends concerning the use of freely

  7. Nuclearity for Dual Operator Spaces

    Indian Academy of Sciences (India)

    Zhe Dong; Jicheng Tao

    2010-02-01

    In this short paper, we study the nuclearity for the dual operator space $V^∗$ of an operator space . We show that $V^∗$ is nuclear if and only if $V^{∗∗∗}$ is injective, where $V^{∗∗∗}$ is the third dual of . This is in striking contrast to the situation for general operator spaces. This result is used to prove that $V^{∗∗}$ is nuclear if and only if is nuclear and $V^{∗∗}$ is exact.

  8. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Protest against nuclear power plants, uranium mining and nuclear testing was a major mobilizing force in the rise of mass environmental movements in the 1970s and 1980s around the globe. Nevertheless, the historiography of anti-nuclear protest remains largely limited to national stories about...

  9. Health Risks of Nuclear Power.

    Science.gov (United States)

    Cohen, Bernard L.

    1978-01-01

    Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)

  10. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    Lin Chengge; Li Shulan

    2009-01-01

    @@ China's nuclear power industry experienced such three stages as initiation, moderate development and active development. So far, there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW. In addition, there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  11. Nuclear power: Unexpected health benefits

    Science.gov (United States)

    Shellenberger, Michael

    2017-04-01

    Public fears of nuclear power are widespread, especially in the aftermath of accidents, yet their benefits are rarely fully considered. A new study shows how the closure of two nuclear power plants in the 1980s increased air pollution and led to a measurable reduction in birth weights, a key indicator of future health outcomes.

  12. Uranium contamination due to nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martin Sanchez, A.; Vera Tome, F.; Diaz Bejarano, J.; Garcia Aparicio, A. (Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica)

    1992-01-01

    Measurements of uranium isotopes and their daughters in the natural series were performed in the cooling reservoirs and their neighborhood of two nuclear power plants, [alpha] and [gamma] spectrometry of samples were used to measure the natural and artificial radionuclides. The nuclear power plants are in the southwest of Spain and one of them has been in operation since 1982, the other plant is in the construction phase. We compare the results obtained for the two sites. (orig.).

  13. Argentina: Nuclear power development and Atucha 2

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2015-08-15

    In 2014, nuclear energy generated about 5,257 GWh of electricity or a total share of 4.05 % of the total electrical energy of about 129,747.63 GWh kWh produced in Argentina and there has been a trend for this production to increase. Argentina currently has a nuclear production capacity of 1,010 megawatts of electrical energy. However, when the Atucha 2 nuclear power plant is completed and starts commercial operation, it will add 745 megawatts to this electrical production capacity. There are two sites with nuclear power plants in Argentina: Atucha and Embalse. The Embalse nuclear power plant went into operation in 1984. At the Atucha site, the Atucha-1 nuclear power plant started operation in 1974. It was the first nuclear power plant in Latin America. Construction of Atucha-2 started in 1981 but advanced slowly due to funding and was suspended in 1994 when the plant was 81 % built. In 2003, new plans were approved to complete the Atucha 2. I summer 2014 the plant went critical for the first time. The construction was completed under a contract with AECL.

  14. Operational readiness verification, phase 1: A study on safety during outage and restart of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hollnagel, E. [Linkoeping Univ. (Sweden). Dept. of Computer and Information Science; Gauthereau, V. [Linkoeping Univ. (Sweden). Dept. of Industrial Engineering

    2001-06-01

    This report contains the findings from the first phase of a study on safety during outage and restart of nuclear power plants. Operational Readiness Verification (ORV) - in Swedish called Driftklarhetsverifiering (DKV) - refers to the test and verification activities that are necessary to ensure that plant systems are able to provide their required functions when needed - more concretely that all plant systems are in their correct functional state when the plant is restarted after an outage period. The concrete background for this work is that nine ORV related incidents were reported in Sweden between July 1995 and October 1998. The work reported here comprised a literature survey of research relevant for ORV issues, and an assessment of the present situation at Swedish NPPs with respect to ORV. The literature survey was primarily aimed at research related to NPPs, but also looked at domains where similar problems have occurred, such as maintenance in commercial aviation. The survey looked specifically for organisational and MTO aspects relevant to the present situation in Swedish NPPs. One finding was that ORV should be seen as an integral part of maintenance, rather than as a separate activity. Another, that there is a characteristic distribution of error modes for maintenance and ORV, with many sequence errors and omissions, rather than a set of unique error modes. An international study further showed that there are important differences in how procedures are used, and in the balance between decentralisation and centralisation. Several studies also suggested that ORV could usefully be described as a barrier system in relation to the flow of work, for instance using the following five stages: (1) preventive actions during maintenance/outage, (2) post-test after completion of work, (3) pre-test before start-up, (4) the start-up sequence itself, and (5) preventive actions during power operation - possibly including automatic safety systems. In the field survey

  15. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  16. Technological evaluation for the extension of the operation license to the nuclear power plant of Laguna Verde; Evaluacion tecnologica para la extension de la licencia de operacion de la Central Nucleoelectrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C. R.; Medina A, A. L., E-mail: carlos.arganis@inin.gob.m [ININ, Departamento de Tecnologia de Materiales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    At the present time one of the tendencies in the nuclear industry is the renovation of operation licenses of the nuclear power plants, with the purpose of prolonging their operation 20 years more than the time settled down in their original license, which is of 30 years for the case of the nuclear power plant of Laguna Verde. This allows the electric power generation for a major period of time and to a relatively low price, giving this way a bigger competitiveness to the power stations of nuclear power. However, to request the license extension of the nuclear power plant requires to get ready the documentation and necessary studies for: to maintain a high level of security, to optimize the operation, maintenance and service life of the structures, systems and components, to maintain an acceptable level of performance, to maximize the recovery of the investment about the service of the nuclear power plant and to preserve the sure conditions for a major operation period at the license time. This paper describes the studies conducted by the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) to substantiate the required documentation for obtaining the extension of operating license of the nuclear power plant. These studies are focused mainly in the reactor pressure vessels of both units, as well as in the deposit of noble metals and the influence of the sludges (crud s) in this deposit. (Author)

  17. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  18. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  19. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 NSSS design

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Young Joon; Choi, Hae Yoon; Chang, Young Woo [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)] [and others

    1996-06-01

    A feasible study on the NSSS design safety assessment is performed for a longer cycle operation of Yonggang units 3 and 4. The analysis of the drift errors increased and setting point changed for safety related instrument channels due to the longer refueling interval was done to assess the impact on the operational safety performance and availability of the plant if the refueling interval was extended. In the result of LOCA analysis, even though the Peak Cladding Temperature (PCT) is slightly increased due to Pin/Box ratio decrease, the PCT has enough margin and, therefore, it was proven to be acceptable. From the perspective of return-to-power and the pre-trip fuel performance during the transient operation, an impact on the results of an SLB accident analysis were assessed. The overall trend of the longer refueling operation of 18 months is similar to the standard refuel operation of 12 months. The possibility of the return to power during SLB accident condition was estimated, the detailed analysis of the reactor core using the 3-dimensional model methodology is required to confirm the fuel integrity. 11 refs.(Author) .new.

  20. An under-operation diagnostic apparatus for motor-operated valve. Technical trends on motor-operated valve conservation for nuclear power stations and condition based maintenance using the new diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Itou, Haruo [Japan Atomic Power Co., Tokyo (Japan)

    2002-08-01

    A new motor-operated valve diagnostic analysis system (MOVDAS) can be, in short time, simply and with high precision, carried out diagnosis on deterioration and accident of motor-operated valves with many numbers used for separated and feeding valves important for safety of a nuclear reactor, not only at cease but also under operation of a power plant, and is technology capable of upgrading reliability on a motor-operated valve for a condition based maintenance tool and reducing conservation cost. MOVDAS is composed of a built-in torque sensor directly measurable transit torque behaviors with high precision by upgrading a torque sensing technology using strain gauges and a diagnostic apparatus to analyze their signals, which can be used even under operation of the valves. And, this technology can be adapted for under-operation integrity recognition of the valve recommended by NRC in U.S.A. and for operation and maintenance indication, JEAG-4803 in Japan. Here were introduced its contents and also a motor-operated valve remote diagnostic system recently developed in parallel. (G.K.)

  1. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Science.gov (United States)

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  2. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  3. 核电厂安全运行对策研究%Research on the Measures for Safe Operation of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    朱继洲; 单建强; 王学容

    2001-01-01

    Based on the examples of the nuclear power plant accidents,theimportant of research on the measures for safety operation of nuclear power plant are discussed in this paper. The passive safety system design principles for new generation advanced reactor are suggested,The management for administration and training is suggested to be adopted for preventing human error.%以核电厂事故为例叙述了核电厂安全运行对策研究的重要性;介绍了代表新一代先进反应堆的非能动安全系统设计原则和针对人因差错应采取的管理和培训对策。

  4. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  5. Nuclear Power for Sustainable Development : Current Status and Future Prospects

    OpenAIRE

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactor...

  6. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  7. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed o

  8. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  9. A research program in determination of heavy metals in sediments and benthic species in relation to nuclear power plant operation

    Science.gov (United States)

    Phelps, H. L.

    1984-01-01

    Heavy metals in the estuarine environment can be toxic to fish and shellfish early life history stages and concentrations build up to levels of concern in marketable shellfish. The present survey was begun just before startup in 1974 of the 1900 megawatt Calvert Cliffs Nuclear Power Plant on the Chesapeake Bay in order to assess and understand factors relating to heavy metal accumulation in estuarine biota. Oysters were collected in large numbers at test and reference sites in June 1974 to 77 and individually analyzed for copper and zinc. Oyster copper and zinc concentrations were correlated with salinity read at time of collection. The relationship of oyster age to metal concentration was examined with two sets of oysters of known age and genetic origin (laboratory spawned). Copper sorption by typical mid Bay sediments, and field studies on cadmium concentrations in sediments were examined.

  10. Aquatic impacts from operation of three midwestern nuclear power stations: Fort Calhoun station, Unit No. 1 environmental appraisal report

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, F.

    1981-10-01

    Fort Calhoun Station, Unit 1, is located on the west bank of the Missouri River in Washington County, Nebraska. The station, a nuclear powered generating facility producing 475 net megawatts, utilizes a once-through cooling design. The station influences the aquatic biota of the Missouri River vicinity in several ways. The heated discharges of the station were found to have no significant impacts to fish, periphyton, and benthic macroinvertebrates. Minor effects to phytoplankton were noted in warm summer months at the point of discharge. An estimated 227,900,000 fish larvae were entrained annually from the river's ichthyoplankton community, the majority identified as freshwater drum. Fort Calhoun Station impinged an estimated 170,882 fish annually, large numbers of which were freshwater drum and gizzard shad with potential losses to channel and flathead catfish. The station was shown to have little impact on the zooplankton community.

  11. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  12. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Science.gov (United States)

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  13. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2010-03-04

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP). The license provides, among other things... operating nuclear power plants, but noted that the Commission's regulations provide mechanisms...

  14. 78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation

    Science.gov (United States)

    2013-11-06

    ... APR1400 Standard Plant Design submitted by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) and Korea... COMMISSION Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear..., construction, operation and maintenance of the Optimized Power Reactor 1000 (OPR1000), the APR1400...

  15. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation...

  16. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation...

  17. 75 FR 61779 - R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and...

    Science.gov (United States)

    2010-10-06

    ... COMMISSION R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and... Operating License No. DPR-18, issued to R.E. Ginna Nuclear Power Plant, LLC (the licensee), for operation of the R.E. Ginna Nuclear Power Plant (Ginna), located in Ontario, New York. In accordance with 10 CFR...

  18. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  19. Nuclear plant operation: achieving excellence through quality

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, L. [Barseback Nuclear Power Plant (Sweden); Bergeron, J.P. [Electricite de France (EDF), 75 - Paris (France); Coakley, W. [and others

    1992-07-01

    Nuclear power operation is characterised by a very high level of safety and availability resulting in economically competitive electricity production. This achievement must not only be maintained but must be further developed if nuclear power is to regain momentum in the light of its widely recognized environmental advantages. Therefore this meeting bring together all those, managers and technical staff, responsible for the operation of the nuclear in order to allow them to exchange views, experience and knowledge on fundamental aspects such as: management philosophy, quality assurance, human resources and international co-operation; focusing on training (incident analysis and management), human factors and experience feedback; maintenance philosophy, life extension and upgrading, organisation and administration. (A.L.B.)

  20. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China's nuclear power industry experienced such three stages as initiation,moderate development and active development.So far,there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW.In addition,there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  1. Real issue with nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.W.

    1976-04-22

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists. (MCW)

  2. Nuclear power - the glittering prizes

    Energy Technology Data Exchange (ETDEWEB)

    Horton, C.C.

    The paper on the benefits of nuclear power is based on a lecture given for the Institution of Nuclear Engineers, London, 1986. Suggestions for short term benefits include a clean environment and a cheap energy source, whereas suggestions for long term benefits include freedom from want in the world and avoidance of 'energy wars'. These benefits are discussed along with alternative energy sources, the financial savings to be saved from nuclear power, world energy wealth, depletion of world energy reserves, and risks due to radiation exposure.

  3. Thermodynamics in nuclear power plant systems

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor powersystems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibilit

  4. The Fundamentals and Status of Nuclear Power

    Science.gov (United States)

    Matzie, Regis A.

    2011-11-01

    Nuclear power has enormous potential to provide clean, safe base-load electricity to the world's growing population. Harnessing this potential in an economic and responsible manner is not without challenges. Safety remains the principal tenet of our operating fleet, which currently provides ˜20% of U.S. electricity generated. The performance of this fleet from economic and safety standpoints has improved dramatically over the past several decades. This nuclear generation also represents greater than 70% of the emission free electricity with hydroelectric power providing the majority of the remainder. There have been many lessons learned from the more than 50 years of experience with nuclear power and these have been factored into the new designs now being constructed worldwide. These new designs, which have enhanced safety compared to the operating fleet, have been simplified by employing passive safety systems and modular construction. There are applications for licenses of more than 20 new reactors under review by the U.S. Nuclear Regulatory Commission; the first of these licenses will be completed in early 2012, and the first new U.S. reactor will start operating in 2016. Yet there are still more improvements that can be made and these are being pursued to achieve an even greater deployment of nuclear power technology.

  5. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  6. Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine of thermal and nuclear power plants

    Science.gov (United States)

    Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.

    2016-03-01

    The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.

  7. Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants; Sistemas neuro-fuzzy para identificacao de sistemas aplicados a operacao de centrais nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Antonio Carlos Pinto Dias

    2000-09-01

    A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)

  8. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  9. Virtual control desk for operators training: a case study for a nuclear power plant simulator; Mesa de controle virtual para treinamento de operadores: um estudo de caso para um simulador de usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio Alves da Cunha e

    2009-03-15

    Nuclear Power Plant (NPP) is a facility for electrical energy generation. Because of its high degree of complexity and very rigid norms of security it is extremely necessary that operators are very well trained for the NPP operation. A mistaken operation by a human operator may cause a shutdown of the NPP, incurring in a huge economical damage for the owner and for the population in the case of a electric net black out. To reduce the possibility of a mistaken operation, the NPP usually have a full scope simulator of the plant's control room, which is the physical copy of the original control room. The control of this simulator is a computer program that can generate the equal functioning of the normal one or some scenarios of accidents to train the operators in many abnormal conditions of the plant. A physical copy of the control room has a high cost for its construction, not only of its facilities but also for its physical components. The proposal of this work is to present a project of a virtual simulator with the modeling in 3D stereo of a control room of a given nuclear plant with the same operation functions of the original simulator. This virtual simulator will have a lower cost and serves for pretraining of operators with the intention of making them familiar to the original control room. (author)

  10. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min, E-mail: jewellee@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyun Chul, E-mail: leehc@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ha, Jun Su, E-mail: junsu.ha@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science Technology and Research, Abu Dhabi P.O. Box 127788 (United Arab Emirates); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-10-15

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  11. Virtual environments for nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  12. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Kirchhof, Astrid Mignon; Meyer, Jan-Henrik

    2014-01-01

    Protest against nuclear power plants, uranium mining and nuclear testing played a pivotal role in the rise of a mass environmental movement around the globe in the 1970s and 1980s. Nevertheless, the history of anti-nuclear activism has largely been told from a strictly national perspective....... This focus issue approaches the phenomenon from a transnational perspective for the first time. Against the backdrop of the debate on transnational history, this article develops a framework of analysis, and contextualizes anti-nuclear protest in a broader postwar perspective. The contributions show...... that anti-nuclear movements across the globe were transnationally connected. First, scientific expertise and protest practices were transferred between movements, and subsequently adapted to local requirements. Secondly, transnational cooperation and networks did indeed emerge, playing an important role...

  13. Nuclear power - menace or miracle

    Energy Technology Data Exchange (ETDEWEB)

    Porritt, J.; Gittus, J.

    1988-04-01

    The main points of the anti-nuclear lobby are put by the Director of Friends of the Earth. These are on its failure to provide cheaper electricity, reactor safety (the Chernobyl accident is cited), on the problems of radioactive waste disposal and on the public preference for a non-nuclear energy programme. Coal is seen as able to provide most of the United Kingdom's energy needs until the 22nd century. Long-term solutions to the energy and environmental problems are energy conservation and renewable energy sources. The pro-nuclear case is made by the Director of Communication and Information at the UK Atomic Energy Authority. This is that renewable energy sources will not be viable for another 30 years or so and, anyway, do not solve all the environmental problems. The choice of energy is thus coal or nuclear. Coal gives rise to acid rain and, as it is in limited supply, is too valuable simply to burn. Nuclear power can provide the energy economically and safely. The accident at Chernobyl is not possible in the UK. The amount of high level nuclear waste generated is small and measures for its disposal will be taken. The levels of radiation due to the nuclear power industry are small compared with natural radiation levels, and have not been shown to cause higher than normal levels of leukaemia or cancer. (U.K.).

  14. Autonomous Control of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  15. New mechanical samples positioning system for irradiations on a radial channel at nuclear research reactor in a full-power continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Gual, Maritza R., E-mail: mrgual@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas, InSTEC, Havana (Cuba); Mas, Felix, E-mail: felix_mas_milian@yahoo.com [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, trav R., no. 187, Cidade Universitaria, Butanta, CEP 05508-900 Sao Paulo (Brazil); Deppman, Airton, E-mail: deppman@if.usp.br [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, trav R., no. 187, Cidade Universitaria, Butanta, CEP 05508-900 Sao Paulo (Brazil); Coelho, Paulo R.P., E-mail: prcoelho@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Travessa R, 400, Cidade Universitaria, CEP 05508-900 Sao Paulo (Brazil)

    2011-02-15

    This paper describes a new mechanical samples positioning system that allows the safe placement and removal of biological samples for prolonged irradiation, in a nuclear reactor during full-power continuous operation. Also presented herein the materials of construction and operating principles. Additionally, this sample positioning system is compared with an existing pneumatic and automated transfer system, already available at the research reactors. The system consists of a mechanical arm with a claw, which can deliver the samples for irradiations without reactor shutdown. It was installed in the IEA-R1 research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, Brazil, and for the past 5 years, the system has successfully operated and allowed the conducting of important experiments. As a result of its introduction, the facility has been in a position to positively respond to the increased demand in studies of biology, medicine, physics, engineering, detector/dosimeter calibrations, etc. It is one example of the appropriated technologies that save energy and resources.

  16. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  17. Nuclear power plant security assessment technical manual.

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  18. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Science.gov (United States)

    2013-12-09

    ... COMMISSION Operator Licensing Examination Standards for Power Reactors AGENCY: Nuclear Regulatory Commission... available for public comment a draft NUREG, NUREG-1021, Revision 10, ``Operator Licensing Examination Standards for Power Reactors.'' DATES: Submit comments by February 7, 2014. Comments received after...

