WorldWideScience

Sample records for operated trickle-bed reactor

  1. Advantages of forced non-steady operated trickle-bed reactors

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    2002-01-01

    Trickle-bed reactors are usually operated in the steady state trickle flow regime. Uneven liquid distribution and the formation of hot spots are the most serious problems experienced during trickle flow operation. In this paper, we advocate the use of non-steady state operation of trickle-bed

  2. Trickle Bed Reactor Operation under Forced Liquid Feed Rate Modulation

    Hanika, Jiří; Jiřičný, Vladimír; Karnetová, P.; Kolena, J.; Lederer, J.; Skála, D.; Staněk, Vladimír; Tukač, V.

    2007-01-01

    Roč. 13, č. 4 (2007), s. 192-198 ISSN 1451-9372 R&D Projects: GA MPO(CZ) FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : trickle -bed reactor * period * feed rate Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.

    Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas

    2018-01-01

    In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai; Suriye, Kongkiat; Nonkhamwong, Anuwat

    2013-01-01

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed

  5. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai [Chulalongkorn University, Bangkok (Thailand); Suriye, Kongkiat; Nonkhamwong, Anuwat [SCG Chemicals Co. Ltd., Bangkok (Thailand)

    2013-03-15

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed.

  6. Enlargement of the pulsing flow regime by periodic operation of a trickle-bed reactor.

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    1999-01-01

    Potential advantages of pulsing flow in trickle-bed reactors include capacity increase and elimination of hot spots through the enhanced mass and heat transfer rates. A disadvantage of naturally occurring pulsing flow is the necessity of relatively high gas and liquid flow rates, especially at

  7. Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors

    Andreas Lemmer

    2018-05-01

    Full Text Available To improve the reactor efficiency, this study investigated the influence of temperature on the biological hydrogen methanation (BHM in trickle-bed reactors (TBR. Rising temperatures increase the metabolic activity of methanogenic microorganisms, thus leading to higher reactor specific methane formation rates (MFR. In order to quantify the potential for improved performance, experiments with four different operating temperatures ranging from 40 to 55 °C were carried out. Methane content increased from 88.29 ± 2.12 vol % at 40 °C to 94.99 ± 0.81 vol % at 55 °C with a stable biological process. Furthermore, a reactor specific methane formation rate (MFR of up to 8.85 ± 0.45 m3 m−3 d−1 was achieved. It could be shown that the microorganisms were able to adapt to higher temperatures within hours. The tests showed that TBR performance with regard to BHM can be significantly increased by increasing the operating temperature.

  8. The Behavior of Pilot Trickle-Bed Reactor under Periodic Operation

    Tukač, V.; Šimíčková, M.; Chyba, V.; Lederer, J.; Kolena, J.; Hanika, Jiří; Jiřičný, Vladimír; Staněk, Vladimír; Stavárek, Petr

    2007-01-01

    Roč. 62, 18-20 (2007), s. 4891-4895 ISSN 0009-2509. [International Symposium on Chemical Reaction Engineering - From Science to Innovative Engineering /19./. Potsdam/Berlin, 03.09.2006-06.09.2006] R&D Projects: GA MPO(CZ) FT-TA/039 Grant - others:CYCLOP(XE) G1RD/CT2000/00225 Institutional research plan: CEZ:AV0Z40720504 Source of funding: R - rámcový projekt EK Keywords : olefine hydrogenation * pilot-scale * trickle-bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.775, year: 2007

  9. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  10. A Numerical Model for Trickle Bed Reactors

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  11. The Performance of Structured Packings in Trickle-Bed Reactors

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped

  12. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  13. Dicyclopentadiene Hydrogenation in Trickle Bed Reactor under Forced Periodic Control

    Skála, D.; Hanika, Jiří

    2008-01-01

    Roč. 62, č. 2 (2008), s. 215-218 ISSN 1336-7242 R&D Projects: GA MPO(CZ) FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : periodic control * trickle -bed reactor * dicyclopentadiene Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Nature and characteristics of pulsing flow in trickle-bed reactors

    Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.

    2002-01-01

    Pulsing flow is well known for its advantages in terms of an increase in mass and heat transfer rates, complete catalyst wetting and a decrease in axial dispersion compared to trickle flow. The operation of a trickle-bed reactor in the pulsing flow regime is favorable in terms of a capacity increase

  15. Mathematical modeling of a three-phase trickle bed reactor

    J. D. Silva

    2012-09-01

    Full Text Available The transient behavior in a three-phase trickle bed reactor system (N2/H2O-KCl/activated carbon, 298 K, 1.01 bar was evaluated using a dynamic tracer method. The system operated with liquid and gas phases flowing downward with constant gas flow Q G = 2.50 x 10-6 m³ s-1 and the liquid phase flow (Q L varying in the range from 4.25x10-6 m³ s-1 to 0.50x10-6 m³ s-1. The evolution of the KCl concentration in the aqueous liquid phase was measured at the outlet of the reactor in response to the concentration increase at reactor inlet. A mathematical model was formulated and the solutions of the equations fitted to the measured tracer concentrations. The order of magnitude of the axial dispersion, liquid-solid mass transfer and partial wetting efficiency coefficients were estimated based on a numerical optimization procedure where the initial values of these coefficients, obtained by empirical correlations, were modified by comparing experimental and calculated tracer concentrations. The final optimized values of the coefficients were calculated by the minimization of a quadratic objective function. Three correlations were proposed to estimate the parameters values under the conditions employed. By comparing experimental and predicted tracer concentration step evolutions under different operating conditions the model was validated.

  16. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Renu Gupta

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.7127.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7127.31-37 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7127][Cited by: Scopus 1 | ] 

  17. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  18. Trickle bed reactor for the oxidation of phenol over active carbon catalyst

    Gabbiye, Nigus; Font Capafons, Josep; Fortuny Sanromá, Agustín; Bengoa, Christophe José; Fabregat Llangotera, Azael; Stüber, Frank Erich

    2009-01-01

    The catalytic wet air oxidation of phenol using activated carbon has been performed in a laboratory trickle bed reactor over a wide range of operating variables (PO2, T, FL and Cph,o) and hydrodynamic conditions. The influence of different start-up procedures (saturation of activated carbon) has also been tested. Further improvement of activity and stability has been checked for by using dynamic TBR operation concept or impregnated Fe/carbon catalyst. The results obtained confi...

  19. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.

  20. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    Groenestijn, van J.W.; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.H.; Stams, A.J.M.; Claassen, P.A.M.

    2009-01-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at

  1. Performance and population analysis of a non-sterile trickle bed reactor inoculated with caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    Groenestijn, J.W. van; Geelhoed, J.S.; Goorissen, H.P.; Meesters, K.P.M.; Stams, A.J.M.; Claassen, P.A.M.

    2009-01-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 molH 2mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at

  2. Radioisotope tracer study in a pilot-scale trickle bed reactor

    Pant, H.J.; Pendharkar, A.S. [Bhabha Atomic Research Centre, Isotope Applications Div, Bombay (India); Prasad, J.S.; Maiti, R.N.; Chawla, R.; Lahri, R.N.; Ram Babu, D. [Engineers India Limited, Gurgaon, Haryana (India); Berne, Ph. [CEA Grenoble, DTEN/SAT, 38 (France)

    2001-07-01

    Trickle bed reactor (TBR) is a reactor in which a liquid and a gas phase flow concurrently downwards through a fixed bed of catalyst particles while the reaction takes place. The trickle bed reactors find a number of applications in petroleum refining, chemical. petro-chemical and bio-chemical processes due to their suitability for hydro-processing operations.The knowledge of radial distribution, mean residence time (MRT). liquid holdup and degree of axial mixing is a basic requirement to evaluate the reactor performance of a TBR, its optimal size, the physical and chemical interactions and the pumping requirements. Measurement and analysis of residence time distribution (RTD) of liquid phase facilitate the determination of these parameters. This paper describes the measurement of RTD of liquid phase in a pilot-scale trickle bed reactor operating at high pressure. Kerosene and nitrogen were used as liquid and gas phase, respectively. Porous alumina catalyst particles were used as packing. Bromine-82 as para-di-bromo benzene was used as a tracer to measure RTD of organic liquid phase. The RTD of kerosene was measured as a function of liquid and gas flow rates and pressure. The axial dispersion model with exchange between active and dead zones was proposed and used to simulate the measured RTD data and model parameters i.e mean residence time ({tau}), Peclet Number (Pe), dynamic fraction of the liquid ({phi}) and the number of transfer units (N) were obtained. The results of the simulations indicated intermediate degree of axial mixing of liquid phase. The RTD predicted by the axial dispersion model with exchange between active and dead zones fits well to the experimentally measured RTD data and thus is a suitable model to describe the dynamics of the liquid phase in TBRs filled with porous catalyst particles. (authors)

  3. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Lei, Yangming [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Wenhua [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-10-15

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H{sub 2}O{sub 2} production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H{sub 2}O{sub 2} was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H{sub 2}O{sub 2} generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L{sup −1} of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h.

  4. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-01-01

    Highlights: • An electrochemical trickle bed reactor was composed of C-PTFE-coated graphite chips. • The trickle bed reactor had a high H 2 O 2 production rate in a dilute electrolyte. • An azo dye was effectively decomposed by the electro-Fenton process in the reactor. -- Abstract: To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H 2 O 2 was generated with a current of 0.3 A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte–cathode interface. In terms of H 2 O 2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L −1 of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3 h

  5. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation

    Lopes, Rodrigo J.G.; Almeida, Teresa S.A.; Quinta-Ferreira, Rosa M.

    2011-01-01

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters.

  6. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.

    Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua

    2013-10-15

    To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique

    Pant, H.J.; Sharma, V.K.

    2016-01-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. - Highlights: • Residence time distributions of liquid phase were measured in a trickle bed reactor. • Bromine-82 as ammonium bromide was used as a radiotracer. • Mean residence times, holdups and radial distribution of liquid phase were quantified. • Axial dispersion with exchange model was used to simulate the measured data. • The trickle bed reactor behaved as a plug flow reactor.

  10. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  11. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  12. Styrene biofiltration in a trickle-bed reactor

    V. Novak

    2008-04-01

    Full Text Available The biological treatment of styrene waste gas in a trickle-bed filter (TBF was investigated. The bioreactor consisted of a two-part glass cylinder (ID 150 mm filled with 25 mm polypropylene Pall rings serving as packing material. The bed height was 1m. Although the laboratory temperature was maintained at 22 ºC, the water temperature in the trickle-bed filter was slightly lower (about 18 ºC.The main aim of our study was to observe the effect of empty-bed residence time (EBRT on bioreactor performance at a constant pollutant concentration over an extended time period. The bioreactor was inoculated with a mixed microbial consortium isolated from a styrene-degrading biofilter that had been running for the previous two years. After three weeks of acclimation period, the bioreactor was loaded with styrene (100 mg.m-3. EBRT was in the range of 53 s to 13 s. A maximum elimination capacity (EC of 11.3 gC.m-3.h-1 was reached at an organic loading (OL rate of 18.6 gC.m-3.h-1.

  13. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. How to prevent runaways in trickle-bed reactors for Pygas hydrogenation

    Westerterp, K.R.; Kronberg, Alexandre E.

    2002-01-01

    In the past, several runaways have occurred in Trickle-Bed Reactors (TBR) used for the hydrogenation of pyrolysis gasoline as produced in ethylene cracking installations. This phenomenon has been studied in the framework of a special program in the Netherlands, which is administered by the National

  15. Modelling of an adiabatic trickle-bed reactor with phase change

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  16. CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor

    Tukač, V.

    2014-01-01

    The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.

  17. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  18. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  19. Start-up and performance characteristics of a trickle bed reactor degrading toluene

    Ondrej Misiaczek

    2007-09-01

    Full Text Available The objective of this work was to evaluate toluene degradation in a trickle bed reactor when the loading was carried out by changing the air flow rate. The biofiltration system was inoculated with a mixed microbial population, adapted to degradation of hydrophobic compounds. Polypropylene high flow rings were used as a packing material. The system was operated for a period of 50 days at empty bed residence times ranging from 106s to 13s and with a constant inlet concentration of toluene of 100 mg.m-3. The reactor showed high removal efficiency at higher contact times and increasing elimination capacity with higher air-flow rates. The highest EC value reached was 9.8 gC.m-3.h-1 at EBRT = 13s. During the experiment, the consumption of NaOH solution was also measured. No significant variation of this value was found and an average value of 3.84 mmol of NaOH per gram of consumed carbon was recorded.

  20. Liquid distribution in trickle-bed reactor; Distribution du liquide en reacteur a lit ruisselant

    Marcandelli, C.; Wild, G. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Lamine, A.S. [CNRS-Universite de Paris-Nord, Lab. d' Ingenierie des Materiaux et des Hautes Pressions, 93 - Villetaneuse (France); Bernard, J.R. [Elf Antar France, Centre de Recherche Elf de Solaize, 69 - Solaize (France)

    2000-07-01

    The aim of this study is to develop techniques to qualify the efficiency of liquid distribution in trickle-bed reactors, using cold mockups. The experimental setup consists mainly in a 0.3-m-ID packed-bed column with three different plates used to vary the quality of inlet liquid distribution. Liquid distribution has been qualified using several techniques: global pressure drop measurements, global RTD (Residence-Time Distribution) of the liquid, local heat transfer probes, capacitance tomography, collector at the bottom of the reactor with nine equal zones. The bed pressure drop and the overall external liquid saturation decrease when the maldistribution increases; quantitative information is however difficult to obtain this way. Global RTD of the liquid allows quantifying of the average liquid distribution in the bed. The local thermal sensors give an indication of local liquid velocity and indicate possible local maldistribution of the liquid (scale mm) even when global distribution is good. Concerning the results obtained with the collector, a maldistribution index is defined ranging from 0 (ideal distribution) to 1 (worst possible distribution), and the influence of the different operating parameters (gas and liquid velocities, particle shape) is discussed. (authors)

  1. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  2. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  4. Kinetic modeling of hydrocracking reaction in a trickle-bed reactor with Pt/Y-zeolite catalysts

    Lee, BalSang; Park, Myung-June; Kim, Young-A; Park, Eun Duck [Ajou University, Suwon (Korea, Republic of); Han, Jeongsik [Agency for Defense Development, Daejeon (Korea, Republic of); Jeong, Kwang-Eun; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology (KRICT), Daejeon (Korea, Republic of)

    2014-03-15

    A kinetic model is developed to predict the entire distribution of hydrocarbon products for the hydrocracking reaction with Pt/Y-zeolite catalysts in a trickle-bed reactor. Operating conditions, such as temperature, pressure, and wax and H{sub 2} flow rates were varied to evaluate their effects on conversion and distribution, and kinetic parameters were estimated using the experimental data that covers the window of operating conditions. The comparison between experimental data and simulated results corroborated the validity of the developed model, and the quantitative prediction of the reactor performance was clearly demonstrated. To make evident the usefulness of the model, an optimization method, genetic algorithm (GA), was applied, and the optimal condition for the maximum production of C{sub 10}-C{sub 17} was successfully calculated.

  5. Kinetic modeling of hydrocracking reaction in a trickle-bed reactor with Pt/Y-zeolite catalysts

    Lee, BalSang; Park, Myung-June; Kim, Young-A; Park, Eun Duck; Han, Jeongsik; Jeong, Kwang-Eun; Kim, Chul-Ung; Jeong, Soon-Yong

    2014-01-01

    A kinetic model is developed to predict the entire distribution of hydrocarbon products for the hydrocracking reaction with Pt/Y-zeolite catalysts in a trickle-bed reactor. Operating conditions, such as temperature, pressure, and wax and H 2 flow rates were varied to evaluate their effects on conversion and distribution, and kinetic parameters were estimated using the experimental data that covers the window of operating conditions. The comparison between experimental data and simulated results corroborated the validity of the developed model, and the quantitative prediction of the reactor performance was clearly demonstrated. To make evident the usefulness of the model, an optimization method, genetic algorithm (GA), was applied, and the optimal condition for the maximum production of C 10 -C 17 was successfully calculated

  6. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor

    Rachbauer, Lydia; Voitl, Gregor; Bochmann, Günther; Fuchs, Werner

    2016-01-01

    Highlights: • Data on long term operation of a system supplied with real biogas are presented. • Ex-situ biological methanation is feasible for biogas upgrading. • Gas quality obtained complies with strictest direct grid injection criteria. • Biomethane can act as flexible storage for renewable surplus electricity. - Abstract: The current study reports on biological biogas upgrading by means of hydrogen addition to obtain biomethane. A mesophilic (37 °C) 0.058 m"3 trickle-bed reactor with an immobilized hydrogenotrophic enrichment culture was operated for a period of 8 months using a substrate mix of molecular hydrogen (H_2) and biogas (36–42% CO_2). Complete CO_2 conversion (> 96%) was achieved up to a H_2 loading rate of 6.5 m_n"3 H_2/m"3_r_e_a_c_t_o_r _v_o_l_. × d, corresponding to 2.3 h gas retention time. The optimum H_2/CO_2 ratio was determined to be between 3.67 and 4.15. CH_4 concentrations above 96% were achieved with less than 0.1% residual H_2. This gas quality complies even with tightest standards for grid injection without the need for additional CO_2 removal. If less rigid standards must be fulfilled H_2 loading rates can be almost doubled (10.95 versus 6.5 m_n"3 H_2/m"3_r_e_a_c_t_o_r _v_o_l_. × d) making the process even more attractive. At this H_2 loading the achieved methane productivity was 2.52 m_n"3 CH_4/m"3_r_e_a_c_t_o_r _v_o_l_. × d. In terms of biogas this corresponds to an upgrading capacity of 6.9 m_n"3 biogas/m"3_r_e_a_c_t_o_r _v_o_l_. × d. The conducted experiments demonstrate that biological methanation in an external reactor is well feasible for biogas upgrading under the prerequisite that an adequate H_2 source is available.

  7. Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.

    Park, C H; Okos, M R; Wankat, P C

    1989-06-05

    Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated

  8. Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation.

    Park, C H; Okos, M R; Wankat, P C

    1990-06-20

    Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and

  9. Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed.

    Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C

    1997-08-20

    The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.

  10. Deuterium exchange between hydrogen and water in a trickle bed reactor

    Enright, J.T.; Chuang, T.T.

    1978-01-01

    The catalyzed exchange of deuterium between hydrogen and liquid water has been studied as the basis for a heavy water production process. Platinum catalyst which had been waterproofed with Teflon was tested in a 0.2 m diameter trickle bed reactor at pressures and temperatures up to 6 MPa and 440 K. Extensive experimental data were used to test a model of the system which was developed from fundamental principles. It was found that mass transfer plays a very important role in the overall exchange and the conventional theory of vapour/liquid mass transfer does not adequately describe the absorption process. Modelling of the data has resulted in the postulation of a second method of mass transfer whereby HDO transfers directly from the catalyst to the bulk liquid phase. (author)

  11. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.

    Weber, F J; Hartmans, S

    1996-04-05

    Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.

  13. X-ray digital industrial radiography (DIR) for local liquid velocity (V{sub LL}) measurement in trickle bed reactors (TBRs): Validation of the technique

    Mohd Salleh, Khairul Anuar, E-mail: kmfgf@mst.edu; Lee, Hyoung Koo [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Fulton Hall, 310 W. 14th St., Rolla, Missouri 65409 (United States); Rahman, Mohd Fitri Abdul [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 143 Schrenk Hall, 400 W. 11th St., Rolla, Missouri 65409 (United States); Al Dahhan, Muthanna H. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Fulton Hall, 310 W. 14th St., Rolla, Missouri 65409 (United States); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 143 Schrenk Hall, 400 W. 11th St., Rolla, Missouri 65409 (United States)

    2014-06-15

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V{sub LL}) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V{sub LL} within TBRs.

  14. X-ray digital industrial radiography (DIR) for local liquid velocity (VLL) measurement in trickle bed reactors (TBRs): Validation of the technique

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H.

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (VLL) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the VLL within TBRs.

  15. X-ray digital industrial radiography (DIR) for local liquid velocity (VLL) measurement in trickle bed reactors (TBRs): Validation of the technique

    Mohd Salleh, Khairul Anuar; Lee, Hyoung Koo; Rahman, Mohd Fitri Abdul; Al Dahhan, Muthanna H.

    2014-01-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V LL ) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V LL within TBRs

  16. X-ray digital industrial radiography (DIR) for local liquid velocity (V(LL)) measurement in trickle bed reactors (TBRs): validation of the technique.

    Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H

    2014-06-01

    Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.

  17. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer

    Van Groenestijn, J.W.; Meesters, K.P.M. [TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist (Netherlands); Geelhoed, J.S.; Goorissen, H.P.; Stams, A.J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein, Wageningen (Netherlands); Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group (Netherlands)

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol/H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73C. The volumetric productivity was 22 mmol/H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  18. Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer.

    van Groenestijn, J W; Geelhoed, J S; Goorissen, H P; Meesters, K P M; Stams, A J M; Claassen, P A M

    2009-04-01

    Non-axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73 degrees C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by-products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono- and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out-competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non-sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics.

  19. Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei

    Devarapalli, Mamatha

    The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at

  20. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei.

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2016-06-01

    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor.

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Prade, Rolf A; Müller, Michael; Wilkins, Mark R

    2018-05-01

    An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Measurement of liquid holdup and axial dispersion in trickle bed reactors using radiotracer technique

    Pant, H.J.; Saroha, A.K.; Nikam, K.D.P.

    2000-01-01

    The holdup and axial dispersion of aqueous phase has been measured in trickle bed reactors as a function of liquid and gas flow rates using radioisotope tracer technique. Experiments were carried out in the glass column of inner diameter of 15.2x10 -2 m column for air-water system using three different types of packings i.e. non-porous glass beads, porous catalyst of tablet and extrudate shape. The range of liquid and gas flow rates used were 8.3x10 -5 - 3.3x1- -4 m 3 /s and 0 - 6.67x10 -4 m 3 /s, respectively. Residence time distributions of liquid phase and gas phase were measured and mean residence times were determined. The values of liquid holdup were calculated from the measured mean residence times. It was observed that the liquid holdup increases with increase in liquid flow rates and was independent of increase in gas flow rates used in the study. Two-parameter axial dispersion model was used to simulate measured residence time distribution data and values of mean residence time and Peclet number were obtained. It was observed that the values of Peclet number increases with increase in liquid flow rate for glass beads and tablets and remains almost constant for extrudates. The values of mean residence time obtained from model simulation were found to be in good agreement with the values measured experimentally. (author)

  4. Improving fuel quality by whole crude oil hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor

    Jarullah, A.T.; Mujtaba, I.M.; Wood, A.S.

    2012-01-01

    Highlights: ► Asphaltene contaminant must be removed to a large extent from the fuel to meet the regulatory demand. ► Kinetics for hydrodeasphaltenization are estimated via experimentation and modeling. ► Using the kinetic parameters, a full process model for the trickle bed reactor (TBR) is developed. ► The model is used for simulating the behavior of the TBR to get further insight of the process. ► The influences of operating conditions in the hydrodeasphaltenization process are reported. -- Abstract: Fossil fuel is still a predominant source of the global energy requirement. Hydrotreating of whole crude oil has the ability to increase the productivity of middle distillate fractions and improve the fuel quality by simultaneously reducing contaminants such as sulfur, nitrogen, vanadium, nickel and asphaltene to the levels required by the regulatory bodies. Hydrotreating is usually carried out in a trickle bed reactor (TBR) where hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM) and hydrodeasphaltenization (HDAs) reactions take place simultaneously. To develop a detailed and a validated TBR process model which can be used for design and optimization of the hydrotreating process, it is essential to develop kinetic models for each of these reactions. Most recently, the authors have developed kinetic models for all of these chemical reactions except that of HDAs. In this work, a kinetic model (in terms of kinetic parameters) for the HDAs reaction in the TBR is developed. A three phase TBR process model incorporating the HDAs reactions with unknown kinetic parameters is developed. Also, a series of experiments has been conducted in an isothermal TBR under different operating conditions affecting the removal of asphaltene. The unknown kinetic parameters are then obtained by applying a parameter estimation technique based on minimization of the sum of square errors (SSEs) between the experimental and predicted concentrations of

  5. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Paek, Seungwoo; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk; Song, Kyu-Min; Sohn, Soon Hwan

    2007-01-01

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K y a (1 s -1 ), under various operating conditions. K y a increases with the hydrogen flow rates in the range of 0.4-1.6 m s -1 at STP. The height of the catalyst column was determined from these K y a values according to the reaction temperatures and hydrogen flow rates

  6. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: swpaek@kaeri.re.kr; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Sohn, Soon Hwan [Korea Electric Power Research Institute, 103-16 Munji-dong, Yuseong-gu, Daejeon 305-380 (Korea, Republic of)

    2007-10-15

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K{sub y}a (1 s{sup -1}), under various operating conditions. K{sub y}a increases with the hydrogen flow rates in the range of 0.4-1.6 m s{sup -1} at STP. The height of the catalyst column was determined from these K{sub y}a values according to the reaction temperatures and hydrogen flow rates.

  7. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  8. Experimental analysis and evaluation of the mass transfer process in a trickle-bed reactor

    Silva, J.D.; Lima, F.R.A.; Abreu, C.A.M.; Knoechelmann, A.

    2003-01-01

    A transient experimental analysis of a three-phase descendent-cocurrent trickle-bed H2O/CH4-Ar/g -Al2O3 system was made using the stimulus-response technique, with the gas phase as a reference. Methane was used as a tracer and injected into the argon feed and the concentration vs time profiles were obtained at the entrance and exit of the bed, which were maintained at 298K and 1.013 10(5) Pa. A mathematical model for the tracer was developed to estimate the axial dispersion overall gas-liquid...

  9. Liquid dispersion in trickle-bed reactors with gas-liquid cocurrent downflow

    Chu, C.F.; Ng, K.M.

    1986-01-01

    The flow pattern can deviate from ideal plug flow in both trickling and pulsing flows. The liquid dispersion in those flow regimes are investigated separately, as the mechanisms causing the deviation of flow pattern from plug flow are different. In trickling flow, the dispersion of the liquid phase occurs in the flow path which is determined with computer-generated packed column. Dispersion in pulsing flow is studied with a combination of the method of characteristics and analysis of liquid dispersion in the liquid slug and gas pulse. The axial dispersion coefficients are then determined based on Monte Carlo simulation. Finally, liquid dispersion in trickle beds containing porous packings is also discussed

  10. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  11. Experimental analysis and evaluation of the mass transfer process in a trickle-bed reactor

    J.D. Silva

    2003-10-01

    Full Text Available A transient experimental analysis of a three-phase descendent-cocurrent trickle-bed H2O/CH4-Ar/g -Al2O3 system was made using the stimulus-response technique, with the gas phase as a reference. Methane was used as a tracer and injected into the argon feed and the concentration vs time profiles were obtained at the entrance and exit of the bed, which were maintained at 298K and 1.013 10(5 Pa. A mathematical model for the tracer was developed to estimate the axial dispersion overall gas-liquid mass transfer and liquid-solid mass transfer coefficients. Experimental and theoretical results were compared and shown to be in good agreement. The model was validated by two additional experiments, and the values of the coefficients obtained above were confirmed.

  12. Oxidation of SO{sub 2} in a trickle bed reactor packed with activated carbon at low liquid flow rates

    Suyadal, Y.; Oguz, H. [Ankara Univ. (Turkey). Dept. of Chemical Engineering

    2000-07-01

    In this study, the oxidation of SO{sub 2} on activated carbon (AcC) by using distilled water and air was carried out in a laboratory scale trickle bed reactor (TBR). Distilled water and air containing 1.7% (v/v) SO{sub 2} were fed co-currently downward through a fixed bed of AcC particles in a range of 1-7 cm{sup 3}/s and 10-27 cm{sup 3}/s, respectively. H{sub 2}SO{sub 3}/H{sub 2}SO{sub 4} solutions were the products obtained in the liqiuid phase. Steady-state experiments were performed in a column of 0.15 m packing height and 0.047 m column diameter at 20 C and atmospheric pressure. (orig.)

  13. Hydrogen isotopic exchange reaction in a trickle-bed

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk

    2005-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water

  14. Hydrogen isotopic exchange reaction in a trickle-bed

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water.

  15. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Investigation of hydrodynamic behavior of a pilot-scale trickle bed reactor packed with hydrophobic catalyst using radiotracer technique

    Kumar, Rajesh; Mohan, Sadhana; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2010-01-01

    Exchange of isotopes of hydrogen between aqueous phase and hydrogen gas is one of the most efficient methods for separation of hydrogen isotopes and is commonly used for production of heavy water or removal of tritium from tritiated water effluents. The isotope exchange reaction can be effectively executed in a counter-current trickle bed reactor (TBR) packed with a novel metal (Pt, Pd, Ni) based hydrophobic catalyst as the conventional novel metal based hydrophilic catalysts become ineffective after they come in contact with liquid effluents. The overall exchange reaction in the TBR mainly consists of a gas-liquid mass transfer process that transfers reactants from liquid to gaseous phase followed by an isotopic exchange reaction between the reactants in gaseous phase in presence of a solid hydrophobic catalyst. However, due to water repellent nature of the catalyst, poor liquid distribution in the reactor is normally observed that deteriorates the gas-liquid mass transfer. Therefore, it was thought that if a mixture of hydrophobic catalyst and a suitable hydrophilic mass transfer packing is used to fill the TBR column then, it can improve the distribution or mixing of the liquid and gas phase and thus improve the gas-liquid mass transfer and overall performance of the reactor and needs to be confirmed

  17. Hydrodesulfurization and hydrodemetalation reactions of residue oils over CoMo/aluminum borate catalysts in a trickle bed reactor

    Tsai, M.C.; Chen, Y.W.; Kang, B.C.; Wu, J.C.; Leu, L.J.

    1991-01-01

    In this paper, a series of aluminum borates (AB) with various Al/B mole ratios is prepared by the precipitation method. The results indicated that the exhibited properties are dependent on the Al/B ratio of the material. The monodisperse pore size distributions of these samples simply that it is a true microcomposite structure rather than a mixture of the individual materials. Hydrodesulfurization (HDS) and hydrodemetalation (HDM) of heavy Kuwait atmospheric residuum over CoMo/AB catalysts were carried out in a bench-scale trickle bed reactor at 663 K and 7582 kPa. The weight hourly space velocity of residue oils was 1.5, and the hydrogen flow rate was kept constant at 300 mL/min (STP). The results showed that these catalysts are much more active than the conventional CoMo/Al 2 O 3 catalyst in HDS and HDM reactions. The results of desulfurization activity are mainly interpreted on the basis of difference in dispersion and the interaction of Mo species with the support. The demetalation activity was strongly influenced by the intraparticle diffusion of metal porphyrins

  18. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures.