  19. ILK statement on determining operation periods for nuclear power plants in Germany; ILK-Stellungnahme zur Festlegung von Betriebszeiten fuer Kernkfraftwerke in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    The question of how long nuclear power plants (NPPs) can be safely operated while maintaining a high safety standard played an important role in the worldwide expert discussion in recent years. Far-reaching agreement exists on which reviews and measures to undertake in order to safely operate such plants over longer time periods. In most countries operating licenses for NPPs are not limited in time; this is also the case for Germany. However, the authorization for power operation expires if the plant has used up its approved electricity generation quota. This quota corresponds to a value established in the Atomic Energy Act (AtG) for the individual unit that is based on an operating time of 32 years. On the basis of operating experiences gathered with plants currently in operation and also due to available research findings, the ILK believes that there are no safetyrelated reasons for limiting the operating time of nuclear power plants a priori. The ILK notes that the German NPPs have a high safety standard that is constantly monitored by the regulatory authority. Periodic safety reviews (PSRs), which are performed every ten years, are part of this process. The ILK also takes the view, however, that in the case of very long operating periods, it makes sense to make the continued operation depend on a renewed evaluation (of the plant). This requires demonstrating that the plant displays a level of safety that corresponds to the requirements for the future operating period. The ILK recommends the following approach: - The limitation of production quotas currently laid down in the German Atomic Energy Act should be lifted; - In addition to maintaining the current safety standard, licensees should examine improvement measures for the further reduction of the residual risk and, where appropriate, apply these. The effectiveness of the PSR in its current form should be assessed and the guidelines for their application should be updated, if necessary; - After an operating

  20. The nuclear power discussion in change. Nuclear controversy has shifted

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Kuester, Wolf J.; Popp, Manfred

    2015-07-15

    The public discussion on nuclear energy is not focused on power plant safety anymore. A globally good safety statistic and years of information activity on safety technology provided progress, even though all incidents are still discussed with great dedication. Nevertheless the field of disposal receives more prominence in public discussions since 1976; reprocessing of irradiated fuels and storage of nuclear waste follow the topic of nuclear power plants with temporary shift. During a long preparation time technical and operational know-how was gathered for both fields that is now available for use on large technical scale. For the entire disposal complex exists a comprehensive concept prepared by the federal government, which has to be put into practice together with the industry. The priority assignment for a dialogue with the public is to comprehensively inform on extend and quality of problem solutions and to highlight that even here the safety of the biological-cycle is the guiding principle for all considerations.

  1. Nuclear Power on Energy Agenda

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The big debate on whether or not to use nuclear power as an energy option has raged among countries like the U.S., Britain, and Germany for decades, with not even the advent and threat of global warming forcing a conclusion. China, however, has always stressed energy diversity and been determined to develop and use this alternative energy source.

  2. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  3. A Development Method of Mobile Computerized Procedure System for the Cooperation among Field Workers and Main Control Room Operators in Korean Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Jin; Seong, No Kyu; Jung, Yeon Sub [KHNP ,Daejeon (Korea, Republic of)

    2014-08-15

    Human errors can occur during the test and maintenance of steam generator, safety injection system and other various systems and devices in nuclear power plants (NPPs). Most of human errors can be improved by the human error prevention techniques such as self-check, peer-check, concurrent verification and etc. Another important technique is to share work information among main control room (MCR) operators and field workers. Various field service automation tools have been developed with recent information technology in many countries. APR1400 computerized procedure system (CPS) has been developed for the MCR operators of Shin-Kori 3 and 4 units. Especially, the concurrent verification support design is applied in the construction project of Shin-Hanul 1 and 2 CPS. It is expected that the proposed mobile CPS can enhance the reduction of human errors by supporting human error prevention techniques and information sharing. This paper describes the technical issues of the mobile CPS (mobile CPS) in the initial development stage. Based on the design of APR1400, CRI CPS has been developed and operated for SKN 3 and 4 HFE V and V and license test for the MCR operating staff. Therefore the mobile CPS will be developed by upgrading the CRI CPS with improved features.

  4. Regulator process for the authorization of an amendment to the operation license of a nuclear power plant in Mexico; Proceso regulador para la autorizacion de una enmienda a la licencia de operacion de una central nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Espinosa V, J.M.; Salgado, J.R.; Mamani, Y.R. [CNSNS, Dr. Barragan 779, Col. Narvarte, 03020 Mexico D.F. (Mexico)

    2005-07-01

    The regulator process by which an authorization is granted from an amendment to the License of Operation of a nuclear power station in Mexico is described. It makes an appointment the effective legal mark, the technical characteristics of the modification, the evaluation process and deposition upon oath of tests and finally the elaboration of the Safety report and the Technical Verdict that is a correspondent for the regulator organism to the Secretary of Energy, the one that in turn is the responsible of granting the amendment the License just as it establishes it the Law. (Author)

  5. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  6. Swedish Opinion on Nuclear Power 1986 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren

    2012-11-01

    This report contains the Swedish opinion on Nuclear Power and European Attitudes on Nuclear Power. It also includes European Attitudes Towards the Future of Three Energy Sources; Nuclear Energy, Wind Power and Solar Power - with a focus on the Swedish opinion. Results from measurements done by the SOM Inst. are presented.

  7. Nuclear power a reference handbook

    CERN Document Server

    Henderson, Harry R

    2014-01-01

    In the 21st century, nuclear power has been identified as a viable alternative to traditional energy sources to stem global climate change, and condemned as risky to human health and environmentally irresponsible. Do the advantages of nuclear energy outweigh the risks, especially in light of the meltdown at the Fukushima plant in 2011? This guide provides both a comprehensive overview of this critical and controversial technology, presenting reference tools that include important facts and statistics, biographical profiles, a chronology, and a glossary. It covers major controversies and proposed solutions in detail and contains contributions by experts and important stakeholders that provide invaluable perspective on the topic.

  8. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  9. Analysis of minor incidents in the operation of nuclear power plants: a case study on the use of procedures in organizations dealing with hazardous technologies; Analise de microincidentes na operacao de usinas nucleares: estudo de caso sobre o uso de procedimentos em organizacoes que lidam com tecnologias perigosas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo Victor Rodrigues de [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: paulov@ien.gov.br; Vidal, Mario Cesar Rodriguea [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Grupo de Ergonomia e Novas Tecnologias (GENTE); Carvalho, Eduardo Ferro de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia de Producao

    2005-05-15

    Organizations that work with hazardous materials, such as nuclear power plants, offshore installations, and chemical and petrochemical plants, have risk management systems involving accident control and mitigation to ensure the safety of their facilities. These systems are based on physical devices, such as protective barriers, equipment and systems aimed at preventing the occurrence and propagation of accidents, and on human aspects such as regulations and procedures. This paper analyzes the use of a variety of procedures by nuclear power plant control room operators. The methodology consisted of analyzing the work of control room operators during the normal operations, shutdown, and startup of a nuclear power plant, and in full scale simulator training. This survey revealed that routine noncompliance to procedures was considered normal according to the operating rationale, which is based on technical, organizational and cultural factors. These findings indicate that the competencies nuclear power plant operators must possess far exceed proper technical training and the ability to follow written instructions. (author)

  10. Ergonomics and risk management in high risk organizations: nuclear power plant operator decision making; A ergonomia e a gestao de risco em organizacoes que lidam com tecnologias perigosas: tomada de decisao de operadores de usinas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo Victor Rodrigues de

    2003-08-15

    Nuclear power plants are high hazard environments where emergency situations can have devastating effects. The operator crew has the ultimate responsibility to control the energy production process with safety. The outcome of a crisis is consequently dependent on the crew's judgement, decision making and situation awareness. In such way we should know how operators make their decisions in order to develop safety strategies. The aim of this thesis is to examine the cognitive processes through which operators make decisions when dealing with micro incidents during their actual work, and to determine whether they use a naturalistic or normative decision making strategy. That is, do they try to recognize the micro incident as familiar and base decisions on condition-action rules (naturalistic), or do they need to concurrently compare and contrast options before selecting the best possible (normative). The method employed for data collection was the Cognitive Task Analysis (CTA) and Ergonomic Work Analysis (EWA). The main findings of this thesis were that decision making is primarily based on naturalistic strategies, such as condition-action rules and recognition. In new situations rules are created ad hoc. These rules appear derived from experience and training rather than from Standard Operating Procedures and contrast normative competence standards used by nuclear industry. (author)

  11. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  12. The influence of individual and team cognitive ability on operators' task and safety performance: a multilevel field study in nuclear power plants.

    Science.gov (United States)

    Zhang, Jingyu; Li, Yongjuan; Wu, Changxu

    2013-01-01

    While much research has investigated the predictors of operators' performance such as personality, attitudes and motivation in high-risk industries, its cognitive antecedents and boundary conditions have not been fully investigated. Based on a multilevel investigation of 312 nuclear power plant main control room operators from 50 shift teams, the present study investigated how general mental ability (GMA) at both individual and team level can influence task and safety performance. At the individual level, operators' GMA was predictive of their task and safety performance and this trend became more significant as they accumulated more experience. At the team level, we found team GMA had positive influences on all three performance criteria. However, we also found a "big-fish-little-pond" effect insofar as team GMA had a relatively smaller effect and inhibited the contribution of individual GMA to workers' extra-role behaviors (safety participation) compared to its clear beneficial influence on in-role behaviors (task performance and safety compliance). The possible mechanisms related to learning and social comparison processes are discussed.

  13. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  14. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  15. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  16. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power......

  17. Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eugene S. Grecheck

    2010-11-30

    This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

  18. 77 FR 70847 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Science.gov (United States)

    2012-11-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 2, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request for...

  19. 核电厂运行规程标准化开发的研究%Research on Operating Procedures Standardized Development for Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    施锦; 薛山虎

    2016-01-01

    While operating procedures documentations are complex and are very important to safe opera⁃tion of nuclear power plants, the development of operating procedures standardizations are required to en⁃sure the correctness and standardization of procedures� Based on the framework analysis of operating pro⁃cedures for CAP series advanced passive plants, the functional requirements of procedures standardization development are analyzed� Through programming and code implementation, some tools for procedures standardized development are designed and established, as well as a software platform� The operating pro⁃cedures developers are able to establish standardized operating procedures through the platform� Meanwhile the important technical contents are informationized� The specific practices show that this platform sup⁃ports operating procedure standardization efficiently, and meets the regulatory requirements for operating limits and conditions� It also benefits the human errors reduction for operators from the start of operating procedures design, which is meaningful to enhance the operational safety of nuclear power plants.%由于运行规程文件体系的复杂性、运行规程对核电厂安全运行的重要性,为了充分保证运行规程的正确性和规范性,实现核电厂运行规程的标准化开发是十分必要的。本文基于规程体系和内容结构的分析,对CAP系列核电厂运行规程标准化开发的需求进行了分析,通过程序设计和代码实现开发了规程标准化开发工具并建立了规程标准化开发平台。规程开发人员能够通过平台应用使开发出的规程文件标准化、规程重要技术内容信息化,并在后台实现数据管理。实践表明,运行规程标准化开发平台能够有效提高规程的质量和开发效率,满足核安全法规对运行限值和条件的跟踪、配置管理要求,能够从设计源头降低主控室操纵员出现人因

  20. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  1. EPZ and AREVA. A longstanding partnership for the safe and reliable operation of the Dutch Borssele nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Broy, Yvonne [AREVA GmbH, Erlangen (Germany); Linger, Monique [Elektriciteits-Productiemaatschappij Zuid-Nederland N.V., Borssele (Netherlands)

    2014-04-15

    After 40 years of service, it belongs to the safest 25 % of all light-water reactors in the western hemisphere thanks to continuous modernization. In doing so, Borssele is setting standards for maintenance and upgrades. In view of the continuation of operation until 2034, further comprehensive modernization projects are planned. The plant operator, the Dutch N.V. Elektriciteitsproduktiemaatschappij (EPZ), decided to tackle this challenge with the support of its long-standing partner AREVA. Another milestone is coming up soon: The safety I and C shall gradually be changed to digital technology in the next years. Apart from close cooperation in plant technology, EPZ and AREVA also cooperate in fuel supply, as well as in the area of service and maintenance work. (orig.)

  2. Methodology of complexity analysis of Emergency Operating Procedures for Nuclear Power Plants; Metodologia de analisis de complejidad de Procedimientos de Operacion de Emergencia de Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Martorell, P.; Martorell, S.; Marton, I.; Pelayo, F.; Mendizabal, R.

    2013-07-01

    The Emergency Operating Procedures (SOPs) set out the stages and contain actions to be executed by an operator to respond to an emergency situation. Methodologies are being developed to assess aspects such as complexity, completeness and vulnerability of these procedures. A methodology is presented in this paper to develop a network topology POE and analysis focused on the same complexity as a fundamental attribute.

  3. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to

  4. The new duty of care for nuclear power plant operators in Sec. 9a subpara. 2a AtG; Zur neuen Sorgepflicht der Kraftwerksbetreiber gem. paragraph 9a Abs. 2a AtG

    Energy Technology Data Exchange (ETDEWEB)

    Posser, Herbert [Freshfields Bruckhaus Deringer LLP, Duesseldorf (Germany)

    2014-07-15

    The new stipulation in Sec. 9a subpara. 2a AtG - pursuant to which operators of nuclear power plants are no longer entitled to use the interim storage facility in Gorleben for radioactive waste stemming from the reprocessing plants in Sellafield and La Hague, but have to establish further capacities in their own facilities for spent nuclear fuels at the site of the power plants - is illegal under constitutional law. It imposes an unproportional burden on the plant operators as well as on GNS, and infringes property rights without pursuing a legitimate purpose. (orig.)

  5. A study on the operator's errors of commission (EOC) in accident scenarios of nuclear power plants: methodology development and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun; Kang, Da Il

    2003-04-01

    As the concern on the operator's inappropriate interventions, the so-called Errors Of Commission (EOCs), that can exacerbate the plant safety has been raised, much of interest in the identification and analysis of EOC events from the risk assessment perspective has been increased. Also, one of the items in need of improvement for the conventional PSA and HRA that consider only the system-demanding human actions is the inclusion of the operator's EOC events into the PSA model. In this study, we propose a methodology for identifying and analysing human errors of commission that might be occurring from the failures in situation assessment and decision making during accident progressions given an initiating event. In order to achieve this goal, the following research items have been performed: Firstly, we analysed the error causes or situations contributed to the occurrence of EOCs in several incidents/accidents of nuclear power plants. Secondly, limitations of the advanced HRAs in treating EOCs were reviewed, and a requirement for a new methodology for analysing EOCs was established. Thirdly, based on these accomplishments a methodology for identifying and analysing EOC events inducible from the failures in situation assessment and decision making was proposed and applied to all the accident sequences of YGN 3 and 4 NPP which resulted in the identification of about 10 EOC situations.

  6. DCS emulator development for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y. [Hitachi Canada Ltd., Power and Industry Div., Mississauga, Ontario (Canada); Ishii, K.; Chiba, D. [Hitachi Ltd., Information and Control Systems Div., Ibaraki-ken (Japan)

    2009-07-01

    Continual training of operators is one of the principal means by which Nuclear Power Plant (NPP) operational efficiency can be improved. Since this training cannot take place in the actual NPP, NPP simulator applications must be used instead. While digitalization scope of Instrumentation and Control (I and C) systems has been expanded to the entire plant by using Distributed Control System (DCS) implementation, Hitachi has implemented DCS emulator on a general purpose Personal Computer (PC) and applied it to simulator applications. This paper reviews such DCS emulator development for NPP by Hitachi. (author)

  7. Nuclear power plants. Site choice; Usinas nucleoeletricas. Escolha de local

    Energy Technology Data Exchange (ETDEWEB)

    Atala, Drausio Lima

    2009-07-01

    This book establishes the standards for selection and development of criteria for evaluation of new nuclear sites in Brazil. The places where the new nuclear power plants will be installed must be adequate for construction and operation of the power plants will be submitted to Brazilian environmental and nuclear legislation of the Union, states and the local governments, besides to accomplish the world good practices of this activity.

  8. Fukushima Nuclear Power Plant Accident and Nuclear Physicists

    Directory of Open Access Journals (Sweden)

    Otsuka Takaharu

    2014-03-01

    Full Text Available I give an overview on the Fukushima Nuclear Power Plant Accident and a report on voluntary activities of Japanese nuclear physicists in this terrible event, including their major outcome.

  9. Simulation of an operation cycle of nuclear power plant of Laguna Verde with code TACHY and computation package CMS; Simulacion de un ciclo de operacion de la CNLV con el codigo TACHY y el paquete de computo CMS

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Del Valle, E.; Vargas, S.; Xolocostli, J. V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: joseangel.gonzalez@inin.gob.mx

    2009-10-15

    In this work the code TACHY is used, to simulate an operation cycle of the nuclear power plant of Laguna Verde. The code TACHY was designed originally to analyze recharge patterns of Hindu plants type BWR, that have near 800 assemblies, that is almost double the reactor of nuclear power plant of Laguna Verde. For this reason it was necessary to modify the code to be able to apply it to nuclear power plant of Laguna Verde. The values were modified like: operation power, entrance subcooling, flow through the nucleus, assemblies number in nucleus and dimensions of nucleus. In this work is take like base the cycle 9 of Unit 2 of nuclear power plant of Laguna Verde. This cycle is simulated with code TACHY and with code SIMULATE-3 that is part of computation package Core Management System, with the purpose of comparing the results. The results that are compared with the two codes, for the complete nucleus are: the burnt average of nucleus, the cycle longitude, the effective factor of neutrons multiplication, the pick of radial relative power; and for each assembly: the burnt and the relative power. Of the results obtained with TACHY we can conclude that we have a computation tool that allows to analyze a great number of recharge patterns in a reasonable time. (Author)

  10. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  11. Fatigue monitoring in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Shah, V.N. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  12. Detecting Cyber Attacks On Nuclear Power Plants

    Science.gov (United States)

    Rrushi, Julian; Campbell, Roy

    This paper proposes an unconventional anomaly detection approach that provides digital instrumentation and control (I&C) systems in a nuclear power plant (NPP) with the capability to probabilistically discern between legitimate protocol frames and attack frames. The stochastic activity network (SAN) formalism is used to model the fusion of protocol activity in each digital I&C system and the operation of physical components of an NPP. SAN models are employed to analyze links between protocol frames as streams of bytes, their semantics in terms of NPP operations, control data as stored in the memory of I&C systems, the operations of I&C systems on NPP components, and NPP processes. Reward rates and impulse rewards are defined in the SAN models based on the activity-marking reward structure to estimate NPP operation profiles. These profiles are then used to probabilistically estimate the legitimacy of the semantics and payloads of protocol frames received by I&C systems.

  13. Nuclear Power and Merchant Shipping (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Warren H. [Library of Congress

    1965-01-01

    This booklet tells about the use of nuclear energy for merchant ships. It explores its advantages and disadvantages, describes a nuclear merchant ship, speculates about the effect of nuclear power upon seaborne trade, and discusses some of the differences between conventional and nuclear merchant ships.

  14. Public member dose assessment of Bushehr Nuclear Power Plant under normal operation by modeling the fallout from stack using the HYSPLIT atmospheric dispersion model.