    Vanek, Tomas; Halecky, Martin; Paca, Jan; Zapotocky, Lubos; Gelbicova, Tereza; Vadkertiova, Renata; Kozliak, Evguenii; Jones, Kim

    2015-01-01

    Performance of a two-stage biofiltration system was investigated for removal of styrene-acetone mixtures. High steady-state acetone loadings (above C(in)(Ac) = 0.5 g.m(-3) corresponding to the loadings > 34.5 g.m(-3).h(-1)) resulted in a significant inhibition of the system's performance in both acetone and styrene removal. This inhibition was shown to result from the acetone accumulation within the upstream trickle-bed bioreactor (TBR) circulating mineral medium, which was observed by direct chromatographic measurements. Placing a biofilter (BF) downstream to this TBR overcomes the inhibition as long as the biofilter has a sufficient bed height. A different kind of inhibition of styrene biodegradation was observed within the biofilter at very high acetone loadings (above C(in)(Ac) = 1.1 g.m(-3) or 76 g.m(-3).h(-1) loading). In addition to steady-state measurements, dynamic tests confirmed that the reactor overloading can be readily overcome, once the accumulated acetone in the TBR fluids is degraded. No sizable metabolite accumulation in the medium was observed for either TBR or BF. Analyses of the biodegradation activities of microbial isolates from the biofilm corroborated the trends observed for the two-stage biofiltration system, particularly the occurrence of an inhibition threshold by excess acetone.

  19. Trickle bed reactor model to simulate the performance of commercial diesel hydrotreating unit

    C. Murali; R.K. Voolapalli; N. Ravichander; D.T. Gokak; N.V. Choudary [Bharat Petroleum Corporation Ltd., Udyog Kendra (India). Corporate R& amp; D Centre

    2007-05-15

    A two phase mathematical model was developed to simulate the performance of bench scale and commercial hydrotreating reactors. Major hydrotreating reactions, namely, hydrodesulphurization, hydrodearomatization and olefins saturation were modeled. Experiments were carried out in a fixed bed reactor to study the effect of different process variables and these results were used for estimating kinetic parameters. Significant amount of feed vaporization (20-50%) was estimated under normal operating conditions of DHDS suggesting the importance of considering feed vaporization in DHDS modeling. The model was validated with plant operating data, under close to ultra low sulphur levels by correctly accounting for feed vaporization in heat balance relations and appropriate use of hydrodynamic correlations. The model could predict the product quality, reactor bed temperature profiles and chemical hydrogen consumption in commercial plant adequately. 14 refs., 7 figs., 6 tabs.

  20. Investigation of hydrodynamic behaviour of a pilot-scale trickle bed reactor packed with hydrophobic and hydrophilic packings using radiotracer technique

    Rajesh Kumar; Sadhana Mohan; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2012-01-01

    A radiotracer study was carried out in a trickle bed reactor (TBR) independently filled with two different types of packing i.e., hydrophobic and hydrophilic. The study was aimed at to estimate liquid holdup and investigate the dispersion characteristics of liquid phase with both types of packing at different operating conditions. Water and H2 gas were used as aqueous and gas phase, respectively. The liquid and gas flow rates used ranged from 0.83 x 10 -7 -16.67 x 10 -7 m 3 /s and 0-3.33 x 10 -4 m 3 (std)/s, respectively. Residence time distribution (RTD) of liquid phase was measured using 82 Br as radiotracer and about 10 MBq activity was used in each run. Mean residence time (MRT) and holdup of liquid phase were estimated from the measured RTD data. An axial dispersion with exchange model was used to simulate the measured RTD curves and model parameters (Peclet number and MRT) were obtained. At higher liquid flow rates, the TBR behaves as a plug flow reactor, whereas at lower liquid flow rates, the flow was found to be highly dispersed. The results of investigation indicated that the dispersion of liquid phase is higher in case of hydrophobic packing, whereas holdup is higher in case of hydrophilic packing. (author)

  1. Local liquid velocity measurement in trickle bed reactors (TBRs) using the x-ray digital industrial radiography (DIR) technique

    Anuar Mohd Salleh, Khairul; Lee, Hyoung Koo; Al-Dahhan, Muthanna H.

    2014-01-01

    This work describes the development of a new technique to measure local liquid velocity (VLL) for multiphase flows in trickle bed reactors (TBRs) (gas-liquid-solid system). In the studied TBR, the liquid phase is represented by water, gas by air and 3 mm expanded polystyrene beads as the solid packing. Three different superficial liquid velocities (VSL) and a constant superficial gas velocity (VSG) were used in the packed bed with an internal diameter of 4.25 cm. While the liquid is moving into the packed bed, tracking particles of 106-125 μm diameter (16.45% difference) are injected. The movement of the tracking particles is monitored and digitally recorded by a complementary metal-oxide-semiconductor detector. In this experiment, x-rays were used as the radiation source. Four replications were made with fresh packing. Comparable observations can be found from other published techniques (i.e. magnetic resonance imaging). Results from this study indicate that, at VSL = 0.13 cm s-1, the measured VLL can reach up to 51 times that of its VSL, while for VSL = 0.27 cm s-1, the measured VLL reached up to 35 times higher than the VSL and for VSL = 0.39 cm s-1, the VLL reached up to 39.8 times higher than its VSL. Through statistical analysis, the implementation of such a method is found to be reproducible throughout the experiments. The mean per cent difference in the measured VLL was 10% and 5% for lower implemented VSL of 0.13 and 0.27 cm s-1, respectively. At higher VSL (0.39 cm s-1), the particle tracer was greatly distributed and carried away by the high liquid flow rate. The variance or the range of the measured VLL does not vary for all replications in every VSL, which confirms the reproducibility of the experimental measurements, regardless of the VSL.

  2. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures

    Wammes, W.J.A.; Middelkamp, J.; Huisman, W.J.; Huisman, W.J.; de Baas, C.M.; de Baas, C.M.; Westerterp, K.R.

    1991-01-01

    Data on design and operation of trickle beds at elevated pressures are scarce. In this study the influence of the gas density on the liquid holdup, the pressure drop, and the transition between trickle and pulse flow has been investigated in a tricklebed reactor operating up to 7.5 MPa and with

  3. Pulsing flow in trickle bed columns

    Blok, Jan Rudolf

    1981-01-01

    In the operation of a packed column with cocurrent downflow of gas and liquid (trickle bed) several flowpatterns can be observed depending on the degree of interaction between gas and liquid. At low liquid and gas flow rates - low interaction - gascontinuous flow occurs. In this flowregime, the

  4. Local liquid velocity measurement in trickle bed reactors (TBRs) using the x-ray digital industrial radiography (DIR) technique

    Salleh, Khairul Anuar Mohd; Lee, Hyoung Koo; Al-Dahhan, Muthanna H

    2014-01-01

    This work describes the development of a new technique to measure local liquid velocity (V LL ) for multiphase flows in trickle bed reactors (TBRs) (gas–liquid–solid system). In the studied TBR, the liquid phase is represented by water, gas by air and 3 mm expanded polystyrene beads as the solid packing. Three different superficial liquid velocities (V SL ) and a constant superficial gas velocity (V SG ) were used in the packed bed with an internal diameter of 4.25 cm. While the liquid is moving into the packed bed, tracking particles of 106–125 μm diameter (16.45% difference) are injected. The movement of the tracking particles is monitored and digitally recorded by a complementary metal–oxide–semiconductor detector. In this experiment, x-rays were used as the radiation source. Four replications were made with fresh packing. Comparable observations can be found from other published techniques (i.e. magnetic resonance imaging). Results from this study indicate that, at V SL = 0.13 cm s −1 , the measured V LL  can reach up to 51 times that of its V SL , while for V SL = 0.27 cm s −1 , the measured V LL  reached up to 35 times higher than the V SL and for V SL = 0.39 cm s −1 , the V LL  reached up to 39.8 times higher than its V SL . Through statistical analysis, the implementation of such a method is found to be reproducible throughout the experiments. The mean per cent difference in the measured V LL was 10% and 5% for lower implemented V SL   of 0.13 and 0.27 cm s −1 , respectively. At higher V SL  (0.39 cm s −1 ), the particle tracer was greatly distributed and carried away by the high liquid flow rate. The variance or the range of the measured V LL  does not vary for all replications in every V SL , which confirms the reproducibility of the experimental measurements, regardless of the V SL . (paper)

  5. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  6. Parametric sensitivity of a CFD model concerning the hydrodynamics of trickle-bed reactor (TBR

    Janecki Daniel

    2016-03-01

    Full Text Available The aim of the present study was to investigate the sensitivity of a multiphase Eulerian CFD model with respect to relations defining drag forces between phases. The mean relative error as well as standard deviation of experimental and computed values of pressure gradient and average liquid holdup were used as validation criteria of the model. Comparative basis for simulations was our own data-base obtained in experiments carried out in a TBR operating at a co-current downward gas and liquid flow. Estimated errors showed that the classical equations of Attou et al. (1999 defining the friction factors Fjk approximate experimental values of hydrodynamic parameters with the best agreement. Taking this into account one can recommend to apply chosen equations in the momentum balances of TBR.

  7. The influence of the reactor pressure on the hydrodynamics in a cocurrent gas-liquid trickle-bed reactor

    Wammes, W.J.A.; Westerterp, K.R.

    1990-01-01

    The influence of the reactor pressure on the liquid hold-up in the trickle-flow regime and on the transition between trickle-flow and pulse-flow has been investigated in a trickle-flow column operating up to 6.0 MPa with water, and nitrogen or helium as the gas phase. The effect of the gas velocity

  8. Gross Mal distribution Identification and Effect of Inlet Distributor on the Phase Holdup in a Trickle Bed Reactor Using Gamma-Ray Densitometry (GRD)

    Mohd Fitri Abdul Rahman; Alexander, V.; Al-Dahhan, M.

    2016-01-01

    Local liquid and gas mal distribution and their holdups in a packed column are difficult to identify due to multiphase properties and other design factors. Good liquid and gas flow distribution important to determine to get high performance of Trickle Bed Reactor (TBR). Gross mal distribution indicates some faulty or bad flow distribution of liquid and gas. In this work, gross mal distribution of phases has been identified using Gamma Ray Densitometry (GRD) technique with three types of inlet distributors (single inlet towards the wall, single inlet at the center, and proper shower) by measuring line average diameter profile of phases (Liquid, Gas, and Solids) holdups. Gamma-ray densitometry is a non-invasive technique which can be implemented at the laboratory, pilot plant, and industrial scales reactors. Experiments were performed on 0.14 m diameter reactor made of Plexiglas filled with 0.003 m glass bead which acts as the solid. The superficial velocities for both gas and liquid were in the range 0.03 m/s to 0.27 m/s and 0.004 m/s to 0.014 m/s respectively. Proper shower distributor showed early liquid spreading than compared with other distributors. The effect of superficial gas velocity on liquid spread was seen to be non-significant, and liquid distribution is found to be almost uniform at the center region of the catalyst bed. (author)

  9. SELECTIVE HYDROGENOLYSIS OF GLYCEROL TO PROPYLENE GLYCOL IN A CONTINUOUS FLOW TRICKLE BED REACTOR USING COPPER CHROMITE AND Cu/Al2O3 CATALYSTS

    Jorge Sepúlveda

    Full Text Available The glycerol hydrogenolysis reaction was performed in a continuous flow trickle bed reactor using a water glycerol feed and both copper chromite and Cu/Al2O3 catalysts. The commercial copper chromite had a higher activity than the laboratory prepared Cu/Al2O3 and was used for most of the tests. Propylene glycol was the main product with both catalysts, acetol being the main by-product. It was found that temperature is the main variable influencing the conversion of glycerol. When the state of the glycerol-water reactant mixture was completely liquid, at temperatures lower than 190 ºC, conversion was low and deactivation was observed. At reaction temperatures of 210-230 ºC the conversion of glycerol was complete and the selectivity to propylene glycol was stable at about 60-80% all throughout the reaction time span of 10 h, regardless of the hydrogen pressure level (1 to 20 atm. These optimal values could not be improved significantly by using other different reaction conditions or increasing the catalyst acidity. At higher temperatures (245-250 ºC the conversion was also 100%. Under reaction conditions at which copper chromite suffered deactivation, light by-products and surface deposits were formed. The deposits could be completely burned at 250 ºC and the catalyst activity fully recovered.

  10. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  11. Evaluation of trickle-bed air biofilter performance under periodic stressed operating conditions as a function of styrene loading.

    Kim, Daekeun; Cai, Zhangli; Sorial, George A

    2005-02-01

    Trickle-bed air biofilters (TBABs) are suitable for treating volatile organic compounds (VOCs) at a significantly high practical loading because of their controlled environmental conditions. The application of TBAB for treating styrene-contaminated air under periodic backwashing and cyclical nonuse periods at a styrene loading of 0.64-3.17 kg chemical oxygen demand (COD)/m3 x day was the main focus of this study. Consistent long-term efficient performance of TBAB strongly depended on biomass control. A periodic in situ upflow with nutrient solution under media fluidization, that is, backwashing, was approached in this study. Two different nonuse periods were employed to simulate a shutdown for equipment repair or during weekends and holidays. The first is a starvation period without styrene loading, and the second is a stagnant period, which reflects no flow passing through the biofilter. For styrene loadings up to 1.9 kg COD/m3 x day, removal efficiencies consistently above 99% were achieved by conducting a coordinated biomass control strategy, that is, backwashing for 1 hr once per week. Under cyclical nonuse periods for styrene loadings up to 1.27 kg COD/m3 x day, stable long-term performance of the biofilter was maintained at more than 99% removal without employing backwashing. No substantial impact of nonuse periods on the biofilter performance was revealed. However, a coordinated biomass control by backwashing subsequently was unavoidable for attaining consistently high removal efficiency at a styrene loading of 3.17 kg COD/m3 x day. As styrene loading was increased, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing or the nonuse periods was delayed. After the non-use periods, the response of the biofilter was a strong function of the biomass in the bed. No significant difference between the effects of the two different nonuse periods on TBAB performance was observed during the study period.

  12. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor.

    Sedighi, Mahsa; Zamir, Seyed Morteza; Vahabzadeh, Farzaneh

    2016-01-01

    The degradability of ethyl mercaptan (EM), by phenol-utilizing cells of Ralstonia eutropha, in both suspended and immobilized culture systems, was investigated in the present study. Free-cells experiments conducted at EM concentrations ranging from 1.25 to 14.42 mg/l, showed almost complete removal of EM at concentrations below 10.08 mg/l, which is much higher than the maximum biodegradable EM concentration obtained in experiments that did not utilize phenol as the primary substrate, i.e. 2.5 mg/l. The first-order kinetic rate constant (kSKS) for EM biodegradation by the phenol-utilizing cells (1.7 l/g biomass/h) was about 10 times higher than by cells without phenol utilization. Immobilized-cells experiments performed in a gas recycling trickle-bed reactor packed with kissiris particles at EM concentrations ranging from 1.6 to 36.9 mg/l, showed complete removal at all tested concentrations in a much shorter time, compared with free cells. The first-order kinetic rate constant (rmaxKs) for EM utilization was 0.04 l/h for the immobilized system compared to 0.06 for the suspended-growth culture, due to external mass transfer diffusion. Diffusion limitation was decreased by increasing the recycling-liquid flow rate from 25 to 65 ml/min. The removed EM was almost completely mineralized according to TOC and sulfate measurements. Shut down and starvation experiments revealed that the reactor could effectively handle the starving conditions and was reliable for full-scale application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transition between trickle flow and pulse flow in a cocurrent gas-liquid trickle-bed reactor at elevated pressures

    Wammes, W.J.A.; Mechielsen, S.J.; Westerterp, K.R.

    1992-01-01

    The effect of reactor pressure in the range of 0.2–2.0 MPa on the transition between the trickle-flow and the pulse-flow regime has been investigated for the non-foaming water—nitrogen and aqueous 40% ethyleneglycol—nitrogen systems. Most models and flow charts which are all based on atmospheric

  14. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures

    Wammes, W.J.A.; Middelkamp, J.; Huisman, W.J.; Huisman, W.J.; de Baas, C.M.; de Baas, C.M.; Westerterp, K.R.

    1991-01-01

    Data on design and operation of trickle beds at elevated pressures are scarce. In this study the influence of the gas density on the liquid holdup, the pressure drop, and the transition between trickle and pulse flow has been investigated in a tricklebed reactor operating up to 7.5 MPa and with nitrogen or helium as the gas phase. Gas-liquid interfacial areas have been determined up to 5.0 MPa by means of CO2 absorption from CO2/N2 gas mixtures into amine solutions. A comparison of the result...

  15. Design and performance of a trickle-bed bioreactor with immobilized hybridoma cells.

    Phillips, H A; Scharer, J M; Bols, N C; Moo-Young, M

    1992-01-01

    A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8 x 10(6) cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l.d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l.d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.

  16. Revue des aspects hydrodynamiques des réacteurs catalytiques gaz-liquide-solide à lit fixe arrosé Hydrodynamics of Gas-Liquid-Solid Trickle-Bed Reactors: a Critical Review

    Attou A.

    2006-12-01

    élation empirique de la perte de pression et du taux de rétention de liquide ne correspond à une erreur relative moyenne de prédiction acceptable. Seul le modèle phénoménologique étendu d'Al-Dahhan et al. (1998 semble constituer une technique satisfaisante pour la prédiction des deux paramètres hydrodynamiques en régime ruisselant. Néanmoins, son principal inconvénient réside dans la nécessité de déterminer préalablement les deux coefficients du modèle au moyen d'expériences sur des écoulements monophasiques gazeux. De telles expériences restent difficiles à réaliser dans la pratique. Il est cependant regrettable de constater qu'aucune des ces méthodes, qui se distinguent par leurs résultats, n'est basée sur une approche physique des phénomènes hydrodynamiques permettant d'améliorer la connaissance de ces écoulements et de prédire leur comportement en dehors des domaines de conditions expérimentales testées. De ce travail, il ressort la nécessité d'appliquer les outils classiques de la mécanique des fluides diphasique à la description de ces écoulements, en apportant une attention particulière aux phénomènes d'interactions hydrodynamiques auxquelles sont soumises les trois phases du système (gaz, liquide et solide. While it is recognised that the hydrodynamic aspects have a considerable importance in the design and the operation of gas-liquid-solid trickle-bed reactors, the accuracy of the proposed calculation methods remains poor. Most studies in this field have been performed in atmospheric conditions in contrast of industrial reactors operating at quite high pressures. Only recently, some experimental results have been obtained at elevated pressures and correlations have been proposed in these conditions in order to predict the tricking-pulsing transition, the pressure drop and the liquid holdup. The scope of this article is twice. Firstly, the knowledge on the several hydrodynamic aspects of three-phase trickle-bed reactors, including

  17. STUDY ON USING A TRICKLE-BED BIOREACTOR FOR REDUCING VOLATILE ORGANIC COMPOUNDS IN WASTEWATER TREATMENT PLANT OPERATED BY PKN ORLEN S.A.

    Arkadiusz Kamiński

    2017-08-01

    Full Text Available The results of studies conducted by Ekoinwentyka sp. z o.o. concerning the possibility of using a trickle-bed bioreactor for reducing of volatile organic compounds (VOCs emitted by PKN ORLEN S.A. wastewater treatment plant were presented and discussed. During the one-month trial, inlet and outlet concentrations of VOCs, H2S and NH3 were analysed and the efficiency of bio-purification process was determined on their basis. The obtained results confirmed the effectiveness of the applied technology under the given conditions, simultaneously demonstrating the validity of conducting further technological analysis to derive the design assumptions of the bioreactor on the industrial scale.

  18. Periodic Operation of Three-Phase Catalytic Reactors

    Silveston, P.T.; Hanika, Jiří

    2005-01-01

    Roč. 82, č. 6 (2005), s. 1105-1142 ISSN 0008-4034 Institutional research plan: CEZ:AV0Z4072921 Keywords : three-phase reactors * trickle bed * periodic operation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.574, year: 2005

  19. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB

    Sarzyński Rafał

    2017-01-01

    Full Text Available The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ∼200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution through packing (polypropylene Ralu rings covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2. The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 – 84 gm-3 h -1, styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  20. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  1. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  2. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  3. Selective adhesion of wastewater bacteria to Pleurotus ostreatus mycelium in a trickle-bed bioreactor

    Čeněk Novotný

    2016-07-01

    Full Text Available The work is focused on spontaneous colonization of fungal mycelium by invading microorganisms in a trickle-bed fungal bioreactor operating under semi-sterile conditions. Pleurotus ostreatus was grown under the flow of synthetic wastewater containing activated sludge bacteria and the microbial consortium developed in the reactor was characterized. Genotype and phenotype profile of the reactor-invading, bacterial consortium was clearly distinctive from that of the original activated sludge. The bacterial consortium from the reactor contained a higher portion of bacteria capable of cellobiose utilization and a small amount of bacteria with the ability to utilize benzoic acids. The invading bacteria had no effect on the dye decolorization performance of the fungal reactor. Five bacterial strains colonizing P. ostreatus reactor cultures were isolated and identified as species of the genera Pseudomonas and Bacillus. Except for Bacillus cereus all strains displayed a potential to inhibit fungal growth on solid media (14 to 51 % inhibition which was comparable or higher than that of the reference bacterial strains. The pH- and media composition-dependence of the growth inhibition was demonstrated.

  4. Optimization and scale up of trickling bed bioreactors for degradation of volatile organic substances

    Schindler, I.

    1996-01-01

    For optimization and scale up of trickling bed bioreactors used in waste gas cleaning following investigations were made: the degradation of toluene was measured in reactors with various volumes and diameter to high ratios. The degradation of toluene was investigated in bioreactors with different carrier materials. It turned out, that the increase of the elimination capacity with the height of the reactor depends on the carrier material. At low gas velocities PU-foam allows higher elimination capacities than pallrings, VSP and DINPAC. On the other hand for PU-foam there is a permanent danger of clogging. The other materials allowed a stable operation for several months. Mass transfer of toluene was studied by absorption experiments in a 100 litre plant without microorganisms. The experiments lead to a henry coefficient of 0,23 (kg/m3)g/(kg/m3)l. Mass transfer coefficients were calculated between 3,6 and 5,2 depending an the space velocity of the gas and the trickling density of the water phase. The degradation of ethyl acetate, toluene and heptane was investigated considering the different water solubility of these substances. Further on degradation of toluene and heptane in several mixtures was investigated. (author)

  5. Gas treatment in trickle-bed biofilters: biomass, how much is enough?

    Alonso, C; Suidan, M T; Sorial, G A; Smith, F L; Biswas, P; Smith, P J; Brenner, R C

    1997-06-20

    The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.

  6. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.

    Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R

    2001-01-01

    Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.

  7. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment

  8. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  9. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  10. Usability of ECT for quantitative and qualitative characterization of trickle-bed flow dynamics experiencing filtration conditions

    Tibirna, C.; Fortin, A. [Laval Univ., Quebec City, PQ (Canada). GIREF; Edouard, D.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2006-07-01

    The feasibility of using electrical capacitance tomography (ECT) as an imaging method for trickle-bed reaction processes was examined in this study. In particular, the advantages and disadvantages of using ECT to characterize the flow dynamics in a four-phase trickle bed reactor were investigated. This work was part of a larger study to extend the service life of catalyst beds used during the hydrotreatment of some oil fractions, such as Athabasca bitumen. A better understanding of the flow dynamics and clogging physics in trickle-bed reactors is needed in order to prevent clogging in the catalyst bed. This study focused on several aspects of the ECT as a non-intrusive imaging method for such processes. This paper described the experimental setup in detail. The ECT equipment allowed for up to 100 tomograms per second to be recorded. The clogging experiments lasted about 30 hours from a completely clean catalyst bed to a stable, non-filtering clogging state. A series of algorithms for ECT image reconstruction were presented. Truncated and filtered single value decomposition (SVD) and Landweber methods were found to be the most appropriate. ECT was shown to be faster and less expensive than nuclear ionizing, non-ionizing and other tomography methods. However, the main advantage of ECT was its non-intrusive attributes. It was also suggested that the complex technologies involved in ECT still require further refinement and better calibration methods. 9 refs., 5 figs.

  11. ANALYSIS OF TRICKLE BED AND PACKED BUBBLE COLUMN BIOREACTORS FOR COMBINED CARBON OXIDATION AND NITRIFICATION

    Iliuta I.

    2002-01-01

    Full Text Available Biological removal of nitrogen and carbon by combined nitrification-oxidation in gas-liquid trickle-bed reactors (TBRs and packed bubble columns (PBCs was analyzed theoretically using a transient two-dimensional model. The model describes TBR and PBC performances at steady state as well as their transient response to a pulse or step increase in inlet methanol and NH4+-nitrogen concentrations. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the piston-dispersion-exchange model was used to interpret the residence time distribution curves obtained. Gas-liquid mass transfer parameters were determined by a stationary method based on the least-squares fit of the calculated concentration profiles in gas phase to the experimental values. Analysis of steady-state performances showed that under like operating conditions, the TBR outperforms the PBC in terms of conversions. A pulse change in the inlet methanol or NH4+-nitrogen concentration causes a negligible transient change in the outlet methanol concentration and a negligible or high transient change in the outlet NH4+-nitrogen concentration. A step change in the inlet methanol concentration causes the negligible transient change in the methanol outlet concentration and a relatively important transient change in the NH4+-nitrogen outlet concentration. A step increase in the NH4+-nitrogen inlet concentration induces a drastic transient change in the NH4+-nitrogen outlet concentration but a negligible transient change in the methanol outlet concentration.

  12. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  13. Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor.

    Skybová, T; Přibyl, M; Pocedič, J; Hasal, P

    2012-02-20

    This work focuses on mathematical modeling of removal of organic dyes from textile industry waste waters by a white-rot fungus Irpex lacteus in a trickle-bed bioreactor. We developed a mathematical model of biomass and decolorization process dynamics. The model comprises mass balances of glucose and the dye in a fungal biofilm and a liquid film. The biofilm is modeled using a spatially two-dimensional domain. The liquid film is considered as homogeneous in the direction normal to the biofilm surface. The biomass growth, decay and the erosion of the biofilm are taken into account. Using experimental data, we identified values of key model parameters: the dye degradation rate constant, biofilm corrugation factor and liquid velocity. Considering the dye degradation rate constant 1×10⁻⁵ kg m⁻³ s⁻¹, we found optimal values of the corrugation factor 0.853 and 0.59 and values of the liquid velocity 5.23×10⁻³ m s⁻¹ and 6.2×10⁻³ m s⁻¹ at initial dye concentrations 0.09433 kg m⁻³ and 0.05284 kg m⁻³, respectively. A good agreement between the simulated and experimental data using estimated values of the model parameters was achieved. The model can be used to simulate the performance of laboratory scale trickle-bed bioreactor operated in a batch regime or to estimate values of principal parameters of the bioreactor system. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Development of an experimental radioisotope based process tomography system for research applications in a cold trickle bed column

    Sau, Madhusudan; Kumar, Pravesh; Kumar, Umesh; Acharya, Rajesh; Singh, Gursharan

    2009-01-01

    In chemical and petrochemical engineering applications, random and structured packing are used in process columns to enhance the heat and mass transfer between two phases. The packing used in such columns is meant to obtain a high specific interfacial area. It is of paramount importance for scale-up and design of trickle bed process columns, to understand and predict the complex multiphase fluid dynamics. In simplified terms, the phase holdup, solid packing distribution in terms of density and gas and liquid velocities among other important parameters need to be qualitatively and quantitatively understood. In the petrochemical industry, many processes are carried out using fixed bed reactors with concurrent upward and downward gas and liquid flows. In order to characterize the liquid and gas flow distribution through a mock-up column, data on planar and volume density distribution using computed tomographic measurements are very helpful. The paper describes the development efforts of a multi-detector 137 Cs radioisotope based in-situ tomography scanner suitable for 600mm dia. cold trickle bed reactor. The development work is at present in progress. The schematics and development of the scanner gantry is described in this paper. (author)

  15. Nitrogen utilization and biomass yield in trickle bed air biofilters.

    Kim, Daekeun; Sorial, George A

    2010-10-15

    Nitrogen utilization and subsequent biomass yield were investigated in four independent lab-scale trickle bed air biofilters (TBABs) fed with different VOCs substrate. The VOCs considered were two aromatic (toluene, styrene) and two oxygenated (methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK)). Long-term observations of TBABs performances show that more nitrogen was required to sustain high VOC removal, but the one fed with a high loading of VOC utilized much more nitrogen for sustaining biomass yield. The ratio N(consumption)/N(growth) was an effective indicator in evaluating nitrogen utilization in the system. Substrate VOC availability in the system was significant in determining nitrogen utilization and biomass yield. VOC substrate availability in the TBAB system was effectively identified by using maximum practical concentrations in the biofilm. Biomass yield coefficient, which was driven from the regression analysis between CO(2) production rate and substrate consumption rate, was effective in evaluating the TBAB performance with respect to nitrogen utilization and VOC removal. Biomass yield coefficients (g biomass/g substrate, dry weight basis) were observed to be 0.668, 0.642, 0.737, and 0.939 for toluene, styrene, MEK, and MIBK, respectively. 2010 Elsevier B.V. All rights reserved.

  16. Absorption accompanied with chemical reaction in trickle-bed reactors

    Versteeg, GF; Visser, JBM; vanDierendonck, LL; Kuipers, JAM; Dierendonck, L.L. van

    1997-01-01

    A new development in the field of internals in packed columns is the use of structured packing types. Recently, a new structured packing type coated with a thin alumina layer (KATAPAK(TM)) has been developed. In this report, the results of an experimental and theoretical study concerning the

  17. Absorption accompanied with chemical reaction in trickle-bed reactors.

    Versteeg, Geert; Visser, J.B.M.; van Dierendonck, L.L.; van Dierendonck, L.L.

    1997-01-01

    A new development in the field of internals in packed columns is the use of structured packing types. Recently, a new structured packing type coated with a thin alumina layer (KATAPAKTM) has been developed. In this report, the results of an experimental and theoretical study concerning the possible

  18. Absorption accompanied with chemical reaction in trickle-bed reactors

    Versteeg, GF; Visser, JBM; vanDierendonck, LL; Kuipers, JAM; Dierendonck, L.L. van

    A new development in the field of internals in packed columns is the use of structured packing types. Recently, a new structured packing type coated with a thin alumina layer (KATAPAK(TM)) has been developed. In this report, the results of an experimental and theoretical study concerning the

  19. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed

    Shimizu, Masami; Kitamoto, Asashi; Takashima, Yoichi.