    Science.gov (United States)

    Zali, A; Shamsaei Zafarghandi, M; Feghhi, S A; Taherian, A M

    2017-05-01

    In this work, public dose resulting from fission products released from Bushehr Nuclear Power Plant (BNPP) under normal operation is assessed. Due to the long range transport of radionuclides in this work (80 km) and considering terrain and meteorological data, HYbrid Single-Particle Lagrangian Integrated Trajectory (HYsplit) model, which uses three dimensional long-range numerical models, has been employed to calculate atmospheric dispersion. Annual effective dose calculation is carried out for inhalation, ingestion, and external exposure pathways in 16directions and within 80 km around the site for representative person. The results showed the maximum dose of inhalation and external exposure for adults is 3.8 × 10(-8)Sv/y in the SE direction and distance of 600 m from the BNPP site which is less than ICRP 103 recommended dose limit (1 mSv). Children and infants' doses are higher in comparison with adults, although they are less than 1 mSv. Ingestion dose percentage in the total dose is less than 0.1%. The results of this study underestimate the Final Safety Analysis Report ofBNPP-1 (FSAR)data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Management program of cables and electrical conductions in operating nuclear power plant; Programa de gestion de cables y conducciones electricas en C. N. en Operacion

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pereira, J.

    2012-07-01

    The management of cables and electrical conductions of a nuclear power plant is an activity very important during making the original design and subsequent design modifications, by the cable volume and nuclear safety regulations. During the design and construction of the Nuclear Power Plants, the late XX century, this work was carried out using manual procedures. The introduction of new technology provides users the ability to create relational databases for data according to the needs. Also tools and IT programs develop for the management of these databases with more reliability and a major number of possibilities at the moment of handling the available information. This paper aims to expose advances and developments in this field and present the methodology and lessons learned.

  16. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  17. Electrical power integration for lunar operations

    Science.gov (United States)

    Woodcock, Gordon

    1992-01-01

    Electrical power for future lunar operations is expected to range from a few kilowatts for an early human outpost to many megawatts for industrial operations in the 21st century. All electrical power must be imported as chemical, solar, nuclear, or directed energy. The slow rotation of the Moon and consequent long lunar night impose severe mass penalties on solar systems needing night delivery from storage. The cost of power depends on the cost of the power systems the cost of its transportation to the Moon, operating cost, and, of course, the life of the power system. The economic feasibility of some proposed lunar ventures depends in part on the cost of power. This paper explores power integration issues, costs, and affordability in the context of the following representative lunar ventures: (1) early human outpost (10 kWe); (2) early permanent lunar base, including experimental ISMU activities (100 kWe); (3) lunar oxygen production serving an evolved lunar base (500 kWe); (4) lunar base production of specialized high-value products for use on Earth (5 kWe); and (5) lunar mining and production of helium-3 (500 kWe). The schema of the paper is to project likely costs of power alternatives (including integration factors) in these power ranges, to select the most economic, to determine power cost contribution to the product or activities, to estimate whether the power cost is economically acceptable, and, finally, to offer suggestions for reaching acceptability where cost problems exist.

  18. Nuclear power development in the Eighties

    Energy Technology Data Exchange (ETDEWEB)

    Ibe, L.D.

    1974-01-01

    Plans to accelerate the nation-wide rural electrification program and tap energy sources to reduce dependency on oil-fired plants to reasonably low levels within the decade in the Philippines were announced. The specific goals of the National Energy Plan are: the reduction of the country's oil dependency for its total energy needs from the present high 93 percent to 76 percent by 1985; for power generation, the contribution of oil-fired power plants to be reduced from the present level of 75 percent to 37 percent by 1985; and for other energy uses, 15 percent to 20 percent savings through conservation measures and improvements in energy utilization efficiency. The Energy Plan aims at a balanced contribution from hydro, conventional thermal, geothermal, and nuclear plants by 1990. Plans for the power generation expansion program by the National Power Corporation (NPC) are described for the Luzon, Mindanao, and Visayas regions. It is concluded that the National Energy Plan and the NPC program encompass: no additional oil-fired generating units except for those planned or ordered; geothermal and nuclear power stations will provide energy for future base load operations; and hydro installation will provide peaking needs. (MCW)

  19. Development of an evaluation methodology for operator`s moving distance workload for the assessment of the layout and arrangement of nuclear power plant control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Un; Seo, Sang Moon; Lee, Yong Hee; Cheon, Se Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    In this report, link analysis is discussed for the assessment of control room layout and arrangement, among the workload assessment methodologies using SACOM. A methodology developed for estimating operator`s moving distances based on modified link analysis is described, including its detail algorithm. This methodology was developed with the type and content of SACOM input information in consideration of not only software aspects but also easiness when the designer use this for control room layout and arrangement. 1 tab., 7 figs., 8 refs. (Author) .new.

  20. LMFBR operation in the nuclear cycle without fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

    1997-12-01

    Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

  1. Nuclear power a very short introduction

    CERN Document Server

    Irvine, Maxwell

    2011-01-01

    With the World desperate to find energy sources that do not emit carbon gasses, nuclear power is back on the agenda and in the news, following the increasing cost of fossil fuels and concerns about the security of their future supply. However, the term 'nuclear power' causes anxiety in many people and there is confusion concerning the nature and extent of the associated risks. Here, Maxwell Irvine presents a concise introduction to the development of nuclear physics leading up to the emergence of the nuclear power industry. He discusses the nature of nuclear energy and deals with various aspec

  2. Safety in nuclear power plants in India

    Directory of Open Access Journals (Sweden)

    Deolalikar R

    2008-01-01

    Full Text Available Safety in nuclear power plants (NPPs in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements.

  3. Safety in nuclear power plants in India.

    Science.gov (United States)

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements.

  4. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Science.gov (United States)

    2013-07-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed... No. DPR-46, issued to Nebraska Public Power District (the licensee), for operation of the...

  5. Configuration management in nuclear power plants

    CERN Document Server

    2003-01-01

    Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

  6. Power generation, operation, and control

    CERN Document Server

    Wood, Allen J

    2012-01-01

    A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities

  7. 77 FR 7184 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear...

    Science.gov (United States)

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit No. 2; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy or the licensee)...

  8. 77 FR 8904 - Entergy Nuclear Indian Point 3, LLC.; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Science.gov (United States)

    2012-02-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 3, LLC.; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy or the licensee) is...

  9. Nuclear power plants for mobile applications

    Science.gov (United States)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  10. A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

    Science.gov (United States)

    Guler Yigitoglu, Askin

    In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a

  11. A Study on the Economic Feasibility of Nuclear Power Caused by Fukushima Nuclear Power Accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwon [Korea Nuclear Energy Promotion Agency, Seoul (Korea, Republic of)

    2013-05-15

    It would be necessary to utilize the economic competitiveness of the generation cost calculated based on the previous power plant generation cost and the overall safety related costs taken into account after the Fukushima incident, i. e. expenses related to safety facilities, legal restrictions, environmental expenses and social expenses for the mid and long-term strategy establishment of energy. The above conclusion is premised on utilizing the levelized generation cost method, base load operation (based on a certain utilization rate), straight-line depreciation method, etc. However, this thesis would be significantly meaningful at this point where the general public, including civic groups, etc. are concerned with the economic feasibility and safety of nuclear power plant, and that even after considering the social expenses such as safety related expenses after the Fukushima incident, the generation cost of nuclear power plant still remains competitive.

  12. Operator-based metric for nuclear operations automation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, G.L.; Miao, A.X.; Kalkan, A. [Charles River Analytics Inc., Cambridge, MA (United States)] [and others

    1995-04-01

    Continuing advances in real-time computational capabilities will support enhanced levels of smart automation and AI-based decision-aiding systems in the nuclear power plant (NPP) control room of the future. To support development of these aids, we describe in this paper a research tool, and more specifically, a quantitative metric, to assess the impact of proposed automation/aiding concepts in a manner that can account for a number of interlinked factors in the control room environment. In particular, we describe a cognitive operator/plant model that serves as a framework for integrating the operator`s information-processing capabilities with his procedural knowledge, to provide insight as to how situations are assessed by the operator, decisions made, procedures executed, and communications conducted. Our focus is on the situation assessment (SA) behavior of the operator, the development of a quantitative metric reflecting overall operator awareness, and the use of this metric in evaluating automation/aiding options. We describe the results of a model-based simulation of a selected emergency scenario, and metric-based evaluation of a range of contemplated NPP control room automation/aiding options. The results demonstrate the feasibility of model-based analysis of contemplated control room enhancements, and highlight the need for empirical validation.

  13. An overview of future sustainable nuclear power reactors

    OpenAIRE

    Andreas Poullikkas

    2013-01-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are ...

  14. Golden Nuclear Power:A Big Cake of Irresistible Temptations

    Institute of Scientific and Technical Information of China (English)

    Pang Bo; Wang Ben

    2006-01-01

    @@ By 2020, the nuclear power installed capacity in China will go up from 8700 MW in 2005 to 40,000 MW. It signifies that30 generating units with a capacity of 1000 MW each will have been built. In fact, the development of nuclear power wants not merely enthusiasm. "The national policy maintains that we should take a road of localized development This is of great benefit to the expansion of nuclear power in China. However, many people still doubt whether the manufacturing capability and level can meet the requirements of nuclear safety, and multiple introductions are not good for digestion and assimilation, so that there exist potential risks in operation, maintenance and technical support," said Zeng Qingxiong, manager of financing section, Daya Bay Financial Company, China Guangdong Nuclear Power Holding Co. Ltd (CGNPC).

  15. Financing strategy for Indonesian Nuclear Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Subki, I.M.; Arbie, B.; Adiwardojo; Seotrisnanto, A.Y. [National Atomic Enegy Agency, Batan (Indonesia)

    1998-07-01

    In anticipation of the introduction in the early 2000s of a nuclear power plant, the Government of Indonesia (GOI), through the National Atomic Energy Agency (BATAN) , has formulated a Bid Invitation Specification (BIS) in parallel with the completion of the NPP Feasibility Study. This BIS formulation assumed an open international tender for the first unit of the NPP with project financing as a conventional loan. The GOI's recent policy is to minimize government financial support for power development. This paper summarizes a financing strategy for the Indonesian NPP project to make the NPP economically viable, and provides a general discussion on project financing using a conventional approach, Build--Own-Operate (BOO) and a counter-purchase approach. Innovative approaches for financing are still being pursued in order to obtain an optimum solution for investors and owners, to fulfill the Indonesian government's requirements. (author)

  16. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  17. Nuclear power plant for deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Jun; Itoh, Yasuyoshi; Kobayashi, Hideo; Hashidate, Koji; Ambo, Noriaki; Ishizaka, Yuichi; Kusunoki, Tsuyoshi.

    1991-08-29

    The present invention provides a nuclear reactor utilized as an energy source for a deep-sea submarine boat and a fixed energy source at the bottom of the sea. Here to fore, electric power generation by using chemical cells or radioisotopes has been considered as such an energy source. However, since the power and the heat generation density per weight is small, it is poor in the practicality. Then, utilization of a small-sized and highly safe nuclear reactor easy to operate is desired. That is, a reactor is disposed in the lower portion of a pressure resistant shell filled with water. An electric power generator which is directly connected to a steam turbine is contained in the upper portion. The space above the reactor containing water is used as a condenser for the turbine. In the reactor having such a constitution, countermeasures for the occurrence of accidents such as pipeline rupture can be simplified and the structure is simple to improve the safety. (I.S.).

  18. Questions and Answers About Nuclear Power Plants.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  19. Preliminary study on psychosomatic status of nuclear power plant operators%核电厂操纵人员心身健康的初步报告

    Institute of Scientific and Technical Information of China (English)

    毕金玲; 刘玉龙; 李元; 卞华慧; 孙义玲; 邱梦悦; 刘春风

    2011-01-01

    Objective To understand the operators'psychosomatic health status in nuclear power plant;and provide the scientific basis of measures for preventing and reducing mental disorders in operators.Methods The Psychosomatic Health Battery(PSHB) was used to assess the psychosomatic health status in 109 operators who were random selected from Qinshan nuclear power plant,etc.They were tested from lie,emotional stability,liveliness,tension,apprehension,mental health,such as psychopathic deviatesuch 7 personality traits.Results Lie < 8,all inspected groups were normal.Psychopathic deviate:98.2% for normal group 0.9% for both of groups occurred possible mental health problems and confirmed mental health problems ;Mental health:80.7% (88/109) for fine mental health ones,29.4% (32/109) for those with excellent mental health,51.4% (56/109) for good mental health ones,13.8% (15/109) for general mental health ones,5.5% (6/109) for poor mental health ones.Age factor could influence the mean values of the factors of apprehension,tension,mental health and psychopathic deviate.Correlation analysis showed that there was a correlation between tension and psychopathic deviate(r = 0.664 ,P < 0.01),and the other correlation coefficient was between apprehension and mental health(r =-0.789 ,P < 0.01).Conclusions There is an excellent condition of psychosomatic health in most of the operators,however,there are still a very small percentage of psychosomatic disorders among these operators,to improve the quality of their psychosomatic health,psychological counseling should be particularly strengthened to those with problems of psychosomatic health.%目的 了解中国核电厂操纵人员的心身健康状况,为制定预防和减少操纵人员心理障碍发生的干预措施提供科学依据,确保核电厂安全运行.方法 采取整群随机取样法随机抽取在秦山核电基地等5家协作单位的109名操纵人员,采用心身健康成套测验(psychosomatic health battery,PSHB)

  20. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.E. [Nuclear and Particle Physics Laboratory, Department of Physics, Oxford Univ., Oxford (United Kingdom)

    1999-09-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  1. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Science.gov (United States)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  2. Optimization of power system operation

    CERN Document Server

    Zhu, Jizhong

    2015-01-01

    This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...

  3. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Vladimir Petrochenko; Georgy Toshinsky

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  4. Safety and effective developing nuclear power to realize green and low-carbon development

    Directory of Open Access Journals (Sweden)

    Qi-Zhen Ye

    2016-03-01

    Full Text Available This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.

  5. Exergoeconomic analysis of a nuclear power plant

    Science.gov (United States)

    Moreno, Roman Miguel

    Exergoeconomic analysis of a nuclear power plant is a focus of this dissertation. Specifically, the performance of the Palo Verde Nuclear Power Plant in Arizona is examined. The analysis combines thermodynamic second law exergy analysis with economics in order to assign costs to the loss and destruction of exergy. This work was done entirely with an interacting spreadsheets notebook. The procedures are to first determine conventional energy flow, where the thermodynamic stream state points are calculated automatically. Exergy flow is then evaluated along with destruction and losses. The capital cost and fixed investment rate used for the economics do not apply specifically to the Palo Verde Plant. Exergy costing is done next involving the solution of about 90 equations by matrix inversion. Finally, the analysis assigns cost to the exergy destruction and losses in each component. In this work, the cost of electricity (exergy), including capital cost, leaving the generator came to 38,400 /hr. The major exergy destruction occurs in the reactor where fission energy transfer is limited by the maxiμm permissible clad temperature. Exergy destruction costs were: reactor--18,207 hr, the low pressure turbine-2,000 /hr, the condenser--1,700 hr, the steam generator-1,200 $/hr. The inclusion of capital cost and O&M are important in new system design assessments. When investigating operational performance, however, these are sunk costs; only fuel cost needs to be considered. The application of a case study is included based on a real modification instituted at Palo Verde to reduce corrosion steam generator problems; the pressure in the steam generator was reduced from 1072 to 980 psi. Exergy destruction costs increased in the low pressure turbine and in the steam generator, but decreased in the reactor vessel and the condenser. The dissertation demonstrates the procedures and tools required for exergoeconomic analysis whether in the evaluation of a new nuclear reactor system

  6. Nuclear Power Industry of China Enters a New Stage of Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This article describes the basic conditions of nuclear power plants or projects in China, which have been built up, or under construction, or approved by the State Council. Excellent operating indexes of the existing nuclear power plants and the capability of independent design, manufacture, construction and operation are briefly enumerated.There are over thirty nuclear power plant sites in the coastal and inland areas, which have been checked or preevaluated. This proves that a solid foundation for large-scaled development of nuclear power industry has been laid and nuclear power will certainly play an important role in power supply and environment protection of China.

  7. Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  8. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  9. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Science.gov (United States)

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear... (10 CFR), Section 2.206, ``Requests for Action under this Subpart,'' the U.S. Nuclear...

  10. 75 FR 39057 - Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear...

    Science.gov (United States)

    2010-07-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Entergy Nuclear Vermont Yankee, LLC; Vermont Yankee Nuclear... CFR), Section 2.206, ``Requests for Action under this Subpart,'' the U.S. Nuclear...

  11. Layout of China’s Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Plants in operation Qinshan Nuclear Power Plant-total installed capacity of 2.956 gigawatts The first stage started construction in March 1985, was incorporated into grids in December 1991 and began business operation in April 1994. It has an installed capacity of 300

  12. Taxonomy of the nuclear plant operator's role

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.A.; Fullerton, A.M.; Frey, P.R.; Dougherty, E.M.

    1981-01-01

    A program is presently under way at the Oak Ridge National Laboratory (ORNL) to define the functional design requirements of operational aids for nuclear power plant operators. A first and important step in defining these requirements is to develop an understanding of the operator's role or function. This paper describes a taxonomy of operator functions that applies during all operational modes and conditions of the plant. Other topics such as the influence of automation, role acceptance, and the operator's role during emergencies are also discussed. This systematic approach has revealed several areas which have potential for improving the operator's ability to perform his role.

  13. Role of research reactors for nuclear power program in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S.; Arbie, B. [National Atomic Energy Agency, Batan (Indonesia)

    1994-12-31

    The main objectives of nuclear development program in Indonesia are to master nuclear science and technology, as well as to utilise peaceful uses of nuclear know-how, aiming at stepwisely socioeconomic development. A Triga Mark II, previously of 250 kW, reactor in Bandung has been in operation since 1965 and its design power has been increased to 1000 kW in 1972. Using core grid of the Triga 250 kW, BATAN designed and constructed the Kartini Reactor in Yogyakarta which started its operation in 1979. Both of these Triga reactors have served a wide spectrum of utilisation, such as training of manpower in nuclear engineering as well as radiochemistry, isotope production and beam research activities in solid state physics. In order to support the nuclear power development program in general and to suffice the reactor experiments further, simultaneously meeting the ever increasing demand for radioisotope, the third reactor, a multipurpose reactor of 30 MW called GA. Siwabessy (RSG-GAS) has been in operation since 1987 at Serpong near Jakarta. Each of these reactors has strong cooperation with Universities, namely the Bandung Institute of Technology at Bandung, the Gadjah Mada University at Yogyakarta, and the Indonesia University at Jakarta and has facilitated the man power development required. The role of these reactors, especially the multipurpose GA. Siwabessy reactor, as essential tools in nuclear power program are described including the experience gained during preproject, construction and commissioning, as well as through their operation, maintenance and utilisation.

  14. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... COMMISSION 10 CFR Parts 51 and 54 RIN 3150-AI42 Preparation of Environmental Reports for Nuclear Power Plant..., Supplement 1 (RG 4.2S1), ``Preparation of Environmental Reports for Nuclear Power Plant License Renewal... reports that are submitted with the application for the renewal of a nuclear power plant operating...

  15. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  16. Space nuclear power: a strategy for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

  17. Nuclear power propulsion system for spacecraft

    Science.gov (United States)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  18. The Net Contribution of Nuclear Power to the National Economy in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Manki; Kim, Seung-su; Lee, Jong Hee; Kim, Soo-eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The objective of the study is to quantify the net contribution of nuclear power to the national economy in Korea focusing on the operating phase of nuclear power. This study is to see what would have happened to the Korean national economy, if all the nuclear power had been completely replaced with its substitute, coal power, providing a mechanism addressing a possible feedback between price and output on a national economy, triggered by the structural change in power sector. The role of nuclear power is estimated to be significant in terms of total output, GDP, price level, and labor employment in Korean economy. The net contribution of nuclear power estimated in this study can be recognized as positive externalities of nuclear power, which can be used to balance between positive externalities and negative externalities in the estimation of social cost of nuclear power, on which public concerns are substantially growing in the wake of the Fukushima nuclear power accident in Japan.

  19. Nuclear power program and technology development in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  20. Workshop on nuclear power growth and nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph F [Los Alamos National Laboratory

    2010-01-01

    It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

  1. Regulatory and safety aspects of ageing in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kaufer, B. [OECD/Nuclear Energy Agency, Issy-les-Moulineaux (France). Nuclear Safety Div.

    2002-08-01

    The OECD Nuclear Energy Agency (NEA) is a semi-autonomous body within the OECD established in 1958 with the mandate to promote co-operation among the governments of its participating countries in furthering the development of nuclear power as a safe, environmentally acceptable and economicy energy source. While all of groups have detailed programmes involving important aspects, this paper will focus specifically on the work of Committee on Nuclear Regulatory Activities (CNRA) and the Committee on the Safety of Nuclear Installations (CSNI). (orig.)

  2. Beznau II nuclear power plant: Expertise on NOK's request for the removal of the time limitation for the operation licence; KKW Beznau II: Gutachten zum Gesuch der NOK um Aufhebung der Befristung der Betriebsbewilligung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-15

    The Federal Agency for the Safety of Nuclear Installations (HSK) is the Swiss authority responsible for nuclear safety and protection against radioactivity in nuclear power plants. It has to examine the request of the North-East Swiss Power Corporation (NOK) concerning the removal of the operational time limitation for the Beznau-II reactor (KKB-II). In the present report HSK reviews the enterprise management and the safety of KKB-II on the basis of the results of the Periodic Safety Review. The Beznau nuclear power plant exhibits a very high degree of technical and organisational safety. During the past 10 years the plant has been operated in a safe manner. At the same time the plant has been improved and this guarantees that the mechanisms of ageing degradation are systematically identified and that measures can be taken that are possibly necessary. Under such conditions, the safety of KKB-II can be guarantied at all times. As a result of the management of quality, environmental and working safety conditions, the correct application and the continuous improvement of all processes important to safety are ensured. With these measures KKB has shown that safety is given priority over and against all other working goals. The examination by HSK of the Periodic Safety Review has shown that, in the past, KKB has applied modernisation measures independent of the licensing situation of the two reactor blocks. These modernisation measures largely contribute to the fact that the HSK examination did not reveal any significant safety deficiencies. Other improvement measures allow risk reduction or can bee seen as an adaptation to experience gained and to the state of the technological art. In conclusion, HSK states that no safety-relevant facts have been found which could prevent the removal of the time limitation on the operational licence for KKB-II. From the point of view of HSK, KKB-II fulfils the conditions for the safe continuation of operation

  3. Thermionic reactors for space nuclear power

    Science.gov (United States)

    Griaznov, Georgii M.; Zhabotinskii, Evgenii E.; Serbin, Victor I.; Zrodnikov, Anatolii V.; Pupko, Victor Ia.; Ponomarev-Stepnoi, Nikolai N.; Usov, V. A.; Nikolaev, Iu. V.

    Compact thermionic nuclear reactor systems with satisfactory mass performance are competitive with space nuclear power systems based on the organic Rankine and closed Brayton cycles. The mass characteristics of the thermionic space nuclear power system are better than that of the solar power system for power levels beyond about 10 kWe. Longlife thermionic fuel element requirements, including their optimal dimensions, and common requirements for the in-core thermionic reactor design are formulated. Thermal and fast in-core thermionic reactors are considered and the ranges of their sensible use are discussed. Some design features of the fast in-core thermionic reactors cores (power range to 1 MWe) including a choice of coolants are discussed. Mass and dimensional performance for thermionic nuclear power reactor system are assessed. It is concluded that thermionic space nuclear power systems are promising power supplies for spacecrafts and that a single basic type of thermionic fuel element may be used for power requirements ranging to several hundred kWe.

  4. Seismic analysis of nuclear power plant structures

    Science.gov (United States)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  5. Human factor engineering applied to nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. [TECNATOM SA, BWR General Electric Business Manager, Madrid (Spain); Valdivia, J.C. [TECNATOM SA, Operation Engineering Project Manager, Madrid (Spain); Jimenez, A. [TECNATOM SA, Operation Engineering Div. Manager, Madrid (Spain)

    2001-07-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  6. Public comments on the proposed 10 CFR Part 51 rule for renewal of nuclear power plant operating licenses and supporting documents: Review of concerns and NRC staff response. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report documents the Nuclear Regulatory Commission (NRC) staff review of public comments provided in response to the NRC`s proposed amendments to 10 Code of Federal Regulations (CFR) Part 51, which establish new requirements for the environmental review of applications for the renewal of operating licenses of nuclear power plants. The public comments include those submitted in writing, as well as those provided at public meetings that were held with other Federal agencies, State agencies, nuclear industry representatives, public interest groups, and the general public. This report also contains the NRC staff response to the various concerns raised, and highlights the changes made to the final rule and the supporting documents in response to these concerns.

  7. 75 FR 14637 - James A. FitzPatrick Nuclear Power Plant; Environmental Assessment and Finding of No Significant...

    Science.gov (United States)

    2010-03-26

    ... COMMISSION James A. FitzPatrick Nuclear Power Plant; Environmental Assessment and Finding of No Significant...), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP) located in Oswego County... related to operation of James A. FitzPatrick Nuclear Power Plant Power Authority of the State of New...

  8. Nuclear power plant alarm systems: Problems and issues

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  9. Use of expert systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  10. The Role of Nuclear Power in Eurpoe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The World Energy Council has published the results of an in-depth review of the current state of nuclear power in Europe, and the possible role of this energy source in Europe's energy future. This regional study combines policy insights, technical details and an analysis of the potential for nuclear as a part of the energy-mix.

  11. Study on nuclear power introduction into Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Vuong Huu Tan [Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam)

    2000-03-01

    The report presents main results of the study on nuclear power introduction into Vietnam which have been carried out at Vietnam Atomic Energy Commission in collaboration with Ministry of Industry of Vietnam and other countries like Japan, Canada and Korea. The study covers all topics related to the nuclear power introduction into Vietnam such as electricity demands and supply, economics, finance, technology, safety, manpower, site selection etc. (author)

  12. Regulatory practices for nuclear power plants in India

    Indian Academy of Sciences (India)

    S S Bajaj

    2013-10-01

    The Atomic Energy Regulatory Board (AERB) is the national authority for ensuring that the use of ionizing radiation and nuclear energy does not cause any undue risk to the health of workers, members of the public and to the environment. AERB is responsible for the stipulation and enforcement of rules and regulations pertaining to nuclear and radiological safety. This paper describes the regulatory process followed by AERB for ensuring the safety of nuclear power plants (NPPs) during their construction as well as operation. This regulatory process has been continuously evolving to cater to the new developments in reactor technology. Some of the recent initiatives taken by AERB in this direction are briefly described. Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner.

  13. Seismic hazard mitigation for nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    Frieder Seible

    2013-01-01

    The seismic safety of nuclear power plant(NPP) has always been a major consideration in the site selection,design,operation,and more recently recertification of existing installations.In addition to the actual NPP and all their operational and safety related support systems,the storage of spent fuel in temporary or permanent storage facilities also poses a seismic risk.This seismic risk is typically assessed with state-of-the-art modeling and analytical tools that capture everything from the ground rupture or source of the earthquake to the site specific ground shaking,taking geotechnical parameters and soil-foundation-structure-interaction (SFSI) into account to the non-linear structural response of the reactor core,the containment structure,the core cooling system and the emergency cooling system(s),to support systems,piping systems and non-structural components,and finally the performance of spent fuel storage in the probabilistically determined operational basis earthquake (OBE) or the safe shutdown earthquake (SSE) scenario.The best and most meaningful validation and verification of these advanced analytical tools is in the form of full or very large scale experimental testing,designed and conducted in direct support of model and analysis tool calibration.This paper outlines the principles under which such calibration testing should be conducted and illustrates with examples the kind of testing and parameter evaluation required.

  14. General digitalized system on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, Katsumi; Kadohara, Hozumi; Taniguchi, Manabu [Mitsubishi Electric Corp., Tokyo (Japan)

    2000-08-01

    Hitherto, instrumentation control system in a PWR nuclear power plant has stepwisely adopted digital technology such as application of digital instrumentation control device to ordinary use (primary/secondary system control device, and so on), application of CRT display system to monitoring function, and so forth, to realize load reduction of an operator due to expansion of operation automation range, upgrading of reliability and maintenance due to self-diagnosis function, reduction of mass in cables due to multiple transfer, and upgrading of visual recognition due to information integration. In next term PWR plant instrumentation control system, under consideration of application practice of conventional digital technology, application of general digitalisation system to adopt digitalisation of overall instrumentation control system containing safety protection system, and central instrumentation system (new type of instrumentation system) and to intend to further upgrade economics, maintenance, operability/monitoring under security of reliability/safety is planned. And, together with embodiment of construction program of the next-term plant, verification at the general digitalisation proto-system aiming at establishment of basic technology on the system is carried out. Then, here was described on abstract of the general digitalisation system and characteristics of a digital type safety protection apparatus to be adopted in the next-term plant. (G.K.)

  15. Appliance of software engineering in development of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Y. W.; Kim, H. C.; Yun, C. [Chungnam National Univ., Taejon (Korea, Republic of); Kim, B. R. [KINS, Taejon (Korea, Republic of)

    1999-10-01

    Application of computer technology in nuclear power plant is also a necessary transformation as in other industry fields. But until now, application of software technology was not wide-spread because of its potential effect to safety in nuclear field. It is an urgent theme to develop evaluation guide and regulation techniques to guarantee safety, reliability and quality assurance. To meet these changes, techniques for development and operation should be enhanced to ensure the quality of software systems. In this study, we show the difference between waterfall model and software life-cycle needed in development of nuclear power plant and propose the consistent framework needed in development of instrumentation and control system of nuclear power plant.

  16. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    Science.gov (United States)

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  17. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  18. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  19. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Science.gov (United States)

    2012-08-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC (the licensee) is the holder of Renewed..., ``Fatigue Management for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy......

  20. Integrated approach to economical, reliable, safe nuclear power production

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  1. Study on evaluation system for Chinese nuclear power plants

    Institute of Scientific and Technical Information of China (English)

    LI Song-bai; CHENG Jian-xiu

    2006-01-01

    This paper analyzes the meaning, structure, function and assessment methods of a nuclear power plant evaluation system, and the similarities and differences among various assessment methods. Based on this research an integrated and detailed suggestion is proposed on how to establish and improve internal and external evaluation systems for Chinese NPPs. It includes: to prepare and implement the nuclear power plant operational management program, to build an integrated performance indicator system, to improve the present audit system and conduct the comprehensive evaluation system, to set up and implement the integrated corrective action system, to position precisely the status of operation assessment of nuclear power plants, to conduct the assessment activities on constructing NPP, to initiate the specific assessment in some important areas, to establish industry performance indicator system, to improve the assessment methods, to share the assessment results, to select,cultivate and certify the reviewers, and to enhance international communication and cooperation.

  2. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  3. Preparedness of Operation Teams' Non-technical Skills in a Main Control Room of Nuclear Power Plants to Manage Emergency Situations

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Ho Bin; Kim, Ar Ryum; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Human reliability is one of the important determinants for the system safety. Nuclear Energy Agency reported that approximately half of events reported by foreign nuclear industry were related with inappropriate human actions. The human error problems can be viewed in two ways: the person approach and the system approach. Other terms to represent each approach are active failures and latent conditions. Active failures are unsafe acts committed by people who are in direct contact with systems whereas latent conditions are the inevitable 'resident pathogens' within the system. To identify what kinds of non-technical skills were needed to cope with emergency conditions, a method to evaluate preparedness of task management in emergency conditions based on monitoring patterns was presented. Five characteristics were suggested to evaluate emergency task management and communication: latent mistake resistibility, latent violation resistibility, thoroughness, communication, and assertiveness. Case study was done by analyzing emergency training of 9 different real operation teams in the reference plant. The result showed that the 9 teams had their own emergency task management skills which resulted in good and bad performances

  4. Tecnatom support to new nuclear power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. B. [TECNATOM, S. A., Av. Montes de Oca 1, 28709 San Sebastian de los Reyes, Madrid (Spain)], e-mail: amanrique@tecnatom.es

    2009-10-15

    Tecnatom is a Spanish engineering company with more than 50 years of experience working for the nuclear industry all over the world. It has worked in over 30 countries in activities related to the operation and maintenance of nuclear power plants. Along this half century of history. Tecnatom has been providing its services to nuclear utilities, regulators, NPP vendors, NPP owners / operators and nuclear fuel manufacturers not only in Spain but also abroad. It started to work in the design of new nuclear power plants in the early 90 s and since then has continued collaborating with different suppliers in the design and licensing of new reactors especially in the areas of plant systems design, man-machine interface design, main control room simulators building, training, qualification of equipment and PSI/ISI engineering services. Some challenges to the reactivation of nuclear power plants construction are common worldwide, including: regulatory processes, workforce availability, construction project management, etc. Being some keys to success the following: apply qualified resources, enough resources for early planning, project leadership, organization and integration, establish a strong integrated management team. The goal of this paper is to inform regarding the capabilities of Tecnatom in the construction of new power plants. (Author)

  5. Studies of Fourteen Nuclear-Powered Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, J. N.; McCulloch, J. C.; Schmill, W. C.; Ward, W. H.

    1952-09-01

    A representative series of aircraft which could be powered by a relatively low-temperature liquid-coolant-cycle nuclear power plant are described. Present aircraft such as the B-36, B-52, and B-47 bombers as well as new designs were investigated. Design and performance characteristics of all the aircraft are presented.

  6. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and... nuclear material control and accounting system requirements for nuclear power plants. This guide applies...

  7. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16, 2012...

  8. Advances in seismic safety of operating nuclear power plants: IAEA Project Results Seismic-EBP; Avances en la seguridad sismica de centrales nucleares en operacion: Resultados del proyecto OIEA Seismic-EBP

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez juan, A.; Sanchez Cabanero, J. G.; Moreno gonzalez, A.

    2010-07-01

    Records of strong earthquakes occurred in the proximity of facilities in operation have shown that there may be greater than the expected acceleration, the seismic danger that the light of the actual experience can exceed the design basis, and that the aging installations and modifications over its operating life significantly influence seismic response capacity. All this confirms that the earthquake is the external event with the greatest impact on the safety of nuclear installations and the largest contributor (even more than 70%) to the core damage frequency of central probabilistic safety analyzes.

  9. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  10. Experimental investigations of thermal-hydraulic processes arising during operation of the passive safety systems used in new projects of nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Morozov, A. V.; Remizov, O. V.; Kalyakin, D. S.

    2014-05-01

    The results obtained from experimental investigations into thermal-hydraulic processes that take place during operation of the passive safety systems used in new-generation reactor plants constructed on the basis of VVER technology are presented. The experiments were carried out on the model rigs available at the Leipunskii Institute for Physics and Power Engineering. The processes through which interaction occurs between the opposite flows of saturated steam and cold water moving in the vertical steam line of the additional system for passively flooding the core from the second-stage hydro accumulators are studied. The specific features pertinent to undeveloped boiling of liquid on a single horizontal tube heated by steam and steam-gas mixture that is typical for of the condensing operating mode of a VVER reactor steam generator are investigated.

  11. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  12. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Golay, M.W.

    1993-10-10

    The project on ``Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance`` was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds.

  13. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  14. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  15. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  16. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Science.gov (United States)

    2011-06-03

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability... Plants and Public Meetings for the License Renewal of Crystal River Unit 3 Nuclear Generating Plant... operation for Crystal River Unit 3 Nuclear Generating Plant. Crystal River Unit 3 Nuclear Generating Plant...

  17. 10 CFR 50.49 - Environmental qualification of electric equipment important to safety for nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... important to safety for nuclear power plants. 50.49 Section 50.49 Energy NUCLEAR REGULATORY COMMISSION... nuclear power plants. (a) Each holder of or an applicant for an operating license issued under this part... nuclear power plant for which the certifications required under § 50.82(a)(1) or § 52.110(a)(1) of...

  18. On the ''Economics of nuclear power plant operation'' study; Zur Studie ''Kernkraftwerksscharfe Analyse''. Ein kritischer Kommentar zum BMU bestelltem Gutachten

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffenberger, W. [Oldenburg Univ. (DE). Inst. fuer Volkswirtschaftslehre (VWL)

    2000-05-01

    The article presents a critical review of a study BMU commissioned from the Wuppertal Institut and the Oeko Institut about economic aspects of nuclear power plant operation. Besides the fact that the study deals with economic matters within the competency not of the Ministry for the environment but of the Ministry of Economics, it contains a few illogical arguments. The study was supposed to prove these points: (1) Nuclear power plants in Germany have paid off in less than thirty years. (2) The generating costs of nuclear power plants in some instances are above the market price of electricity. (3) During the operating life of a plant, the operators derive considerable economic benefits from the reserves for decommissioning, demolition, and waste management, which more than offset the losses incurred in electricity generation. Under item (1), the expert opinion arrives are contradictory findings: On the one hand, payoff had to be assumed within less than thirty years. On the other hand, present low electricity prices no longer permitted many nuclear power plants to be run economically. Under the heading of electricity prices, the opinion arrives at the conclusion that amost all nuclear power plants should be shut down as the spot market price of electricity was sufficient to cover all costs in hardly any nuclear power plant. Under the cost item, again pure cost considerations and financial assessments are mixed up. Under item (3), reserves, the opinion does discuss the interesting alternative of waste managements funds which, however, according to the opinion, would have to create incentives to shut down a major part of nuclear power plants right away. In summary, the opinion proves item (1), which is hardly a point of conflict, but its findings on items (2) and (3) are highly doubtful. However, this is not likely to prevent the opinion from being used in the political debate. (orig.) [German] Der Artikel setzt sich kritisch mit einer Studie auseinander, die das

  19. Operational readiness decisions at nuclear power plants - part 2. Which factors influence the decisions?; Driftklarhetsbeslut i kaernkraftanlaeggningar - del 2. Vilka faktorer paaverkar beslutsfattandet?

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena; Petterson, Sara (MTO Psykologi, Stockholm (Sweden))

    2008-04-15

    The first report contained a summary of relevant research of decision making, a case study at Ringhals power plant and an analysis of some real cases of operational readiness decisions. In this report two case studies in the Swedish power plants, OKG and Forsmark are presented. The case study description consists of three parts; a description of the support from the management system for the decision making process, interviews with decision makers and an analysis of real cases of operational readiness decisions. The purpose of the project has been to increase the understanding of the decision process in operational readiness decisions as well as the support given from the management system and what factors influence the decisions. From a general point of view the circumstances where the decision must be taken varies, but situations and events that lead to questioning of the operational readiness are often easy to identify. There are often support documents such as procedures, rules and technical documents which specify operational limitations which give explicit decision criteria. These decisions are easy. When needed colleagues can be consulted for support. In unclear situations and/or when the technical criteria is not clear, e.g. when the rules and regulations are vague or even in conflict or when it is not evident that you need to question the operational readiness, the decision is more difficult to make. The results from the study shows that such decisions in general are not made by the shift crew manager but handed over to the next management level. The decision making process differs between the power plants. At one of the power plants the decision process is organised in specific meetings where decision made are reviewed by the next higher management level. At another plant the decisions are often made in groups or in consultation with colleagues. The management system makes a distinction between decisions made in consultation and when decisions already

  20. Nuclear Power: Entering the Stage of Active Development

    Institute of Scientific and Technical Information of China (English)

    Xu Lianyi; Zhu Li

    2009-01-01

    @@ Development course Since 1970 when the construction preparation of Qinshan No. 1 Nuclear Power Plant started, China's nuclear power industry has grown out of nothing, and then adjusted the step from moderate development to vigorous development. In this course, China's nuclear power equipment manufacturing industry has also been unceasingly developing and strengthening itself with the construction of nuclear power plants one by one.