    1983-01-01

    On the evaluation of the performance of the hydrophobic Pt catalyst packed in the trickle-bed test column, the conventionally defined (Ksub(y)a) and the newly defined (Ksub(f))sub (G) are compared with each other as a measure of the overall D-transfer coefficient. The value of (Ksub(y)a) varies in a wide range in accordance with the length of the test column. On the other hand (Ksub(f))sub (G sub (l = L)) has a finite value in the test column longer than about 0.5 m. By considering the values of ksub(g) and ksub(l) which are the constituents of (Ksub(f))sub (G), it is possible to improve the hydrophobic Pt catalyst trickle bed and to design the H 2 /H 2 O-isotopic exchange trickle-bed column packed with this catalyst. (author)

  20. Treatment of Benzene and n-Hexane Mixtures in Trickle-Bed Air Biofilters.

    Hassan, Ashraf Aly; Sorial, George A

    2011-02-01

    Trickle-bed air biofilters (TBABs) are suitable for treatment of hydrophilic volatile organic compounds, but they pose a challenge for hydrophobic compounds. Three laboratory-scale TBABs were used for the treatment of an airstream contaminated with different ratios of n-hexane and benzene mixtures. The ratios studied were 1:1, 2:1, and 1:3 n-hexane:benzene by volume. Each TBAB was operated at a pH of 4 and a temperature of 20 °C. The use of acidic-buffered nutrient solution was targeted for changing the microorganism consortium to fungi as the main biodegradation element. The experimental plan was designed to investigate the long-term performance of the TBABs with an emphasis on different mixture loading rates, removal efficiency with TBAB depth, volatile suspended solids, and carbon mass balance closure. n-Hexane loading rate was kept constant in the TBABs for comparison reasons and ranged from 4 to 22 g/(m 3 .hr). Corresponding benzene loadings ranged from 4 to 43 g/(m 3 .hr). Generally, benzene behavior in the TBAB was superior to that of n-hexane because of its higher solubility. n-Hexane showed improved performance in the 2:1 mixing ratio as compared with the other two ratios. [Box: see text].

  1. Evaluation of trickle-bed air biofilter performance for MEK removal.

    Cai, Zhangli; Kim, Daekeun; Sorial, George A

    2004-10-18

    A lab-scale trickle-bed air biofilter (TBAB) was operated to evaluate the removal of methyl ethyl ketone (MEK) from waste gas. Three biomass control strategies were investigated, namely, backwashing and two non-use periods (starvation and stagnant). Five volumetric loading rates from 0.70 to 7.04 kg COD/m(3)day were employed. Backwashing once a week removed the excess biomass and obtained long-term, stable performance over 99% removal efficiency for loading rates less than 5.63 kg COD/m(3)day. The two non-use periods could also sustain 99% removal efficiency and could be employed as another means of biomass control for loading rates up to 3.52 kg COD/m(3)day. The non-use periods did not delay the recovery when the loading rate did not exceed 3.52 kg COD/m(3)day. The pseudo-first-order removal rate constant decreased with increase in volumetric loading rate. The effect of non-use periods on removal rate showed apparent transition from positive to negative with the increase in loading rate.

  2. Effect of loading types on performance characteristics of a trickle-bed bioreactor and biofilter during styrene/acetone vapor biofiltration.

    Halecky, Martin; Paca, Jan; Kozliak, Evguenii; Jones, Kim

    2016-07-02

    A 2:1 (w/w) mixture of styrene (STY) and acetone (AC) was subjected to lab-scale biofiltration under varied loading in both a trickle bed reactor (TBR) and biofilter (BF) to investigate substrate interactions and determine the limits of biofiltration efficiency of typical binary air pollutant mixtures containing both hydrophobic and polar components. A comparison of the STY/AC mixture degradation in the TBR and BF revealed higher pollutant removal efficiencies and degradation rates in the TBR, with the pollutant concentrations increasing up to the overloading limit. The maximum styrene degradation rates were 12 and 8 gc m(-3) h(-1) for the TBR and BF, respectively. However, the order of performance switched in favor of the BF when the loading was conducted by increasing air flow rate while keeping the inlet styrene concentration (Cin) constant in contrast to loading by increasing Cin. This switch may be due to a drastic difference in the effective surface area between these two reactors, so the biofilter becomes the reactor of choice when the rate-limiting step switches from biochemical processes to mass transfer by changing the loading mode. The presence of acetone in the mixture decreased the efficiency of styrene degradation and its degradation rate at high loadings. When the overloading was lifted by lowering the pollutant inlet concentrations, short-term back-stripping of both substrates in both reactors into the outlet air was observed, with a subsequent gradual recovery taking several hours and days in the BF and TBR, respectively. Removal of excess biomass from the TBR significantly improved the reactor performance. Identification of the cultivable strains, which was performed on Day 763 of continuous operation, showed the presence of 7 G(-) bacteria, 2 G(+) bacteria and 4 fungi. Flies and larvae of Lycoriella nigripes survived half a year of the biofilter operation by feeding on the biofilm resulting in the maintenance of a nearly constant pressure drop.

  3. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter.

    Hassan, Ashraf Aly; Sorial, George A

    2010-12-15

    Trickle Bed Air Biofilters (TBABs) are considered to be economical and environmental-friendly for treatment of Volatile Organic Compounds (VOCs). Hydrophilic VOCs are easily degradable while hydrophobic ones pose a great challenge for adequate treatment due to the transfer of the VOC to the liquid phase. In this study the utilization of acidic pH is proposed for the treatment of benzene vapors. The acidic pH would encourage the growth of fungi as the main consortium. A TBAB operated at pH 4 was used for the treatment of an air stream contaminated with benzene under different loading rates ranging from 37 to 76.8 g/(m(3)h). The purpose of introducing fungi was to compare the performance with traditional TBAB operating under neutral pH in order to assess the biodegradation of benzene in mixtures with other compounds favoring acidic conditions. The experimental plan was designed to assess long-term performance with emphasis based on different benzene loading rates, removal efficiency with TBAB depth, and carbon mass balance closure. At benzene loading rate of 64 g/(m(3)h), the removal efficiency was 90%. At the maximum loading rate of 77 g/(m(3)h), the removal efficiency was 75% marking the maximum elimination capacity for the TBAB at 58.8 g/(m(3)h). Operating at acidic pH successfully supported the degradation of benzene in TBAB. It is worthwhile to note that benzene appears in mixtures with n-hexane and toluene, which are reported to be better degraded under such conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter.

    Mathur, Anil K; Sundaramurthy, J; Balomajumder, C

    2006-10-11

    The performance of a trickle bed air biofilter (TBAB) in the removal of mono-chlorobenzene (MCB) was evaluated in concentrations varying from 0.133 to 7.187 g m(-3) and at empty bed residence time (EBRT) varying from 37.7 to 188.52 s. More than 90% removal efficiency in the trickle bed air biofilter was achieved for the inlet MCB concentration up to 1.069 g m(-3) and EBRT less than 94.26 s. The trickle bed air biofilter was constructed with coal packing material, inoculated with a mixed consortium of activated sludge obtained from sewage treatment plant. The continuous performance of the removal of MCB in the trickle bed air biofilter was monitored for various gas concentrations, gas flow rates, and empty bed residence time. The experiment was conducted for a period of 75 days. The trickle bed air biofilter degrading MCB with an average elimination capacity of 80 g m(-3) h(-1) was obtained. The effect of starvation was also studied. After starvation period of 8 days, the degradation was low but recovered within a short period of time. Using macrokinetic determination method, the Michaelis-Menten kinetic constant K(m) and maximum reaction rate, r(max) evaluated as 0.121 g m(-3) s(-1) and 7.45 g m(-3), respectively.

  5. Reactor operation

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  6. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A.; García, Juan

    2013-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min −1 and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min −1 , respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T r = 0.098 g Ni min mL −1 . After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T r = 0.098 g Ni min mL −1 , attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity

  7. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  8. Biofiltration of 1,1,1-trichloroethane by a trickle-bed air biofilter.

    Lu, Chungsying; Chang, Kwotsair

    2003-09-01

    The performance of a trickle-bed air biofilter (TBAB) in the removal of 1,1,1-trichloroethane (TCLE) was evaluated in concentrations varying from 0.025 to 0.049 g/m3 and at empty-bed residence time (EBRT) varying from 20 to 90 s. Nearly complete TCLE removal could be achieved for influent carbon loading between 0.98 and 5.88 g/m3 h. The TBAB appeared efficient for controlling TCLE emission under low-carbon-loading conditions. Carbon recoveries higher than 95% were achieved, demonstrating the accuracy of results. The carbon mass rate of the liquid effluent was approximately two orders of magnitude less than that of the effluent CO2, indicating that dissolved TCLE and its derivatives in leachate were present in negligible amounts in the TBAB.

  9. Mass transfer in liquid phase catalytic exchange column of trickle bed type

    Yamanishi, Toshihiko; Iwai, Yasunori; Okuno, Kenji

    1995-09-01

    The mechanism of mass transfer in a liquid phase catalytic exchange column was discussed for a trickle bed type. A new model has been proposed on the basis of this mass transfer mechanism; and several problems for the previous reported models were pointed out in the derivation of the model. An overall rate equation was first derived from the vapor-hydrogen exchange in the model. The mass transfer for the vapor-hydrogen exchange was decomposed to the following three steps: the mass transfer in a gas boundary layer on a catalyst particle; the mass transfer within the pores in the catalyst; and the chemical reaction on the surface of the catalyst. The water-vapor scrubbing process was considered as a series of the mass transfers in gas and liquid boundary layers on the wetted surfaces of the catalyst and packings or wall of the column. Significant subjects to be studied were proposed from the viewpoint of the validity of the model and the optimization of the column. (author)

  10. Biodegradation of mono-chlorobenzene by using a trickle bed air biofilter (TBAB).

    Mathur, Anil K; Majumder, C B; Singh, Dhananjay; Bala, Shashi

    2010-07-01

    In the present study, performance of the trickle bed airbiofilter (TBAB) for treating mono-chlorobenzene (MCB) was evaluated for various influent volatile organic compound (VOC) loadings using coal and mixed consortium of activated sludge as the packing material. Microbial acclimation to MCB was achieved by exposing the system continuously for 31 d to an average inlet MCB concentration of 0.688 g m(-3) at an empty bed residence time (EBRT) of 188 s. The TBAB achieved maximum removal efficiency of 87% at an EBRT of 188 s for an inlet concentration of 0.681 g m(-3), which is quite significance than the values reported in the literature. Elimination capacities of MCB increased with an increase of the influent VOC loading, but an opposite trend was observed for the removal efficiency The maximum elimination capacity of the biofilter was 110.75 g m(-3) hr(-1) at an inlet MCB concentration of 1.47 g m(-3). The effect of starvation on the TBAB was also studied. After starvation, the TBAB lost its ability to degrade MCB initially However the biofilter recovered very quickly Evaluation of the concentration profile along the bed height indicated that the bottom section of TBAB has the best performance for all concentrations. By using Wani's method of macrokinetic determination based on simple Monod kinetics, the maximum removal rate of MCB, r(max) and saturation constant K(m) was to be found as 1.304 g m(-3)s(-1) and 113.446 g m(-3), respectively.

  11. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Biofilm population dynamics in a trickle-bed bioreactor used for the biodegradation of aromatic hydrocarbons from waste gas under transient conditions.

    Hekmat, D; Feuchtinger, A; Stephan, M; Vortmeyer, D

    2004-04-01

    The dynamics of a multispecies biofilm population in a laboratory-scale trickle-bed bioreactor for the treatment of waste gas was examined. The model pollutant was a VOC-mixture of polyalkylated benzenes called Solvesso 100. Fluorescence in-situ hybridization (FISH) was applied in order to characterise the population composition. The bioreactor was operated under transient conditions by applying pollutant concentration shifts and a starvation phase. Only about 10% of the biofilm mass were cells, the rest consisted of extracellular polymeric substances (EPS). The average fraction of Solvesso 100-degrading cells during pollutant supply periods was less than 10%. About 60% of the cells were saprophytes and about 30% were inactive cells. During pollutant concentration shift experiments, the bioreactor performance adapted within a few hours. The biofilm population exhibited a dependency upon the direction of the shifts. The population reacted within days after a shift-down and within weeks after a shift-up. The pollutant-degraders reacted significantly faster compared to the other cells. During the long-term starvation phase, a shift of the population composition took place. However, this change of composition as well as the degree of metabolic activity was completely reversible. A direct correlation between the biodegradation rate of the bioreactor and the number of pollutant-degrading cells present in the biofilm could not be obtained due to insufficient experimental evidence.

  13. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Hydrogen Sulfide Removal from Air by Acidithiobacillus thiooxidans in a Trickle Bed Reactor

    Ramirez, M.; Gómez, J. M.; Cantero, D.; Páca, J.; Halecký, M.; Kozliak, E. I.; Sobotka, Miroslav

    2009-01-01

    Roč. 54, č. 5 (2009), s. 409-414 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : 2-STAGE BIOTRICKLING FILTER * THIOBACILLUS-THIOPARUS * DIMETHYL SULFIDE Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  15. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  16. Hydrodynamics in a pressurized cocurrent gas-liquid trickle bed reactor

    Wammes, Wino J.A.; Westerterp, K.R.

    1991-01-01

    The influence of gas density on total external liquid hold-up, pressure drop and gas-liquid interfacial area, under trickle-flow conditions, and the transition to pulse flow have been investigated with nitrogen or helium as the gas phase up to 7.5 MPa. It is concluded that the hydrodynamics depends

  17. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  18. Mapping reactor operating regimes for heavy gas oil hydrotreating

    Munteanu, Mugurel Catalin; Chen, Jinwen [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    Hydrotreating (HDT) is used in oil refineries at temperatures of 350-400 degree C and pressure of 50-100 bars in a fixed bed to improve the quality of distillate fraction. HDT operates as a gas-liquid-solid process, trickle bed. Efforts have been made to model it but volatilization of liquid oil is often ignored. The aim of this paper is to predict vapor-liquid equilibrium (VLE) for a typical heavy distillate feed in pilot plant hydrotreaters. The study was conducted under various operating conditions and a flash calculation program calibrated in-house was used to predict VLE. VLE values were found and results showed that higher pressure, lower gas/oil ratio and temperature should be used to maintain the desired operating regimes when hydrotreating heavy distillate feed. This study determined the operating conditions for maintaining the desired operating regimes and these findings could be useful for operators.

  19. Power reactors operational diagnosis

    Dach, K.; Pecinka, L.

    1976-01-01

    The definition of reactor operational diagnostics is presented and the fundamental trends of research are determined. The possible sources of power reactor malfunctions, the methods of defect detection, the data evaluation and the analysis of the results are discussed in detail. In view of scarcity of a theoretical basis and of insufficient in-core instrumentation, operational diagnostics cannot be as yet incorporated in a computer-aided reactor control system. (author)

  20. Licensed operating reactors

    1990-04-01

    The Operating Units Status Report --- Licensed Operating Reactors provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff on NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non- power reactors in the US

  1. Pressurised water reactor operation

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  2. Experimental and theoretical studies on hydrogenation of olefins in multiphase fixed bed reactors

    Battsengel, B.; Datsevitch, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2003-07-01

    Multi phase reactors like trickle bed systems are frequently used for gas-liquid reactions. In general, they have complex mass and heat transfer characteristics; scale-up is therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate, taking catalytic octene hydrogenation as a model reaction. The reaction rate in a trickle bed reactor is by a factor of about 20 smaller than (theoretically) in the absence of any mass transfer limitations. Based on the experimental results, the so-called pre-saturation concept is presented, where only the liquid saturated with hydrogen is fed into the reactor. The effective reaction rate in this two phase system (liquid and solid cat.) is equal or even higher than in a trickle bed reactor. Scale-up problems do not occur, and the pre-saturation concept has also other advantages (lower energy consumption), as discussed in detail in this paper. (orig.)

  3. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  4. Nuclear reactor physics course for reactor operators

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  5. Operating US power reactors

    Silver, E.G.

    1988-01-01

    This update, which appears regularly in each issue of Nuclear Safety, surveys the operations of those power reactors in the US which have been issued operating licenses. Table 1 shows the number of such reactors and their net capacities as of September 30, 1987, the end of the three-month period covered in this report. Table 2 lists the unit capacity and forced outage rate for each licensed reactor for each of the three months (July, August, and September 1987) covered in this report and the cumulative values of these parameters since the beginning of commercial operation. In addition to the tabular data, this article discusses other significant occurrences and developments that affected licensed US power reactors during this reporting period. Status changes at Braidwood Unit 1, Nine Mile Point 2, and Beaver Valley 2 are discussed. Other occurrences discussed are: retraining of control-room operators at Peach Bottom; a request for 25% power for Shoreham, problems at Fermi 2 which delayed the request to go to 75% power; the results of a safety study of the N Reactor at Hanford; a proposed merger of Pacific Gas and Electric with Sacramento Municipal Utility District which would result in the decommissioning of Rancho Seco; the ordered shutdown of Oyster Creek; a minor radioactivity release caused by a steam generator tube rupture at North Anna 1; and 13 fines levied by the NRC on reactor licensees

  6. Licensed operating reactors

    1989-08-01

    THE OPERATING UNITS STATUS REPORT - LICENSED OPERATING REACTORS provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management from the Headquarters staff of NRC's Office of Enforcement (OE), from NRC's Regional Offices, and from utilities. The three sections of the report are: monthly highlights and statistics for commercial operating units, and errata from previously reported data; a compilation of detailed information on each unit, provided by NRC's Regional Offices, OE Headquarters and the utilities; and an appendix for miscellaneous information such as spent fuel storage capability, reactor-years of experience and non-power reactors in the US

  7. Regulations for RA reactor operation

    1980-09-01

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions [sr

  8. Reactor operation method

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  9. Licensed operating reactors

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  10. Licensed operating reactors

    Hartfield, R.A.

    1990-03-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  11. Licensed operating reactors

    1989-08-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  12. Reactor operational transient analysis

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  13. Method of reactor operation

    Maeda, Katsuji.

    1982-01-01

    Purpose: To prevent stress corrosion cracks in stainless steels caused from hydrogen peroxide in reactor operation in which the density of hydrogen peroxide in the reactor water is controlled upon reactor start-up. Method: A heat exchanger equipped with a heat source for applying external heat is disposed into the recycling system for reactor coolants. Upon reactor start-up, the coolants are heated by the heat exchanger till arriving at a temperature at which the dissolving rate is faster than the forming rate of hydrogen peroxide in the coolants, and nuclear heating is started after reaching the above temperature. The temperature of the reactor water is increased in such a manner and, when it arrives at 140 0 C, extraction of control elements is started and the heat source for the heat exchanger is interrupted simultaneously. In this way spikes in the density of hydrogen peroxide are suppressed upon reactor start-up to thereby decrease the stress corrosion cracks in stainless steels. (Horiuchi, T.)

  14. Modelagem e simulação de um reator trickle-bed para hidrogenação de propeno

    Rodrigo Simion Hunger

    2002-01-01

    Neste trabalho foi modelado um reator catalítico heterogêneo, pressurizado, adiabático e provido de reciclo. O leito deste reator está dividido em duas partes, sendo que a primeira opera como um reator trickle-bed, enquanto a segunda opera como um reator de leito fixo, onde os regentes estão em fase líquida. Um Sistema de Hidrogenação de Propeno em operação no Pólo Petroquímico do Sul foi utilizado para fornecer os dados necessários à validação do modelo proposto. Neste sistema, a reação de h...

  15. Small reactor operating mode

    Snell, V.G.

    1997-01-01

    There is a potential need for small reactors in the future for applications such as district heating, electricity production at remote sites, and desalination. Nuclear power can provide these at low cost and with insignificant pollution. The economies required by the small scale application, and/or the remote location, require a review of the size and location of the operating staff. Current concepts range all the way from reactors which are fully automatic, and need no local attention for days or weeks, to those with reduced local staff. In general the less dependent a reactor is on local human intervention, the greater its dependence on intrinsic safety features such as passive decay heat removal, low-stored energy and limited reactivity speed and depth in the control systems. A case study of the design and licensing of the SLOWPOKE Energy System heating reactor is presented. (author)

  16. Licensed operating reactors

    1989-11-01

    The US Nuclear Regulatory Commission's monthly Licensed Operating Reactors Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the errata page

  17. Licensed operating reactors

    1990-01-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units is provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  18. Licensed operating reactors

    1989-06-01

    The US Nuclear Regulatory Commission's monthly LICENSED OPERATING REACTORS Status Summary Report provides data on the operation of nuclear units as timely and accurately as possible. This information is collected by the Office of Information Resources Management, from the Headquarters Staff of NRC's Office of Inspection and Enforcement, from NRC's Regional Offices, and from utilities. Since all of the data concerning operation of the units are provided by the utility operators less than two weeks after the end of the month, necessary corrections to published information are shown on the ERRATA page. This report is divided into three sections: the first contains monthly highlights and statistics for commercial operating units, and errata from previously reported data; the second is a compilation of detailed information on each unit, provided by NRC Regional Offices, IE Headquarters and the Utilities; and the third section is an appendix for miscellaneous information such as spent fuel storage capability, reactor years of experience and non-power reactors in the United States

  19. Licensing of nuclear reactor operators

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  20. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor

    Moonen, Roel; Ras, Erik Jan; Harvey, Clare; Alles, Jeroen; Moulijn, J.A.

    2017-01-01

    Small-scale parallel trickle-bed reactors were used to evaluate the performance of a commercial hydrodesulfurization catalyst under industrially relevant conditions. Catalyst extrudates were loaded as a single string in reactor tubes. It is demonstrated that product sulfur levels and densities

  1. Reactor operation monitor

    Sakagami, Masaharu.

    1982-01-01

    Purpose: To improve the working performance of a reactor by extending the range for the power conditioning due to the control rod operation and flow rate control. Constitution: The results of calculations for the power distribution and the burn-up degree distribution of the reactor core from a reactor performance computer that processes each of measuring signals in a nuclear power plant are used as the inputs for a computing device of the fuel rod power hysteresis to form the power hysteresis for each of the fuel rods up to the present time. The data are used as the inputs for the computing device of the fuel rod performance index, and the fuel rod performance index representing the critical values for the stresses in the fuel rod cladding tubes and the critical values for the duration of the stresses determined from the power hysteresis and the burn-up degree of the fuel rod are calculated for each of the fuel rods. Accordingly, the power conditioning can be carried out upon power-up in the reactor while monitoring the fuel rod performance index f(t) for each of the fuel assemblies, whereby the range for the power conditioning due to the control rod operation and the flow rate control can be extended relative to fuel assemblies in which f(t) is smaller than 1. (Yoshino, Y.)

  2. Operating reactors licensing actions summary

    1981-08-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  3. TRIGA reactor operating experience

    Anderson, T.V.

    1970-01-01

    The Oregon State TRIGA Reactor (OSTR) has been in operation 3 years. Last August it was upgraded from 250 kW to 1000 kW. This was accomplished with little difficulty. During the 3 years of operation no major problems have been experienced. Most of the problems have been minor in nature and easily corrected. They came from lazy susan (dry bearing), Westronics Recorder (dead spots in the range), The Reg Rod Magnet Lead-in Circuit (a new type lead-in wire that does not require the lead-in cord to coil during rod withdrawal hss been delivered, much better than the original) and other small corrections

  4. Method of reactor operation

    Nakajima, Takeshi

    1988-01-01

    Purpose: To minimize the power change due to the increase in xenone and power distribution after reaching the rated power in the case of using fresh fuels no requiring conditioning operation thereby starting the nuclear reactor in a short period of time and stably. Method: When control rods are entirely inserted only with a purpose for the compensation of the reactivity in a xenon-unsaturated state such as upon starting of the nuclear reactor, peaking is generated in the lower portion of the reactor core. Therefore, it is necessary to insert control rods for additionally suppressing the peaking in the lower portion of the reactor core to a relatively shallow level. In view of the above, a plurality of control rods are divided into a first control rod group finally inserted in the rated power state and a second control rod group other than the above. Then, the power is once elevated to the rated power level by means of such an intermediate control rod pattern that the ratio of the total extraction amount between the first control rod group and the second control rod group is made constant. Then, the control rods are extracted stepwise while setting the ratio of the total extraction amount constant in accordance with the change of the accumulating amount of xenone, to thereby obtain the purpose. (kamimura, M.)

  5. Licensed operating reactors

    1991-08-01

    The Nuclear Regulatory Commission's annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar 1990) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  6. Licensed operating reactors

    Hartfield, R.A.

    1994-03-01

    The Nuclear Regulatory Commissions annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December, the year to date (in this case calendar year 1993) and cumulative data, usually for the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided

  7. Reactor operation method

    Suzuki, Toshio; Hida, Kazuki; Yoshioka, Ritsuo.

    1990-01-01

    The enrichment degree of fuels initially loaded in a reactor core was made extremely lower than that of fresh fuels to be loaded in the succeeding cycle, or the enrichment degree for all of the initially loaded fuels was made identical with that of the fresh fuels in the conventional reactor operation method. In this operation method, since the initially loaded fuels are sometimes taken out after the completion of the cycle at the low burnup degree as it is, it can not be said to reduce the fuel cycle cost. As a means for dissolving this problem, at least two different kinds of initially loaded fuels are prepared. The enrichment degree of the highly enriched fuels is made identical with that of the fresh fuels, and the enrichment degree and the number of low enriched fuels are not changed after the completion of the first cycle but they are operated till the end of the second cycle. Further, all of the fuels at the low enrichment degree are taken out after the completion of the second cycle and exchanged with the fresh fuels. As a result, high burnup ratio of the initially loaded fuels can be increased, to improve the fuel economy. (I.S.)

  8. On the vapor-liquid equilibrium in hydroprocessing reactors

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  9. Nuclear reactor operator licensing

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  10. Operating reactors licensing actions summary

    1982-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis

  11. Reactor operation safety information document

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  12. Prediction of Improved Performance of Catalytic Hydrogenation Reactor by Periodic Modulation of the Feed Rate

    Staněk, Vladimír; Hanika, Jiří; Jiřičný, Vladimír; Stavárek, Petr; Tukač, V.; Lederer, J.

    2009-01-01

    Roč. 23, č. 3 (2009), s. 251-257 ISSN 1451-9372 R&D Projects: GA MPO FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : trickle bed * feed modulation * catalytic reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. Reactor operation environmental information document

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  14. Method of operating a reactor

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  15. Operating reactors licensing actions summary

    1983-01-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  16. Operating reactors licensing actions summary

    1982-05-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  17. Operating reactors licensing actions summary

    1983-03-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  18. Operating reactors licensing actions summary

    1982-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  19. Operating reactors licensing actions summary

    1982-11-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  20. Operating reactors licensing actions summary

    1982-10-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  1. Operating reactors licensing actions summary

    1982-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  2. Operating reactors licensing actions summary

    1982-09-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  3. Reactor core operation management system

    Sato, Tomomi.

    1992-05-28

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.).

  4. Reactor core operation management system

    Sato, Tomomi.

    1992-01-01

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.)

  5. Tendencies in operating power reactors

    Brinckmann, H.F.

    1987-01-01

    A survey is given about new tendencies in operating power reactors. In order to meet the high demands for control and monitoring of power reactors modern procedures are applicated such as the incore-neutron flux detection by means of electron emission detectors and multi-component activation probes, the noise diagnostics as well as high-efficient automation systems

  6. Upgrade of reactor operation technology

    Itoh, Hideaki; Suzuki, Toshiaki; O-kawa, Toshikatsu

    2003-01-01

    To improve operational reliability and availability, the operation technology for a fast reactor was developed in the ''JOYO''. This report describes the upgrading of the simulator, plant operation management tools and fuel handling system for the MK-III core operation. The simulator was modified to the MK-III version to verify operation manuals, and to train operators in MK-III operation. The plant operation management tool was replaced on the operation experience to increase the reliability and efficiency of plant management works relating to plant operation and maintenance. To shorten the refueling period, the fuel handling system was upgraded to full automatic remote control. (author)

  7. RA reactor operation and maintenance

    Zecevic, V.

    1963-02-01

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air

  8. Reactor operation environmental information document

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  9. Reactor operations at SAFARI-1

    Vlok, J.W.H.

    2003-01-01

    A vigorous commercial programme of isotope production and other radiation services has been followed by the SAFARI-1 research reactor over the past ten years - superimposed on the original purpose of the reactor to provide a basic tool for nuclear research, development and education to the country at an institutional level. A combination of the binding nature of the resulting contractual obligations and tighter regulatory control has demanded an equally vigorous programme of upgrading, replacement and renovation of many systems in order to improve the safety and reliability of the reactor. Not least among these changes is the more effective training and deployment of operations personnel that has been necessitated as the operational demands on the reactor evolved from five days per week to twenty four hours per day, seven days per week, with more than 300 days per year at full power. This paper briefly sketches the operational history of SAFARI-1 and then focuses on the training and structuring currently in place to meet the operational needs. There is a detailed step-by-step look at the operator?s career plan and pre-defined milestones. Shift work, especially the shift cycle, has a negative influence on the operator's career path development, especially due to his unavailability for training. Methods utilised to minimise this influence are presented. The increase of responsibilities regarding the operation of the reactor, ancillaries and experimental facilities as the operator progresses with his career are discussed. (author)

  10. Method for operating nuclear reactor

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  11. The qualification of reactor operators

    Lima, J.M. de; Soares, H.V.

    1981-01-01

    The qualification and performance of nuclear power personnel have an important influence on the availability and safety operation of these plants. This paper describes the Brazilian rules and norms established by the CNEN-Brazilian Atomic Energy Comission, as well as policy of other countries concerning training requirements and experiences of nuclear power reactor operators. Some coments are made about the im pact of the march 1979 Three Mile Island accident on upgrading the reactor training requirements in U.S.A. and its international implication. (Author) [pt

  12. Research nuclear reactor operation management

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  13. Reactor Operations informal monthly report December 1994

    1994-12-01

    Reactor operations at the MRR and HFBR reactors at Brookhaven National Laboratory are presented for December 1994. Reactor run-time and power levels, instrumentation, mechanical maintenance, occurrence reports, and safety information are included

  14. Operational power reactor health physics

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  15. Reactor operator screening test experiences

    O'Brien, W.J.; Penkala, J.L.; Witzig, W.F.

    1976-01-01

    When it became apparent to Duquesne Light Company of Pittsburgh, Pennsylvania, that the throughput of their candidate selection-Phase I training-reactor operator certification sequence was something short of acceptable, the utility decided to ask consultants to make recommendations with respect to candidate selection procedures. The recommendation implemented was to create a Nuclear Training Test that would predict the success of a candidate in completing Phase I training and subsequently qualify for reactor operator certification. The mechanics involved in developing and calibrating the Nuclear Training Test are described. An arbitration decision that resulted when a number of International Brotherhood of Electrical Workers union employees filed a grievance alleging that the selection examination was unfair, invalid, not job related, inappropriate, and discriminatorily evaluated is also discussed. The arbitration decision favored the use of the Nuclear Training Test

  16. Health requirements for nuclear reactor operators

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  17. Method of safely operating nuclear reactor

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  18. Reactor modification, preparation and operation

    Weill, J.; Furet, J.; Baillet, J.; Donvez, G.; Duchene, J.; Gras, R.; Mercier, R.; Chenouard, J.; Leconte, J.

    1962-01-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system

  19. Reactor modification, preparation and operation

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-15

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  20. Reactor modification, preparation and operation

    Weill, J; Furet, J; Baillet, J; Donvez, G; Duchene, J; Gras, R; Mercier, R [Electronics Dept., Independent Section of Reactor Electronics, Saclay (France); Chenouard, J; Leconte, J [Dept. of Physical Chemistry, Stable Isotopes Section, Saclay (France)

    1962-03-01

    In the course of preparations for the dosimetry experiment at the R-B reactor the control and safety equipment of the reactor was found to be inadequate for operation at a constant power level of several watts. After completing the study of control and safety issues by CEA, safety and control were defined for the purpose of the Joint Dosimetry Experiment. Preparations for the Dosimetry Experiment included: installation of equipment for control and safety of the reactor; supplying 6570 Kg of heavy water by UK, reinforcement of the reactor wall on the outside of the building; constructing the protection of the control room; start-up, measuring of the critical heavy water level, and check of control and safety rods worth. After the final check of safety rod mechanisms, eight runs were performed at a power of 5 Watt, and then a 1 k Watt run was carried out and the power stabilized at this power for 30 min by automatic control system.

  1. Digital computer operation of a nuclear reactor

    Colley, R.W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state

  2. Monitoring device for reactor operation

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To increase the freedom for the power control due to control rod operation and flow rate control, as well as prevent fuel failures by the provision of a power distribution forecasting device for forecasting the changes in the reactor core power distribution and a device for calculating the fuel performance index and judging to display the calculated values. Constitution: The results for the calculation of the reactor core power distribution from a process computer that processes each of measuring signals of a nuclear power plant are used as inputs to a fuel power history calculator to constitute the power history up to the present time for each of the fuels. The date are inputted to a fuel performance index calculator to calculate the fuel performance index at present time for each of the fuels. Changes in the power distribution are forecast in a forecasting device for reactor power distribution relative to the changes in the control variables of a control variable memory unit and the date are inputted to a fuel power history calculator to forecast the power changes for each of the fuels. The amount of the power changes is inputted to a fuel performance index calculator and a fuel performance indicating and judging device judges and displays if they exceed a predetermined value. (Seki, T.)

  3. Biodegradation of Azo Dye RO16 in Different Reactors by Immobilized Irpex lacteus

    Tavčar, M.; Svobodová, Kateřina; Kuplenk, J.; Novotný, Čeněk; Pavko, A.

    2006-01-01

    Roč. 53, - (2006), s. 338-343 ISSN 1318-0207 R&D Projects: GA MŠk(CZ) 1P05ME828; GA AV ČR(CZ) IAA6020411; GA ČR(CZ) GP526/06/P102 Institutional research plan: CEZ:AV0Z50200510 Keywords : irpex lacteus * dye decolorization * trickle bed reactor Subject RIV: EE - Microbiology, Virology Impact factor: 0.703, year: 2006

  4. Reactor science and technology: operation and control of reactors

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  5. Reactor operation environmental information document

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  6. Recent U.S. reactor operating experience

    Stello, V. Jr.

    1977-01-01

    A qualitative assessment of U.S. and foreign reactor operating experience is provided. Recent operating occurrences having potentially significant safety impacts on power operation are described. An evaluation of the seriousness of each of these issues and the plans for resolution is discussed. A quantitative report on U.S. reactor operational experience is included. The details of the NRC program for evaluating and applying operating reactor experience in the regulatory process is discussed. A review is made of the adequacy of operating reactor safety and environmental margins based on actual operating experience. The Regulatory response philosophy to operating reactor experiences is detailed. This discussion indicates the NRC emphasis on the importance of a balanced action plan to provide for the protection of public safety in the national interest

  7. Standards for safe operation of research reactors

    1996-01-01

    The safety of research reactors is based on many factors such as suitable choice of location, design and construction according to the international standards, it also depends on well trained and qualified operational staff. These standards determine the responsibilities of all who are concerned with the research reactors safe operation, and who are responsible of all related activities in all the administrative and technical stages in a way that insures the safe operation of the reactor

  8. Computer monitoring of the RB reactor operation

    Milovanovic, S.; Pesic, M.; Milovanovic, T.

    1998-01-01

    Personal computer based acquisition system designed for monitoring of operation of the RB experimental reactor in the Institute of Nuclear Sciences 'Vinca' (former 'Boris Kidric') and experiences acquired during its use are shown in this paper. The monitoring covers generally all nuclear aspects of the reactor operation (start-up, nominal power operation, power changing, shut down and maintenance), but the emphasis is put on: real time (especially fast changing) reactivity measurement; supervising time dependence of the safety rods positions during shut down, and detection of position inaccuracy or failure operation of safety/control rods during the reactor operation or maintenance. (author)

  9. Operation and utilization of Indonesia Research Reactors

    Kuntoro, Iman; Sujalmo, Saiful; Tarigan, Alim

    2004-01-01

    For supporting the R and D in nuclear science and technology and its application, BATAN own and operate three research reactors namely, TRIGA-2000, KARTINI and RSG-GAS having thermal power of 2 MW, 100 kW and 30 MW respectively. The main features, operation and utilization progress of the reactors are described in this report. (author)

  10. Safety of research reactors (Design and Operation)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  11. PUSPATI Triga Reactor - First year in operation

    Nahrul Khair Rashid.

    1983-01-01

    First year operation of RTP reactor was mostly devoted to making in house training, setting up and testing the facilities in preparation for more routine operations. Generally the operations are categorized into 4 main purposes; experiment of research, teaching and training, demonstration, and testing and maintenance. These four purposes are elaborated in detail. Additions and modifications were performed in order to improve the safety of reactor operation. (A.J.)

  12. Reactor technology: power conversion systems and reactor operation and maintenance

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  13. Artificial intelligence in nuclear reactor operation

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  14. Experience in operation of heavy water reactors

    Rotaru, Ion; Bilegan, Iosif; Ghitescu, Petre

    1999-01-01

    The paper presents the main topics of the CANDU owners group (COG) meeting held in Mangalia, Romania on 7-10 September 1998. These meetings are part of the IAEA program for exchange of information related mainly to CANDU reactor operation safety. The first meeting for PHWR reactors took place in Vienna in 1989, followed by those in Argentina (1991), India (1994) and Korea (1996). The topics discussed at the meeting in Romania were: operation experience and recent major events, performances of CANDU reactors and safe operation, nuclear safety and operation procedures of PHWR, programs and strategies of lifetime management of installations and components of NPPs, developments and updates

  15. Method of operating a nuclear reactor

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  16. Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator

    Wieland Wache; Leonid Datsevich; Andreas Jess; Gerhard Neumann [University of Bayreuth, Bayreuth (Germany). Department of Chemical Engineering, Faculty of Applied Sciences

    2006-08-15

    Hydrodesulphurisation (HDS) of middle distillates is up to now performed in trickle bed reactors equipped with an expensive H{sub 2}-recycle. To meet future low S-limits, hydrotreating of already pre-desulphurised oils is needed. The H{sub 2}-supply is then far beyond what is chemically consumed. In addition, conventional three-phase HDS-reactors are generally problematic with respect to mass transfer, hydrodynamics, and therefore, scale-up. In this paper, an improved HDS-concept based on a two-phase reactor is discussed. The oil is thereby externally saturated with H{sub 2} and only the liquid is passed over the fixed bed. This concept was proven by experiments with light fuel oils (582 and 2252 ppm S, CoMo-catalyst, 1-6 MPa, 330-400{sup o}C, up to 100 days continuous operation). In addition, kinetic studies were done with model oil consisting of a mixture of n-dodecane and selected S-species such as di-, tri- and tetra-methyl-dibenzothiophenes. In case of the presented two-phase concept, the H{sub 2}-recycle is redundant, the intrinsic reaction rate can be utilised (and accurately measured), and scale-up problems do not occur. 18 refs., 9 figs., 5 tabs.

  17. Operational experience of the Marcoule reactors

    Conte, F.

    1963-01-01

    The results obtaining from three years operation of the reactors G-2, G-3 have made it possible to accumulate a considerable amount of operational experience of these reactors. The main original points: - the pre-stressed concrete casing - the possibility of loading while under power - automatic temperature control have been perfectly justified by the results of operation. The author confirms the importance of these original solutions and draws conclusions concerning the study of future nuclear power stations. (author) [fr

  18. Manual for the operation of research reactors

    1965-01-01

    The great majority of the research reactors in newly established centres are light-water cooled and are often also light-water moderated. Consequently, the IAEA has decided to publish in its Technical Reports Series a manual dealing with the technical and practical problems associated with the safe and efficient operation of this type of reactor. Even though this manual is limited to light-water reactors in its direct application and presents the practices and experience at one specific reactor centre, it may also be useful for other reactor types because of the general relevance of the problems discussed and the long experience upon which it is based. It has, naturally, no regulatory character but it is hoped that it will be found helpful by staff occupied in all phases of the practical operation of research reactors, and also by those responsible for planning their experimental use. 23 refs, tabs

  19. Safety operation of training reactor VR-1

    Matejka, K.

    2001-01-01

    There are three nuclear research reactors in the Czech Republic in operation now: light water reactor LVR-15, maximum reactor power 10 MW t , owner and operator Nuclear Research Institute Rez; light water zero power reactor LR-0, maximum reactor power 5 kW t , owner and operator Nuclear Research Institute Rez and training reactor VR-1 Sparrow, maximum reactor power 5 kW t , owner and operate Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. The training reactor VR-1 Vrabec 'Sparrow', operated at the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, was started up on December 3, 1990. Particularly it is designed for training the students of Czech universities, preparing the experts for the Czech nuclear programme, as well as for certain research work, and for information programmes in the nuclear programme, as well as for certain research work, and for information programmes in sphere of using the nuclear energy (public relations). (author)

  20. Operating manual for the Bulk Shielding Reactor

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR

  1. Operating manual for the Bulk Shielding Reactor

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR

  2. Operating manual for the Bulk Shielding Reactor

    1987-03-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxiliary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supersedes all previous operating manuals for the BSR.

  3. Operating manual for the Bulk Shielding Reactor

    1983-04-01

    The BSR is a pool-type reactor. It has the capabilities of continuous operation at a power level of 2 MW or at any desired lower power level. This manual presents descriptive and operational information. The reactor and its auxillary facilities are described from physical and operational viewpoints. Detailed operating procedures are included which are applicable from source-level startup to full-power operation. Also included are procedures relative to the safety of personnel and equipment in the areas of experiments, radiation and contamination control, emergency actions, and general safety. This manual supercedes all previous operating manuals for the BSR.

  4. Preparation fo nuclear research reactors operators

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  5. Preparation of nuclear research reactors operators

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  6. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  7. Management of operational events in research reactor

    Zhong Heping; Yang Shuchun; Peng Xueming

    2001-01-01

    The author describes the tracing management process post-operational event in a research reactor based on nuclear safety code, under the background of the research reactor in Nuclear Power Institute of China. It presorts the definite measures to the event tracing and it up its management factors

  8. Method of operating heavy water moderated reactors

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  9. Impact of proposed research reactor standards on reactor operation

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  10. Impact of proposed research reactor standards on reactor operation

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  11. Operational safety and reactor life improvements of Kyoto University Reactor

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  12. REACTOR CONTROL ROD OPERATING SYSTEM

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  13. Operational and reliability experience with reactor instrumentation

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  14. Operational reactor physics analysis codes (ORPAC)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  15. Report of the reactor Operators Service - Annex F

    Zivotic, Z.

    1992-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. For continuous training of the existing operator staff the Service has prepared and published eleven booklets: Nuclear reactor; RA reactor primary coolant loop; System for purification of heavy water; reactor helium system; system for technical water; electric power system; control and operation; ventilation system in the reactor building; special sewage system; construction properties of the reactor core; reactor building and installations. During the reporting period there have been no accidents nor incidents that could affect the reactor personnel [sr

  16. Operational behaviour of a reactor normal operation and disturbances

    Geyer, K.H.

    1982-01-01

    During normal operation, the following topics are dealt with: primary and secondary coolant circuits - full load operation - start-up and shutdown - steady state part load diagramm. During disturbances and incidents, the following procedures are discussed: identification and detection of the events - automatic actions - manual actions of the operator - provided indications - explanation of actuated systems - basic information of reactor protection system. (RW)

  17. Dynamics of nuclear reactor operational cycles

    Chapman, L.D.; Wayland, J.R.

    With this system dynamics computer model, one can explore the long term effects of a nuclear reactor program. Given an input demand for reactors, the consequences on each sector and the interactions among sectors can be simulated to provide a better understanding of the time development of a nuclear reactor program. The model permits the determination of various levels of activity as a function of time for plant enrichment, fuel fabrication, fuel reprocessing and storage of waste products. In addition, the rates of construction of reactors, spent fuel transit, disposal of waste, mining, shipping, recycling and enrichment can be investigated for optimal planning purposes. The model has been written in a very general manner so that it can be used to simulate any nuclear reactor program. It is an easy task to relate the amount of accidental or operational release of radioactive contaminants into our environment to the activity levels of each of the above sectors. (U.S.)

  18. Reactor operation plan preparing device

    Sano, Hiroki; Maruyama, Hiromi; Kinoshita, Mitsuo; Fukuzaki, Koji; Banto, Masaru; Fukazawa, Yukihisa.

    1993-01-01

    The device comprises a means for retrieving a control rod pattern capable of satisfying a thermal limit upon aimed power/minimum flow rate and providing minimum xenon and a control rod pattern maximum xenon. It further comprises a means for selecting a control rod pattern corresponding to a xenon equilibrium condition, and selecting a control rod which provides a greater thermal margin to provide a control rod operation sequence for each of the patterns. Further, the device comprises an outline plan preparing means and a correction means therefor, a simplified sequence table reference means operated along with sequence change, an operation limit region input means, a control rod operation preferential region changing means, a thermal margin evaluation region and an input means. This can automatically prepare the operation plan, decrease the times for preparation of detailed plans by using the outline plan preparing function, thereby enabling to remarkably shorten the time for preparing of an operation plan. (N.H.)

  19. Reactor operation feed-back in France

    Feltin, C.; Fourest, B.; Libmann, J.

    1982-09-01

    The Nuclear Safety Department (DSN), technical support of French Safety Authorities, is, in particular, in charge of the analysis of reactor operation and of measures taken consequently to incidents. It proposed the criteria used to select significant incidents; it analyzes such incidents. DSN also analyzes the operating experience of each plant, several years after starting. It examines foreign incidents to assess in what extent lessons learned can be applied to french reactors. The examples presented show that to improve the safety of units operation, the experience feed-back leads to make arrangements, or modifications concerning not only circuits or materials but often procedures. Moreover they show the importance of procedures concerning the operations carried out during reactor shutdown

  20. Method of operating FBR type reactors

    Arie, Kazuo.

    1984-01-01

    Purpose: To secure the controlling performance and the safety of FBR type reactors by decreasing the amount of deformation due to the difference in the heat expansion of a control rod guide tube. Method: The reactor is operated while disposing reactor core fuel assemblies of a same power at point-to-point symmetrical positions relative to the axial center for the control rod assembly. This can eliminate the temperature difference between opposing surfaces of the control rod guide tube and eliminate the difference in the thermal expansion. (Yoshino, Y.)

  1. Mode of operation of a nuclear reactor

    Morita, T.

    1976-01-01

    A method is proposed for the operation of a nuclear reactor guaranteeing an essentially symmetrical axial power distribution during normal operation by controlling the changes occuring in the reactor power partly by variation of the concentration of the neutron-absorbing element and partly by variation of the control rod positions. The representative parameters are recorded for the upper and lower half and adjusted to a predetermined reference value. In using this method, the axial power peals are reduced and power losses avoided. (RW) [de

  2. Method of operating BWR type reactors

    Sekimizu, Koichi

    1980-01-01

    Purpose: To enable reactor control depending on any demanded loads by performing control by the insertion of control rods in addition to the control by the regulation of the flow rate of the reactor core water at high power operation of a BWR type reactor. Method: The power is reduced at high power operation by decreasing the flow rate of reactor core water from the starting time for the power reduction and the flow rate is maintained after the time at which it reaches the minimum allowable flow rate. Then, the control rod is started to insert from the above time point to reduce the power to an aimed level. Thus, the insufficiency in the reactivity due to the increase in the xenon concentration can be compensated by the withdrawal of the control rods and the excess reactivity due to the decrease in the xenon concentration can be compensated by the insertion of the control rods, whereby the reactor power can be controlled depending on any demanded loads without deviating from the upper or lower limit for the flow rate of the reactor core water. (Moriyama, K.)

  3. Operational safety evaluation for minor reactor accidents

    Wang, O.S.

    1981-01-01

    The purpose of this paper is to address a concern of applying conservatism in analysing minor reactor incidents. A so-called ''conservative'' safety analysis may exaggerate the system responses and result in a reactor scram tripped by the reactor protective system (RPS). In reality, a minor incident may lead the reactor to a new thermal hydraulic steady-state without scram, and the mitigation or termination of the incident may entirely depend on operator actions. An example on a small steamline break evaluation for a pressurized water reactor recently investigated by the staff at the Washington Public Power Supply System is presented to illustrate this point. A safety evaluation using mainly the safety-related systems to be consistent with the conservative assumptions used in the Safety Analysis Report was conducted. For comparison, a realistic analysis was also performed using both the safety- and control-related systems. The analyses were performed using the RETRAN plant simulation computer code. The ''conservative'' safety analysis predicts that the incident can be turned over by the RPS scram trips without operator intervention. However, the realistic analysis concludes that the reactor will reach a new steady-state at a different plant thermal hydraulic condition. As a result, the termination of the incident at this stage depends entirely on proper operator action. On the basis of this investigation it is concluded that, for minor incidents, ''conservative'' assumptions are not necessary, sometimes not justifiable. A realistic investigation from the operational safety point of view is more appropriate. It is essential to highlight the key transient indications for specific incident recognition in the operator training program

  4. Fuel management for TRIGA reactor operators

    Totenbier, R.E.; Levine, S.H.

    1980-01-01

    One responsibility of the Supervisor of Reactor Operations is to follow the TRIGA core depletion and recommend core loading changes for refueling and special experiments. Calculations required to analyze such changes normally use digital computers and are extremely difficult to perform for one who is not familiar with computer language and nuclear reactor diffusion theory codes. The TRICOM/SCRAM program developed to perform such calculations for the Penn State TRIGA Breazeale Reactor (PSBR), has a very simple input format and is one which can be used by persons having no knowledge of computer codes. The person running the program need not understand computer language such as Fortran, but should be familiar with reactor core geometry and effects of loading changes. To further simplify the input requirements but still allow for all of the studies normally needed by the reactor operations supervisor, the options required for input have been isolated to two. Given a master deck of computer cards one needs to change only three cards; a title card, core energy history information card and one with core changes. With this input, the program can provide individual fuel element burn-up for a given period of operation and the k eff of the core. If a new loading is desired, a new master deck containing the changes is also automatically provided. The life of a new core loading can be estimated by feeding in projected core burn-up factors and observing the resulting loss in individual fuel elements. The code input and output formats have now been made sufficiently convenient and informative as to be incorporated into a standard activity for the Reactor Operations Supervisor. (author)

  5. Regulations and instructions for RA reactor operation

    1989-01-01

    This regulatory guide consists of following 4 chapters: Description of the RA reactor, organization scheme, regulations for performing experiments; Regulations for staff on duty; Instructions for operating the vacuum systems, heavy water and helium systems; and evacuation in case of accident [sr

  6. The SM and MIR reactors operation experience

    Kuprienko, V.A.; Klinov, A.V.; Svyatkin, M.N.; Shamardin, V.K.

    1995-01-01

    The SM and MIR operation experience show that continuous work on the problem of ageing, in all its aspects, allows for prolongation of the research plant life cycle by several folds as compared to the initial project. The redesigned SM-3 reactor will operate for another 20 years. The similar result is expected from the MIR planned reconstruction which scope will be the topic of future presentations. (orig.)

  7. Good practices in heavy water reactor operation

    2010-06-01

    The value and importance of organizations in the nuclear industry engaged in the collection and analysis of operating experience and best practices has been clearly identified in various IAEA publications and exercises. Both facility safety and operational efficiency can benefit from such information sharing. Such sharing also benefits organizations engaged in the development of new nuclear power plants, as it provides information to assist in optimizing designs to deliver improved safety and power generation performance. In cooperation with Atomic Energy of Canada, Ltd, the IAEA organized the workshop on best practices in Heavy Water Reactor Operation in Toronto, Canada from 16 to 19 September 2008, to assist interested Member States in sharing best practices and to provide a forum for the exchange of information among participating nuclear professionals. This workshop was organized under Technical Cooperation Project INT/4/141, on Status and Prospects of Development for and Applications of Innovative Reactor Concepts for Developing Countries. The workshop participants were experts actively engaged in various aspects of heavy water reactor operation. Participants presented information on activities and practices deemed by them to be best practices in a particular area for consideration by the workshop participants. Presentations by the participants covered a broad range of operational practices, including regulatory aspects, the reduction of occupational dose, performance improvements, and reducing operating and maintenance costs. This publication summarizes the material presented at the workshop, and includes session summaries prepared by the chair of each session and papers submitted by the presenters

  8. Experience in using a research reactor for the training of power reactor operators

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  9. RA reactor operation and maintenance in 1992, Part 1

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Tanaskovic, M.

    1992-01-01

    During 1992 Ra reactor was not in operation. All the activities were fulfilled according to the previously adopted plan. Basic activities were concerned with revitalisation of the RA reactor and maintenance of reactor components. All the reactor personnel was busy with reconstruction and renewal of the existing reactor systems and building of the new systems, maintenance of the reactor devices. Part of the staff was trained for relevant tasks and maintenance of reactor systems [sr

  10. Fractional power operation of tokamak reactors

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  11. Method of controlling the reactor operation

    Ishiguro, Akira; Nakakura, Hiroyuki.

    1987-01-01

    Purpose: To moderate vibratory response due to delayed operation thereby obtain stable controlled response in the operation control for a PWR type reactor. Method: the reactor operation is controlled by the axial power distribution control by regulating the boron concentration in primary coolants with a boron density control system and controlling the average temperature for the primary coolants with the control rod control system. In this case, the control operation and the control response become instable due to transmission delay, etc. of aqueous boric acid injection to the primary coolant circuits to result in vibratory response. In the present invention, signals are prepared by adding the amount in proportion to the variation coefficient with time of xenone concentration obtained from the measured value for the reactor power added to the conventional axial power distribution parameter deviation and used as the input signals for the boron concentration control system. As a result, the instability due to the transmission delay of the aqueous boric acid injection is improved by the preceding control by the amount in proportion with the variation coefficient with time of the xenone concentration. An advantageous effect can be expected for the load following operation during day time according to the present invention. (Kamimura, M.)

  12. 1984 Operation of the high flux reactor

    1985-01-01

    The programme resources in 1984 were largely devoted to the replacement of the old reactor vessel and its peripheral equipment. The original vessel had been in operation for more than 20 years and doubts had arisen about the condition of the aluminium tank after so long an exposure to neutrons. The operation, which had never been attempted before on a reactor of that size and complexity was planned and prepared over a number of years to take advantage of the occasion to provide a much improved vessel, incorporating the latest design features. The plant was shut down at the end of November 1983 and the 14 months operation began with a short cooling-off period for decay of short lived radioactivity followed by removal of the old tank and its dissection into pieces convenient for consolidation and storage as radioactive waste. After decontamination of the shielding pool, the new vessel and neutron beam tubes were installed and the reactor was recommissioned. Routine 45 MW operation was resumed on 14 February 1985 and has been uneventful since then

  13. Safe operation and maintenance of research reactor

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  14. Safe operation and maintenance of research reactor

    Munsorn, S.

    1999-01-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U 3 O 8 - Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  15. Operating reactors licensing actions summary. Vol.4, No. 4

    1984-06-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors

  16. Operator Support System for Pressurized Water Reactor

    Wei Renjie; Shen Shifei

    1996-01-01

    Operator Support System for Pressurized Water Reactor (OSSPWR) has been developed under the sponsorship of IAEA from August 1994. The project is being carried out by the Department of Engineering Physics, Tsinghua University, Beijing, China. The Design concepts of the operator support functions have been established. The prototype systems of OSSPWR has been developed as well. The primary goal of the project is to create an advanced operator support system by applying new technologies such as artificial intelligence (AI) techniques, advanced communication technologies, etc. Recently, the advanced man-machine interface for nuclear power plant operators has been developed. It is connected to the modern computer systems and utilizes new high performance graphic displays. (author). 6 refs, 4 figs

  17. Review of Operation and Maintenance Support Systems for Research Reactors

    Jin, Kyungho; Heo, Gyunyoung; Park, Jaekwan

    2014-01-01

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  18. Reactor operations for nuclear pumping of lasers

    Beck, G; Cooper, G [University of Illinois (United States)

    1974-07-01

    Experiments involving the measurement of gas parameters that are related to lasing, and lasing of various gas mixtures have comprised a major part of the utilization of the University of Illinois Advanced TRIGA Reactor since the upgrading of the facility was completed in 1969. A thru beam port, which was added during upgrading, has been the facility used for these measurements. The laser cell is placed in the port adjacent to the core. Alignment is then accomplished by using both ends of the port or by a mirror placed at the back side of the apparatus. The reactor has been operated in all modes (pulsing, square wave, and steady state) for the experiments although pulsing is the primary mode that is used. Laser enhancement has been obtained in several cases, but efforts toward direct pumping from the radiation alone have not as yet succeeded. Improved laser operation from direct pumping has been suggested with an emphasis on high-powered systems where the basic input energy is to be derived from a nuclear reactor.

  19. Fast reactor operation in the United States

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  20. Control of water chemistry in operating reactors

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  1. Control of water chemistry in operating reactors

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  2. Linguistic Formalism for Semi-Autonomous Reactor Operation

    Joo, Sungmoon; Seo, Sang Mun; Suh, Yong-Suk; Park, Cheol

    2017-01-01

    The ultimate goal of our work is to develop a novel, integrated system for semi-autonomous reactor operation by introducing an interfacing language shared by human reactor operators and artificially intelligent service agents (e.g., robots). We envision that human operators and artificially intelligent service agents operate the reactor cooperatively in the future. For example, an artificially intelligent service agent carries out a human reactor operator's command or reports the result of a task commanded by the human reactor operator. This work presents preliminary work towards a unified linguistic formalism for cooperative, semiautonomous reactor operation. Application of the proposed formalism to reactor operator communication domain shows that the formalism effectively captures the syntax and semantics of the domain-specific language defined by the communication protocol.

  3. Operation and utilizations of Dalat nuclear research reactor

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  4. Safety evaluation of the Dalat research reactor operation

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  5. Operating reactors licensing actions summary. Vol. 3, No. 3

    1983-04-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regularory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  6. Operating reactors licensing actions summary. Volume 5, No. 2

    1985-04-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the Operating Reactors Licensing Actions Program

  7. Effect of Operating Conditions on Sulfur and Metal Content of Basrah Crude Oil

    Muzher M. Ibrahim

    2013-05-01

    Full Text Available       In the present work, Basrah crude oil, atmospheric distillate of 305-623 K boiling range, vacuum distillate of 623-823 K boiling range, and wide petroleum distillate of boiling range 305-823 K are hydrotreated in trickle bed reactor using Cobalt-Molybdenum alumina as a catalyst. Hydrotreating temperatures are 598-648K, 598-673K, 648-673K and 648K respectively while LHSV are 0.7-2 hr-1, 1 hr-1, 0.7-2 hr-1 respectively. The operating pressure  and H2/Oil ratio for all experiments are kept constant at 3 Mpa and 300 liter/liter.    The results show that Sulphur and metal content decreased with increasing temperature and decreasing LHSV.     Vacuum residue of boiling range above 823K is mixed with hydrotreated atmospheric distillate, vacuum distillate and with the hydrotreated wide petroleum distillate. The temperature for hydrotreating the mixed sample is 648K and LHSV is 1 hr-1. It was found that hydrotreating crude oil is the best choice since it gives the highest removal of sulphur, vanadium and cobalt removal.

  8. Twenty years of health physics research reactor operation

    Sims, C.S.; Gilley, L.W.

    1983-01-01

    The Health Physics Research Reactor at the Oak Ridge National Laboratory has been in regular use for more than two decades. Safe operation of this fast reactor over this extended period indicates that (1) fundamental design, (2) operational procedures, (3) operator training and performance, (4) maintenance activites, and (5) management have all been eminently satisfactory. The reactor and its uses are described, the operational history and significant events are reviewed, and operational improvements and maintenance are discussed

  9. Research about reactor operator's personality characteristics and performance

    Wei Li; He Xuhong; Zhao Bingquan

    2003-01-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  10. Operating experiences at the Finnish TRIGA reactor

    Salmenhaara, Seppo

    1988-01-01

    The Finnish TRIGA reactor has been in operation since March 1962. There are still 57 original Al-clad fuel elements in the core. So far we have had only two fuel cladding failures in 1981 and 1988. The first one was an Al-clad element and the second one a SS-clad. The low rate of fuel cladding failures has made it possible to use continuously also the Al-clad fuel elements. Although some conventional irradiations of certain type have been repeated successfully tens of times, new and unexpected incidents can still take place. As an example an event of a leaking irradiation capsule is described

  11. Lessons from feedback of safety operating experience for reactor physics

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  12. Operating reactors licensing actions summary. Volume 5, No. 7

    1985-09-01

    The Operating Reactors Licensing Actions Summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  13. Operational methods of the fluidized bed nuclear reactor

    Borges, V.; Sefidvash, F.