  1. Design of the System of Maintenance Operations Occupational Safety and Health Database Application of Nuclear Power Station%核电站维修作业职业安全健康数据库应用系统设计

    Institute of Scientific and Technical Information of China (English)

    王学洪; 李向阳; 叶勇军

    2011-01-01

    Based on the KKS code of building equipment in nuclear power station,this paper introduces the method of establishing the system of maintenance operation occupational safety and health database application. Through the application system of maintenance occupational safety and health database, it can summarize systematically all kinds of maintenance operation dangerous factor of nuclear power station,and make a convenience for staff to learn the maintenance operation dangerous factors and the prevention measures,so that it can achieve the management concept of "precaution crucial,continuous improvement"that advocated by OSHMS.%以核电站厂房设备KKS编码等为基础,建立维修作业职业安全健康数据库应用系统.通过维修作业职业安全数据库应用系统,可以系统地归纳核电站各类维修作业危险危害因素,方便员工在作业前查询学习维修作业危险危害因素及防范措施;达到OSHMS所倡导的“预防为主、持续改进”的管理理念.

  2. Instruction by virtual reality to operation and security of a nuclear power plant of IV generation; Instruccion por realidad virtual a la operacion y seguridad de una central nuclear de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Neri O, J. C.; Baltasar M, J.; Valle H, J. [Facultad de Ingenieria, Division de Estudios de Posgrado, Campus Morelos, UNAM, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)], e-mail: neriunam@ieee.org

    2009-10-15

    The purpose of LaNuVi project which is developing in the Engineering Faculty of National Autonomous University of Mexico, to have a virtual laboratory of nuclear reactors as tool of multidisciplinary education at basic and advanced levels in nuclear engineering area, involves training resources in audio visual and interactive form that allow to form a comprehension more realistic of operation of different systems and components. In this work is proposed to use educational resources, as the employees in the U.S. Army and in some centers of advanced education of medicine, where have been come proving concepts like projected reality, increased reality, tele transparency and others that present big benefits to learning-education process. The proposal here is to include the resource knew as serious game based learning. The focal point of stage that is presented is of a nuclear reactor PBMR like desalination and generator of controlled alternating energy and efficient that should put on in operation to allow the subsistence of a community in a desolated region of beginning second quarter of X XI century. For this purpose the designs are initiated and programmed several subsystems that allow the three-dimensional modeling of main components of a PBMR as well as of surrounding facilities. The obtained results and reaches of this design are presented. The product is in tests for a first version and it is hope to achieve a free and integral resource of national distribution for different cultural groups, interested in this type of advanced technology. (Author)

  3. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of... operator of the Cooper Nuclear Station (CNS). Renewed facility operating license No. DPR-46...

  4. Modification and updating of documentation in equipment of panels of control room in nuclear power plant operation; Modificacion y actualizacion de documentacion en aparatos de paneles de sala de control en una central nuclear en operacion

    Energy Technology Data Exchange (ETDEWEB)

    Agudo Montero, L.

    2013-07-01

    The present paper describes a case very unique specific design of interactive 2D-CAD application, that has been developed by Empresarios Agrupados as engineering support to the nuclear power plants, aware of the problem that exists with the documentation of the instruments and devices that are on the panels of Control room, and that only have the documentation generated in its day by the manufacturers of these panels. To this end, an application (application DOPAB) has been developed to help solve the problem of management, design and modification of wiring and wiring devices existing in the Control room control panels.

  5. Eddy-current tests on operational evaluation of steam generator tubes in nuclear power plants; Ensaios de Eddy-current na avaliacao do estado operacional de tubos de geradores de vapor de centrais nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Luiz Antonio Negro Martin [Faculdade de Engenharia Industrial (FEI), Sao Paulo, SP (Brazil). Dept. de Energetica]. E-mail: luizlope@cci.fei.br; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. Engenharia de Reatores]. E-mail: dksting@net.ipen.br

    2000-07-01

    This paper presents a worldwide research on the technical and economical impacts due to failure in tube bundles of nuclear power plant steam generators. An Eddy current non destructive test using Foucault currents for the inspection and failure detection on the tubes, and also the main type of defects. The paper also presents the signals generated by a Zetec MIZ-40 test equipment. This paper also presents a brief description of an automatic system for data analysis which is under development by using a fuzzy logic and artificial intelligence.

  6. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  7. Regenerating the U.S. nuclear power program

    Energy Technology Data Exchange (ETDEWEB)

    Rowden, Marcus A.; Kraemer, Jay R.; Koehn, Mark R. [Fried, Frank, Harris, Shriver and Jacobson, Washington, DC (United States)

    1995-12-31

    Through industry planning initiatives, new licensing regulations, favorable court decisions and supportive legislation, the U.A. nuclear community - in both its private and governmental sectors - has, during the last five years, produced fundamental changes in the approach to planning, ordering, licensing and operating future nuclear power plants. Integrated and well-planned initiatives are leading to a more hospitable and promising institutional framework for regeneration of the U.S. nuclear option. While demonstrable progress has been made on many fronts - a streamlined plant licensing framework and standardized design development to name the most apparent - other critical path obstacles must still be surmounted to transform current progress into an order for a new nuclear power plant or a family of plants. Early signs are encouraging, but much work remains to be done. (author).

  8. Revitalization of Nuclear Powered Flight

    Science.gov (United States)

    2016-05-01

    MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Dr. John Reese Maxwell Air Force Base, Alabama May 2016 DISTRIBUTION A...Range lists several types of aircraft and their max (non-combat) range. Fighter aircraft have limited range of less than 1900 miles, which means

  9. Radiation protection performance indicators at the Nuclear Power Plant Krsko.

    Science.gov (United States)

    Janzekovic, Helena

    2006-06-01

    Nuclear power plant safety performance indicators are developed "by nuclear operating organisations to monitor their own performance and progress, to set their own challenging goals for improvement, and to gain additional perspective on performance relative to that of other plants". In addition, performance indicators are widely used by regulatory authorities although the use is not harmonised. Two basic performance indicators related to good radiation protection practice are collective radiation exposure and volume of low-level radioactive waste. In 2000, Nuclear Power Plant Krsko, a Westinghouse pressurised water reactor with electrical output 700 MW, finished an extensive modernisation including the replacement of both steam generators. While the annual volume of low-level radioactive waste does not show a specific trend related to modernisation, the annual collective dose reached maximum, i.e. 2.60 man Sv, and dropped to 1.13 man Sv in 2001. During the replacement of the steam generators in 2000, the dose associated with this activity was 1.48 man Sv. The annual doses in 2002 and 2003 were 0.53 and 0.80 man Sv, respectively, nearing thus the goal set by the US Institute of Nuclear Power Operators, which is 0.65 man Sv. Therefore, inasmuch as collective dose as the radiation protection performance indicator are concerned, the modernisation of the Krsko nuclear power plant was a success.

  10. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  11. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  12. Application and improvement of high risk operations control during refueling outage of Qinshan Nuclear Power Plant%秦山核电厂换料大修高风险作业控制应用及优化

    Institute of Scientific and Technical Information of China (English)

    苏松

    2014-01-01

    根据秦山核电厂三十万千瓦机组换料大修高风险作业控制实践经验,介绍一种基于安全许可管理的大修高风险作业控制模式,将高风险作业控制流程嵌入电站生产管理系统,与工单直接关联,实现了高危作业活动识别、风险分析及安全防护措施制定电子流程化。通过对电厂最近六次机组换料大修高风险作业控制相关数据统计、比较,评价高风险作业控制模式在电厂大修中应用效果的稳定性与有效性;根据核电厂大修类作业项目特点,提出机组换料大修期间大纲作业项目高风险作业控制改进方向。%According to the practical experience from Qinshan Nuclear Power Plant,a control mode of high risk op-erations control based on industry safety permission was introduced. The high risk operations control flow was em-bedded in the electronic production management system of Qinshan Nuclear Power Plant,which connected with tasks straightly and realized the electronic workflow of high risk activity recognition,risk analysis and drawing of safety protection measures. By counting and comparing the data of high risk operations control from the recent six times refueling outages of power plant,the stability and effectiveness for application of high risk operations control mode were appraised. According to the characteristics of fixed project during refueling outage of nuclear power plant,the improvement directions of high risk operations control were presented.

  13. Nuclear Operations Excellence: A Foundation for the Renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Gex, P. [American Nuclear Society (United States); Luanco, E. [Ventyx France, Immeuble Central Gare, 1, Place Charles de Gaulle, 78180 Montigny Le Bretonneux (France)

    2010-07-01

    The world is poised for a nuclear power renaissance. Countries with dormant or phased-out nuclear energy programs are reactivating their plans for building a new generation of safe and economical nuclear plants. Countries with no nuclear programs are actively working to establish them. The renaissance is being driven by a variety of factors, foremost of which are instabilities in the cost and supply of oil and gas, and increasing political pressures to prevent continued global warming as a result of the use of fossil fuels. Nuclear is now seen as a necessary component of a renewable, non-carbon producing energy portfolio along with hydro, wind and solar. So what is required to turn these plans into reality? Most observers, both inside and outside of the industry would agree that the foundation of the renaissance is first and foremost the continued safe and economical operation of the world's existing 436 reactors in 30 countries. Although operating experience varies across existing reactors, it can be confidently said that since the accident at Chernobyl, the vast majority of the world's reactor operators have demonstrated continuous improvements in plant operations. If however, another Chernobyl or TMI type accident were to occur, it would have a devastating impact on nuclear programs all over the world, and seriously jeopardize the plans for a nuclear renaissance for many years to come. Given the premise that continuing improvements in plant operations, or nuclear operations excellence, is a necessary first step in creating a sustained renaissance, what exactly is nuclear operations excellence, how is it measured, how is it achieved, and what are the requirements for the next generation of plants to be built? This paper will attempt to answer these questions, first in a broad sense based upon the 50+ years of combined nuclear industry experience of the authors, and also in a more focused exploration of information technology tools that are supporting

  14. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed......

  15. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jackson, Dennis G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-23

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amount of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.

  16. Nuclear thermal rocket engine operation and control

    Science.gov (United States)

    Gunn, Stanley V.; Savoie, Margarita T.; Hundal, Rolv

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation.

  17. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  18. Assessment of nuclear power plant siting methods

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.D.; Hobbs, B.F.; Pierce, B.L.; Meier, P.M.

    1979-11-01

    Several different methods have been developed for selecting sites for nuclear power plants. This report summarizes the basic assumptions and formal requirements of each method and evaluates conditions under which each is correctly applied to power plant siting problems. It also describes conditions under which different siting methods can produce different results. Included are criteria for evaluating the skill with which site-selection methods have been applied.

  19. Nuclear Materials Identification System Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  20. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  1. Need for consent of a law extending the operating life of nuclear power plants; Zustimmungsbeduerftigkeit eines Gesetzes zur Verlaengerung der Laufzeiten von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Degenhart, Christoph [Leipzig Univ. (Germany)

    2010-11-15

    The article deals with the question whether a law extending nuclear power plant life beyond the residual periods of time laid down in the law of April 22, 2002 requires consent of the Federal Council. The Atomic Energy Act needed the consent of the Federal Council pursuant to Article 87c, Basic Law, as its Section 24 determines that central functions of licensing and supervision be exercised by the federal states on behalf of the Federal Government. This has not changed after the current version of the norm. Increasing the residual quotas of electricity by amending Annex 3 of Sec.7, Para.1a, Atomic Energy Act, per se does not require consent. This is a substantive provision. Sec.24, Atomic Energy Act, does not need to be amended. The Federal Council, which consented to the original legislation, thus does not bear continued responsibility for the law. Every law must be treated as a separate entity in terms of legislative method. The Federal Council, with its first consent to the piece of legislation, ''approves'' this systemic shift. Renewed consent is required only in case of another systemic shift. This is the case when the provision about administrative responsibility takes on a very different meaning and impact no longer supported by the earlier consent. According to decisions by the Federal Constitutional Court, this expressly applies also to administration by commission. What is required is a comparison of administrative duties before and after entry into force of the amending law; mere quantitative shifts of administrative burdens do not cause a systemic shift. Whether the inclusion of backfitting obligations would be associated with regulations in administrative procedures has not been decided. In its ruling of May 4, 2010, the Federal Constitutional Court confirms that these do not require consent within the framework of Art.85 Para.1, Basic Law. (orig.)

  2. Operational period for the nuclear power plant Borssele. Memo on aspects with regard to decision making on the operational period for the nuclear power plant Borssele; Bedrijfsduur kerncentrale Borssele. Notitie over aspecten die een rol spelen bij de besluitvorming over de bedrijfsduur van de kerncentrale Borssele

    Energy Technology Data Exchange (ETDEWEB)

    Vos, D

    2005-04-01

    A number of aspects with respect to the closure of the nuclear power plant Borssele in the Netherlands are discussed: nuclear safety and service life; environmental aspects; proliferation and terrorism; judicial aspects; cost; other (comparisons with closures in other countries, employment, supply security); and a state-of-the-art with regard to a motion that was introduced by a delegate of the Dutch parliament (Spies) in 2004. [Dutch] In deze notitie worden enkele met de sluiting samenhangende aspecten nader toegelicht, te weten: nucleaire veiligheid en levensduur; milieuaspecten; proliferatie en terrorisme; juridische aspecten; kostenaspecten; overige aspecten (sluitingsregelingen in het buitenland, werkgelegenheid en leveringszekerheid); en stand van zaken met betrekking tot de uitvoering van de motie Spies van juli 2004.

  3. Integrated diagnostic technique for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gofuku, Akio [Graduate School of Natural Science and Technology, Okayama University, Okayama (Japan)

    2014-12-15

    It is very important to detect and identify small anomalies and component failures for the safe operation of complex and large-scale artifacts such as nuclear power plants. Each diagnostic technique has its own advantages and limitations. These facts inspire us not only to enhance the capability of diagnostic techniques but also to integrate the results of diagnostic subsystems in order to obtain more accurate diagnostic results. The article describes the outline of four diagnostic techniques developed for the condition monitoring of the fast breeder reactor 'Monju'. The techniques are (1) estimation technique of important state variables based on a physical model of the component, (2) a state identification technique by non-linear discrimination function applying SVM (Support Vector Machine), (3) a diagnostic technique applying WT (Wavelet Transformation) to detect changes in the characteristics of measurement signals, and (4) a state identification technique effectively using past cases. In addition, a hybrid diagnostic system in which a final diagnostic result is given by integrating the results from subsystems is introduced, where two sets of values called confidence values and trust values are used. A technique to determine the trust value is investigated under the condition that the confidence value is determined by each subsystem.

  4. Nuclear power plant Severe Accident Research Plan

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, J T; Cunningham, M A

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986.

  5. Public participation and trust in nuclear power development in China

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2013-01-01

    Rapid expansion of nuclear power in China requires not only increasing institutional capacity to prevent and adequately cope with nuclear risks, but also increasing public trust in governmental agencies and nuclear enterprises managing nuclear risks. Using a case study on Haiyang nuclear power plant

  6. Public participation and trust in nuclear power development in China

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2013-01-01

    Rapid expansion of nuclear power in China requires not only increasing institutional capacity to prevent and adequately cope with nuclear risks, but also increasing public trust in governmental agencies and nuclear enterprises managing nuclear risks. Using a case study on Haiyang nuclear power plant

  7. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  8. CLAD CARBIDE NUCLEAR FUEL, THERMIONIC POWER, MODULES.

    Science.gov (United States)

    The general objective is to evaluate a clad carbide emitter, thermionic power module which simulates nuclear reactor installation, design, and...performance. The module is an assembly of two series-connected converters with a single common cesium reservoir. The program goal is 500 hours

  9. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  10. Nuclear Power: Problems in Information Management.

    Science.gov (United States)

    Beaver, William

    1990-01-01

    Discusses the problems encountered at the Duquesne Light Company of Pittsburgh's nuclear power plant as the result of an inability to process information effectively and keep pace with technological change. The creation of a separate division trained and directed to manage the plant's information flows is described and evaluated. (CLB)

  11. Nuclear power research priorities and electricity future of Germany in the context of nuclear phase out

    OpenAIRE

    Romero Nevado, Mireia

    2014-01-01

    This paper discusses the development of the German power system in the context of nuclear phase out. An energy system model has been developed to study different scenarios taking into account an immediate or a delayed phase out of the operating reactors. The model has a regional focus considering the plans of the German government regarding renewable technologies expansion and the current installed capacity of all the power generating technologies. The model is developed using OSeMOSYS, an op...

  12. Methodology for the identification of the factors that can influence the performance of operators of nuclear power plants control room under emergency situations; Metodologia para identificacao dos fatores que afetam o desempenho dos operadores de salas de controle de plantas nucleares, em situacoes de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Bernardo Spitz; Santos, Isaac J.A. Luquetti, E-mail: bernardo_spitz@hotmail.co, E-mail: luquetti@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In order to minimize the human errors of the operators in a nuclear power plan control room, during emergency situations, it has to be considered the factors which affect the human performance. Work situations adequately projected, compatible with the necessities, capacities and human limitations, taking into consideration the factors which affect the operator performance . This paper aims to develop a methodology for identification of the factors affecting the operator performance under emergency situation, using the aspects defined by the human reliability analysis focusing the judgment done by specialists

  13. Nuclear power industry: Tendencies in the world and Ukraine

    Science.gov (United States)

    Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.

    2007-11-01

    This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of “nonstandard” fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine’s total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter (“Sarkofag”) covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station’s fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.

  14. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Science.gov (United States)

    2011-10-25

    ... COMMISSION Access Authorization Program for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide 5.66, ``Access Authorization Program for Nuclear Power Plants.'' This guide... Authorization Requirements for Nuclear Power Plants,'' and 10 CFR part 26, ``Fitness for Duty Programs.'' The......

  15. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J.; Verdu, G. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    This paper is a recompilation of the most significance results in relation to the researching in preventive and predictive maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and the Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the power plants control and instrumentation department's technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the object to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish nuclear power plants each of them shall give a significant contribution to problem resolution and power plant performance. (Author)

  16. Heat and power sources based on nuclear shipbuilding technologies

    Energy Technology Data Exchange (ETDEWEB)

    Veshnyakov, K.; Fadeev, Y.; Panov, Y.; Polunichev, V. [JSC Afrikantov OKBM, Nizhny Novgorod (Russian Federation)

    2009-07-01

    The report gives information on the application of power units with small-power nuclear reactors as advanced energy sources to provide world consumers with electric power, domestic and industrial heat and fresh water. The report describes the technical concept of ABV unified reactor plant (RP) for floating and ground small power plants (SPP) developed in JSC 'Afrikantov OKBM'. The report contains the technical specification of the ABV RP utilizing an integral water-cooled reactor with thermal power of 38 to 45 MW, natural coolant circulation and improved inherent safety, as well as main characteristics of the reactor and core fuel ensuring acceptable mobility of the RP and NPP as a whole. The indicated refueling interval is 10-12 years. The report gives a detailed description of the concept for RP safety provision and compliance with international radiation and nuclear safety requirements, as well as the description of passive and other safety systems securing stability to any low-probability internal events, personnel errors and external impacts. The report provides data on application and technological properties of the floating and ground SPPs with a unified ABV RP; absence of spent fuel and radioactive waste at floating nuclear power plants (FNPP); FNPP transportation to consumers in a ready-to-operate state; arrangement, operation and disposal requirements.

  17. Fukushima nuclear power plant accident was preventable

    Science.gov (United States)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  18. Operator evolution for ab initio nuclear theory

    CERN Document Server

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2014-01-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...