    1993-01-01

    The operational curve of reactivity as a function of porosity of the Fluidized Bed Nuclear Reactor is presented. The strategies for start-up, shut-down and maintaining the reactor critical during operation are described. The inherent safety of the reactor from neutronic point of view under steady state condition is demonstrated. (author)

  14. Fuel failure detection in operating reactors

    Seigel, B.; Hagen, H.H.

    1977-12-01

    Activity detectors in commercial BWRs and PWRs are examined to determine their capability to detect a small number of fuel rod failures during reactor operation. The off-gas system radiation monitor in a BWR and the letdown line radiation monitor in a PWR are calculated to have this capability, and events are cited that support this analysis. Other common detectors are found to be insensitive to small numbers of fuel failures. While adequate detectors exist for normal and transient operation, those detectors would not perform rapidly enough to be useful during accidents; in most accidents, however, primary system sensors (pressure, temperature, level) would provide adequate warning. Advanced methods of fuel failure detection are mentioned

  15. Self operation type reactor scram device

    Saito, Makoto; Gunji, Minoru.

    1992-01-01

    A control rod having neutron absorbers therein is held by a curie point electromagnet by way of a control rod extension shaft. The electromagnet is suspended from a vertically movable driving shaft in an upper guide tube. Then, a heater is disposed at the lower portion in the inner side of the upper guide tube. Upon a function confirmation test, the electromagnet is at first pulled up to the inside of the upper guide tube. Subsequently, the electromagnet is heated by the heater by a temperature higher than the curie point of the temperature sensing magnetic material. If the function is normal, armature connected to the control rod extension tube is separated. With such a constitution, the electromagnetic portion is isolated from a coolant main stream, thereby enabling to avoid the cooling effect by the stream of coolants. Accordingly, the operation test for confirming the integrity of the function of the curie point electromagnet can be conducted while placing the electromagnet in the reactor core as it is during actual reactor operation. (I.N.)

  16. Self operation type reactor control device

    Saito, Makoto; Gunji, Minoru.

    1990-01-01

    A boiling-requefication chamber containing transporting materials having somewhat higher boiling point that the usual reactor operation temperature and liquid neutron absorbers having a boiling point sufficiently higher than that of the transporting materials is disposed near the coolant exit of a fuel assembly and connected with a tubular chamber in the reactor core with a moving pipe at the bottom. Since the transporting materials in the boiling-requefication chamber is boiled and expanded by heating, the liquid neutron absorbers are introduced passing through the moving pipe into the cylindrical chamber to control the nuclear reactions. When the temperature is lowered by the control, the transporting materials are liquefied to contract the volume and the liquid neutron absorbers in the cylindrical chamber are returned passing through the moving tube into the boiling-liquefication chamber to make the nuclear reaction vigorous. Thus, self-operation type power conditioning and power stopping are enabled not by way of control rods and not requiring external control, to prevent scram failure or misoperation. (N.H.)

  17. BWR type reactor and its operating method

    Ootsuji, Niro.

    1983-01-01

    Purpose: To regulate the control rod extraction operation such that an assumed control rod drop accident, if should occur, may not lead to further serious accidents, as well as enable to improve the working life of the control rod. Method: A plurality of control rods disposed among a plurality of fuel assemblies constituting the reactor core for suppressing the reactor core reactivity are divided into two groups depending on the descending speed, and the number of rods with a faster descending speed is set to less than 1/4 of the total number of the control rods. Then, the control rods are arranged such that those rods of the faster descending speed may be set every one another in any of the vertical, lateral and orthogonal directions. Further, it is always judged as to the possibility of extracting the control rods with the faster descending speed by a fast control rod extraction judging circuit to issue a signal to a control rod extraction inhibition circuit, so that the extraction operation for the control rods with the faster descending speed is started after all of the control rods with the slow descending speed have been extracted. Accordingly, if a control rod dropping accident should occur, abrupt power change can be avoided to thereby minimize the development of the accident. (Horiuchi, T.)

  18. Regulation for installation and operation of marine reactors

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  19. Operation and maintenance of 1MW PUSPATI TRIGA reactor

    Adnan Bokhari; Mohammad Suhaimi Kassim

    2006-01-01

    The Malaysian Research Reactor, Reactor TRIGA PUSPATI (RTP) has been successfully operated for 22 years for various experiments. Since its commissioning in June 1982 until December 2004, the 1MW pool-type reactor has accumulated more than 21143 hours of operation, corresponding to cumulative thermal energy release of about 14083 MW-hours. The reactor is currently in operation and normally operates on demand, which is normally up to 6 hours a day. Presently the reactor core is made up of standard TRIAGA fuel element consists of 8.5 wt%, 12 wt% and 20 wt% types; 20%-enriched and stainless steel clad. Several measures such as routine preventive maintenance and improving the reactor support systems have been taken toward achieving this long successful operation. Besides normal routine utilization like other TRIGA reactors, new strategies are implemented for effective increase in utilization. (author)

  20. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    2013-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0260] Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence The U.S. Nuclear Regulatory Commission (NRC) is issuing this Federal Register notice to inform the public of a slight change in the manner of distribution of publicly available operating reactor licensing...

  1. Report of the reactor Operators Service - Annex F

    Zivotic, Z.

    1990-01-01

    RA reactor operators service is organized in two groups: permanent staff (chief operator, chief shift operators and operators) and changeable group which is formed according to the particular operation needs for working in shifts. During 1989 the operators service staff participated in the following activities: reconstruction of the existing reactor systems, control of the emergency cooling system, construction of the experimental loop 'Vinca-1'. Education of the staff was organized through routine courses, practical training is foreseen for 1991 [sr

  2. The development of reactor operator license examination question bank

    Kim, In Hwan; Woo, S. M.; Kam, S. C.; Nam, K. J.; Lim, H. P.

    2001-12-01

    The number of NPP keeps increasing therefore there is more need of reactor operators. This trend requires the more efficiency in managing the license examination. Question bank system will help us to develop good quality examination materials and keep them in it. The ultimate purpose of the bank system is for selecting qualified reactor operators who are primarily responsible for the safety of reactor operation in NPP

  3. RA reactor operation and maintenance in 1996, Part 1

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1996-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. Since the RA reactor is shutdown since 1984, it is high time for decision making of its future status. Possible solutions for the future status of the RA reactor discussed in this report are: renewal of reactor components for the reactor restart, conservation of the reactor (temporary shutdown) or permanent reactor shutdown. Control and maintenance of the reactor instrumentation and devices was done regularly but dependent on the availability of the spare parts and financial means. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  4. RA Reactor operation and maintenance (I-IX), Part I

    Zecevic, V.

    1963-12-01

    The report on RA reactor operation and maintenance for year 1963 is divided in six tasks. This volume contains the introductory report, and three tasks of the final report, namely reactor exploitation, reactivity changes of the RA reactor before repair, planning of refuelling

  5. Operation management of the prototype heavy water reactor 'Fugen'

    Muramatsu, Akira; Takei, Hiroaki; Iwanaga, Shigeru; Noda, Masao; Hara, Hidemi

    1983-01-01

    The advanced thermal reactor Fugen power station has continued almost smooth operation since it began the full scale operation as the first homemade power reactor in Japan in March, 1979. In the initial period of operation, some troubles were experienced, but now, it can be said that the operational techniques of heavy water-moderated, boiling light water-cooled, pressure tube type reactors have been established, through the improvement of the operational method and equipment, and the operational experience. Also, the verification of the operational ability, maintainability, reliability and safety of this new type reactor, that is the mission of the prototype reactor, achieved steadily the good results. Hereafter, the verification of operational performance is the main objective because it is required for the design, construction and operation of the demonstration reactor. The organization for the operation management and operation, the communication at the time of the abnormality, the operation of the plant, that is, start up, stop and the operation at the rated output, the works during plant stoppage, the operation at the time of the plant abnormality, the operation of waste treatment facility and others, the improvement of the operational method, and the education and training of operators are reported. (Kako, I.)

  6. A series of lectures on operational physics of power reactors

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  7. Regulation for installation and operation of experimental-research reactor

    1979-01-01

    The ordinance is stipulated under the Law for regulation of nuclear raw materials, nuclear fuel materials and reactors and the provisions for installation and operation of reactor in the order for execution of the law. Basic concepts and terms are defined, such as, radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; preserved area; inspected surrounding area and employee. An application for permission of installation of reactor shall list such matters as: the maximum continuous thermal output of reactor; location and general construction of reactor facilities; construction and equipment of the main reactor and other facilities for nuclear fuel materials; cooling and controlling system and radioactive waste, etc. An operation plan of reactor for three years shall be filed till January 31 of the fiscal year preceding that one the operation begins. Records shall be made and kept for specified periods respectively on inspection of reactor facilities, operation, fuel assembly, radiation control, maintenance, accidents of reactor equipment and weather. Detailed rules are settled for entrance limitation to controlled area, exposure dose, inspection, check up and regular independent examination of reactor facilities, operation of reactor, transportation of substances contaminated by nuclear fuel materials within the works and storage, etc. (Okada, K.)

  8. Regulations for RA reactor operation; Propisi nuklearnog reaktora 'RA'

    NONE

    1980-09-15

    Regulations for RA reactor operation are written in accordance with the legal regulations defined by the Law about radiation protection and related legal acts, as well as technical standards according to the IAEA recommendations. The contents of this book include: fundamental data about the reactor; legal regulations for reactor operation; organizational scheme for reactor operation; general and detailed instructions for operation, behaviour in the reactor building, performing experiments; operating rules for operation under steady state and accidental conditions. [Serbo-Croat] Propisi o radu nuklearnog reaktora RA pisani su tako da svi zakonski propisi definisani 'Zakonom o zastiti od jonizujuceg zracenja' i pratecim propisima (devet pravilnika) kao i tehnicke norme prema preporukama MAAE budu postovani u punoj meri pri radu reaktora. Sadrzaj ove knjige obuhvata: osnovne podatke o reaktoru; zakonske propise; organizaciju rada reaktora RA; opste propise o rezimu rada, kretanju u zgradi reaktora, izvodjenju eksperimenata; pogonske propise za rad u normalnom rezimu i u slucaju udesa.

  9. Operating reactors licensing actions summary. Volume 5, No. 6

    1985-08-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published for internal NRC use in managing the Operating Reactors Licensing Actions Program. Its content will change based on NRC management informational requirements

  10. Operating reactors licensing actions summary. Vol. 3, No. 6

    1983-07-01

    The operating reactors licensing actions summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Management and Program Analysis. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program. Its content will change based on NRC management informational requirements

  11. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  12. Operating reactors licensing actions summary. Volume 5, Number 1

    1985-03-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management. This summary report is published primarily for internal NRC use in managing the operating reactors licensing actions program

  13. General areas needing chemical competence to support reactor operation

    Proksch, E.; Bildstein, H.

    1963-01-01

    Chemical competence is needed not only for the development of new types of reactors but also for the start-up and safe operation of reactors. The activities of chemistry and chemical engineering cover a number of fields, namely chemical analysis, radiochemical analysis, corrosion research, radiolysis of water and water purification. The author reviews fields in reactor operation and maintenance in which chemical competence is needed. (author). 9 refs

  14. International Experience with Fast Reactor Operation & Testing

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  15. Neutron field control cybernetics model of RBMK reactor operator

    Polyakov, V.V.; Postnikov, V.V.; Sviridenkov, A.N.

    1992-01-01

    Results on parameter optimization for cybernetics model of RBMK reactor operator by power release control function are presented. Convolutions of various criteria applied previously in algorithms of the program 'Adviser to reactor operator' formed the basis of the model. 7 refs.; 4 figs

  16. Strategies of operation cycles in BWR type reactors

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  17. LBB application in the US operating and advanced reactors

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  18. Proposed Reactor Operating Experience Feedback System Development

    Ahn, Seung Hoon; Kim, Min Chul; Huh, Chang Wook; Lee, Durk Hun; Bae, Koo Hyun

    2006-01-01

    Most events occurring in nuclear power plants are not individually significant, and prevented from progressing to accident conditions by a series of barriers against core damage and radioactive releases. Significant events, if occur, are almost always a breach of these multiple barriers. As illustrated in the 'Swiss cheese' model, the individual layers of defense or 'cheese slices' have weakness or 'holes.' These weaknesses are inconstant, i.e., the holes are open or close at random. When by chance all the holes are aligned, a hazard causes the significant event of concern. Elements of low significant events, inattention to detail, time or economic pressure, uncorrected poor practices/habits, marginal maintenance and equipment care, etc., make holes in the layers of defense; some elements may make more holes in different layers, incurring more chances to be aligned. An effective reduction of the holes, therefore, is gained through better knowledge or awareness of increasing trends of the event elements, followed by appropriate actions. According to the Swiss cheese metaphor, attention to the Operating Experience (OE) feedback system, as opposed to the individual and to randomness, is drawn from a viewpoint of reactor safety

  19. Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in Bench scale reactors

    Nguyen, N.L.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Universitaet Karlsruhe (T.H.) (Germany); Hardy, E.H. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.) (Germany)

    2006-07-15

    The influence of fluid dynamics on the hydrodesulfurization (HDS) reactions of a diesel oil in bench-scale reactors was evaluated. The porosities and liquid saturations of catalyst beds were quantified by using the MRI technique. The gas-liquid systems used in the experiments were nitrogen diesel and hydrogen diesel. An apparatus was especially constructed, allowing in situ measurements of gas and liquid distributions in packed beds at elevated pressure and temperature up to 20 bar and 200 C, respectively. The reactor itself had a length of 500 mm and an internal diameter of 19 mm. The packed beds used in this MRI study consisted of: (1) 2 mm diameter nonporous spherical glass beads and (2) 1.3 mm diameter porous Al{sub 2}O{sub 3} trilobes having the same size as the original trilobe catalyst used in HDS bench-scale experiments. The superficial gas and liquid velocities were set within the range of trickle flow, e.g., u{sub 0G} = 20-500 mm/s and u{sub 0L} = 0.1-6 mm/s. In parallel with the MRI experiments, the hydrodesulfurization of a gas oil was investigated in a bench-scale plant. Its reactor had the same dimensions of the trickle-bed column used in the MRI experiments and was filled with original trilobe catalyst. These catalytic experiments were carried out at a wide range of operating conditions (p = 30-80 bar, T = 300-380 C, LHSV = 1-4 h{sup -1}). The results of both fluid dynamic and catalytic reaction experiments were then combined for developing a simulation model to predict the HDS performance by accounting for fluid dynamic nonidealities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  20. Regulation for installation and operation of reactor

    1977-01-01

    Concerning the description of an application for the approval of installation of a reactor, stipulated in Article 23 paragraph 2 of the Law for Regulation of Nuclear Source Materials, Nuclear Fuel Materials and Reactors (hereinafter referred to as the Law), the following items must be written. Namely, the heat output of the reactor in Article 23 paragraph 2 item 3 of the Law, the position, structure and facilities of the reactor facilities, described according to the stipulated classifications, the work plan, nuclear fuel materials employed, and the disposal of spent fuel. Concerning an application for the approval of a reactor installed aboard a foreign ship, stipulations are made separately. Description of an application for the approval of change of the heat output of a reactor and others should include the stipulated items. When it is wished to undergo inspection of the construction and performance of reactor facilities, an application for that end including the required items should be filed. Various safety measures preventing personnel from being exposed to radiation should be taken. When a foreign atomic-powered ship tries to enter a Japanese port, the stipulated necessary informations should be reported 60 days before such ship actually enters the Japanese port. A chief technician of reactors should take and pass the official examination. (Rikitake, Y.)

  1. RA reactor operation and maintenance in 1994, Part 1

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1994-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  2. Fast reactor operating experience gained in Russia: Analysis of anomalies and abnormal operation cases

    Ashurko, Y.M.; Baklushin, R.P.; Zagorulko, Y.I.; Ivanenko, V.N.; Matveyev, V.P.; Vasilyev, B.A.

    2000-01-01

    Review of various anomalous events and abnormal operation experience gained in the process of Russian fast reactors operation is given in the paper. The main information refers to the BN-600 demonstration reactor operation. Statistical data on sodium leaks and steam generator failures are presented, and sources of these events and countermeasures taken to avoid their appearance on the operating reactors as well as related changes made in the BN-800 reactor design are considered. In the paper, some features of impurities behaviour are considered in various modes of the BN-600 reactor operation. Information is given on the impurities ingress into the circuits, on abnormal situation emerged in the process of the BN-600 reactor operation and its probable cause. Information is presented on the event related to the increased torque of the BN-600 reactor central rotating column and repair works performed. (author)

  3. Operation and maintenance of the RA Reactor in 1985, Part 1, Annex A - Reactor applications

    Martinc, R.; Stanic, A.

    1985-01-01

    This document describes reactor operation from 1981 to 1985, including data about short term (shorter than 24 hours) and long term operation interruptions, as well as safety shutdown and reactor applications. During 1982, 1983 until July 1984 reactor was operated at 2 MW power according to the plan. Plan was not fulfilled in 1983 because deposits were noticed again, at the end of 1982, on the surface of fuel elements. Reactor was mainly used for neutron activation purposes and isotope production as source of neutrons for experimental purposes [sr

  4. Radiological monitoring related to the operation of PUSPATI's Triga Reactor

    Fatimah Mohamad Amin; Mohamad Yusof Mohamad Ali; Lau How Mooi; Idris Besar.

    1983-01-01

    Reactor operation is one of the main activities carried out at the Tun Ismail Atomic Research Centre (PUSPATI) which requires radiological monitoring. This paper describes the programme for radiological monitoring which is related to the operation of the 1 MW Triga MK II research reactor which was commissioned in July, 1982. This programme includes monitoring of the radiation and contamination levels of the reactor and its associated facilities and environmental monitoring of PUSPATI's site and its environs. The data presented in this paper covers the period between 1982 to 1983 which includes both the pre-operational and operational phases of the monitoring programme. (author)

  5. Annual report 1989 operation of the high flux reactor

    Ahlf, J.; Gevers, A.

    1989-01-01

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  6. BEACON TSM application system to the operation of PWR reactors

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.

    2012-01-01

    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)

  7. Annual report 1990. Operation of the high flux reactor

    Ahlf, J.; Gevers, A.

    1990-01-01

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  8. Annual Report 1991. Operation of the high flux reactor

    Ahlf, J.; Gevers, A.

    1992-01-01

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  9. Operating experience with the DRAGON High Temperature Reactor experiment

    Simon, R.A.; Capp, P.D.

    2002-01-01

    The Dragon Reactor Experiment in Winfrith/UK was a materials test facility for a number of HTR projects pursued in the sixties and seventies of the last century. It was built and managed as an OECD/NEA international joint undertaking. The reactor operated successfully between 1964 and 1975 to satisfy the growing demand for irradiation testing of fuels and fuel elements as well as for technological tests of components and materials. The paper describes the reactor's main experimental features and presents results of 11 years of reactor operation relevant for future HTRs. (author)

  10. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  11. Nuclear safety requirements for operation licensing of Egyptian research reactors

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  12. From USA operation experience of industrial uranium-graphite reactors

    Burdakov, N.S.

    1996-01-01

    The review on materials, presented by a group of the USA specialists at the seminar in Moscow on October 9-11, 1995 is considered. The above specialists shared their experience in operation of the Hanford industrial reactors, aimed at plutonium production for atomic bombs. The purpose of the above visit consisted in providing assistance to the Russian specialists by evaluation and modernization of operational conditions safety improvement of the RBMK type reactors. Special attention is paid to the behaviour of the graphite lining and channel tubes with an account of possible channel power interaction with the reactor structural units. The information on the experience of the Hanford reactor operation may be useful for specialists, operating the RBMK type reactors

  13. Massive computation methodology for reactor operation (MACRO)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael; Koning, Arjan; Rochman, Dimitri; Bejmer, Klaes-Hakan; Henriksson, Hans

    2010-01-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  14. Massive computation methodology for reactor operation (MACRO)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  15. Small nuclear reactor safety design requirements for autonomous operation

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  16. Operating manual for the Health Physics Research Reactor

    1985-11-01

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  17. PCI. Mechanism, measures, rules for reactor operation

    Bender, D.; Bender, G.; Dewes, P.; Wensauer, A.

    2009-01-01

    Though modern and advanced fuel assembly designs for BWR as AREVA's ATRIUM trademark 10 fuel assemblies show a high reliability, fuel failures are still encountered. The ZTF (Zero Tolerance for Failures) initiative was launched by AREVA to further upgrade BWR fuel assembly reliability towards failure free fuel. The introduction of the zirconium liner cladding has greatly reduced pellet cladding interaction (PCI) failures. However the phenomenon of PCI in reactor operation was not completely eliminated. There were failures in AREVA's BWR fuel with liner cladding attributed to PCI, but when subject to hot cell examinations, all these have been attributed to ''non-classical'' PCI, where local cladding stress is amplified due to missing pellet surface (MPS). However, in order to support the efforts to eliminate all possible root causes for fuel failures, AREVA NP addresses PCI with a ''multi-track'' strategy. First, and most important, the development of chromia doped pellets and more favorable pellet geometries aim at fuel that by design is protected as much as possible against PCI. A high pellet quality is further assured by the final assessment of the pellet appearance by an automatic visual inspection system in the pellet manufacturing lines. In order to support these hardware improvements, AREVA NP provides software aimed to minimize PCI risks. Two main approaches are described in this paper: - The ''classical'' PCI operation and maneuvering guidelines restrict power maneuvering and limit the ramping rates with the goal to control the stress level of the cladding. AREVA's guidelines are based on ramp tests as well as on extensive power plant experience, and are updated to reflect the performance of liner cladding. - Additional effort is made to further understand the PCI phenomenon, e.g. by the use of detailed fuel rod thermal-mechanical codes that provide far better insight of the state variables that control the process of rupture due to stress corrosion

  18. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  19. Artificial intelligence program in a computer application supporting reactor operations

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II

  20. Code on the safety of nuclear research reactors: Operation

    1992-01-01

    The purpose of this publication is to provide the essential requirements and recommendations for the safe operation of research reactors, with emphasis on the supervisory and managerial aspects. However, the publication also provides some guidance and information on topics concerning all the organizations involved in operation. These objectives are expressed in terms of requirements and recommendations for the safe operation of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on the ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop regulations and safety criteria for its research reactor programme.

  1. RA Research reactor Annual report 1981 - Part 1, Operation, maintenance and utilization of the RA reactor

    Sotic, O.; Milosevic, M.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.

    1981-12-01

    The RA nuclear reactor stopped operation after March 1979 campaign due to appearance of aluminium oxyhydrates deposits on the surface of fuel element claddings. Relevant decisions of the Sanitary inspection body of the Ministry of health and the Director General of the 'Boris Kidric' Institute of nuclear sciences, Vinca, banned further reactor operation until reasons caused aluminium oxyhydrates deposition are investigated and removed to enable regular reactor operation. Until the end of 1979 and during 1980, after a series of analyses and findings that caused cease of reactor operation, all the preparatory actions needed for restart were performed. Due to the fact that there is no emergency cooling system and no appropriate filtering system at the reactor, and according to the new regulations about start up of nuclear facilities, the Sanitary inspection body made a decision about temporary licence for reactor start-up meaning performance of the 'zero experiment' limiting the operating power to 1% of the nominal power. Accordingly the reactor was restarted on January 21 1981. Criticality was reached with the core made of 80% enriched fuel elements only. After the experiment was finished by the end of March a permission was demanded for operation at higher power levels at full power. Taking into account the state of the reactor components the operating licence was issued limiting the power to 2 MW until reconstruction of the ventilation system and construction of the emergency cooling system are fulfilled. Program of testing operation started on September 15 1981 increasing gradually the operating power. Thus the reactor was operated at 2 MW power for 15 days during November and December. The total production achieved in 1981 was 1698 MWh. This enabled isotopes production at the reactor during last two months. Control and maintenance of the reactor components and systems was done regularly and efficiently within limits imposed by availability of spare parts. The

  2. Calculations for accidents in water reactors during operation at power

    Blanc, H.; Dutraive, P.; Fabrega, S.; Millot, J.P.

    1976-07-01

    The behaviour of a water reactor on an accident occurring as the reactor is normally operated at power may be calculated through the computer code detailed in this article. Reactivity accidents, loss of coolant ones and power over-running ones are reviewed. (author)

  3. On the slimeless water operation in the RBMK type reactors

    Margulova, T.Kh.; Mamet, V.A.; Nikitina, I.S.; Karakhanyan, L.N.

    1988-01-01

    Water chemistry conditions of the operating RBMK-1000 and RBMK-1500 units are analysed. Inevitability of iron oxide deposits in RBMK-1000 and particularly in RBMK-1500 reactors is demonstrated. Organization of a new slimeless correcting water chemistry for RBMK-1000 and RBMK-1500 reactors is recommended

  4. Operating reactors licensing actions summary. Volume 5, No. 9

    1985-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  5. Operating reactors licensing actions summary. Volume 5, No. 8

    1985-10-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  6. Operating reactors licensing actions summary. Volume 4, No. 9

    1984-11-01

    This document is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the division of licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  7. Operating reactors licensing actions summary. Vol. 4, No. 2

    1984-04-01

    This summary is designed to provide the management of the Nuclear Regulatory Commission (NRC) with an overview of licensing actions dealing with operating power and nonpower reactors. These reports utilize data collected from the Division of Licensing in the Office of Nuclear Reactor Regulation and are prepared by the Office of Resource Management

  8. Development of operation management database for research reactors

    Zhang Xinjun; Chen Wei; Yang Jun

    2005-01-01

    An Operation Database for Pulsed Reactor has been developed on the platform for Microsoft visual C++ 6.0. This database includes four function modules, fuel elements management, incident management, experiment management and file management. It is essential for reactor security and information management. (authors)

  9. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  10. Analysis of the radiometric survey during the Argonauta reactor operation

    Oliveira, Eara de S.L.; Cardozo, Katia K.M.; Silva, Joao Carlos P.; Santos, Joao Regis dos

    2013-01-01

    The Argonaut reactor at the Institute of Nuclear Engineering-IEN/CNEN, operates normally, the powers between 1.7 and 340 W on neutrongraphy procedures, production of radionuclides and experimental reactor physics lessons to postgraduate courses. The doses from neutrons and gamma radiation are measured when the reactor is critical, inside the reactor hall and surrounding regions. A study of the data obtained was performed to evaluate the daily need of this survey in the reactor hall. Taking into account the principle ALARA, which aims to optimize and minimize the dose received by the individual, we propose, in this work, through an analysis of the acquired data in occupational radiometric surveys, a reformulation of the area monitoring routine practiced by the team of radiological protection of the Institute of Nuclear Engineering - IEN/CNEN-RJ, whereas other monitoring routines regarding the radiological protection are also applied in the routine of the reactor. The operations under review occurred with the reactor operating 340 W power at intervals of 60, 120 and 180 minutes, in monitoring points in controlled areas, supervised and free. The results showed significant dose values in the output of the J-Channel 9 when the operation occurs with this open. With 180 minutes of operation, the measured values of dose rate were lower than the values at 60 min and 120 operations min. At the point in the supervised area, offsite to the reactor hall, situated in the direction of the J-Channel 9, the value reduces more than 14% in any operating time in relation to the dose rate measured at the point opposite the canal. There is a 50% reduction in the dose rates for operations with and J-9 closed. The results suggest a new frequency of radiometric survey whose mode of operation is maintained in similar conditions, since combined with other relevant practices of radiation protection

  11. Physics experiments with the operating reactor

    Cullington, G R; King, D C

    1973-09-27

    Experimental techniques have been developed and used on Dragon to give consistent information on excess reactivity and shut down margin. The reactivity measurements have been correlated with the theoretical calculations and have led to improvements in the calculations. The methods used and the results obtained are accepted by the Safety Committee as sufficient evidence for compliance with the fuel loading safety rules. Although the reactor was not designed as an experimental facility, flux and dose measurements experiments have been successfully carried out. Mass flow and negative reactivity transient measurements have been carried out. These are valuable for demonstration of the flexibility of the reactor system and for giving confidence in theoretical calculations.

  12. Fuel deposits, chemistry and CANDU® reactor operation

    Roberts, J.G.

    2014-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU® reactor, the first being the Nuclear Power Demonstration - 2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channelled to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5. The difference being that during 'hot conditioning' of CANDU® heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  13. Simulation for Remote Operation for REX10 Nuclear Reactor

    Lee, Sim Won; Kim, Dong Su; Na, Man Gyun; Lee, Yoon Joon; Lee, Yeon Gun; Park, Goon Cherl

    2010-01-01

    The newly designed REX10 (Regional Energy Reactor, 10MWth) is an environmentally-friendly and stable small nuclear reactor for a small-scale reactor based Multi-purpose regional energy system. The REX10 has been developed to maintain system safety in order to be placed in densely populated region, island, etc. In addition, it is significantly hard to recruit many operation and maintenance personnel for small power reactors differently from usual commercial reactors because of its remote location and of economic reasons. In order to overcome these constraints, to decrease the operation cost by reducing operation and maintenance personnel, and to increase plant reliability through autonomous plant control, it is needed to design the control system of the small power reactors and to establish its unmanned remote operation system. In this study, the REX10 reactor core thermal power controller is designed by using a REX10 code analyzer. The remote control facility through man-machine interface (MMI) design and interface between programming languages was established and it was used to verify remote operation of REX10

  14. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1986

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1986-01-01

    In order to enable future reliable operation of the RA reactor, according to new licensing regulations, three major tasks started in 1984 were fulfilled: building of the new emergency system, reconstruction of the existing ventilation system, and reconstruction of the power supply system. Simultaneously in 1985/1986 renewal of the instrumentation and reconstruction of the system for handling and storage of the spent fuel in the reactor building have started. Design projects for these tasks are almost finished and the reconstruction of both systems is expected to be finished until 1988 and mid 1989 respectively. RA reactor Safety report was finished according to the recommendations of the IAEA. Investments in 1986 were used for 8000 kg of heavy water, maintenance of reactor systems and supply of new components, reconstruction of reactor systems. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  15. Reactor helium system, design specification, operation and handling

    Badrljica, R.

    1984-06-01

    Apart from detailed design specification of the helium cover gas system of the Ra reactor, this document includes description of the operating regime, instructions for manipulations in the system with the aim of achieving and maintaining stationary gas circulation [sr

  16. Operating history of U.S. nuclear power reactors

    1974-01-01

    The operating history of U. S. nuclear power plants through December 31, 1974 has been collected. Included are those nuclear reactor facilities which produce electricity, even if in token amounts, or which are part of a development program concerned with the generation of electricity through the use of a nuclear reactor as a heat source. The information is based on data furnished by facility operators. The charts are plotted in terms of cumulative thermal energy as a function of time. Since only those shutdowns of five days or more are shown, the charts do not give a detailed history of plant operation. They do, however, give an overview of the operating history of a variety of developmental and experimental nuclear power reactors. The data show the yearly gross generation of electricity for each U. S. nuclear plant and, for civilian power plants, information on reactor availability and plant capacity factor. (U.S.)

  17. RA reactor operation and maintenance; Pogon i odrzavanje reaktora RA

    Zecevic, V [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air.

  18. Safe operation of critical assemblies and research reactors

    NONE

    1960-09-15

    Some countries have accumulated considerable experience in the operation of these reactors and have in the process developed safe practices. On the other hand, other countries which have recently acquired, or will soon acquire, such reactors do not have sufficient background of experience with them to have developed full knowledge regarding their safe operation. In this situation, the International Atomic Energy Agency has considered that it would be useful to make available to all its Member States a set of recommendations on the safe operation of these reactors, based on the accumulated experience and best practices. The Director General accordingly nominated a Pane Ion Safe Operation of Critical Assemblies and Research Reactors to assist the Agency's Secretariat in drafting such recommendations

  19. Operation monitoring and protection method for nuclear reactor

    Tochihara, Hiroshi.

    1995-01-01

    In an operation and monitoring method for a PWR-type reactor by using a tetra-sected neutron detector, axial off set is defined by neutron detector signals with respect to an average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core. A departure from nucleate boiling (DNBR) is represented by standardized signals, and the DNBR is calculated by using the axial off set of the average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core, and they are graphically displayed. In addition, a thermal flow rate-water channel coefficient is also graphically displayed, and the DNBR and the thermal flow rate-water channel coefficient are restricted based on the display, to determine an allowable operation range. As a result, it is possible to provide an operation monitoring and protection method for nuclear reactor capable of reducing labors and frequencies for the change of protection system setting in a case of using a tetra-sected neutron detector disposed at the outside and, at the same time, protecting each of DNR and the highest linear power or the thermal water coefficient channel. (N.H.)

  20. Procedure for operating a heavy water cooled power reactor

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  1. RA Research nuclear reactor, Part I - RA nuclear reactor operation, maintenance and utilization in 1984

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1984-12-01

    During the 1984 the reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981. Operation of the primary cooling system was changed in order to avoid appearance of the previously noticed aluminium oxyhydrate on the surface of the fuel element claddings. The new cooling regime enabled more efficient heavy water purification. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks are planned: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. Financing of the planned activities will be partly covered by the IAEA. this Part I of the report includes 8 Annexes describing in detail the reactor operation, and 6 special papers dealing with the problems of reactor operation and utilization

  2. Dry cooling tower operating experience in the LOFT reactor

    Hunter, J.A.

    1980-01-01

    A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features

  3. Fuel deposits, chemistry and CANDU reactor operation

    Roberts, J.G.

    2013-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU reactor, the first being the Nuclear Power Demonstration-2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channel led to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5, and subsequently utilized for each CANDU unit since. The difference being that during 'hot conditioning' of CANDU heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  4. Operation control equipment for BWR type reactor

    Izumi, Masayuki; Takeda, Renzo.

    1981-01-01

    Purpose: To improve the temperature balance in a feedwater heater by obtaining the objective value of a feedwater enthalpy upon calculation of respective measured values and controlling the opening or closing of an extraction valve so that the objective value may coincide with the measured value, thereby averaging the axial power distribution. Constitution: A plurality of stages of extraction lines are connected to a turbine, and extraction valves are respectively provided at the lines. By calculating the measured values of ractor pressure, reactor core flow rate, vapor flow rate and reactor core inlet enthalpy determined to predetermined value using heat balance the objective feedwater enthalpy is obtained, is fed as an extraction valve opening or closing signal from a control equipment, the extraction stages of the turbine extraction are altered in accordance with this signal, and the feedwater enthalpy is controlled. (Sekiya, K.)

  5. Method of operating a nuclear reactor

    Gyorey, G.L.; Parkos, G.R.; Roupe, G.A.; Thomson, O.A.; Crowther, R.L.

    1979-01-01

    The invention concerns the configuration of control rods in the lattice of the reactor core, as well as an instruction on the sequence of with drawal for the control rods, arranged in groups, in order to achieve for the control rod reactivity of the control rods remaining in the reactor core to adopt the lowest possible value. The rods are combined in several 3 x 3 matrices which in their turn are grouped into two networks. The groups are moved successively according to a specified schedule. There can be achieved maximum control rod reactivities between 0.025 and 0.035 (referred to the totally withdrawn state). (RW) 891 RW/RW 892 MKO [de

  6. Research reactor operations for neutron activation analysis

    Tv'ehlov, Yu.

    2002-01-01

    The IAEA Special Manual devoted to quality control during neutron activation analysis (NAA) on research and test reactors is discussed. Three parts of the publication involve presentation of common rules for performance of NAA, quantitative and qualitative analyses, statistic and systematic errors, safety regulations and radioactive waste management. Besides, the publication contains practical manual for the performance of NAA, and examples of different NAA regulating registration forms are presented [ru

  7. Application of SAFE to an operating reactor

    Chapman, L.D.

    1979-01-01

    A method for the evaluation of physical protection systems at nuclear facilities has been developed. The evaluation process consists of five major phases: (1) Facility Characterization, (2) Facility Representation, (3) Component Performance, (4) Adversary Path Analysis, and (5) Effectiveness Evaluation. Each of these phases will be described in some detail and illustrated by examples. The process for evaluation of physical protection system effectiveness against an outside threat will be presented for a reactor facility

  8. Operating experience feedback from safety significant events at research reactors

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  9. L-Reactor operation, Savannah River Plant: environmental assessment

    1982-08-01

    The purpose of this document is to assess the significance of the effects on the human environment of the proposed resumption of L-reactor operation at the Savannah River Plant, scheduled for October 1983. The discussion is presented under the following section headings: need for resumption of L-Reactor operations and purpose of this environmental assessment; proposed action and alternative; affected environment (including, site location and description, land use, historic and archeological resources, socioeconomic and community characteristics, geology and seismology, hydrology, meteorology and climatology, ecology, and radiation environment); environmental consequences; summary of projected L-Reactor releases and impacts; and Federal and State permits and approval. The three appendices are entitled: radiation dose calculation methods and assumptions; floodplain/wetlands assessment - L-Reactor operations; and, conversion table. A list of references is included at the end of each chapter

  10. Operating experience feedback from safety significant events at research reactors

    Shokr, A.M.

    2015-01-01

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  11. Completely automated nuclear reactors for long-term operation

    Teller, E.; Ishikawa, M.; Wood, L.

    1996-01-01

    The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant's operational and post-operational life. These reactors are proposed to be situated in suitable environments at ∼100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant's heat engine and electrical generator subsystems are located above-ground

  12. Operation characteristics and conditions of training reactor VR-1

    Matejka, K.; Kolros, A.; Polach, S.; Sklenka, L.

    1994-01-01

    The first 3 years of operation of the VR-1 training reactor are reviewed. This period includes its physical start-up (preparation, implementation, results) and operation development as far as the current operating configuration of the reactor core. The physical start-up was commenced using a reactor core referred to as AZ A1, whose physical parameters had been verified by calculation and whose configuration was based on data tested experimentally on the SR-0 reactor at Vochov. The next operating core, labelled AZ A2, was already prepared during the test operation of the VR-1 reactor. Its configuration was such that both of the main horizontal channels, radial and tangential, could be employed. The configuration that followed, AZ A3, was an intermediate step before testing the graphite side reflector. The current reactor core, labelled AZ A3 G, was obtained by supplementing the previous core with a one-sided graphite side reflector. (Z.S.). 2 tabs., 11 figs., 2 refs

  13. Research nuclear reactor RA - Annual Report 1975. Operation and maintenance

    Martinc, R.

    1976-01-01

    The plan for 1975 was successfully fulfilled. This is reflected in research related to improvement of operating properties of the RA reactor, mostly due to the effort of the RA staff employed in operation and maintenance of the reactor. Fuel saving achieved by this activity amounted to about 38% (80% enriched fuel). Preliminary work is done, concerned with new reactor core with highly enriched fuel. This is a significant saving as well. New fuel elements have arrived at the end of this year. It is going to enable increase of neutron flux by 50% without changing the nominal operating power. The possibility of further improvement of the reactor are analyzed, to enable material testing and production of radioactive sources. Mid term plan for reactor operation was made according to this analysis. It is planned to further increase the neutron flux in isolated smaller zones, and building new experimental loops with cooling and fast neutron converters. Much was done to increase the safety level of reactor operation and preparing the safety report [sr

  14. RA research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1985

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1985-01-01

    According to the plan, RA reactor was to be in operation in mid September 1985. But, since the building of the emergency cooling system, nor the reconstruction of the existing special ventilation system were not finished until the end of August reactor was not operated during 1985. During the previous four years reactor operation was limited by the temporary operating license issued by the Committee of Serbian ministry for health and social care, which was cancelled in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. This temporary license has limited the reactor power to 2 MW from 1981-1984. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. In order to enable future reliable operation of the RA reactor, according to new licensing regulations, during 1984, three major tasks have started: building of the new emergency system, reconstruction of the existing ventilation system, and renewal of the reactor instrumentation. IAEA has approved the amount of 1,300,000 US dollars for the renewal of the instrumentation [sr

  15. The evaluation of operator reliability factors on power reactor

    Karlina, Itjeu; Supriatna, Piping; W, Suharyo; Santosa, Kussigit; Darlis; S, Bambang; Y, Sasongko

    1999-01-01

    The sophisticated technology system was not assured the reliability system itself because it has contained a part of human dependence affected successfully of reactor operation either how work smoothly and safe or failure ac cured and then accident appears promptly. The evaluation of operator reliability factor on ABWR power reactor has been carried out which consist of criterion skill and workload according to NUREG/CR-2254, NUREG/CR-4016 and NUREG-0835 the reactor operation reliability emphasize to the operator are synergic between skill and workload themselves. The employee's skill will affect to the type and level of their tasks. The operator's skill depend on education and experiences, position or responsibility of tasks, physical conditions (age uninvalid of physic/mental

  16. Independent verification: operational phase liquid metal breeder reactors

    Bourne, P.B.

    1981-01-01

    The Fast Flux Test Facility (FFTF) recently achieved 100-percent power and now is in the initial stages of operation as a test reactor. An independent verification program has been established to assist in maintaining stable plant conditions, and to assure the safe operation of the reactor. Independent verification begins with the development of administrative procedures to control all other procedures and changes to the plant configurations. The technical content of the controlling procedures is subject to independent verification. The actual accomplishment of test procedures and operational maneuvers is witnessed by personnel not responsible for operating the plant. Off-normal events are analyzed, problem reports from other operating reactors are evaluated, and these results are used to improve on-line performance. Audits are used to confirm compliance with established practices and to identify areas where individual performance can be improved

  17. Self-operation type power control device for nuclear reactor

    Kanbe, Mitsuru.

    1993-07-23

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.).

  18. Self-operation type power control device for nuclear reactor

    Kanbe, Mitsuru.

    1993-01-01

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.)

  19. Regulations and instructions for RB reactor operation; Propisi i uputstva za rad reaktora RB

    NONE

    1977-07-01

    This document includes regulations for reactor RB operation, behaviour and presence of staff in the reactor building; regulations for performing experiments at the RB reactor, regulations and int ructions for the reactor operators and other staff on duty. A chapter is devoted to instruction for reactor operation with the operating documentation and special duties of the operators. Regulations and instruction concerned with accidents are described with classification of accidents and evacuation plan. Annexes to this document include: the present status of the reactor; program for training the reactor operators; forms which are obligatory to be signed for any operating activity, and the certificate of the RB reactor lattice.

  20. Extending the maximum operation time of the MNSR reactor.

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The human factor in nuclear reactor operation

    Bertron, L.

    1982-05-01

    The principal operating characteristics of nuclear power plants are summarized. A description of major hazards relating to operator fallibility in normal and abnormal operating conditions is followed by a specific analysis of control room hazards, shift organization and selection and training of management personnel

  2. Operational margin monitoring system for boiling water reactor power plants

    Fukutomi, S.; Takigawa, Y.

    1992-01-01

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  3. 14th Biennial conference on reactor operating experience plant operations: The human element

    Anon.

    1989-01-01

    Separate abstracts were prepared for the papers presented in the following areas of interest: enhancing operator performance; structured approaches to maintenance standards and reliability-centered maintenance; human issues in plant operations and management; test, research, and training reactor utilization; methods and applications of root-cause analysis; emergency operating procedure enhancement programs; test, research, and training reactor upgrades; valve maintenance and diagnostics; recent operating experiences; and current maintenance issues

  4. Operation of the OSIRIS reactor from the viewpoint of analysis of operator functions

    Fichet-Clairfontaine, P.Y.; Saint-Jean, T.

    1985-09-01

    This paper presents the results of analyses carried out on site by the Human Factor Study Laboratory in an experimental nuclear plant operated by the Atomic Energy Commissariat - the OSIRIS pool reactor. The analyses of certain tasks are given: work in the reactor hall and an operation of circuit setting performed by the mechanics. This work has thrown light on certain operational guidelines implemented by the operators when carrying out their work [fr

  5. RA reactor operation and maintenance in 1989, Part 1

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Zivotic, Z.; Majstorovic, D.; Sanovic, V.

    1989-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in July 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The following major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the power supply system. Project concerned with renewal of RA reactor complete instrumentation was started at the end of 1988. Contract was signed between the IAEA and Soviet Atomenergoexport for supplying the new instrumentation for the RA reactor. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988. In 1989, device for water purification designed by the reactor staff started operation and spent fuel handling equipment is being mounted. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  6. RA Research reactor, Part 1, Operation and maintenance of the RA nuclear reactor for 1988

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1988-01-01

    According to the action plan for 1988, operation of the RA reactor should have been restarted in October, but the operating license was not obtained. Control and maintenance of the reactor components was done regularly and efficiently dependent on the availability of the spare parts. The major difficulty was maintenance of the reactor instrumentation. Period of the reactor shutdown was used for repair of the heavy water pumps in the primary coolant loop. With the aim to ensure future safe and reliable reactor operation, action were started concerning renewal of the reactor instrumentation. Design project was done by the soviet company Atomenergoeksport. The contract for constructing this equipment was signed, and it is planned that the equipment will be delivered by the end of 1990. In order to increase the space for storage of the irradiated fuel elements and its more efficient usage, projects were started concerned with reconstruction of the existing fuel handling equipment, increase of the storage space and purification of the water in the fuel storage pools. These projects are scheduled to be finished in mid 1989. This report includes 8 annexes concerning reactor operation, activities of services and financial issues [sr

  7. Design of a periodically operated SCR reactor

    Kotter, M.; Lintz, H.G.; Turek, T.

    1993-01-01

    A new NO x abatement process uses the rotating Ljungstroem air heater of the power plant for the selective catalytic reduction (SCR) of nitrogen monoxide with ammonia. For this purpose the air heater elements are covered by a catalytically active layer. The transformation can be carried out by simple replacement of the original air heater elements. Thus nitrogen monoxide control is possible without requiring major modifications of existing power plant equipment. Two oxidic catalysts have been developed to be employed in the different temperature sections of the air heater. The activity of the catalysts has been quantified with the aid of laboratory scale experiments. The results can be described using a simple expression for the rate of the chemical reaction. NO conversion and NH 3 slip to be expected in a catalytically active Ljungstroem heat exchanger are calculated with a reactor model taking into account the gas phase mass transfer resistances. The calculations show that the proposed device can be used if the NO concentration in the flue gas does not exceed 300 ppm. Recently Kraftanlagen AG, Heidelberg, installed a catalyst air heater system at Mandalay Generating Station in Oxnard, California. The comparison of the predicted results with preliminary experimental data proves the validity of the chosen reactor model. Under the given conditions NO conversions of more than 60% can be achieved maintaining the NH 3 slip below the specified value of 10 ppm. (orig.). 19 figs., 35 refs [de

  8. Fluidized-bed reactors processes and operating conditions

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  9. Simulator platform for fast reactor operation and safety technology demonstration

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  10. Simulator platform for fast reactor operation and safety technology demonstration

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  11. Course of operators of the RA-3 reactor

    Caligiuri, G.A.

    1983-01-01

    Description of the fundamental principles of the nuclear reactors' control systems. The RA-3 reactor's control and measurement systems are principally described, without setting aside the basic criteria for the design of an appropriate instrumentation for the control of a nuclear reactor, as well as the theory on which the functioning of the several detectors and equipments used in a nuclear instrumentation are based. The main purpose of this course is that of serving, preferentially as a text, for the training of personnel which shall perform operation tasks in this reactor. The work includes three well-defined sections. The first two ones make an introduction to the subject, while the third one, extending to more than half-work, deals with the general description of the system in which the control and operation logic of RA-3 are included. (R.J.S) [es

  12. Optimal processor for malfunction detection in operating nuclear reactor

    Ciftcioglu, O.

    1990-01-01

    An optimal processor for diagnosing operational transients in a nuclear reactor is described. Basic design of the processor involves real-time processing of noise signal obtained from a particular in core sensor and the optimality is based on minimum alarm failure in contrast to minimum false alarm criterion from the safe and reliable plant operation viewpoint

  13. Some particular problems put by operating experimental reactors

    Candiotti, C.; Mabeix, R.; Uguen, R.

    1960-01-01

    On basis of a six years experience in operating research reactors, the authors explain, first, the difference in their utilization between these piles and another similar ones and, after, in consequence, they set off corresponding servitudes. These servitudes put very particular problems in operating itself, maintenance, modifications or additions on these apparatus. (author) [fr

  14. Decentralization of operating reactor licensing reviews: NRR Pilot Program

    Hannon, J.N.

    1984-07-01

    This report, which has incorporated comments received from the Commission and ACRS, describes the program for decentralization of selected operating reactor licensing technical review activities. The 2-year pilot program will be reviewed to verify that safety is enhanced as anticipated by the incorporation of prescribed management techniques and application of resources. If the program fails to operate as designed, it will be terminated

  15. Training reactor operators and shift supervisors

    Schwarz, O.

    1980-01-01

    To establish a central institution run by power plant operators to harmonize the training of power plant operating personnel was raised, and put into practice, quite early in the Federal Republic of Germany. A committee devoted to training plant crews, which had been set up by the organizations of German electricity utilities responsible for operating power plants, was changed into a Kraftwerksschule e.V. (Power Plant School) in 1963. This school runs training courses, along standard lines, for operating personnel of thermal power plants, especially for operators and power plant supervisors, in close cooperation with power plant operators. As the peaceful utilization of nuclear energy expanded, also the training of nuclear power plant operators was included in 1969. Since September 1977, the center has had a simulator of a PWR nuclear power plant, since January 1978 also that of a BWR plant available for training purposes. Besides routine operation the trainees also learn to control those incidents which occur only very rarely in real nuclear power plants. (orig./UA) [de

  16. Reactivity monitoring during reactor-reloading operations

    Baumann, N.P.; Ahlfeld, C.F.; Ridgely, G.C.

    1983-01-01

    At the Savannah River Plant (SRP) reloading operations during shutdown present special considerations in reactivity monitoring and control. Large reactivity changes may occur during reloading operations because of the heterogeneous nature of some core designs. This paper describes an improved monitoring system

  17. Operation of the SLOWPOKE-2 reactor in Jamaica

    Grant, C.N.; Lalor, G.C.; Vuchkov, M.K. [University of the West Indies, Kingston (Jamaica)

    2001-07-01

    Over the past sixteen years lCENS has operated a SLOWPOKE 2 nuclear reactor almost exclusively for the purpose of neutron activation analysis. During this period we have adopted a strategy of minimum irradiation times while optimizing our output in an effort to increase the lifetime of the reactor core and to maintaining fuel integrity. An inter-comparison study with results obtained with a much larger reactor at IPEN has validated this approach. The parameters routinely monitored at ICENS are also discussed and the method used to predict the next shim adjustment. (author)

  18. Method of operating a water-cooled nuclear reactor

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  19. Study on operational aspect of natural circulation HLMC reactor (1)

    Sienicki, J.J.; Cahalan, J.E.; Spencer, B.W.

    2000-08-01

    The concept of a heavy liquid metal cooled fast reactor that achieves 100% natural circulation heat removal from the core has the potential to attain improved cost competitiveness through extreme simplification, proliferation resistance, and heightened passive safety. The concept offers the potential for simplifications in plant control strategies wherein inherent reactor feedbacks may restore balance between energy release and heat removal from the reactor during operation as well as providing passive reactivity shutdown in the event of transients involving failure to scram. This study was initiated to evaluate the operational characteristics of the 100% natural circulation reactor under normal and transient states using a plant dynamics analysis computer code and to seek design and operational optimization of the concept. In the current Phase I of the project, the stage for the overall study has been prepared. A coupled thermal hydraulics-kinetics plant dynamics analysis code has been developed/modified that has the capabilities to calculate operational and accident transients. Code input has been prepared for the heavy liquid metal cooled natural circulation reactor concept. A preliminary analysis using the plant dynamics code and its input to calculate three illustrative cases relevant to initial startup, shutdown following long-term operation, and change in turbine load demonstrates the capability to analyze typical transient cases. (author)

  20. Operation experience with the TRIGA reactor Wien 2004

    Boeck, H.; Villa, M.

    2004-01-01

    The TRIGA Mark-II reactor in Vienna is now in operation for more than 42 years. The average operation time is about 230 days per year with 90 % of this time at nominal power of 250 kW. The remaining 10 % operation time is used for students' training courses at low power level. Pulse operation is rather infrequent with about 5 to 10 pulses per year. The utilization of this facility is excellent, the number of students participating in practical exercises has strongly increased, and also training courses for outside groups such as the IAEA or for the 2004 Eugene Wigner Course are using the reactor, because it is the only TRIGA reactor remaining in Austria. Therefore, there is no need for decommissioning and it is intended to operate it as long as possible into the next decade. Nevertheless, in early 2004 it was decided to prepare a report on a decommissioning procedure for a typical TRIGA Mark II reactor which lists the volumes, the activity and the weight of individual materials such as concrete, aluminium, stainless steel, graphite and others which will accumulate during this process (a summary of possible activated and contaminated materials and the activity of a single TRIGA fuel element as a function of fuel type and decay time in Bq is presented). The status of the reactor (instrumentation, fuel elements, cooling circuit, ventilation system, re-inspection and maintenance program, cost/benefit) is outlined. (nevyjel)

  1. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  2. Operation of the High Flux Reactor. Annual report 1985

    1985-01-01

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  3. Advanced CANDU reactor design for operability

    Hopwood, J.M.; Lalonde, R.; Soulard, M.

    2003-01-01

    This paper outlines design features and engineering processes in the ACR TM development program which contribute to excellence in performance and low operating cost. AECL recognizes that future plant owners will place a high priority in these operational characteristics. A successful next generation plant will have a best-in-class capability, both in its design characteristics, in the engineering philosophy and program adopted during the product development, and in the vendor's approach to operating station support. The ACR program addresses each of these drivers. Operability considerations are built-in to the design at an overall, plant wide level. For example, based on the strong CANDU 6 operating record, targets for standard outage duration, time between outages and component durability are set, while the design engineering is managed to achieve these targets. The ultimate maintenance target for the ACR, once initial operating experience has been gained, is to operate with a 21-day standard maintenance outage at an interval of once every three years. At the detailed design level, close attention is paid to space allocation, to enable good maintenance access. Selection of components also places emphasis on maintainability based on the extensive and current experience with CANDU projects. (author)

  4. Operation of staged membrane oxidation reactor systems

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  5. Operational limits and conditions and operating procedures for research reactors. Safety guide

    2008-01-01

    This publication provides practical guidance on all important aspects of developing, formulating and presenting the operational limits and conditions as well as the operating procedures for research reactors. It covers the concept of operational limits and conditions, their content, and the responsibilities of the operating organization with respect to their establishment, modification, documentation and compliance. The guidance also covers the training of operating personnel on performing periodic testing, established by the operational limits and conditions, and operating procedures

  6. Artificial Intelligence and its Reasonable Application Scenario to Reactor Operation

    Im, Ki Hong; Suh, Yong-Suk; Park, Cheol; Lim, In-Cheol

    2017-01-01

    This paper presents brief but reasonable scenarios for applying AI or machine learning technologies to research reactor from various perspectives. Two less safety critical scenarios for applying AI to reactor operation are introduced in this study. However, the AI assistant will not only be an assistant but it will also be an operator in the future. What is required is big operation data which can represent all the cases requiring operation decision, including normal operation and accident data as well, and enough time to train and fix the AI system with this data. We can predict AI study in this area can begin with a mild and safe application. But in the near future, this technology could be used to handle or automate more severe operations.

  7. Development of operator thinking model and its application to nuclear reactor plant operation system

    Miki, Tetsushi; Endou, Akira; Himeno, Yoshiaki

    1992-01-01

    At first, this paper presents the developing method of an operator thinking model and the outline of the developed model. In next, it describes the nuclear reactor plant operation system which has been developed based on this model. Finally, it has been confirmed that the method described in this paper is very effective in order to construct expert systems which replace the reactor operator's role with AI (artificial intelligence) systems. (author)

  8. RA Research reactor, Annual report 1970 - Operation and maintenance

    Milosevic, D. et al.

    1970-12-01

    During 1970, the RA Reactor was operated at nominal power of 6.5 MW for 160 days, and 40 days at lower power levels. Total production mounted to 25968 MWh which is 3.87% higher than planned. The action plan was changed compared to the previous years because of sending the heavy water to France for re-concentration. Isotopic concentration of the heavy water was decreased to 99.05% and now after re-concentration it is 99.96%. Discrepancy from the action plan, in September was caused by the delay return of the heavy water for administrative and transportation difficulties. The restart of the reactor in September was postponed because the cladding of one fuel element was damaged immediately after the start-up, and the reactor had to be shutdown. In October and November reactor was in operation 28 and 25 days respectively which enabled to make up for the lost time. Reactor was used for irradiation and experiments according to the demand of 390 users, 340 from the Institute and 50 external users. This report contains detailed data about reactor power and experiments performed in 1969. It is concluded that the reactor operated successfully according to the plan. Shorter interruptions were caused only by difficulties with water supply pipes and sliding of the soil. Reactor was only twice scram shutdown because of the false signals caused by failures of the electronic control instrumentation. the period when reactor was not in operation was used for inspection of the reactor vessel internals. By using special TV cameras and telescopes, it was found that the there are no signs of corrosion on the reactor vessel, e.e. that the internals are in a very good state. Simultaneously, connection for the pipes of future emergency core cooling system were constructed. During 1970, the spent fuel was repacked from fuel channels into special aluminium casks. Four casks containing 660 fuel slugs was deposited int the storage pool No.4. There is now 18 casks with 2951 spent fuel slugs in

  9. Can a nuclear reactor operate for 100 years?

    Hertel, O.

    2010-01-01

    The TWR (Travelling Wave Reactor) concept was invented in the fifties, then forgotten and it reappeared in 2001 but it was considered too immature to be selected for the fourth generation of nuclear reactors, now an American company 'Terrapower' proposes one whose design is given in the article. This TWR operates with depleted uranium, only the lower part of the fuel rod involves uranium fuel with a civil enrichment ratio (less that 20%). The lower part of the fuel will ignite the fission reaction and enrich the part of fuel just above through neutron absorption. The burning part of the fuel will move up progressively. The main advantage of this reactor is that it can operate for decades without maintenance nor fuel loading. The principle is right on the paper but requires huge technological work to select materials and systems that will be able to withstand decades of operation time in harsh conditions. (A.C.)

  10. Operation of Packed-Bed Reactors Studied in Microgravity

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  11. Control rod for the operation of nuclear reactor

    Ishida, Hiromi

    1987-01-01

    Purpose: To conduct spectrum shift operation without complicating the reactor core structures, reducing the probability of failures. Constitution: An operation control rod which is driven while passed vertically in the reactor core comprises a strong absorption portion, moderation portion and weak moderation portion defined orderly from above to below and the length for each of the portions is greater than the effective reactor core height. If the operation control rod is lifted to the maximum limit in the upward direction of the reactor core, the weak moderation portion is corresponded over the effective length of the reactor core. Since the weak moderation portion is filled with zirconium and moderators are not present in the operation control rod, water draining gap is formed, neutron spectral shift is formed, excess reactivity is suppressed, absorption of neutrons to fuel fertile material is increased and the formation of nuclear fission material is increased. From the middle to the final stage of the cycle, the control rod is lowered, by which the moderator/fuel effective volume ratio is increased to increase the reactivity. (Kamimura, M.)

  12. Sustainability management for operating organizations of research reactors

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  13. Sustainability management for operating organizations of research reactors

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  14. Designing visual displays and system models for safe reactor operations

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  15. A review of healthy condition for reactor operators of NPP

    Zhang Chi; Yang Di; Zhu Lixin; Zhou Limin

    2008-01-01

    Physical health is one of fundamental elements and the necessary qualification for holding operator license or senior operator license of a nuclear power plant issued by NNSA. Based upon requirements for healthy qualification of reactor operators in nuclear safety regulations and some new issued regulations, especially some involved national standard (GB), review direction, relevant contents and criteria were described, and some suggestions were provided in this paper. (authors)

  16. Operation and control of high density tokamak reactors

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor is discussed. The plasma size required to attain ignition is determined. Ignition is found to be possible in a relatively small system provided other design criteria are met. These criteria are described and the technology developments and operating procedures required by them are outlined. The parameters for such a system and its dynamic behavior during the operating cycle are also discussed

  17. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  18. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor

    Vallet, Ana, E-mail: avallet@quim.ucm.es [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Besson, Michele, E-mail: michele.besson@ircelyon.univ-lyon1.fr [IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, UMR5256 CNRS-Universite Lyon1, 2 Avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Ovejero, Gabriel; Garcia, Juan [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ni supported over hydrotalcite calcined precursors as catalyst. Black-Right-Pointing-Pointer Catalytic wet air oxidation in trickle bed reactor for Basic Yellow 11 removal. Black-Right-Pointing-Pointer Dye removal depends on temperature, initial dye concentration and flow rate. Black-Right-Pointing-Pointer The catalyst proved to be stable and efficient for the dye degradation. - Abstract: Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550 Degree-Sign C. An increase in the reaction temperature (120-180 Degree-Sign C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min{sup -1}) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min{sup -1} and 180 Degree-Sign C under 5 MPa air.