  19. Performance Management for Nuclear Power Plant Operators%核电厂运行人员绩效管理实践

    Institute of Scientific and Technical Information of China (English)

    樊鹏飞

    2014-01-01

    Fuel was loaded to Unit 3 of the second power plant in May 2010. The Second Operation Division stepped in the operation stage from production preparation and commissioning and exploration of performance management was started. By means of performance evaluation, a closed loop of performance management was formed, staff enthusiasm improved, and potential capability inspired through evaluation, analysis and improvement. The performance evaluation covers attitude, skill, efficiency, performance, teamwork sense, cooperation, etc. Quantitative appraisal was carried out through 31 objective indicators of the working process and results. According to the evaluation results and personal interviews, indicators were modified. Through the performance evaluation, positive guidance is provided to the employees to promote the development of employees, departments and the enterprise.%2010年5月,中核核电运行管理有限公司二厂3号机组反应堆装料,运行二处由生产准备调试,转向机组运行,开始绩效管理探索,以绩效考核为手段,通过考核、分析、改进,形成绩效管理闭环,提高员工工作积极性和激发员工潜能。绩效考核内容涵盖了人员态度、技能等方面,用工作过程和结果的31项客观指标进行定量考核,根据考核结果趋势、人员面谈,改进修正指标。通过绩效考核对员工产生正面引导,促进员工、部门、企业成长。

  20. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  1. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  2. Análise de microincidentes na operação de usinas nucleares: estudo de caso sobre o uso de procedimentos em organizações que lidam com tecnologias perigosas Analysis of minor incidents in the operation of nuclear power plants: a case study on the use of procedures in organizations dealing with hazardous technologies

    Directory of Open Access Journals (Sweden)

    Paulo Victor Rodrigues de Carvalho

    2005-08-01

    Full Text Available As organizações que lidam com tecnologias perigosas possuem sistemas de gestão de risco que visam controlar a ocorrência e a evolução de acidentes e melhorar sua segurança. Estes sistemas têm sido baseados em aspectos físicos, como barreiras de proteção, equipamentos e sistemas, que visam impedir a ocorrência e propagação dos acidentes, e em aspectos humanos, como a utilização de normas e procedimentos. Neste artigo, analisamos o uso de diversos tipos de procedimentos por operadores de salas de controle de usinas nucleares. A metodologia utilizada foi a análise do trabalho dos operadores durante microincidentes ocorridos na operação normal, parada e partida de uma usina nuclear, além de treinamento em simulador. A pesquisa demonstra que a flexibilização de procedimentos ocorre rotineiramente e que as estratégias cognitivas dos operadores podem ser explicadas a partir das restrições técnicas, organizacionais e culturais do ambiente de trabalho. Nossos resultados indicam que os requisitos de competência necessários para os operadores de usinas nucleares vão muito além de uma adequada formação técnica e da capacidade de seguir instruções escritas.Organizations that work with hazardous materials, such as nuclear power plants, offshore installations, and chemical and petrochemical plants, have risk management systems involving accident control and mitigation to ensure the safety of their facilities. These systems are based on physical devices, such as protective barriers, equipment and systems aimed at preventing the occurrence and propagation of accidents, and on human aspects such as regulations and procedures. This paper analyzes the use of a variety of procedures by nuclear power plant control room operators. The methodology consisted of analyzing the work of control room operators during the normal operations, shutdown, and startup of a nuclear power plant, and in full scale simulator training. This survey

  3. Cyber Norms for Civilian Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Spirito, Christopher

    2016-11-01

    The international community agrees that the safe operation of civilian nuclear infrastructure is in every population’s best interest. One challenge each government must address is defining and agreeing to a set of acceptable norms of behavior in cyberspace as they relate to these facilities. The introduction of digital systems and networking technologies into these environments has led to the possibility that control and supporting computer systems are now accessible and exploitable, especially where interconnections to global information and communications technology (ICT) networks exist. The need for norms of behavior in cyberspace includes what is expected of system architects and cyber defenders as well as adversaries who should abide by rules of engagement even while conducting acts that violate national and international laws. The goal of this paper is to offer three behavioral cyber norms to improve the overall security of the ICT and Operational Technology (OT) networks and systems that underlie the operations of nuclear facilities. These norms of behavior will be specifically defined with the goals of reducing the threats associated to the theft of nuclear materials, accidental release of radiation and sabotage of nuclear processes. These norms would also include instances where an unwitting attacker or intelligence collection entity inadvertently makes their way into a nuclear facility network or system and can recognize they are in a protected zone and an approach to ensuring that these zones are not exploitable by bad actors to place their sensitive cyber effect delivery systems.

  4. 核电机组停运对南方电网运行影响研究%Study on the Impact of Nuclear Power Plant Outage on the CSG Operation

    Institute of Scientific and Technical Information of China (English)

    周保荣; 柳勇军; 陈建斌; 姚文峰; 涂亮; 蒙文川

    2011-01-01

    Introducing the impacts of Japan "3.11" earthquake on the power supply of Tokyo Electric Power Company, this paper analyzes the possible operation situations of China Southern Power Grid (CSG) as the nuclear power plants in the CSG area being in outage. The results are as follows: If the nuclear power units in Dayawan and Lingao being in outage in 2011, it will happen that Guangdong Power Grid will be in low frequency load shedding as CSG being in valley load period, and some parts of Guangxi Power Grid will be in low voltage load shedding with power cut in Shenzhen district as CSG being in peak load period. If the nuclear power units in Yangjiang, Taishan and Fangchenggang being in outage in 201S, this will not lead the nearby networks being in opwer cut and low frequency load shedding and low voltage load shedding of CSG If the nuclear power units in Changjiang being in outage in 2016, this will not lead Hainan Power Grid being in low frequency load shedding as the grid being in interconnection with Guangdong Power Grid by one/two 500 kV tie lines.%介绍了日本“3·11”大地震对东京电力公司供电的影响,分析了若南方电网区域内核电机组停运,南方电网运行的情况将会如何。结果显示:2011年若大亚湾、岭澳核电机组停运,当南方电网以小方式运行时可能造成广东电网低周减载动作;当南方电网以大方式运行时可能引起广西部分地区低压减栽装置动作,且事故后深圳地区负荷可能受限。2015年阳江核电、台山核电和防城港核电机组分别停运,不会造成其近区电网供电受限,也不会引起系统低周减载或低压减载动作。2016年若海南昌江核电机组停运,当海南电网与广东电网通过2回或1回500kV交流联络线保持联网时,海南电网低周减栽不会动作。

  5. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  6. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  7. A Series Dissertation on Tianwan Nuclear Power Station--Summary of Tianwan Nuclear Power Station Project

    Institute of Scientific and Technical Information of China (English)

    Li Qiankun

    2006-01-01

    This is a summary in relation to the construction and operation of Tianwan Nuclear Power Station (the Project) at Lianyungang, Jiangsu Province, the People' s Republic of China. The breakdown specialty topic shall been given in times to come. In this report, the author attempted to give some general description of the Project, including the Project site' s general layout and geographical conditions. A description of its exposure to the elements is also provided, supported by some data made available to us. The key component parts of the Project are described, namely, the nuclear island which includes the reactor, steam generator and so on; the conventional island and the balance of plant. Wherever possible, the improvements to the reactor design over the operating V320 are highlighted, which result in the V428 reactor model. The supplier and contractor for the major equipment such as the reactor and the turbine is the Russian company, namely Atomstroyexport (ASE). There are third country suppliers who provide other equipment. For instance, Siemens supplies the full digital I&C system and Framatome ANP supplies the emergency diesel generators; the metal-clad switchgear cabinet by ABB of Australia; the main steam isolation valve unit by CCI AG of Switzerland. All these foreign suppliers are well known globally. Their experience and quality of the equipment supplied by them are well recognized by the people in the respective fields. As for the civil work and erection work, the most experienced and trustworthy local contractors have been selected. These contractors have proven their competence in similar contract work before. For the testing of the equipment, stringent and proper procedures which meet international standards are adopted. Finally, the author wished on this report could provide the world a safety and advanced Nuclear Project building in China.

  8. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  9. Photovoltaic cost reduction powered by nuclear spending

    Science.gov (United States)

    Smith, Timothy; Deinert, Mark

    2013-04-01

    Between 1975 to 2010, Japan has spent an average of 2700 Million per year on nuclear R&D and 74 Million per year on solar energy R&D (2010 dollars). While the cost of photovoltaics dropped by a factor of 30 during that time, the overnight cost to build a nuclear power plant has doubled between 2003 and 2009. The price of commercially available photovoltaics has been shown to follow a power law reduction with the number of units produced. This begs the question as to what the current price of these systems would be had some of the available funds used for nuclear R&D been spent on the acquisition of photovoltaics. Here we show the reduction in price for single crystal photovoltaic panels if the Japanese government spent some of their nuclear R&D funds on the installation of these systems. We use historical cost and cumulative production for the world and Japan to build a learning curve model for PV. If the government had spent only 0.07% of its nuclear R&D budget toward PV technology since 1975, photovoltaics would now have reached 1/Watt, the point at which they are cost competitive with conventional resources.

  10. Intelligent Component Monitoring for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  11. Activities in the field of small nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baranaev, Yu.D.; Dolgov, V.V.; Sergeev, Yu.A. [Physics and Power Eng. Inst., Obninsk (Russian Federation). State Res. Centre

    1997-10-01

    Considerable efforts have been undertaken for development, design, construction and operation of small nuclear power plants (SNPP) in Russia. Systematic work in this area was started in the mid-1950s. The driving force for this activity was the awareness that the use of nuclear fuel would practically solve the problem of fuel transportation. As far as the remote northern regions are concerned, this provides the key advantage of nuclear over conventional energy sources. The activity in the field of SNPP has included pre-design analytical feasibility studies and experimental research including large-scale experiments on critical assemblies, thermal and hydraulic test facilities, research and development work, construction and operation of pilot and demonstration SNPPs, and finally, construction and more than 20 years of operation of the commercial SNPP, namely Bilibino nuclear co-generation plant (NCGP) located in Chukotka autonomous district, which is one of the most remote regions in the far north-east of Russia. In recent years, studies have been carried out on the development of several new SNPP designs using advanced reactors of the new generation. Among these are the second stage of Bilibino NCGP, floating NCGP VOLNOLOM-3, designated for siting in the Arctic sea coast area, and a nuclear district heating plant for the town of Apatity, in the Murmansk region. In this paper, the background and current status of the SNPPs are given, and the problems as well as prospects of small nuclear reactors development and implementation are considered. (orig.) 20 refs.

  12. Analysis of the operator's connaissance competence for SGTR accidents in a digital nuclear power station%数字化核电站SGTR事故操纵员认知分析

    Institute of Scientific and Technical Information of China (English)

    袁科; 张力; 戴立操

    2012-01-01

    This paper intends to make a review and summarize the technological features of the control room digitalized, including the digital codes, alarming system, the operation team information sharing, the interface management tasks, all of which involve its operator ' s cognitive power and sense of responsibility. To be exact, the responsibility of an operator involve the safety and security of millions' life and the social well-being. Just from the urgent need, this paper intends to introduce an IDA cognition model for such station operator. The model is divided the reconnaissance competence of an operator into 3 phases: Information-receiving, Diagnosis/Decision and Action-taking. The third part of this paper is dedicated to the application of cognitive model with IDA for analyzing SGTR cognitive accidents in the above said power station. This section can be divided into two parts: the first part is to deal with the introduction of the background of the SGTR experiments (including the reactor core, the experimental initiator events, the initial power, control room environment and SGTR experimental physics process, etc.), whereas the second part is to analyze the cognitive process (including control room of the instrument and control system interface, and overall layout control room from the point of view of an operator ( SOP operating procedure of six state parameter) . Part 4 is on the basis of the operators, including the cognitive performances and the interview reports by which he can analyze and judge the failures in his operating process. And, if anything wrong has happened, the operator is expected to detect and distinguish what is wrong with any of the whole working, including the information at hand, diagnosis/decision to be made and the necessary actions to be taken). Thus, the article has made a summary of SGTR accidents in the digital nuclear power plant on the basis of analyzing and judging the causes of likely errors in operating process o as to provide

  13. An overview of future sustainable nuclear power reactors

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2013-01-01

    Full Text Available In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA. In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will

  14. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  15. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  16. An Approach to Autonomous Control for Space Nuclear Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  17. European standards and approaches to EMC in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bardsley, D.J.; Dillingham, S.R.; McMinn, K. [AEA Technology, Dorset (United Kingdom)

    1995-04-01

    Electromagnetic Interference (EMI) arising from a wide range of sources can threaten nuclear power plant operation. The need for measures to mitigate its effects have long been recognised although there are difference in approaches worldwide. The US industry approaches the problem by comprehensive site surveys defining an envelope of emissions for the environmental whilst the UK nuclear industry defined many years ago generic levels which cover power station environments. Moves to standardisation within the European community have led to slight changes in UK approach, in particular how large systems can be tested. The tests undertaken on UK nuclear plant include tests for immunity to conducted as well as radiated interference. Similar tests are also performed elsewhere in Europe but are not, to the authors` knowledge, commonly undertaken in the USA. Currently work is proceeding on draft international standards under the auspices of the IEC.

  18. Nuclear power moratorium and nuclear power phase out stand trial. Return to the rule of law?; Kernkraftmoratorium und Kernenergieausstieg vor Gericht. Rueckkehr zum Rechtsstaat?

    Energy Technology Data Exchange (ETDEWEB)

    Leidinger, Tobias

    2013-08-15

    In its decision from 27.2.2013, the Hessian Verwaltungsgerichtshof (VGH) (Administrative Court) ascertained remarkably clearly that the nuclear power moratorium ordered by the Hessian Ministry of the Environmental Office after the accident in Fukushima on 18.3.2011 was unlawful. It was decided on the request of Bundesministeriums fuer Umwelt, Naturschutz und Reaktorsicherheit (BMU) (in Hessia) (federal ministry for the environment, the protection of nature and reactor safety) against its laender (federal state) counterparts: afterwards there was an immediate temporary injunction issued to stop operations for 8 nuclear power plants. Also the operations of the nuclear power plant Biblis (unit A/B) had to be stopped for 3 months. A few weeks after the moratorium, the right to power operations of the moratorium plants expired by law, the extended runtimes for these and all other plants were revoked and fast shutdown dates for all power plants were determined. While only RWE took constitutional legal proceedings against the moratorium, constitutional complaints have been lodged against the nuclear phase-out (13. AtG-Novelle) (13{sup th} Nuclear Act Amendment) also by E.ON, Vattenfall as well as some operating companies. A decision is expected in 2014. Remarkable also the parallels in content that result from the decision on the nuclear power moratorium regarding the constitutional legal proceedings on the nuclear power phase out. (orig.)

  19. SNPSAM - Space Nuclear Power System Analysis Model

    Science.gov (United States)

    El-Genk, Mohamed S.; Seo, Jong T.

    The current version of SNPSAM is described, and the results of the integrated thermoeletric SP-100 system performance studies using SNPSAM are reported. The electric power output, conversion efficiency, coolant temperatures, and specific pumping power of the system are calculated as functions of the reactor thermal power and the liquid metal coolant type (Li or NaK-78) during steady state operation. The transient behavior of the system is also discussed.

  20. Safety and Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Segalas, Corinne C.; Schmidt, George R.

    2010-09-01

    Nuclear power sources have been used in space applications for decades. They have been used extensively for electrical power production, and their future potential for propulsion has been recognized since the dawn of the spaceflight era. Nuclear power sources offer many advantages in terms of long duration operation and high power densities independent of distance and orientation with respect to the Sun. However, it is also broadly known that use of radioactive materials do carry more risk that must be addressed to ensure safe operation during all phases of the mission, particularly before and during launch into orbit. Almost all of the nuclear-powered missions to date have been flown by the United States and former Soviet Union, but other space-faring nations have recognized its importance for their future missions. Consequently, many in the space community have advocated the development of a broad set of principles that could be applied on an international basis. This paper examines the current guidelines by the major space-faring nations, and suggests a framework primarily based on the U.S. methodology for ensuring reduction of risk, mitigating environmental impact and promoting launch safety.

  1. 76 FR 15001 - Entergy Nuclear Operations, Inc,. Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Science.gov (United States)

    2011-03-18

    ... dated January 12, 2010, from Mr. Michael Mulligan, February 8, 2010, from Mr. Raymond Shadis, and... (NRC) take action with regard to the Vermont Yankee Nuclear Power Station (VY). Mr. Mulligan...

  2. Development and operation of 1 MW wind power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, I.; Lavrov, V. [Machine-building Design Bureau, (Russian Federation)

    1996-12-31

    Development of wind power units (WPUs), which operate on renewable wind power, as well as combined power sources including WPUs, have an important national economic significance in the Russian Federation, particularly in the areas of construction and operation of nuclear power plants, hydro-electric stations and other traditional power plants. Development of WPUs of high power level is a complicated task, and the solution requires investigations in the areas of experimental design, technology, and the organization of industrial production. Initially, the problem of the development of large diameter propellers, power electric equipment, reducers and drive mechanisms, automatic control devices, and control and diagnostic system need to be solved. This report covers the basic results and directions of the work of the Machine-building Design Bureau `Raduga` in the field of wind power engineering as well as the basic performance of the units. (author). 7 figs.

  3. Carbon pricing, nuclear power and electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  4. Periodic safety review of French nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Poirrier, D.; Debes, M. [Electricite de France, Paris (France)

    1997-12-01

    The safety of nuclear power plants (NPPs) is checked through different types of safety evaluations, for example, a continuous process, with followup of operational feedback and over-all evaluation every year by each NPP; specific examination, with the study of generic problems when they occur; and a 10-yr outage inspection. In France, the license does not explicitly require periodic safety reviews (PSRs), but an article has been added to the Decree of December 11, 1963 concerning nuclear installations that states, {open_quotes}The Ministers may jointly request the operating utility at any time to proceed to a review of nuclear safety,{close_quotes} which supports requests for PSRs from the safety authority.

  5. 岭澳核电站CFI系统雷达液位计的原理和操作%Ling ao nuclear power station CFI system the principle of radar level gauge and operations

    Institute of Scientific and Technical Information of China (English)

    陈罡

    2015-01-01

    岭澳核电站CFI系统原使用超声波水位测量仪,总是因潮湿、天气及泡沫等因素的影响导致故障闪发,状态不是很稳定,所以将其改造为雷达式液位计。本文就岭澳核电站CFI系统的雷达式液位计的原理、特点和操作方法进行简要论述。%The CFI system of Ling Ao nuclear power station the original use of ultrasonic level measurement instrument is always affected by wet weather and other factors,the bubble causes the failure of flash,the state is not very stable,so its transformation for the radar level gauge.The principle, characteristic and operation method of this paper is the radar type level of Ling Ao Nuclear Power Station CFI system tester are briefly discussed.

  6. Work practices, fatigue, and nuclear power plant safety performance.

    Science.gov (United States)

    Baker, K; Olson, J; Morisseau, D

    1994-06-01

    This paper focuses on work practices that may contribute to fatigue-induced performance decrements in the commercial nuclear power industry. Specifically, the amount of overtime worked by operations, technical, and maintenance personnel and the 12-h operator shift schedule are studied. Although overtime for all three job categories was fairly high at a number of plants, the analyses detected a clear statistical relationship only between operations overtime and plant safety performance. The results for the 12-h operator shift schedule were ambiguous. Although the 12-h operator shift schedule was correlated with operator error, it was not significantly related to the other five safety indicators. This research suggests that at least one of the existing work practices--the amount of operator overtime worked at some plants--represents a safety concern in this industry; however, further research is required before any definitive conclusions can be drawn.

  7. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    D N Sanyal

    2014-01-01

    This paper reports the state of the art of using a solid-state Nd:YAG laser for material processing applications such as cutting, welding and drilling of several components of operational nuclear reactors in radioactive environment. We have demonstrated several advantages of laserbased material processing over conventional methods, and these are discussed briefly. At NPCIL, we have used laser techniques to cut stainless steel sheets up to 14 mm thickness and stainless steel weld up to a depth of 3 mm. This remotely operable laser system has been engineered for its robustness with proper fixtures and tooling for various material processing operations on industrial scale.