  19. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor

    Vallet, Ana; Besson, Michèle; Ovejero, Gabriel; García, Juan

    2012-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Basic Yellow 11 removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to be stable and efficient for the dye degradation. - Abstract: Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550 °C. An increase in the reaction temperature (120–180 °C), and a decrease in dye concentration (1000–3000 ppm) or liquid flow rate (0.1–0.7 mL min −1 ) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min −1 and 180 °C under 5 MPa air.

  20. Operation and maintenance of the RB reactor, Annual report for 1977

    Sotic, O.; Vranic, S.

    1977-01-01

    The annual report for 1977 includes the following: utilization of the RB reactor; new regulations and instructions for reactor operation; improvement of experimental possibilities of the RB reactor; state of the reactor equipment; dosimetry and radiation protection; reactor staff. Five annexes are concerned with: testing the properties of preamplifiers for linear and logarithmic experimental channels; properties of the neutron converter; maintenance of the reactor equipment; purchase of new equipment; and the program for training reactor operators

  1. Intelligence system for reactor operator informational support

    Prangishvili, I.V.; Pashchenko, F.F.; Saprykin, E.M.

    1989-01-01

    Problems related to creation and introduction at NPP of highly efficient and reliable systems for monitoring and control of working processes and intelligence-endowed systems of operator informational support (ISOIS) are considered. The main units included in ISOIS are considered. The main units included in ISOIS are described. The unit of current state monitoring provides information for the operator, which is necessary under concrete conditions for the process monitoring and control, so as to avoid emergencies and affers a program of actions in a dialogue mode for the operator. The identification unit is designed for the obtaining of assessed values of process parameters (neutron fields, temperatures, pressures) and basic equipment (reactivity coefficients, fuel rod weights, time of delay). The prediction unit evaluates the behaviour of process parameters and process state in various situations. 9 refs

  2. Communication links for fusion reactor maintenance operations

    Van Uffelen, M.

    2005-01-01

    Different architectures are envisaged for data transmission with fibre optic links in a radiation environment, as proposed in literature for both space and high energy physics applications. Their needs and constraints differ from those encountered for maintenance tasks in the future ITER environment, not only in terms of temperature and radiation levels, but also with respect to transmission speed requirements. Our approach attempts to limit the use of radiation-sensitive electronics for transmission of both digital and/or analogue data to the control room, using glass fibres as transport medium. We therefore assessed the radiation behaviour of a cost-effective fibre optic transmitter at 850 nm, consisting of a PWM (pulse width modulator), a radiation tolerant current driver (previously developed at SCK-CEN) and a VCSEL (Vertical-Cavity Surface Emitting Laser assembly, up to 10 MGy at 60 degrees Celsius. The PWM enables to transform an analogue sensor signal into a pseudo numerical signal, with a pulse width proportional to the incoming signal. The main objective of this task is to contribute to the major design of the maintenance equipment and strategy needed for the remote replacement of the divertor system in the future ITER fusion reactor, with particular attention to the implications of radiation hardening rules and recommendations. Next to the radiation assessment studies of remote handling tools, including actuators and sensors, we also develop radiation tolerant communication links with multiplexing capabilities

  3. A logic scheme for regulating safe operation of research reactors

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Effat, A; Rahman, F A [Operational Saety Dept, National Center of Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    This investigation presents a logic scheme for regulating the safe operation of research reactor in accordance with the new revision of SS-35 and revised by the 10 CFR. It emphasizes the regulatory inspection and enforcement (RI end E) during the reactor operation phase. IT is developed to provide information, guidance and recommendations to be taken when constructing the RI and E program that could be applied to the operational phase of the egyptian Research Reactors. In the operational phase, the regulatory inspection (RI) means an examination, observation, measurement, or test undertaken or on behalf of the nuclear regulatory body (NRB) during operation to verify that the nuclear materials, components, systems and structures as well operational activities, processes, procedures and personnel competence and performance are in accordance with the requirements established or the provisions approved by NRB or specified in the operational license or contained in regulations. Regulatory inspection includes both routine and non-routine ones. Any of them may be announced or unannounced. The problems identified by the RI must be resolved by the proper RE actions. The RE actions include investigative and corrective RE actions. These RI and E procedures for regulating safe operation of research reactors are presented as flow charts and then developed as a computer logic scheme. The software program is very efficient, very friendly, very simple and is interactive in nature such that the program asks the user certain questions about essential steps that guide the (RI and E) for research reactors, and user responds. The program proceeds based on this response until all the necessary steps for (RI and E) are accomplished. 5 figs.

  4. AMNT 2014. Key topic: Reactor operation, safety - report. Pt. 3

    Bohnstedt, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm Nukleare Sicherheitsforschung (NUKLEAR); Mull, Thomas [AREVA GmbH, Erlangen (Germany). Nuclear Fusion, HTR and Transverse Issues (PTDH-G); Starflinger, Joerg [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme (IKE)

    2015-01-15

    Summary report on the following sessions of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Reactor Operation, Safety: Radiation Protection (Angelika Bohnstedt); - Competence, Innovation, Regulation: Fusion Technology - Optimisation Steps in the ITER Design (Thomas Mull); - Competence, Innovation, Regulation: Education, Expert Knowledge, Knowledge Transfer (Joerg Starflinger). The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 and 12 (2015) and will be covered in further issues of atw.

  5. Method of operating water cooled reactor with blanket

    Suzuki, Katsuo.

    1988-01-01

    Purpose: To increase the production amount of fissionable plutonium by increasing the burnup degree of blanket fuels in a water cooled reactor with blanket. Method: Incore insertion assemblies comprising water elimination rods, fertile material rods or burnable poison rods are inserted to those fuel assemblies at the central portion of the reactor core that are situated at the positions not inserted with control rods in the earlier half of the operation cycle, while the incore reactor insertion assemblies are withdrawn at the latter half of the operation cycle of a nuclear reactor. As a result, it is possible to increase the power share of the blanket fuels and increase the fuel burnup degree to thereby increase the production amount of fissionable plutonium. Furthermore, at the initial stage of the cycle, the excess reactivity of the reactor can be suppressed to decrease the reactivity control share on the control rod. At the final stage of the cycle, the excess reactivity of the reactor core can be increased to improve the cycle life. (Kamimura, M.)

  6. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  7. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    Furuta, H.; Tadokoro, H.; Imura, A.; Furuta, Y.; Suekane, F.

    2010-01-01

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  8. Operating history report for the Peach Bottom HTGR. Volume I. Reactor operating history

    Scheffel, W.J.; Baldwin, N.L.; Tomlin, R.W.

    1976-01-01

    The operating history for the Peach Bottom-1 Reactor is presented for the years 1966 through 1975. Information concerning general chemistry data, general physics data, location of sensing elements in the primary helium circuit, and postirradiation examination and testing of reactor components is presented

  9. Experimental evaluation of an expert system for nuclear reactor operators

    Nelson, W.R.

    1984-10-01

    The United States Nuclear Regulatory Commission (USNRC) is supporting a program for the experimental evaluation of an expert system for nuclear reactor operators. A prototype expert system, called the Response Tree System, has been developed and implemented at INEL. The Response Tree System is designed to assess the status of a reactor system following an accident and recommend corrective actions to reactor operators. The system is implemented using color graphic displays and is driven by a computer simulation of the reactor system. Control of the system is accomplished using a transparent touch panel. Controlled experiments are being conducted to measure performance differences between operators using the Response Tree System and those not using it to respond to simulated accident situations. This paper summarizes the methodology and results of the evaluation of the Response Tree System, including the quantitative results obtained in the experiments thus far. Design features of the Response Tree System are discussed, and general conclusions regarding the applicability of expert systems in reactor control rooms are presented

  10. Computer codes for the operational control of the research reactors

    Kalker, K.J.; Nabbi, R.; Bormann, H.J.

    1986-01-01

    Four small computer codes developed by ZFR are presented, which have been used for several years during operation of the research reactors FRJ-1, FRJ-2, AVR (all in Juelich) and DR-2 (Riso, Denmark). Because of interest coming from the other reactor stations the codes are documented within the frame work of the IAEA Research Contract No. 3634/FG. The zero-dimensional burnup program CREMAT is used for reactor cores in which flux measurements at each individual fuel element are carried out during operation. The program yields burnup data for each fuel element and for the whole core. On the basis of these data, fuel reloading is prepared for the next operational period under consideration of the permitted minimum shut down reactivity of the system. The program BURNY calculates burnup for fuel elements inaccessible for flux measurements, but for which 'position weighting factors' have been measured/calculated during zero power operation of the core, and which are assumed to be constant in all operational situations. The code CURIAX calculates post-irradiation data for discharged fuel elements needed in their manipulation and transport. These three programs have been written for highly enriched fuel and take into account U-235 only. The modification of CREMAT for LEU Cores and its combiantion with ORIGEN is in preparation. KINIK is an inverse kinetic code and widely used for absorber rod calibration at the abovementioned research reactors. It includes a special polynomial subroutine which can easily be used in other codes. (orig.) [de

  11. The operating reliability of the reactor coolant pump

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  12. Graphics and control for in-reactor operations

    Smith, A.L.

    1996-01-01

    A wide range of manipulator systems has been developed to carry out remotely operated inspection, repair and maintenance tasks at the Magnox reactors in the United Kingdom. A key factor in the improvement of these systems in recent years has been the extensive use of computer graphics as a real-time aid to the manipulator operator. This is exemplified by the reactor pressure vessel inspection work at the Bradwell reactor which is described in detail. The graphics sub-system of the control system for the manipulator plays a unique and wide-ranging role. The 3D modelling and simulation capability of the IGRIP software has contributed to the conceptual design, detailed path planning, rehearsal support, public relations, real-time manipulator display, post inspection documentation and quality assurance. (UK)

  13. RA reactor operation and maintenance, Annual report 1974

    Milosevic, D. et al

    1974-12-01

    During 1974, RA reactor was operated at nominal power for 194 days and 13 days at lower power levels. The total production was 30711 MWh which is 2.4% higher than planned. Practically there were no discrepancies from the plan. The reactor was used for irradiation and experiments according to the demand of 437 users. This report contains detailed data about reactor power and experiments performed in 1974. Total number of afety shutdowns was 11, of which 8 were caused by power cuts, and 3 due to human error. Maximum individual personnel exposure dose was 50% of the maximum permissible dose. There were no accidents during this year. Decontamination of surfaces was less than during previous years. About 805 m 2 of surfaces and 178 objects were decontaminated. It was concluded that the successful operation in 1974 has a special significance taking into account the financial problems [sr

  14. Design requirements, operation and maintenance of gas-cooled reactors

    1989-06-01

    At the invitation of the Government of the USA the Technical Committee Meeting on Design Requirements, Operation and Maintenance of Gas-Cooled Reactors, was held in San Diego on September 21-23, 1988, in tandem with the GCRA Conference. Both meetings attracted a large contingent of foreign participants. Approximately 100 delegates from 18 different countries participated in the Technical Committee meeting. The meeting was divided into three sessions: Gas-cooled reactor user requirement (8 papers); Gas-cooled reactor improvements to facilitate operation and maintenance (10 papers) and Safety, environmental impacts and waste disposal (5 papers). A separate abstract was prepared for each of these 23 papers. Refs, figs and tabs

  15. Operation of the BR2 Reactor

    Gubel, P.

    2006-01-01

    The BR2 is still SCK-CEN's most important nuclear facility. After an extensive refurbishment of 22 months to compensate for the ageing of the installations, to enhance the reliability of operation and to comply with modern safety standards, it was restarted in April 1997. The facility is mainly used for the irradiation and testing of fuels and materials and for commercial productions - including radioisotopes for the medical and industrial uses, and NTD-Silicon. The article describes the main achievements and activities in 2005

  16. IAEA support for operating nuclear reactors

    Akira, O.

    2010-01-01

    The IAEA programme, under the pillar of science and technology, provides support to the existing fleet of nuclear power plants (NPPs) for excellence in operation, support to new countries for infrastructure development, stimulating technology innovation for sustainable development and building national capability. Practical activities include methodology development, information sharing and providing guidance documents and state-of-the-art reports, networking of research activities, and review services using guidance documents as a basis of evaluation. This paper elaborates more on the IAEA's activities in support of the existing fleet of nuclear power plants

  17. Operation of the BR2 Reactor

    Gubel, P.

    2005-01-01

    The BR2 is still SCK-CEN's most important nuclear facility. After an extensive refurbishment of 22 months to compensate for the ageing of the installations, to enhance the reliability of operation and to comply with modern safety standards, it was restarted in April 1997. The facility is mainly used for the irradiation and testing of fuels and materials and for commercial productions - including radioisotopes for the medical and industrial uses, and NTD-Silicon. The article describes the main activities and achievements in 2004

  18. Dynamic operator actions analysis for inherently safe fast reactors and light water reactors

    Ho, V.; Apostolakis, G.

    1988-01-01

    A comparative dynamic human actions analysis of inherently safe fast reactors (ISFRs) and light water reactors (LWRs) in terms of systems response and estimated human error rates is presented. Brief overviews of the ISFR and LWR systems are given to illustrate the design differences. Key operator actions required by the ISFR reactor shutdown and decay heat removal systems are identified and are compared with those of the LWR. It is observed that, because of the passive nature of the ISFR safety-related systems, a large time window is available for operator actions during transient events. Furthermore, these actions are fewer in number, are less complex, and have lower error rates and less severe consequences than those of the LWRs. We expect the ISFR operator errors' contribution to risk is smaller (at least in the context of the existing human reliability models) than that of the LWRs. (author)

  19. Liquid metal cooled reactors: Experience in design and operation

    2007-12-01

    on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency's INIS and NKMS

  20. Approach to training the operators of WWER-440 reactors

    Pironkov, L.; Minakova, R.

    2002-01-01

    The paper has three parts. (1) Personnel Training and Qualifications (2) Description of Kozloduy NPP Training and Qualification System (TQS) built in the last 7 years and its interfaces with the Certification System and (3) Application of the TQS for the Senior Reactor Operator (SRO). (author)

  1. 1982 Annual status report: operation of the high flux reactor

    1983-01-01

    The high flux materials testing reactor has been operated in 1982 within a few percent of the pre-set schedule, attaining 73% overall availability. Its utilization reached another record figure in 20 years: 81% without, 92% with, the low enrichment test elements irradiated during the year

  2. Best Safety Practices for the Operation of Research Reactors

    Boeck, H.; Villa, M. [Atominstitute of the Austrian Universities, 1020 Vienna (Austria)

    2002-07-01

    A survey on administrative, organisational and technical aspects for the safe and efficient operation of a 250 kW TRIGA Mark II research reactor is given. The replacement of the I and C system is discussed, maintenance procedures are presented and the fuel management is described. (author)

  3. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    Schaffrath, Andreas

    2014-01-01

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  4. Best Safety Practices for the Operation of Research Reactors

    Boeck, H.; Villa, M.

    2002-01-01

    A survey on administrative, organisational and technical aspects for the safe and efficient operation of a 250 kW TRIGA Mark II research reactor is given. The replacement of the I and C system is discussed, maintenance procedures are presented and the fuel management is described. (author)

  5. Computerised programming of the Dragon reactor fuel handling operations

    Butcher, P.

    1976-11-01

    Two suites of FORTRAN IV computer programs have been written to produce check lists for the operation of the two remote control fuel handling machines of the Dragon Reactor. This document describes the advantages of these programs over the previous manual system of writing check lists, and provides a detailed guide to the programs themselves. (author)

  6. Operational readiness reviews for restart of L reactor

    Finley, R.H.

    1984-01-01

    The L Reactor at the Savannah River Plant is being restarted after being in a standby status since 1968. Operational Readiness Reviews (ORRs) were conducted by DOE-SR and contractor personnel concurrent with the restart activity. This paper summarizes the ORR activity

  7. Reactor operating procedures for start up of continuously operated chemical plants

    Verwijs, J.W.; Verwijs, J.W.; Kösters, P.H.; van den Berg, Henderikus; Westerterp, K.R.; Kosters, P.G.H.

    1995-01-01

    Rules are presented for the startup of an adiabatic tubular reactor, based on a qualitative analysis of the dynamic behavior of continuously-operated vapor- and liquid-phase processes. The relationships between the process dynamics, operating criteria, and operating constraints are investigated,

  8. Annual progress report 1988, operation of the high flux reactor

    1989-01-01

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  9. Designing visual displays and system models for safe reactor operations

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving the design of visual displays and the user's prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator's perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors

  10. 1980 Annual status report: operation of the high flux reactor

    1981-01-01

    HFR Petten has been operated in 1980 in fulfilment of the 1980/83 JRC Programme Decision. Both reactor operation and utilization data have been met within a few percent of the goals set out in the annual working schedule, in support of a large variety of research programmes. Major improvements to experimental facilities have been introduced during the year and future modernization has been prepared

  11. Operational limitations of light water reactors relating to fuel performance

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  12. Introduction of long term cycle of reactor operation

    Aoyati, M.; Tanaka, T.

    2004-01-01

    Introduction of long term cycle of LWR reactor operation at NPP in Japan is considered, and problems of technical, legislative and economical character, increase of power coefficient are discussed. More long term operation period provides decreasing frequency of periodic inspections and reduction of personnel radiation doses. Reliability of fuel, energetic equipment, mechanisms and devices must be taken into account for the decision of technical problems. Consumptions for electric power generation are studied [ru

  13. RA Research reactor Annual report 1982 - Part 1, Operation, maintenance and utilization of the RA reactor

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Radivojevic, J.; Stamenkovic, D.; Skoric, M.; Miokovic, J.

    1982-12-01

    Reactor test operation started in September 1981 at 2 MW power with 80% enriched fuel continued during 1982 according to the previous plan. The initial reactor core was made of 44 fuel channel each containing 10 fuel slugs. The first half of 1982 was used for the needed measurements and analysis of operating parameters and functioning of reactor systems and equipment under operating conditions. Program concerned with the testing operation at higher power levels was started in the second half of this year. It was found that the inherent excess reactivity and control rod worths ensure safe operation according to the IAEA safety standards. Excess reactivity is high enough to enable higher power level of 4.7 MW during 4 monthly cycles each lasting 15-20 days. Favourable conditions for cooling exist for the initial core configuration. Effects of poisoning at startup on the reactivity and power density distribution were measured as well as initial spatial distribution of the neutron flux which was 3,9 10 13 cm -2 s -1 at 2 MW power. Modification of the calibration coefficient in the system for automated power level control was determined. All the results show that all the safety criteria and limitations concerned with fuel utilization are fulfilled if reactor power would be 4.7 MW. Additional testing operation at 3, 4, and 4.7 MW power levels will be needed after obtaining the licence for operating at nominal power. Transition from the initial core with 44 fuel channels to the equilibrium lattice configuration with 72 fuel channels each containing 10 fuel slugs, would be done gradually. Reactor was not operated in September because of the secondary coolant pipes were exchanged between Danube and the horizontal sedimentary. Control and maintenance of the reactor equipment was done regularly and efficiently dependent on the availability of the spare parts. Difficulties in maintenance of the reactor instrumentation were caused by unavailability of the outdated spare parts

  14. Graphics and control for in-reactor operations

    Smith, A.L.

    1996-01-01

    Remotely operated inspection, repair and maintenance tasks for Magnox Electric's eight twin MAGNOX-type reactor stations must conform to the Nuclear Installations Inspectorate's regulations. The performance of manipulator systems used to undertake such operations has improved significantly with the recent introduction of computer graphics. These are used for simulation and demonstration purposes as well as a real-time aid to the manipulator operator. Outage times can be reduced by the appropriate use of such computer technology to reduce manipulator operation times. (UK)

  15. Regulation concerning installation and operation of reactors for power generation

    1987-01-01

    This report shows the Ordinance of the Ministry of International Trade and Industry No.77 of December 28, 1978. The ordinance consists of provisions covering application for permission for construction of nuclear reactor (concerning continuous maximum thermal output, location, structure, reactor core, fuel material, moderator, reflector, cooling system, measurement control system, safety circuit, control system, emergency system, radioactive waste proposal facilities, construction plan, meteorology and other environmental conditions, etc.), operation plan (to be submitted every year), application for approval of joint management (name, address, facilities location, conditions for joint management, etc.), cancellation of permission (in five years from the date of permission), record keeping (density and temperature of neutron, temperature and pressure of coolant, purity of mederator, etc.), restriction on access to areas under management (measures to be taken in such areas), measures concerning exposure to radioactive rays (allowable dosage, etc.), patrol and checking in nuclear reactor facilities, self-imposed regular inspection of nuclear reactor facilities, operation of nuclear reactor, transport within plant or business establishment, storage (storing facilities, etc.), waste disposal, etc. (Nogami, K.)

  16. Steady-state operation requirements of tokamak fusion reactor concepts

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  17. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  18. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  19. Control of operational transients in power reactors - Methodology

    Vukovic, D.

    1983-01-01

    By introducing the nuclear power stations in the electric power system, questions of their possibilities to satisfy system's demand arise. Control of operational transients (temperature and Xe 135 ) in power reactors by determining the optimal control rod strategy is given. Ti optimize the Xe 135 transients, the Pantryagin theorem of optimal processes is applied. For solving three dimensional, two-group diffusion equations the heterogeneous Feinberg-Galanin method with axial flux harmonics is adopted. An application of this formalism to three-dimensional, finite cylindrical pressurised water reactor radially reflected is presented. (author)

  20. Operation and maintenance of the RB reactor, Annual report for 1980

    Sotic, O.; Vranic, S.; Markovic, H.; Zivkovic, B.; Gogdanovic, M.; Petronijevic, M.

    1980-12-01

    This report includes data concerned with reactor operation and utilization, status of reactor components and equipment, refurbishment of the equipment, dosimetry and radiation protection, reactor staff, financing. It includes 9 Annexes as follows: Utilization of the RB reactor from 1976 - 1980; program of reactor utilization from 1981-1985; contents of the RB reactor safety report; maintenance of the reactor components and equipment in 1980; verification of reactor reliability after the earthquake (May 18 1980); refurbishment of equipment in 1980, and purchasing new equipment from 1981-1985; review of radiation doses in the reactor building and exposure doses for the reactor staff; personnel data and financial data

  1. Radioactive effluents from CANDU 6 reactors during normal operation

    Boss, C.R.; Allsop, P.J.

    1995-12-01

    During routine operation of a CANDU 6 reactor, various gaseous, liquid, and solid radioactive wastes are generated. The layout of the CANDU 6 reactor and the design of its systems ensure that these are minimized, but small quantities of gaseous and liquid wastes are continually discharged at very low concentrations. This report discusses the make-up of these chronically generated gaseous and liquid effluents. From a safety perspective, the doses to individual members of the public resulting from radioactive wastes chronically discharged from CANDU 6 reactors have been negligible. Similarly, doses to the regional and global populations have been negligible, generally less than 0.001% of background. While far below regulatory limits, releases of tritium, noble gases and gross β - -γ have been the most radiologically significant emissions, while radioiodine and particulates have had the greatest potential to deliver public dose. (author). 8 refs., 16 tabs., 3 figs

  2. Safeguards operations in the integral fast reactor fuel cycle

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  3. Diamond Ordinance Radiation Facility (DORF) reactor operating experiences

    Gieseler, Walter

    1970-01-01

    The Diamond Ordnance Radiation Facility Mark F Reactor is described and some of the problems encountered with its operation are discussed. In a period from reactor startup in September 1961 to June 1964, when the aluminum-clad core was changed to a stainless-steel clad core, a total of 30 fuel elements were removed from reactor service because of excessive growth. One leaking fuel element was detected during the lifetime of the aluminum- clad core. In June 1964, the core was changed to the stainless-steel-clad high hydride fuel elements. Since the installation of the stainless-steel-clad fuel element core, there has been a gradual decline of excess reactivity. Various theories were discussed as the cause but the investigations have resulted in no definitive conclusion that could account for the total reactivity loss

  4. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  5. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  6. Fuzzy operation and real time surveillance of a nuclear reactor

    Si-Fodil, M.; Guely, F.; Siarry, P.; Tyran, J.L.

    1997-01-01

    The operating power of nuclear power plants needs to be modulated according to the thin evolutions of electric power demand. Two parameters are concerned by load following operations: the power axial disequilibrium and the position of control rods. This paper deals with the automation of the control of power axial disequilibrium using boration-dilution. An automatic system based on fuzzy logic is proposed which can be substituted to the expert operator who is in charge of this fastidious manual task. The management of water and boron flow rates are studied in details. A Graphic interface was designed for the real-time surveillance of the reactor. (J.S.)

  7. Meeting the reactor operator's information needs using functional analysis

    Nelson, W.R.; Clark, M.T.

    1980-01-01

    Since the accident at Three Mile Island, many ideas have been proposed for assisting the reactor operator during emergency situations. However, some of the suggested remedies do not alleviate an important shortcoming of the TMI control room: the operators were not presented with the information they needed in a manner which would allow prompt diagnosis of the problem. To address this problem, functional analysis is being applied at the LOFT facility to ensure that the operator's information needs are being met in his procedures and graphic displays. This paper summarizes the current applications of functional analysis at LOFT

  8. Issues and approaches in control for autonomous reactor operation

    Vilim, R. B.; Khalil, H. S.; Wei, T. Y. C.

    2000-01-01

    A capability for autonomous and passively safe operation is one of the goals of the NERI funded development of Generation IV nuclear plants. An approach is described for evaluating the effect of increasing autonomy on safety margins and load behavior and for examining issues that arise with increasing autonomy and their potential impact on performance. The method provides a formal approach to the process of exploiting the innate self-regulating property of a reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error. Some preliminary results are given

  9. Plasma engineering analyses of tokamak reactor operating space

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  10. Current safety issues related to research reactor operation

    Alcala-Ruiz, F.

    2000-01-01

    The Agency has included activities on research reactor safety in its Programme and Budget (P and B) since its inception in 1957. Since then, these activities have traditionally been oriented to fulfil the Agency's functions and obligations. At the end of the decade of the eighties, the Agency's Research Reactor Safety Programme (RRSP) consisted of a limited number of tasks related to the preparation of safety related publications and the conduct of safety missions to research reactor facilities. It was at the beginning of the nineties when the RRSP was upgraded and expanded as a subprogramme of the Agency's P and B. This subprogramme continued including activities related to the above subjects and started addressing an increasing number of issues related to the current situation of research reactors (in operation and shut down) around the world such as reactor ageing, modifications and decommissioning. The present paper discusses some of the above issues as recognised by various external review or advisory groups (e.g., Peer Review Groups under the Agency's Performance Programme Appraisal System (PPAS) or the standing International Nuclear Safety Advisory Group (INSAG)) and the impact of their recommendations on the preparation and implementation of the part of the Agency's P and B relating to the above subject. (author)

  11. Operation control device for a nuclear reactor fuel exchanger

    Aida, Takashi.

    1984-01-01

    Purpose: To provide a operation control device for a nuclear reactor fuel exchanger with reduced size and weight capable of optionally meeting the complicated and versatile mode of the operation scope. Constitution: The operation range of a fuel exchanger is finely divided so as to attain the state capable of discriminating between operation-allowable range and operation-inhibitive range, which are stored in a memory circuit. Upon operating the fuel exchanger, the position is detected and a divided range data corresponding to the present position is taken out from the memory circuit so as to determine whether the fuel exchanger is to be run or stopped. Use of reduced size and compact IC circuits (calculation circuit, memory circuit, data latch circuit) and input/output interface circuits or the likes contributes to the size reduction of the exchanger control system to enlarge the floor maintenance space. (Moriyama, K.)

  12. RA Research nuclear reactor, Part I - RA nuclear reactor operation, maintenance and utilization in 1983

    Sotic, O.; Martinc, R.; Kozomara-Maic, S.; Cupac, S.; Raickovic, N.; Radivojevic, J.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1983-12-01

    After regular shutdown in November 1982, inspection of the fuel elements from the RA reactor core which was done from December 1982 - February 1983 has shown that there are deposits of aluminium oxides on the surface of the fuel cladding. After restart The RA reactor was operated at power levels from 1.8 - 2 MW, with 80% enriched uranium dioxide fuel elements. It was found that there was no corrosion of the fuel element cladding and that it was not possible to find the cause of surface deposition on the cladding surfaces without further operation. It was decided to purify the heavy water permanently during operation and to increase the heavy water flow by operating two pumps. This procedure was adopted in order to decrease the possibility of corrosion. The Safety committee of the Institute has approved this procedure for operating the RA reactor in 1983. The core was made of 80% enriched fuel, critical experiments were done until June 1983, and after that the operation was continued at power levels up to 2 MW [sr

  13. Validation of BN Reactor Plant Long-Term Operation

    Vilensky, O.; Vasilyev, B.; Kaidalov, V.

    2013-01-01

    The BN RP operation life time is mainly determined by resource of non-replaceable equipment. The new standard (RD) “Procedure of strength analysis for main components of sodium cooled fast neutron reactor plants” was developed to validate structure strength in view of radiation effects and degradation of material properties within the time period up to 300000 hours and under irradiation, as well as development of postulated crack-like defects. Using this RD, the extension of operation life of BN-600 reactor non-replaceable components from 30 to 45 years, as well as strength and durability of the most loaded non-replaceable components of BN-800 RP under construction were validated for the specified 45-year operation life. Wider application of steel 16Cr-11Ni-3Mo refers to new decisions in BN-1200 RP design that allow increasing of operation life of the most loaded non-replaceable components up to 60 years. High-chromium steel 12Cr-Ni-Mo-V-Nb is a new material, which was proposed for SG design to increase the operation life up to 30 years. In addition, the austenitic steels 18Cr-9Ni and 16Cr-11Ni-3Mo are now under upgrading for future application of them in commercial BN-1200 RP. To provide additional long-term reliable and safe operation of BN-1200 RP equipment and pipelines, it is planned to develop and implement the lifetime operational monitoring system

  14. Economic evaluation of nuclear reactor operation utilizing power effect

    Budinsky, M.; Mydliar, J.