  8. Construct ability Improvement for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Soo; Lee, Jong Rim; Kim, Jong Ku [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The purpose of this study was to identify methods for improving the construct ability of nuclear power plants. This study reviewed several references of current construction practices of domestic and overseas nuclear plants in order to identify potential methods for improving construct ability. The identified methods for improving construct ability were then evaluated based on the applicability to domestic nuclear plant construction. The selected methods are expected to reduce the construction period, improve the quality of construction, cost, safety, and productivity. Selection of which methods should be implemented will require further evaluation of construction modifications, design changes, contract revisions. Among construction methods studied, platform construction methods can be applied through construction sequence modification without significant design changes, and Over the Top construction method of the NSSS, automatic welding of RCL pipes, CLP modularization, etc., are considered to be applied after design modification and adjustment of material lead time. (author). 49 refs., figs., tabs.

  9. Social responsible communication of nuclear power plant with external stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Simoncic, Milan [Nuclear Power Plant Krsko (Slovenia); Zurga, Gordana [Faculty of Organisation Studies in Novo Mesto (Slovenia)

    2016-11-15

    Implications that nuclear technology brings to common physical and social environment, are on daily lists of questions that stakeholders address to owners and operators of nuclear power plants. In this respect, stakeholders expect and demand narrow and explicit answers to concrete questions set. We claim that the acceptability of the NPP in the society can be achieved and maintained also through active communication and trust building between NPP and its stakeholders. A research in this respect was conducted on case of the Krsko NPP, Slovenia. Some institutional and international implications are presented, as well as possible areas for further investigation and research.

  10. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  11. Simulators predict power plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, R.

    2002-07-01

    Mix the complexity of a new construction or major retrofit project with today's 'do more with less', a pinch of 'personnel inexperience,' and a dash of 'unintended consequences', and you have got a recipe for insomnia. Advanced simulation tools, however, can help you wring out your design train your operators before the first wire is terminated and just may be get a good night's rest. The article describes several examples of uses of simulation tools. Esscor recently completed a simulation project for a major US utility exploring the potential for furnace/duct implosion that could result from adding higher volumetric flow induced-draft fans and selective catalytic reduction to a 650-MW coal-fired plant. CAF Electronics Inc. provided a full-scope simulator for Alstom's KA24-1 combined-cycle power plant in Paris, France. Computational fluid dynamics (CFD) tools are being used by the Gas Technology Institute to simulate the performance of the next generation of pulverized coal combustors. 5 figs.

  12. Nuclearity Related Properties in Operator Systems

    CERN Document Server

    Kavruk, Ali Samil

    2011-01-01

    Some recent research on the tensor products of operator systems and ensuing nuclearity properties in this setting raised many stability problems. In this paper we examine the preservation of these nuclearity properties including exactness, local liftibility and double commutant expectation property under basic algebraic operations such as quotient, duality, coproducts and tensor products. We show that, in the ?finite dimensional case, exactness and lifting property are dual pairs, that is, an operator system $S$ is exact if and only if the dual operator system $S^d$ has the lifting property. Moreover, the lifting property is preserved under quotients by null subspaces. Again in the finite dimensional case we prove that every operator system has k-lifting property in the sense that whenever $f:S -> A/I$ is a ucp map, where A is a C*-algebra and I is an ideal, then $f$ possess a unital k-positive lift on A, for every k. This property provides a novel proof of a classical result of Smith and Ward on the preserva...

  13. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  14. Causal reasoning and models of cognitive tasks for naval nuclear power plant operators; Raisonnement causal et modelisation de l`activite cognitive d`operateurs de chaufferie nucleaire navale

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Ferrer, P.

    1995-06-01

    In complex industrial process control, causal reasoning appears as a major component in operators` cognitive tasks. It is tightly linked to diagnosis, prediction of normal and failure states, and explanation. This work provides a detailed review of literature in causal reasoning. A synthesis is proposed as a model of causal reasoning in process control. This model integrates distinct approaches in Cognitive Science: especially qualitative physics, Bayesian networks, knowledge-based systems, and cognitive psychology. Our model defines a framework for the analysis of causal human errors in simulated naval nuclear power plant fault management. Through the methodological framework of critical incident analysis we define a classification of errors and difficulties linked to causal reasoning. This classification is based on shallow characteristics of causal reasoning. As an origin of these errors, more elementary component activities in causal reasoning are identified. The applications cover the field of functional specification for man-machine interfaces, operators support systems design as well as nuclear safety. In addition of this study, we integrate the model of causal reasoning in a model of cognitive task in process control. (authors). 106 refs., 49 figs., 8 tabs.

  15. Power quality considerations for nuclear spectroscopy applications: Grounding

    Energy Technology Data Exchange (ETDEWEB)

    García-Hernández, J.M., E-mail: josemanuel.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Ramírez-Jiménez, F.J., E-mail: fjr@ieee.org [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Mondragón-Contreras, L.; López-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Torres-Bribiesca, M.A. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); and others

    2013-11-21

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise. -- Highlights: •We analyze the performance of nuclear spectroscopy systems with different configurations of the grounding system. •The neutral to ground voltage is an indicator of the ground conditions, a high value may contribute to the increase of the FWHM in nuclear spectroscopy systems. •The use of an isolated ground system is the best option to preserve the best FWHM value. •The application of power quality concepts can help to guaranty the best configuration of the grounding system.

  16. Community conflict in the nuclear power issue

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.S.

    1978-05-01

    This is the first of a two part discussion the purpose of which is to demonstrate that a frankly structural, or network, approach to the analysis of community decision-making allows an observer to anticipate and manage community response to specific policies. Here I am concerned with anticipating community response. In part two (Burt, 1978), I am concerned with conflict resolution strategies. The specific policy used as illustration is siting nuclear power facilities. Published accounts of siting nuclear facilities are used to identify basic social parameters of the nuclear power issue as a community conflict. Changes in the form and content of relations in the network among opponents and proponents of a facility are described. Subsequently, the description is used to specify a causal model of the manner in which conflict escalation is promoted or inhibited by the characteristics and leadership structure of a community in which a nuclear facility is proposed. Hypotheses are derived predicting what types of communities can be expected to become embroiled in conflict and the process that conflict escalation will follow.

  17. Commentary: childhood cancer near nuclear power stations

    Directory of Open Access Journals (Sweden)

    Fairlie Ian

    2009-09-01

    Full Text Available Abstract In 2008, the KiKK study in Germany reported a 1.6-fold increase in solid cancers and a 2.2-fold increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from incorporated radionuclides. Doses from environmental emissions from nuclear reactors to embryos and fetuses in pregnant women near nuclear power stations may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made.

  18. Key issues in space nuclear power

    Science.gov (United States)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  19. Problems and prospects of nuclear power plants construction

    Directory of Open Access Journals (Sweden)

    Pergamenshhik Boris Klimentyevich

    2014-02-01

    Full Text Available 60 years ago, in July 1954 in the city of Obninsk near Moscow the world's first nuclear power plant was commissioned with a capacity of 5 MW. Today more than 430 nuclear units with a total capacity of almost 375000 MW are in operation in dozens of the countries worldwide. 72 electrical power units are currently under construction, 8 of them are located in the Russian Federation. There will be no alternative to nuclear energy in the coming decades. Among the factors contributing to the construction of nuclear power plants reckon limited fossil fuel supply, lack of air and primarily carbon dioxide emissions. The holding back factors are breakdown, hazard, radioactive wastes, high construction costs and long construction period. Nuclear accidents in the power plant of «Three-Mile-Island» in the USA, in Chernobyl and in Japan have resulted in termination of construction projects and closure of several nuclear power plants in the Western Europe. The safety systems have become more complex, material consumption and construction costs have significantly increased. The success of modern competing projects like EPR-1600, AP1000, ABWR, national ones AES-2006 and VVER-TOI, as well as several others, depends not only on structural and configuration but also on construction and technological solutions. The increase of the construction term by one year leads to growth of estimated total costs by 3—10 %. The main improvement potentials include external plate reinforcement, pre-fabricated large-block assembly, production and installation of the equipment packages and other. One of the crucial success factors is highly skilled civil engineers training.

  20. Safety in nuclear power plants in India

    OpenAIRE

    Deolalikar R

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operat...

  1. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Science.gov (United States)

    2011-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3), currently...

  2. 75 FR 52997 - Nebraska Public Power District; Cooper Nuclear Station; Exemption

    Science.gov (United States)

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Nebraska Public Power District; Cooper Nuclear Station; Exemption 1.0 Background Nebraska Public... authorizes operation of the Cooper Nuclear Station (CNS). The license provides, among other things, that...

  3. 75 FR 8153 - Nebraska Public Power District; Cooper Nuclear Station Environmental Assessment and Finding of No...

    Science.gov (United States)

    2010-02-23

    ... COMMISSION Nebraska Public Power District; Cooper Nuclear Station Environmental Assessment and Finding of No... District (NPPD, the licensee), for operation of the Cooper Nuclear Station (CNS), located in Nemaha County... Statement for the Cooper Nuclear Station dated February 1973. Agencies and Persons Consulted In...

  4. 75 FR 47856 - Nebraska Public Power District: Cooper Nuclear Station; Notice of Availability of the Final...

    Science.gov (United States)

    2010-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Nebraska Public Power District: Cooper Nuclear Station; Notice of Availability of the Final... operation for the Cooper Nuclear Station (CNS). CNS is located near Brownville, Nebraska, on the...

  5. 75 FR 10517 - Nebraska Public Power District, Cooper Nuclear Station; Exemption

    Science.gov (United States)

    2010-03-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Nebraska Public Power District, Cooper Nuclear Station; Exemption 1.0 Background Nebraska Public... authorizes operation of the Cooper Nuclear Station (CNS). The license provides, among other things, that...

  6. The Resurgence of U.S. Nuclear Power, 2. edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The updated report provides an overview of the opportunities for nuclear power in the U.S. electric industry, including a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

  7. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company`s Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  8. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  9. Nuclear power: Is the renaissance real or a mirage?

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.-Holger; McDonald, Alan

    2010-09-15

    In 2009, in the midst of the global financial and economic crises that began in 2008, and as the nuclear power industry posted its first two-year decline in installed capacity in history, the IAEA revised its projections for future nuclear power growth upwards. This paper summarizes the status of nuclear power in the world today and the status of all steps in the nuclear fuel cycle. It summarizes nuclear power's prospects and important trends in key factors. It explains the reasons for optimism and rising expectations about nuclear power's future, and it acknowledges that there is, nonetheless, much uncertainty.

  10. Optimization Criteria of Power Transformer Operation

    Directory of Open Access Journals (Sweden)

    A. A. Gonchar

    2006-01-01

    Full Text Available It has been shown that minimum losses in active power of a power transformer do not correspond to its maximum efficiency. For a transformer being operated there are no so called «zones of its economical operation». In this case strictly specified value of active power losses corresponds to a particular current of the winding.

  11. Near-Term Demonstration of Benign, Sustainable, Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C.E.

    2000-09-21

    Nuclear power reactors have been studied, researched, developed, constructed, demonstrated, deployed, operated, reviewed, discussed, praised and maligned in the United States for over half a century. These activities now transcend our national borders and nuclear power reactors are in commercial use by many nations. Throughout the world, many have been built, some have been shut down, and new ones are coming on line. Almost one-fifth of the world's electricity in 1997 was produced from these reactors. Nuclear power is no longer an unknown new technology. A large increase in world electricity demand is projected for the coming century. In lieu of endless research programs on ''new'' concepts, it is now time to proceed vigorously with widespread deployment of the best nuclear power option for which most parameters are already established. Here, we develop an aggressive approach for initiating the deployment of such a system--with the potential to produce over half of the world's electricity by mid-century, and to continue at that level for several centuries.

  12. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  13. Site selection for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Paul C.; Dubinsky, Melissa; Tastan, Erdem Onur, E-mail: paul.rizzo@rizzoassoc.com, E-mail: melissa.dubinsky@rizzoassoc.com, E-mail: onur.tastan@rizzoassoc.com [RIZZO Associates Inc., Pittsburgh, PA (United States); Miano, Sandra C., E-mail: scm27@psu.edu [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), RJ (Brazil); Pennsylvania State University, Department of Mechanical and Nuclear Engineering, State College, PA (United States)

    2015-07-01

    The current methodology for selecting the most advantageous site(s) for nuclear power plant (NPP) development is based on the latest evolution of protocols originally established in the 1990's by the Electric Power Research Institute (EPRI) and others for programs in the USA, and more recently by the International Atomic Energy Agency (IAEA), among others. The methodology includes protocols that account for lessons learned from both the Gen III projects and the catastrophic event at Fukushima, Japan. In general, the approach requires consideration of Exclusionary or 'fatal flaw' Criteria first, based on safety as well as significant impact to the environment or human health. Sites must meet all of these Exclusionary Criteria to be considered for NPP development. Next, the remaining sites are evaluated for Avoidance Criteria that affect primarily ease of construction and operations, which allow a ranking of sites best suited for NPP development. Finally, Suitability Criteria are applied to the potential sites to better differentiate between closely ranked sites. Generally, final selection of a Preferred and an Alternate Site will require balancing of factors, expert judgment, and client input, as sites being compared will differ in their scores associated with different Avoidance Criteria and Suitability Criteria. RIZZO Associates (RIZZO) offers in this paper a modification to this methodology for selecting the site for NPP development, which accords to the categories of Exclusionary, Avoidance and Suitability Criteria strict definitions which can be considered as Absolute Factors, Critical Factors, and Economic Factors for a more focused approach to site selection. Absolute Factors include all of the safety-related Exclusionary Criteria. Critical Factors are those that are difficult to overcome unless extraordinary mitigation measures are implemented; they have a significant impact on the ability of the project to be successful and may cause the

  14. An integrated design methodology for the safety and security of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Joung, S. Y.; Chang, S. H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-03-15

    After Fukushima nuclear power plant accident, safety of nuclear power plant was issued. In Fukushima accident, one of main reason is location of emergency diesel power generators stop which locate under the sea water level when tsunami occurred. In view of security, emergency diesel generator location under reactor building design is good because for example to escape air strike but is not good for safety for example Fukushima accident. Sometimes safety and security design looks conflicting but nuclear safety and nuclear security share the goal of protecting but nuclear safety and nuclear power plants operate at acceptable risk levels. The purpose of this paper is to introduce safety and security integrated design for nuclear power plant in special emergency diesel generator and control room with simple probabilistic safety assessment analysis.

  15. Nuclear Power:Entering the Stage of Active Development

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Development course Since 1970 when the construction preparation of Qinshan No.1 Nuclear Power Plant started,China's nuclear power industry has grown out of nothing,and then adjusted the step from moderate development to vigorous development.In this course,China's nuclear power equipment manufacturing industry has also been unceasingly developing and strengthening itself with the construction of nuclear power plants one by one.

  16. 47 CFR 73.751 - Operating power.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Operating power. 73.751 Section 73.751... International Broadcast Stations § 73.751 Operating power. No international broadcast station shall be authorized to install, or be licensed for operation of, transmitter equipment with: (a) A rated carrier...

  17. A risk assessment method for accidental releases from nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Blaauboer RO; Eggink GJ

    1994-01-01

    At present over 200 nuclear power reactors are operational. The question raised is to what extent possible accidents with nuclear power reactors pose a risk for the European population. In this report a method is described for evaluating the probability of death due to stochastic effects, combinin

  18. Fuzzy-logic approach to HTR nuclear power plant model control

    Energy Technology Data Exchange (ETDEWEB)

    Bubak, M.; Moscinski, J. (Akademia Gorniczo-Hutnicza, Krakow (Poland)); Jewulski, J. (Institute of Physical Chemistry, Krakow (Poland))

    1983-01-01

    The fuzzy-set theory is used to incorporate linguistic 'rules of the thumb' of a human operator in the HTR nuclear power plant controller. The results of the extensive computer simulations are encouraging and confirm the usefulness of this approach in nuclear power plant control. In the Appendix, a short introduction to fuzzy logic is given.

  19. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  20. ENSI's view on technical safety for the long term operation of reactors 1 and 2 in the Beznau nuclear power plant; Sicherheitstechnische Stellungnahme zum Langzeitbetrieb des Kernkraftwerks Beznau Block 1 und Block 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    The reactors 1 and 2 of the Beznau nuclear power plant (KKB) are operated since about 40 years. For an operation beyond the design period of 40 years the Swiss Federal Nuclear Safety Inspectorate (ENSI) demands the evidence to be brought that the design limits of the safety relevant components will not be reached during the extended operation period. In 2008 the license holder of KKB delivered the requested documentation on material ageing on the basis of deterministic as well as probabilistic safety analyses and concluded that both reactors can be safely operated beyond 40 years. Thanks to continuous additional outfits, both reactors are in good condition from the point of view of technical safety. With a view to the extension of operation beyond 40 years, KKB already applied the necessary measures regarding technics, finances and personnel in order to keep the present technical level. Since 1991 KKB has analysed and checked components that are difficult to replace. From the evidence presented, ENSI concluded that both reactors are able to be operated up to 60 years long, however with two restrictions for reactor 1 because there the material used for the reactor pressure vessel (RPV) suffered more neutron brittleness than in reactor 2. In addition, reactor 1 is much more affected by ageing phenomena than reactor 2, but, according to neutron fluence calculations, the limiting criteria will not be reached even after 60 years of operation. Some corrosion damages were noted at the lower part of the RPV due to water containing boron acid; they are more pronounced in reactor 1 than in reactor 2. Even though the calculations done by KKB are very conservative, they show that also in the long term the operation limiting criteria about the mechanical resistance of the RPV are never reached. ENSI concludes that the safety design of both KKB reactors ensures safe control of the design basis accidents. Both reactors were continuously fitted with new equipment. With the planed

  1. Malfunction analysis response system (MARS) for nuclear power plants control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Peters, F.; Rossmann, D.L.

    1984-01-01

    Whenever the need for the safe and reliable operation of a complex system exists, a major requirement for success is the actions of the people involved. This is especially true when a time-critical response is required. In this context, the operation of a nuclear power plant is exemplary. Lessons from the Three Mile Island-2 incident show that insufficient attention was paid to the man/machine interface. Since that time, considerable effort has been directed by the nuclear industry toward the improvement of control room instrumentation, emergency operating procedures, and operator training. The improvement of the safety of nuclear power plants through the reduction of operator errors is discussed. The nuclear power plant operator's diagnostic role is analogous to that of a flight controller for a manned space flight mission. Both must be able to quickly understand and integrate large quantities of information on current system operation with background data on system design and performance.

  2. 核电厂SOP规程安注安喷操作界面优化研究%Optimization Research on SOP Operation Interface of Safety Injection and Containment Spray in Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    刘至; 殷中平; 李广

    2015-01-01

    状态导向法事故规程(以下简称SOP规程)在核电厂中的应用,提升了核电厂的事故处理能力,但现有的SOP规程组织架构在应对核电站常用的如安注、安喷等专设安全设施动作控制方面,仍存在自动动作确认复杂、需反复调用链接画面等不足. 通过对操作界面的优化研究,可以有效弥补SOP规程的不足. 对SOP规程操作界面优化研究的技术思路进行了综合介绍,给出了其技术要点,并与原SOP规程组织架构进行了分析对比.%The application of state oriented procedures ( SOP) in nuclear power plant enhances the capability of the nuclear power plant upon accident treatment; however the existing SOP organizational structure is insufficient in response to motion control of the engineered safety facilities, e. g. , safety injection and containment spray, etc. , for instance, the automatic action is complexly to be acknowledged, and the linked displays have to be called repeatedly. The deficiency of SOP can be effectively made up by optimization research of operation interface. The technical ideas of optimization research for SOP operation interface are elaborated comprehensively, and the technical points are given, the optimized technology and original SOP organization structure are analyzed and compared.

  3. Internal Mainland Nuclear Power Liquid Waste Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    YOU; Xin-feng; ZHANG; Zhen-tao; ZHENG; Wen-jun; WANG; Lei; YANG; Lin-yue; HUA; Xiao-hui; ZHENG; Yu; YANG; Yong-gang; WU; Yan

    2013-01-01

    Taohuajiang power station is the first internal mainland nuclear power station,and it adopts AP1000nuclear technology belongs to the Westinghouse Electric Corporation.To ensure the safety of the environment around the station and satisfy the radio liquid waste discharge standards,our team has researched the liquid waste treatment technology for the internal mainland nuclear power plant.According

  4. Radioactive materials released from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tichler, J.; Norden, K.; Congemi, J. (Brookhaven National Lab., Upton, NY (USA))

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  5. Natural Disasters and Safety Risks at Nuclear Power Stations

    Science.gov (United States)

    Tutnova, T.

    2012-04-01

    industry needs advanced mechanisms of international oversight. The natural-technological disaster that happens in a particular country is a matter of concern of the global community. Hence, the urgent necessity is to develop and adopt a joint mechanism for international consultation in case of serious accident at a nuclear power plant. It is also necessary to work out the list of constraining provisions for building and operating nuclear plants in regions where potential risks of natural-technological catastrophes exist. These provisions should include risk estimate for every particular region, as well as the list of preventive measures to secure the safe operation of nuclear plants located at those sites. As it was stated before, the synergy effects of more than one potential hazard must be taken into account. The main goal of my report is to represent possible methods for mitigating nuclear safety risks associated with natural hazards and technological disasters, review the effectiveness of existing standards and oversight mechanisms, encourage a cooperative discussion of these issues.

  6. A study on the design changes and licensing requirements for mid-loop operation in Ulchin 3 and 4 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Mid-loop operation with RCS water level near the center line of the hot leg is necessary for the installation and removal of the nozzle dams for the steam generator inspection and maintenance during nonpower operation while there is substantial core decay heat. A vortex due to an improper RCS water level in this operation may cause an event of the loss of residual heat removal (LORHR) resulting in a severe core damage. As the LORHR due to the air entrainment into the SCS has been occurring repeatedly, US NRC requested all licensees to respond to GL88-17 regarding the improvement of the equipment for the mid-loop operation and the analysis for a complete understanding of NSSS behavior in case of a LORHR as well as under normal nonpower operation. Recently, 10 CFR 50 RIN 3150-AE97 proposed rule showed the concern about the safety regulation of the shutdown and nonpower operation. KINS requested as the action item for the construction permit that the actual scale test and the analysis should be done for the safety establishment of the mid-loop operation in UCN3 and 4. Since the elevation of the steam generator nozzle dam from the hot leg in UCN3 and 4 was so small that the mid-loop operation was not possible, the design changes for increasing the operable range of the RCS water level became necessary. The improvement of the equiments in other plants which conformed the requirements of GL88-17 was investigated and its applicability to UCN3 and 4 was analysed. The schedule impact and the cost benefit of the design change as well as the technical feasibility were considered because UCN3 and 4 design was progressing. The result of the analysis was that the mid-loop operation could be possible and GL88-17 could be met.

  7. NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation

    Science.gov (United States)

    Zweig, Herbert R.; Hundal, Rolv

    1994-07-01

    Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.

  8. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  9. The future of nuclear power: value orientations and risk perception.

    Science.gov (United States)

    Whitfield, Stephen C; Rosa, Eugene A; Dan, Amy; Dietz, Thomas

    2009-03-01

    Since the turn of the 21st century, there has been a revival of interest in nuclear power. Two decades ago, the expansion of nuclear power in the United States was halted by widespread public opposition as well as rising costs and less than projected increases in demand for electricity. Can the renewed enthusiasm for nuclear power overcome its history of public resistance that has persisted for decades? We propose that attitudes toward nuclear power are a function of perceived risk, and that both attitudes and risk perceptions are a function of values, beliefs, and trust in the institutions that influence nuclear policy. Applying structural equation models to data from a U.S. national survey, we find that increased trust in the nuclear governance institutions reduces perceived risk of nuclear power and together higher trust and lower risk perceptions predict positive attitudes toward nuclear power. Trust in environmental institutions and perceived risks from global environmental problems do not predict attitudes toward nuclear power. Values do predict attitudes: individuals with traditional values have greater support for, while those with altruistic values have greater opposition to, nuclear power. Nuclear attitudes do not vary by gender, age, education, income, or political orientation, though nonwhites are more supportive than whites. These findings are consistent with, and provide an explanation for, a long series of public opinion polls showing public ambivalence toward nuclear power that persists even in the face of renewed interest for nuclear power in policy circles.

  10. The development of a quantitative measure for the complexity of emergency tasks stipulated in emergency operating procedures of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kyun; Jung, Won Dea

    2006-11-15

    Previous studies have continuously pointed out that human performance is a decisive factor affecting the safety of complicated process systems. Subsequently, as the result of extensive efforts, it has been revealed that the provision of procedures is one of the most effective countermeasures, especially if human operators have to carry out their tasks under a very stressful environment. That is, since good procedures are helpful to not only enhance the performance of human operators but also the reduction of the possibility of a human error through stipulating detailed tasks to be done by human operators. Ironically, it has been emphasized that the performance of human operators could be impaired due to complicated procedures, because procedures directly govern the physical as well as cognitive behavior of human operators by institutionalizing detailed actions. Therefore, it is a prerequisite to develop a systematic framework that properly evaluate the complexity of tasks described in procedures. For this reason, a measure called TACOM (Task Complexity) that can quantify the complexity of emergency tasks described in the emergency operating procedures (EOPs) of NPPs has been developed. In this report, a technical background as well as practical steps to quantify the complexity of tasks were presented with a series of studies that were conducted to ensure the validity of the TACOM measure. As a result of validation studies, since it is shown that the TACOM measure seem to properly quantify the complexity of emergency tasks, it is desirable that the TACOM measure plays an important role in improving the performance of human operators.

  11. Thermal power plant design and operation

    CERN Document Server

    Sarkar, Dipak

    2015-01-01

    Thermal Power Plant: Design and Operation deals with various aspects of a thermal power plant, providing a new dimension to the subject, with focus on operating practices and troubleshooting, as well as technology and design. Its author has a 40-long association with thermal power plants in design as well as field engineering, sharing his experience with professional engineers under various training capacities, such as training programs for graduate engineers and operating personnel. Thermal Power Plant presents practical content on coal-, gas-, oil-, peat- and biomass-fueled thermal power

  12. Big data analysis of public acceptance of nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seung Kook [Policy Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2017-06-15

    Public acceptance of nuclear power is important for the government, the major stakeholder of the industry, because consensus is required to drive actions. It is therefore no coincidence that the governments of nations operating nuclear reactors are endeavoring to enhance public acceptance of nuclear power, as better acceptance allows stable power generation and peaceful processing of nuclear wastes produced from nuclear reactors. Past research, however, has been limited to epistemological measurements using methods such as the Likert scale. In this research, we propose big data analysis as an attractive alternative and attempt to identify the attitudes of the public on nuclear power. Specifically, we used common big data analyses to analyze consumer opinions via SNS (Social Networking Services), using keyword analysis and opinion analysis. The keyword analysis identified the attitudes of the public toward nuclear power. The public felt positive toward nuclear power when Korea successfully exported nuclear reactors to the United Arab Emirates. With the Fukushima accident in 2011 and certain supplier scandals in 2012, however, the image of nuclear power was degraded and the negative image continues. It is recommended that the government focus on developing useful businesses and use cases of nuclear power in order to improve public acceptance.

  13. The future of nuclear power: A world-wide perspective

    Science.gov (United States)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political

  14. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  15. A study on emergency preparedness for nuclear power plant/ Establishment of emergency communication network system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. K.; Jung, Y. D.; Kim, S. Y. [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1991-12-15

    The objective of this study was to develop an emergency database search system for nuclear power plants during nuclear incidents / accidents. Image data reported from nuclear power plants to the regulatory body and other related data will be stored systematically in the computer. The data will be utilized during nuclear emergency to prevent the accident from spreading out and to minimize its effect. It will also be used in exchanging information on accident or incidents with the foreign countries. The operational documents in the Kori-4 nuclear power plant are used as the major source for the categorization and analysis in performing this research. It was not easy to access the detailed operational data due to its unique characteric for the security. Therefore, we strongly suggest to increase manpower for this project in Korea Institute of Nuclear Safety (KINS) and archive involvement from Korea Electric Power Company to establish better database retrieval system.

  16. System aspects of a Space Nuclear Reactor Power System

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  17. 75 FR 39284 - Southern Nuclear Operating Company et al.; Notice of Availability of Environmental Assessment and...

    Science.gov (United States)

    2010-07-08

    ... August 26, 2009, to Southern Nuclear Operating Company (SNC) and several co- applicants (Georgia Power... permit issued to SNC for the Vogtle Electric Generating Plant ESP site located in Burke County,...

  18. Automatization of welding for nuclear power equipments and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Y.; Matsumoto, T.; Koyama, T. (Hitachi Ltd., Ibaraki (Japan). Hitachi Works)

    1980-09-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained.

  19. Review of progress in modelling for the assessment of the operating life of a nuclear power plant; Panorama des progres de la modelisation au service de la duree de vie des centrales

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, B. [Electricite de France (EDF/RD), 78 - Chatou (France); Gilles, Ph. [FRAMATOME ANP, 92 - Paris-La-Defence (France); Chauliac, Ch. [CEA Saclay, Dir. de l' Energie Nucleaire DEN/DSOE, 91 - Gif sur Yvette (France)

    2004-07-01

    This article reviews the contributions of simulation and modelling to the assessment of the service life of a nuclear power plant. 4 aspects are considered. The first aspect concerns the operating life of the reactor vessel, in order to evaluate its aging a series of more or less intertwined modelling is necessary, they concern thermal-hydraulic transients, neutron fluences, damages due to irradiation and thermal-mechanical behaviour. The second aspect is the use of simulation to optimize non-destructive testing (NDT) particularly to assess the performances and limits of NDT methods in order to assure safety in any situation. The third aspect concerns the simulation of welding in order to assess the risk of defect occurrence, the pile-up of residual stresses and the feasibility of a complex welding. The last aspect is a global simulation of a nuclear unit as a whole involving its main components such as vessel, pumps, steam generators, turbine...; their maintenance, their failure risks in order to define indicator parameters that are relevant to the real state of the plant. (A.C.)

  20. The fourth nuclear power plant in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2017-01-15

    Since 2006 the nuclear sector in Argentina has aimed at recovering and strengthening its capabilities and facilities. Part of the challenge posed by this revival has been to also accompany the development of activities with a higher level of responsibility for safety and the environment. Among the strategic decisions taken in recent years, one main highlight is the construction of the nuclear power plant CAREM25 entirely with Argentine technology and design under the responsibility of the National Atomic Energy Commission. On February 4, 2015, the Ministry of Federal Planning and the National Energy Administration (NEA) signed the agreement for cooperation and construction of pressurized water reactor (PWR) with ACP-1000 technology, developed in the Peoples Republic of China.

  1. Future Expectation for China's Nuclear Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ China:the future of nuclear power Wang Yonggan:In terms of the highlighted issue of energy security,oil is of paramount importance,coal is the foundation and electricity is the pivot according to China's energy strategy.The national total installed power capacity will hit a record high of 900 GW in 2010,and will probably approach 1 500 GW in 2020 when coal-fired power will continue to dominate,and alternative energy such as nuclear energy,hydroenergy,wind energy,and others will take up only 30% at most.Therefore,China remains in dire need to create more room for alternative energy.To solve this problem,solutions should be found in the diversification of energy,especially large-scale development of alternative energy,by which a lowered-and ultimately zeroed-growth of coal-fired generating units could be realized,and the target of low,even zero carbon emission could come true.

  2. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  3. One year of operational experience with the upgraded and modernized Borssele nuclear power plant; Ein Jahr Erfahrung mit dem nachgeruesteten und modernisierten Kernkraftwerk Borssele

    Energy Technology Data Exchange (ETDEWEB)

    Bongers, J.W.M. [EPZ Kernenergie, Borssele (Netherlands); Wiersema, H.T. [KEMA Nuclear, Arnheim (Netherlands)

    1999-10-01

    The operating experience with the modernized Borssele NPP is excellent. The post upgrade operations showed some minor incidents related to the modernization. Part of the incidents were handled immediately, the others were solved during the 1998 outage. This outage was very well organized and executed, resulting in the shortest outage time ever achieved in Borssele. The plant availability in the first operating period after modernization ranged at over 90%. (orig.) [Deutsch] Mit dem modernisierten Kernkraftwerk Borssele wurden sehr gute Erfahrungen gemacht. Waehrend des Betriebes nach Abschluss der Modernisierungsarbeiten kam es zu einigen geringfuegigen Ereignissen, die durch die Modernisierungsmassnahmen verursacht worden waren. Einige dieser Probleme konnten sofort behoben werden, andere wurden waehrend der Revision im Jahre 1998 geloest. Diese Revision wurde hervorragend organisiert und ausgefuehrt und fuehrte dadurch zu den kuerzesten Ausfallzeiten, die jemals in Borssele erzielt wurden. Die Anlagenverfuegbarkeit lag in der ersten Betriebszeit nach den Umbaumassnahmen bei ueber 90%. (orig.)

  4. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  5. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  6. Organizational Culture for Safety, Security, and Safeguards in New Nuclear Power Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kovacic, Donald N [ORNL

    2015-01-01

    This chapter will contain the following sections: Existing international norms and standards for developing the infrastructure to support new nuclear power programs The role of organizational culture and how it supports the safe, secure, and peaceful application of nuclear power Identifying effective and efficient strategies for implementing safety, security and safeguards in nuclear operations Challenges identified in the implementation of safety, security and safeguards Potential areas for future collaboration between countries in order to support nonproliferation culture

  7. Guri power complex; Operation history

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, J. (C.V.G. Electrification del Caroni, C.A., Edelca (VE)); Deniz, O. (Harza Engineering Company International, Guri (VE))

    1989-01-01

    This paper presents the main construction features of the Guri project, describes the concept of staged construction and gives the operating history of the major equipment in the two powerhouses. Some of the major operating problems that were encountered are identified and the remedies that were utilized to overcome the problems are discussed.

  8. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Anaya, M. Jose; Verdu Martin, Gumersindo, E-mail: mpalomo@iqn.upv.es, E-mail: gverdu@iqn.upv.es [ISIRYM Universidad Politecnica de Valencia, Valencia (Spain); Arnaldos Gonzalvez, Adoracion, E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Tecnologicos SL, Valencia (Spain); Nieva, Marcelino Curiel, E-mail: m.curiel@lainsa.com [Logistica y Acondicionamientos Industriales SAU (LAINSA), Valencia (Spain)

    2011-07-01

    This paper is a recompilation of the most significant results in relation to the researching in Preventive and Predictive Maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and The Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the Power Plants Control and Instrumentation Department technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the aim to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish Nuclear Power Plants each of them shall give a significant contribution to problem resolution and power plant performance: Fluctuations in sensor lines (case 1), Air presence in feed water lines (case 2), Root valve partially closed (case 3), Sensor malfunctions (case 4), Electrical source malfunctions (case 5), RTD malfunctions (case 6) and LPRM malfunctions (case 7). (author)

  9. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  10. Nuclear Power and the World's Energy Requirements

    CERN Document Server

    Castellano, V; Dunning-Davies, J

    2004-01-01

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  11. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2012-05-21

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory... Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources... Effectiveness of Maintenance at Nuclear Power Plants,'' Part 50, ``Domestic......

  12. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    Science.gov (United States)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP

  13. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  14. Determination of steam wetness in the steam-generating equipment of nuclear power plants

    Science.gov (United States)

    Gorburov, V. I.; Gorburov, D. V.; Kuz'min, A. V.

    2012-05-01

    Calculation and experimental methods for determining steam wetness in horizontal steam generators for nuclear power stations equipped with VVER reactors, namely, the classic salt technique and calculations based on operating parameters are discussed considered and compared.

  15. Radiological protection in nuclear power plants; La proteccion radiologica en las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zorrilla R, S. [CFE. Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)

    2008-12-15

    This presentation sharing experiences which correspond to the nuclear power plant of Laguna Verde. This nuclear power plant is located at level 2 of four possible, in the classification performance of the World Association of Nuclear Operators (WANO), which means the mexican nuclear power plant is classified in terms of its performance indicators and above the average achieved by their counterparts americans and canadians. In the national context, the nuclear power plant of Laguna Verde has also been honored with several awards such as the National Quality Award, the Clean Industry Certificate, the distinction of Environmental Excellence and others of similar importance. For the standards of WANO, the basic idea is that there are shortcomings in one of nuclear power plant concern to all partners. The indicators used for the classification will always go beyond more compliance with regulations, which are assumed, and rather assume come or a path to excellence. Among the most important indicators are: the collective dose, the percentage of areas declared as contaminated, the number, type and tendency of contamination personal cases, the number of dosimetry alarms, the number of unplanned exposures, loss control of high radiation areas and the release of contaminated material outside the restricted areas. Furthermore, as already indicated, nuclear power plants are of special care situations, such as, carrying out work in areas with radiation fields of more than 15 mSv h{sup -1}, the movement of spent fuel in the reload floor. The consideration of the minimum total effective dose equivalent as a criterion for prescribing tools that reduce exposures, but may increase the external cases of contaminated casualties, the experience in portals such as workers subject to radiology, where exposure in industrial radiography, and so on. Special mention deserve the conditions generated during fuel reload stops, which causes a massive personnel movement, working simultaneously on

  16. A dynamical systems model for nuclear power plant risk

    Science.gov (United States)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  17. International nuclear power status 2002; International kernekraftstatus 2002

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  18. International nuclear power status 2001; International kernekraftstatus 2001

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  19. British Energy - nuclear power in the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, R. [British Energy plc, Edinburgh (United Kingdom)

    1997-04-01

    The first four months of the operation of British Energy as a privatised nuclear utility are briefly reviewed. Operational and financial performance have been good as exemplified by the figures for power output and financial return. Freedom from government control means that the options open to the company are much wider but the need to meet the expectations of shareholders is a major consideration. Added to this, the competitive nature of the electricity industry means that the cost reduction is important, though this cannot be at the expense of safety. Shareholder expectations make the funding of new nuclear power stations unrealistic at present. Increasingly, however, markets are opening up in the maintenance of existing plant and the decommissioning of older plant. The British Energy Group also has considerable expertise in the design, operation and management of power stations and of acting in a competitive energy market that could be exported. British Energy`s International Division is in place to develop this potential. (UK).

  20. The alternative strategies of the development of the nuclear power industry in the 21st century

    Science.gov (United States)

    Goverdovskii, A. A.; Kalyakin, S. G.; Rachkov, V. I.

    2014-05-01

    This paper emphasizes the urgency of scientific-and-technical and sociopolitical problems of the modern nuclear power industry without solving of which the transition from local nuclear power systems now in operation to a large-scale nuclear power industry would be impossible. The existing concepts of the longterm strategy of the development of the nuclear power industry have been analyzed. On the basis of the scenarios having been developed it was shown that the most promising alternative is the orientation towards the closed nuclear fuel cycle with fast neutron reactors (hereinafter referred to as fast reactors) that would meet the requirements on the acceptable safety. It was concluded that the main provisions of "The Strategy of the Development of the Nuclear Power Industry of Russia for the First Half of the 21st Century" approved by the Government of the Russian Federation in the year 2000 remain the same at present as well, although they require to be elaborated with due regard for new realities in the market for fossil fuels, the state of both the Russian and the world economy, as well as tightening of requirements related to safe operation of nuclear power stations (NPSs) (for example, after the severe accident at the Fukushima nuclear power station, Japan) and nonproliferation of nuclear weapons.