    1988-01-01

    The operation of a reactor at the so-called power effect may substantially increase the burnup of fuel to be removed. The aim of the evaluation of such reactor operation is the optimal determination of the time over which the yield of the higher use of fuel exceeds economic losses resulting from the increased share of constant expenditure of the price of generated kWh of electric power which ensues from such operation. A mathematical model is presented for such evaluation of reactor operation with regard to benefits for the national economy which is the basis of the ESTER 2 computer program. The calculations show that the prices of generated and delivered kWh are minimally 2% less than the prices of generated power without the power effect use. The minimum ranges in the interval of 30 to 50 days. The dependence of the price of generated and delivered kWh from the point of view of the operator of the power plant as well as the component of fuel price of generated kWh will not reach the minimum even after 50 days of operation. From the operating and physical points of view the duration of power effect is not expected to exceed 20 to 30 days which means that from the point of view of the national economy the price of generated and delivered kWh will be 1.6 to 2% less and the fuel component of the price of the generated kWh will be 3 to 4.5% lower. (Z.M.). 5 figs., 3 refs

  15. Overcoming the effects of stress on reactor operator performance

    He Xuhong; Wei Li; Zhao Bingquan

    2003-01-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  16. Five years of operating the TRIGA Mainz reactor

    Benedict, Georg

    1970-01-01

    Considerable obstacles had to be surmounted before TRIGA MAINZ, first TRIGA reactor built in Germany, reached initial criticality in 1965. Subsequent five years' operation did not raise any major problems. The facility has proven quite reliable and particularly well suited for the purposes of the nuclear chemistry research program pursued at Mainz University. Extensive use is made of the pulse mode of operation. As a result, fuel elements are obviously somewhat overstressed, even though most pulses performed are of the 1.50 dollar size. Maximum licensed steady state power of 100 kW till now has met the requirements of most experiments. However, efforts are in progress to improve irradiation conditions by increasing the reactor power to 300 kW. (author)

  17. Neurocontrol of Pressurized Water Reactors in Load-Follow Operations

    Lin Chaung; Shen Chihming

    2000-01-01

    The neurocontrol technique was applied to control a pressurized water reactor (PWR) in load-follow operations. Generalized learning or direct inverse control architecture was adopted in which the neural network was trained off-line to learn the inverse model of the PWR. Two neural network controllers were designed: One provided control rod position, which controlled the axial power distribution, and the other provided the change in boron concentration, which adjusted core total power. An additional feedback controller was designed so that power tracking capability was improved. The time duration between control actions was 15 min; thus, the xenon effect is limited and can be neglected. Therefore, the xenon concentration was not considered as a controller input variable, which simplified controller design. Center target strategy and minimum boron strategy were used to operate the reactor, and the simulation results demonstrated the effectiveness and performance of the proposed controller

  18. Overcoming the effects of stress on reactor operator performance

    He Xuhong; Wei Li; Zhao Bingquan [Tsinghua Univ., Nuclear Power Plant Simulation Training Center, Beijing (China)

    2003-03-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  19. AMNT 2014. Key Topic: Reactor operation, safety - report. Pt. 1

    Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Forschungszentrum

    2014-10-15

    Summary report on one session of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Safety of Nuclear Installations - Methods, Analysis, Results: Backfittings for the Improvement of Safety and Efficiency. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' will be covered in further issues of atw.

  20. Design and Construction of Operation Bridge for Research Reactor

    Jung, Kwangsub; Choi, Jinbok; Lee, Jongmin; Oh, Jinho

    2015-01-01

    The operation bridge contains a lower working deck mounted on a saddle that travels on rails. Upright members are mounted on the saddle to support the upper structure and two hoist monorails. The saddle contains an anti-derail system that is composed of seismic lugs and guide rollers. The operation bridge travels along the rails to transport the fuel assembly, irradiated object, and reactor components in the pools by using tools. Hoists are installed at the top girder. The hoist is suspended from the monorail by means of a motor driven trolley that runs along the monorail. Movements of hoist and trolley are controlled by using the control pendant switch. Processes of design and construction of the operation bridge for the research reactor are introduced. The operation bridge is designed under consideration of functions of handling equipment in the pool and operational limits for safety. Structural analysis is carried out to evaluate the structural integrity in the seismic events. Tests and inspections are also performed during fabrication and installation to confirm the function and safety of the operation bridge

  1. Nuclear Reactor RA Safety Report, Vol. 12, Accidents during reactor operation

    1986-11-01

    This volume includes description and analysis of typical accidents occurred during operation of RA reactor in chronological order, as follows: contamination of primary coolant circuit; leakage of heavy water from the primary coolant loop; contamination of vertical experimental channel; air contamination in the reactor building and loss of circulation of the primary coolant; failures of the vacuum pump and spent fuel packaging device; rupture of the spent fuel element cladding; dethronement's of capsule for irradiation of fuel element; rupture of the vertical experimental channel and contamination of the surroundings; swelling of a fuel element; appearance of deposits on the surface of the fuel elements cladding. The last chapter describes similar accidents occurred on nuclear reactors in the world [sr

  2. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. I

    NONE

    1963-10-15

    At the beginning of 1963 nuclear power plants produced some 3 500 000kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4-8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  3. Operating Experience with Power Reactors. Proceedings of the Conference on Operating Experience with Power Reactors. Vol. II

    NONE

    1963-10-15

    At the beginning of 1963 nuclear power plants produced some 3 500 000 kW of electrical power to different distribution grids around the world. Much significant operating experience has been gained with these power reactors, but this experience is often not collected in such a way as to make it easily available. The International Atomic Energy Agency convened a Conference on Operating Experience with Power Reactors in Vienna from 4 -8 June 1963 which was attended by 240 participants representing 27 of the Agency's Member States and six international organizations. At the Conference, 42 papers giving detailed experience with more than 20 nuclear power stations were discussed. Although similar meetings on a national or regional scale have been held earlier in various countries, this is the first arranged by the Agency on a world-wide basis. Some of the detailed material may have been given earlier but for the most part it represents new and recently acquired experience, and for the first time it has been possible to compile in one place such extensive material on the operating experience with power reactors. The Conference discussed the experience gained both generally in the context of national and international nuclear power development programmes, and more specifically in the detailed operating experience with different power reactor stations. In addition, various plant components, fuel cycles, staffing of nuclear plants and licensing of such staff were treated. It is hoped that these Proceedings will be of interest not only to nuclear , plant designers and operators who daily encounter problems similar to those discussed by the Conference, but also to those guiding the planning and implementation of power development programmes.

  4. Understanding to requirements for educational level in qualification of reactor operators

    Zhang Chi; Yang Di; Zhou Limin

    2007-01-01

    Requirements for qualification of reactor operators in nuclear safety regulations were discussed in this paper. The new issue was described in the confirmation of education level of reactor operators. The understanding to the requirements for Educational Level in Qualification of Reactor Operators was provided according to Higher Education Law of the People's Republic of China. It was proposed to improve the confirmation of qualification of reactor operators as soon as possible. (authors)

  5. Operating experiences of reactor shutdown system at MAPS

    Kotteeswaran, T.J.; Subramani, V.A.; Hariharan, K.

    1997-01-01

    The reactors in Madras Atomic Power Station (MAPS), Kalpakkam are Pressurised Heavy Water Reactors (PHWR) similar to RAPS, Kota. The moderator heavy water is pumped into the calandria from dump tank to make the reactor critical. Later with the calandria level held constant at 92% FT, the further power changes are being done with the movement of adjuster rods. The moderator is held in calandria by means of helium gas pressure differential between top of calandria and dump tank located below. The shutdown of the reactor is effected by dumping the moderator water to dump tank by fast equalizing of helium gas pressure. In the revised mode of operation of moderator circuit after the moderator inlet manifold failure, the dump timing was observed to be more compared to the normal value. This was investigated and observed to be due to accumulation of D 2 O in the gas space above dump valves, which was affecting the helium equalizing flow. Also some of Indicating Alarm Meters (IAM) in protective system initiating the trip signals have failed in the unsafe mode. They have been modified to avoid the recurrence of the failures. (author)

  6. Systems for aiding operators at university-owned research reactors in Japan

    Nishihara, H.; Kimura, Y.; Shibata, T.

    1984-01-01

    University-owned research reactors are operated for various purposes, and small disturbances may arise from various experimental facilities. Also not uniform are the technical levels of operators who range from supervised-students to reactor physicists. Considerable efforts are therefore devoted to the preventive maintainance. With these boundary conditions imposed, systems for aiding operators are designed at these research reactor facilities. (author)

  7. Building reactor operator sustain expert system with C language integrated production system

    Ouyang Qin; Hu Shouyin; Wang Ruipian

    2002-01-01

    The development of the reactor operator sustain expert system is introduced, the capability of building reactor operator sustain expert system is discussed with C Language Integrated Production System (Clips), and a simple antitype of expert system is illustrated. The limitation of building reactor operator sustain expert system with Clips is also discussed

  8. Safe Operation of Critical Assemblies and Research Reactors

    NONE

    1961-05-15

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  9. Safe Operation of Critical Assemblies and Research Reactors

    1961-01-01

    This Manual is provided as a guide to the safe operation of critical assemblies and small research reactors. It is intended that it should be used by all authorities and persons concerned with, or responsible for, the use of such equipment, in addition to the scientists and technologists who are actually working with, or operating it. It is suggested that it will be of use to those wishing to design and manufacture, or purchase, critical assemblies or research reactors, as well as those already in possession of them, and that it will prove particularly helpful to those users who have no direct access to other collected sources of information. This Manual is not a set of rules or a code of practice, but a series of recommendations which must be interpreted with scientific judgement in their application to any particular problem. The guiding principles are given from which good operational procedures may be established and improved. The promulgation of rigid standards is both impossible and undesirable at the present time, since the topics discussed form part of a rapidly growing science and technology. Therefore, any recommendations made should not be used to restrict or inhibit future developments. The Manual is intended mainly for use in those Member States where there has been little experience in the operation of critical assemblies and research reactors. It has been compounded from the best practices which exist in Member States having a large amount of such experience, so that nothing in it should conflict with the best practices to be encountered in the field of safe operation.

  10. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  11. Non-Power Reactor Operator Licensing Examiner Standards

    1994-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  12. Sustainable operations in nuclear research reactors. A bibliographical study

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  13. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    NONE

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  14. Sustainable operations in nuclear research reactors. A bibliographical study

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  15. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  16. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Hastowo, Hudi; Tarigan, Alim

    1999-01-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U 3 O 8 -Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  17. Ten years's reactor operation at the Technical University Zittau - operation report

    Konschak, K.

    1990-01-01

    The Zittau Training and Research Reactor ZLFR is in use for purposes of teaching the engineers who will operate the nuclear power plants in the GDR since 10 years. Since commissioning it was started up more than 1600 times, approximately two thirds of the start-ups being utilized for purposes of teaching. A number of teaching experiments were installed that demonstrate fundamental technological processes in nuclear reactors in a manner easy to understand. The high level of nuclear safety manifests itself, among other things, in extremely low radiation exposures of the operating personal and the persons to be trained. (author)

  18. A novel approach to the design and operation scheduling of heterogeneous catalytic reactors

    Ghodasara, Kamlesh; Smith, Robin; Hwang, Sungwon

    2014-01-01

    A number of studies have been conducted to reduce the overall level of catalyst deactivation in heterogeneous catalytic reactors, and improve the performance of reactors, such as yield, conversion or selectivity. The methodology generally includes optimization of the following: (1) operating conditions of the reaction system, such as feed temperature, normal operating temperature, pressure, and composition of feed streams; (2) reactor design parameters, such as dimension of the reactor, side stream distribution along the axis of the reactor beds, the mixing ratio of inert catalyst at each bed; and (3) catalyst design parameters, such as the pore size distribution across the pellet, active material distribution, size and shape of the catalyst, etc. Few studies have examined optimization of the overall catalyst reactor performance throughout the catalyst lifetime, considering catalyst deactivation. Furthermore, little attention has been given to the impact of various configurations of reactor networks and scheduling of the reactor operation (i.e., online and offline-regeneration) on the overall reactor performance throughout the catalyst lifetime. Therefore, we developed a range of feasible sequences of reactors and scheduling of reactors for operation and regeneration, and compared the overall reactor performance of multiple cases. Furthermore, a superstructure of reactor networks was developed and optimized to determine the optimum reactor network that shows the maximum overall reactor performance. The operating schedule of each reactor in the network was considered further. Lastly, the methodology was illustrated using a case study of the MTO (methanol to olefin) process

  19. Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of styrene overloading

    Lubos Zapotocky

    2014-10-01

    Full Text Available This aim of study was to compare the performance of a biofilter (BF and trickle bed reactor (TBR under increased styrene loading with a constant acetone load, 2 gc/m3/h. At styrene loading rates up to 30 gc/m3/h, the BF showed higher styrene removal than TBR. However, the BF efficiency started to drop beyond this threshold loading and could never reach steady state, whereas the TBR continued to yield a 50% styrene removal. The acetone removal remained constant (93-98% in both the reactors at any styrene loading. Once the overloading was lifted, the BF recovered within 26 min, whereas the TBR efficiency bounced back only to 95%, gradually returning to complete removal only in 10 h.

  20. Twenty years of operation of Ljubljana's TRIGA Mark II reactor

    Dimic, V.

    1986-01-01

    research and training, during the last few years many improvements were invented, such as: a dry central thimble for irradiations of isotopes, a new pneumatic facility for loading and unloading the samples in the new rotary specimen rack or central thimble, automatic data logging by a configuration, based on two microcomputers was developed, modernisation of the instrumentation which consists of additional safety channel (fuel temperature meters), water level indicator, an instrument integrator which measures the power of the reactor (digital display), a reactivity meter, etc. The surveillance of the reactor by the infrared detectors was also introduced. During the last twenty years the reactor was in operation without any longer periods of shut-down. Until now, two dummy elements had failed, two fuel elements' cladding failures had occurred and the rotary specimen rack has to be replaced. (author)

  1. Operation and maintenance of the RA reactor, RA Research reactor. Annual report 1976

    Martinc, R.

    1976-12-01

    During 1976 the Ra reactor was operating for about 30% shorter period than usual. The reason were extraordinary repair activities within regular and investment maintenance as well as repair of failures caused by neglected maintenance during previous 6 years. Delay was caused by unavailability of fuel (2% enriched fuel elements are spent) and the new 80% enriched fuel demanded experimental and theoretical analyses before being introduced into the core. Safety analyses concerned with using 80% enriched fuel both experimental and theoretical were successfully fulfilled. The December 1976 successful experimental campaign can be marked as end of the 17 years period of using 2% enriched fuel and start of the new period of using highly enriched fuel. This is significant not only for the reactor itself but for the users, because it would result in increase of neutron flux by 50% with the increase of costs by only 4%. Demand was submitted for obtaining the final license for transition operating regime with highly enriched fuel which would save at least 2 200 000 dinars. This will enable reactor operation in 1977 and later on, without interruption by 'critical' and other experiments related to new highly enriched fuel. A high number of repair and other urgent activities were fulfilled in order to enable safe operation. Some of these activities were done never before and some were neglected during past 6 years. The most important tasks were: purchase of Al tubes made of special alloy, fabrication and mounting of the fuel channel; overall investigation of reactor vessel leakage; repair of the heavy water pump; exchange of two vertical channels. basic equipment for construction of emergency cooling system was purchased. Hot cells are equipped for independent utilisation [sr

  2. Multilayer robust control for safety enhancement of reactor operations

    Edwards, R.M.; Lee, K.Y.; Ray, A.

    1991-01-01

    A novel concept of reactor power and temperature control has been recently reported in which a conventional output feedback controller is embedded within a state feedback setting. The embedded output feedback controller at the inner layer largely compensates for plant modeling uncertainties and external disturbances, and the outer layer generates an optimal control signal via feedback of the estimated plant states. A major advantage of this embedded architecture is the robustness of the control system relative to parametric and nonparametric uncertainties and thus the opportunity for designing fault-accommodating control algorithms to improve reactor operations and plant safety. The paper illustrates the architecture of the state-feedback-assisted classical (SFAC) control, which utilizes an embedded output feedback controller designed via classical techniques. It demonstrates the difference between the performance of conventional state feedback control and SFAC by examining the sensitivity of the dominant eigenvalues of the individual closed-loop systems

  3. New reactor safety circuit for low-power-level operation

    McDowell, W.P.; Keefe, D.J.; Rusch, G.K.

    1978-01-01

    In the operation of nuclear reactors at low-power levels, one of the primary instrumentation problems is that the statistical fluctuations of reactor neutron population are accentuated by conventional log-count-rate and differentiating circuits and can cause frequent spurious scrams unless long time constants are incorporated in the circuit. Excessive time constants may introduce undesirable delay in the circuit response to legitimate scram signals. The paper develops the concept of a count doubling-time monitor which generates a scram signal if the number of counts from a pulse type neutron detector doubles in a given period of time. The paper demonstrates the theoretical relation between count doubling time and asymptomatic periods. A practical circuit to implement the function is described

  4. Value addition initiatives for CANDU reactor operation performance

    Chugh, V.; Parmar, R.; Schut, J.; Sherin, J.; Xie, H.; Zobin, D.

    2013-01-01

    Recently, AMEC NSS initiated projects for CANDU® station performance engineering with potentially high returns for the utilities. This paper discusses three initiatives. Firstly, optimization of instrument calibration interval from 1 to 3 years will reduce time commitments on the maintenance resources on top of financial savings ~$3,500 per instrument. Secondly, reactor thermal power uncertainty assessment shows the level of operation which is believed to have an over-conservative margin that can be used to increase power by up to 0.75%. Finally, as an alternative means for controlling Reactor Inlet Header Temperature (RIHT), physical modifications to the High Pressure (HP) feedwater heaters can be useful for partially recovering RIHT resulting in increased production by 10-12 MWe. (author)

  5. Operational experience with Dragon reactor experiment of relevance to commercial reactors

    Capp, P.D.; Simon, R.A.

    1976-01-01

    An important part of the experience gained during the first ten years of successful power operation of the Dragon Reactor is relevant to the design and operation of future High Temperature Reactors (HTRs). The aspects presented in this paper have been chosen as being particularly applicable to larger HTR systems. Core performance under a variety of conditions is surveyed with particular emphasis on a technique developed for the identification and location of unpurged releasing fuel and the presence of activation and fission products in the core area. The lessons learned during the reflector block replacement are presented. Operating experience with the primary circuit identifies the lack of mixing of gas streams within the hot plenum and the problems of gas streaming in ducts. Helium leakage from the circuit is often greater than the optimum 0.1%/d. Virtually all the leakage problems are associated with the small bore instrument pipework essential for the many experiments associated with the Dragon Reactor Experiment (DRE). Primary circuit maintenance work confirms the generally clean state of the DRE circuit but identifies 137 Cs and 110 Agsup(m) as possible hazards if fuel emitting these isotopes is irradiated. (author)

  6. Knowledge-Based operation planning system for boiling water reactors

    Tatsuya Iwamoto; Shungo Sakurai; Hitoshi Uematsu; Makoto Tsuiki

    1987-01-01

    A knowledge-Based Boiling Water Reactor operation planning system was developed to support core operators or core management engineers in making core operation plans, by automatically generating suboptimum core operation procedures. The procedures are obtained by searching a branching tree of the possible core status (nodes) and the elementary operations to change the core status (branches). A path that ends at the target node, and contains only operationally feasible nodes can be a candidate of the solution. The core eigenvalue, the power distribution and the thermal limit parameters at key points are calculated by running a three-dimensional (3-D) BWR core physics simulator to examine the feasibility of the nodes and the performance of candidates. To obtain a practically acceptable solution within a reasonable time rather than making a time-consuming effort to get the optimum one, the Depth-First-Search method, together with the heuristic branch-bounding, was used to search the branching tree. The system was applied to actual operation plannings with real plant data, and gave satisfactory results. It can be concluded that the system can be applied to generate core operation procedures as a substitute for core management experts

  7. An abnormal event advisory expert system prototype for reactor operators

    Hance, D.C.

    1989-01-01

    Nuclear plant operators must respond correctly during abnormal conditions in the presence of dynamic and potentially overwhelming volumes of information. For this reason, considerable effort has been directed toward the development of nuclear plant operator aids using artificial intelligence techniques. The objective of such systems is to diagnose abnormal conditions within the plant, possibly predict consequences, and advise the operators of corrective actions in a timely manner. The objective of the work is the development of a prototype expert system to diagnose abnormal events at a nuclear power plant and advise plant operators of the event and applicable procedures in an on-line mode. The major difference between this effort and previous work is the use of plant operating procedures as a knowledge source and as an integral part of the advice provided by the expert system. The acceptance by utilities of expert systems as operator aids requires that such systems be compatible with the regulatory environment and provide economic benefits. For this reason, commercially viable operator aid systems developed in the near future must complement existing plant procedures rather than reach beyond them in a revolutionary manner. A knowledge source is the resource providing facts and relationships that are coded into the expert system program. In this case, the primary source of knowledge is a set of selected abnormal operating procedures for a modern Westinghouse pressurized water reactor

  8. Operation and maintenance of the RB reactor, Annual report for 1978

    Sotic, O.; Vranic, S.

    1978-01-01

    The annual report for 1978 includes the following: utilization of the RB reactor; producing the new safety report; improvement of experimental possibilities of the RB reactor; state of the reactor equipment; dosimetry and radiation protection; reactor staff. Four annexes to this report are concerned with: operation of the reactor at higher power levels; performance of the instrumentation, radiation doses during operation; gamma radiation doses after reactor shutdown; properties of the neutron converter (optimization of the rector-converter coupling; maintenance of the reactor equipment; purchase of new equipment

  9. Research Project 'RB research nuclear reactor' (operation and maintenance), Final report

    1985-01-01

    This final report covers operation and maintenance activities at the RB reactor during period from 1981-1985. First part covers the RB reactor operation, detailed description of reactor components, fuel, heavy water, reactor vessel, cooling system, equipment and instrumentation, auxiliary systems. It contains data concerned with dosimetry and radiation protection, reactor staff, and financial data. Second part deals maintenance, regular control and testing of reactor equipment and instrumentation. Third part is devoted to basic experimental options and utilization of the RB reactor including training

  10. Influence of temperature measurement accuracy and reliability on WWER-440 reactor operation

    Petenyi, V.; Ricany, J.

    2001-01-01

    The WWER-440 reactor power is controlled by coolant heat-up measurements installed on hot and cold circulation loops (enthalpy rise). For power distribution determination the thermocouples installed in reactor vessel above the fuel assemblies are mainly utilised. The paper shortly presents some interesting observations of temperature measurements influencing the reactor power operation of revealed changes in reactor core behaviour. (Authors)

  11. Assessment of specialized educational programs for licensed nuclear reactor operators

    Melber, B.D.; Saari, L.M.; White, A.S.; Geisendorfer, C.L.; Huenefeld, J.C.

    1986-02-01

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation among individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs

  12. Research about reactor operator's personability characteristics and performance

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  13. Operation experience at the Neuherberg Research Reactor (FRN) with several modifications of reactor components

    Demmeler, M; Rau, G [Gesellschaft fuer Strahlen- und Umweltforschung mbH, Neuherberg (Germany)

    1974-07-01

    Since the first full power operation in September 1972 up till now (Dec. 1973) the TRIGA Mark III reactor FRN has run more than 500 MWh in steady state operation and has been pulsed for 265 times. During startup experiments, neutron- and gamma-flux mapping has been performed with special technical devices in the core and in several irradiation positions, mainly in the thermal column and in the exposure room. Furthermore reactivity values of each fuel element have been measured at full power of 1 MW, thus enabling a more accurate burnup calculation. Troubles with the rotary specimen rack occurred at power rates above 280 kW; here, the lazy susan stuck, caused by thermal stress. Thus it will be replaced by a hydraulic-operated type, which has been developed at the TRIGA reactor Heidelberg. In order to increase irradiation capacity, a new core configuration has been set up a few months ago, replacing several fuel-reflector-elements by irradiation tubes within the grid-plate positions E-22, G-2, G-17 and G-36. Four additional fuel elements had to be inserted to compensate for the resulting reactivity losses. The original plan of regaining sufficient excess-reactivity by inserting a fuel element in grid-plate position A-l failed because of local boiling in the center of the core by 1 MW-operation. Experiments at the reactor started with the begin of routine-operation in September 1973. Up till now, a total of 450 neutron- and gamma- irradiations have been performed, mainly for neutron-activations. (author)

  14. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  15. AMNT 2014. Key topic: Reactor operation, safety - report. Pt. 2

    Fischer, Klaus-Christian; Willschuetz, Hans-Georg; Wortmann, Birgit

    2014-01-01

    Summary report on the following sessions of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - Thermo Dynamics and Fluid Dynamics: Experiments and Backfittings for the Improvement of Safety and Efficiency; - Safety of Nuclear Installations - Methods, Analyses, Results: In-Vessel Phenomena; Ex-Vessel Phenomena; - Standards and Regulations; Hazard and Safety Analysis; and Validation and Uncertainty Analysis. The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 (2014) and will be covered in further issues of atw.

  16. Operation and maintenance of the RA reactor in 1965

    Milosevic, D.

    1966-01-01

    It has been planned for 1965 that the RA reactor would be operated each month for 20 days at nominal power of 6.5 MW, at lower power for 5 days, meaning production of 27 400 MWh. The plan was fulfilled since reactor produced 28809 MWh, i.e. 5% more than planned. Reactor was used for irradiation in the vertical experimental channels according to the demand of 1264 users from the Institute and 191 external users. Two groups of experiments done: at nominal power simultaneously with isotope production and experiments which demanded particular power levels and temperatures. Three fuel exchanges were done during this year, meaning that 40 fuel channels were changed in total. Vertical experimental channels VEK-1 and VEK-9 having diameter 100 mm were changed by channels having diameter 50 mm and shortened by 435 mm. Channel VEK-5 with diameter 110 mm was changed shortened by 430 mm. This enabled better fuel economy, the burnup was increased from 4500 MWd/t to 5000 MWd/t. This report contains the action plan for 1966

  17. Operation experience with the TRIGA reactor of Pavia

    Lana, F.; Marchetti, F.; Losi, A.; Orvini, E.; Borio, A.; Salvini, A.

    2002-01-01

    Operational data for the reactor for the period 2000-2002 are presented as well as an account for the irradiations, irradiated samples and reactor time requests for different applications and different users. The ventilation system has been replaced in 2001 with a new system characterised by one way through air treatments by a double stock of filters and air release through seven absolute filters (EPA 99.99%) and expulsion engine powered by an inverter. The inverter is automatically managed by a PC Honeywell in order to have over 50 Pa of depression. There is also an emergency expulsion of the air through active carbon filters. The new ventilation parameters are presented and compared to the previous values (before 2001). An account for the fuel element in the core and spent fuel elements is given. During the refuelling six new SST cladding elements have been placed in the reactor core. Configuration fuel elements have been rearranged in order to have Ring B,C, and D fill with all SST cladding elements. For the cooling system every valve has been substituted with a new one. A new cooling system display has been assembled. Pressure and flux sensors have been placed on the primary circuit

  18. Benchmarking burnup reconstruction methods for dynamically operated research reactors

    Sternat, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charlton, William S. [Univ. of Nebraska, Lincoln, NE (United States). National Strategic Research Institute; Nichols, Theodore F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The burnup of an HEU fueled dynamically operated research reactor, the Oak Ridge Research Reactor, was experimentally reconstructed using two different analytic methodologies and a suite of signature isotopes to evaluate techniques for estimating burnup for research reactor fuel. The methods studied include using individual signature isotopes and the complete mass spectrometry spectrum to recover the sample’s burnup. The individual, or sets of, isotopes include 148Nd, 137Cs+137Ba, 139La, and 145Nd+146Nd. The storage documentation from the analyzed fuel material provided two different measures of burnup: burnup percentage and the total power generated from the assembly in MWd. When normalized to conventional units, these two references differed by 7.8% (395.42GWd/MTHM and 426.27GWd/MTHM) in the resulting burnup for the spent fuel element used in the benchmark. Among all methods being evaluated, the results were within 11.3% of either reference burnup. The results were mixed in closeness to both reference burnups; however, consistent results were achieved from all three experimental samples.

  19. Kartini reactor tank inspection using NDT method for safety improvement of the reactor operation

    Syarip; Sutondo, Tegas; Saleh, Chaerul; Nitiswati; Puradwi; Andryansah; Mudiharjo

    2002-01-01

    The inspection of Kartini reactor tank liner (TRK) by using Non Destructive Testing (NDT) methods to improve the reactor operation safety, have been done. The type of NDT used were: visual examination using an underwater camera and magnifier, replication survey using dental putty, hardness test using an Equotip D indentor, thickness test using ultrasonic probe, and dye penetrant test. The visual examination showed that the surface of TRK was in good condition. The hardness readings were considered to be consistent with the original condition of the tank and the slight hardness increase at the reactor core area consistent with the neutron fluence experienced -10 1 4 n/cm 2 . Results of ultrasonic thickness survey showed that in average the TRK thickness is between 5,0 mm - 6,5 mm, a low 2,1 mm thickness exists at the top of the TRK in the belt area (double layer aluminum plat, therefore do not influencing the safety ). The replica and dye penetrant test at the low thickness area and several suspected areas showed that it could be some defect from original manufacture. Therefore, it can be concluded that the TRK is still feasible for continued operation safely

  20. EDF view on next generation reactor safety and operability issues

    Serviere, G.

    2002-01-01

    In the foreseeable future, EDF will have to compete in an economically de-regulated market. Nuclear currently accounts for more than 80% of the electricity generated by the company, and generation costs are quite competitive compared to that of other competing energies. It is so likely that nuclear units will remain the backbone of EDF generating fleet in the years to come. However, to remain a viable option for electricity generation in the longer term, nuclear will have to maintain both its cost-effectiveness and a very high safety level. This could seem quite straightforward considering the current situation where safety records are at an all time high and Operating and Maintenance costs are under tight control. In fact, it could be a real challenge. Competing fossil technologies progress and there is a concurrent trend to try and improve the performance of future nuclear units. However, in most cases, proposed designs depart from the well-known Light Water Reactor (LWR) technology. They are either new concepts or designs already tested in the past and modified to address some of their perceived drawbacks. Contrary to the prevailing situation where short-term alternatives like the EPR, the ABWR or the AP600 largely build upon experience gathered on operating units, most designs contemplated for implementation beyond 2020 or 2030 cannot be considered proven. Considering the above mentioned uncertainties, EDF have confirmed their preference for proven designs with higher outputs, such as the EPR. However, it would appear unreasonable to consider that new designs are doomed to fail: they could well turn out to be adequate for specific niches in a de-regulated market and provide reasonable alternatives for the utility. Nevertheless, for such an alternative to be considered, additional evidence is needed that utility preferences are reflected in the design, and that all potential technical issues have been identified, adequately addressed and resolved. Currently, EDF